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A 3D Bacterial Swimming Model

Coupled With External Fluid Mechanics

Using The Immersed Boundary Method

Abstract

by Chia-Yu Hsu, Ph.D

Washington State University

August 2007

Chair: Robert Dillon

We introduce a 3D motile rod-shaped bacterial model with a single polar flag-

ellum which is based on the configuration of a monotrichous type of bacteria such

as Pseudomonas aeruginosa. The structure of the model bacterial cell consists of a

cylindrical body together with the flagellar forces produced by the rotation of a helical

flagellum. The bacterial cell body is constructed from a set of immersed boundary

points and elastic links. The helical flagellum is assumed to be rigid and modeled

as a set of discrete points along the helical flagellum and flagellar hook. A set of

flagellar forces are applied along this rotating helical curve as the flagellum rotates.

An additional set of torque balance forces are applied tangentially on the cell body

to drive the counter-revolution of the body and provide torque balance.

The fluid flow that drives the model bacterial cell is governed by the incompress-

ible Navier-Stokes equations with a force density contributed from the elasticity of

the cell body, the rotation of the flagellum, and the torque balance forces. The model

is based on the immersed boundary method introduced by Peskin to model the fluid

flow of the heart. We solve the Navier-Stokes equations numerically for the fluid ve-

locity at each time step by Fast Fourier Transform methods and advect the bacterial

cell at the local fluid velocity.

xiii



This fully 3D model is loosely based on an earlier 2D model for bacterial swimming

introduced by Dillon, Fauci and Gaver in 1995. Numerical simulations of the bacterial

swimming model are presented. We show simulations that demonstrate first order

convergence as the numerical mesh is refined. We also show simulations of the model

helical centroid trajectory, the model behavior in forward and backward swimming

and the hydrodynamic interaction of two or more motile cells from various initial

configurations as well as the hydrodynamic influence of walls and tubes on the model

swimming.
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Introduction

Many bacteria commonly found in nature and in the human body are motile. These

include many strains of Escherichia coli (E. coli), Salmonella typhimurium, and Pseu-

domonas aeruginosa which play an important role in human disease. A bacterial

flagellum or flagella provides the motility in these and many other types of bacte-

ria. There are alternative forms of bacterial motility including gliding, in bacteria

such as Myxobacteria [140, 149, 76, 60], and the complex swimming mechanism of

Spirochaetes [33, 151]. Motile bacteria of the flagellated type can swim in viscous

fluid environments. E. coli is probably the most widely studied bacteria. Motile

forms of E. coli are peritrichously flagellated and have many flagella. In contrast,

Pseudomonas aeruginosa [134, 58] typically have a single flagellum at one end of a

rod-shaped body or a pair of flagella, one at each end. Pseudomonas aeruginosa is a

pathogen of high frequency in nosocomial infections, urinary tract infections, and in

cystic fibrosis and can have considerable antibiotic resistance [136, 48].

In this thesis, we introduce a new mathematical model and numerical method

for modeling bacterial motility in rod-shaped bacteria with a single polar flagellum

such as found in many strains of Pseudomonas aeruginosa. The formulation of this

fluid-mechanical model is based on the immersed boundary method, first introduced

by Charles Peskin to model the blood flow in the human heart. We include the fully
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three-dimensional time dependent fluid dynamics of the Navier-Stokes equations for

incompressible fluid flow, the mechanics of the bacterial rod-shaped body and the

forces due to the rotation of the bacterial flagellum. The model strictly enforces con-

servation of momentum, as well as angular momentum, and thus provides a realistic

description of bacterial swimming.

In Chapter 1.1, we give some relevant background on bacterial microbiology, the

rod-shaped bacterial cell body, the bacterial motor, and flagellum. In Chapter 1.2,

we give an overview of flagellar hydrodynamics in bacterial swimming and, in Chap-

ter 1.3, an overview of the immersed boundary method.

The three-dimensional swimming bacterial model will be described in Chapter 2.

The bacterial cell body is constructed with a set of immersed boundary points and

elastic links. The flagellum is represented by a set of flagellar forces that generate

fluid flow and propel the bacterial cell. The torque due to flagellar rotation is offset

by torque forces on the body which results in zero net force and zero net torque

produced by the bacterium.

In Chapter 3, we present a numerical convergence study, a study of single cell

swimming, a study of bacterial swimming with changes in flagellar configuration and

the complex interaction of two swimming bacteria. Simulation results of a single

swimming bacteria are contrasted with results from the literature. We also consider

the motion of a bacterium with the flagellar rotational direction reversed, and the

effect of changes in flagellar characteristics such as flagellar length, amplitude, pitch

and rotational frequency. The interaction of swimming bacteria in proximity is of par-

ticular interest in bioconvection and in chemotaxis. We show that the hydrodynamic

interaction of two bacteria swimming can create the illusion of bacterial tumbling.
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In Chapter 4, we investigate the interaction a swimming bacterium near a wall,

between planar walls, within a cylindrical tube and outside one or two cylinders. In

Chapter 5, we summarize and discuss these results and describe future development

of this bacterial swimming model.

3



Chapter 1

Research Background

The swimming of bacteria was first observed by Antony van Leeuwenhoek in the 1670’s

using his single-lens microscope [8]. Most motile bacteria move by use of a flagellum or

flagella [121]. Motile bacteria are able to actively move toward regions that are more

suitable for survival. These regions might contain more nutrients. Motile bacteria

can also move away from toxic regions [7, 14, 30]. Relevant research on bacterial

motility and related topics will be reviewed in Chapter 1.1. The study of flagellar

hydrodynamics has a rich history beginning with the work of G.I. Taylor [142, 143].

Lighthill provided a hydrodynamical model of the flagellar force that inspired the

bacterial swimming model in this dissertation [101, 102]. In Chapter 1.2, we provide

a survey of the relevant studies on the hydrodynamics of flagellated microorganisms.

The immersed boundary method was originally developed by Peskin [123] in 1977

for the study of blood flow in the heart. This method [124] provides both a model-

ing framework and numerical method for studying the interaction of incompressible

fluid flow and immersed elastic structures. The immersed boundary method has

been employed in a variety of applications including the study of blood flow in the

heart [122, 123, 124], blood vessels [148, 135], deformation of blood cells [29], platelet
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aggregation and adhesion in blood clotting [67, 65, 68, 150], signal transduction by

cochlea [22, 70] as well as microorganism locomotion [61, 62, 52, 63, 64, 38]. In

Chapter 1.3, we provide an overview of this method.
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1.1 Bacterial Motility

The investigation of bacterial motility has provided insights into the structure of the

bacterial flagellum and its motor, as well as the external fluid mechanics of flagellar

hydrodynamics. There are three types of mechanisms that have been identified for

bacterial motility. The most common type of motility is produced by the rotation

of a flagellum or flagella [15]. The swimming of Spirochaetes is also facilitated by

flagella, but in this case the flagella wrap around a central protoplasmic cylindrical

body. This cylindrical body and flagella lie inside an outer membrane [121, 151].

In a third type of motility associated with the gram-negative myxobacteria, bacteria

are able to glide along a surface on slime produced by the bacteria [140, 149]. We

do not consider the motility of spirochetes or of gliding bacteria in this study and

shall use the terms “motile” and “flagellated” interchangeably. Flagellated bacteria

are classified by the number and distribution of flagella on the bacterial cell body.

Flagellated bacteria have been divided into four categories:

(1) Monotrichous: A single flagellum at one end of the body

(2) Amphitrichous: Two flagella, one at each end, or a single flagellum on each end

(3) Lophotrichous: More than two flagella located at one end of the cell body

(4) Peritrichous: More than two flagella distributed over the cell body

In our three-dimensional swimming bacterial model, we shall focus on rod-shaped

bacteria of monotrichous type. The bacterial structure associated with flagellated

bacterial swimming has been studied by Berg at al [5]-[13]; the hook and MS-ring

(motor) of the basal body by DePamphilis and Adler [49, 50]; the flagellar bundle,

geometry and flagellar assembly by Macnab [109, 112, 113]; the gradient-sensing
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mechanism of bacterial motility and chemotaxis by Macnab and Koshland [110, 111];

signal transduction and torque generation of the reversible motor by Blair [26, 27];

flagellar motor numerology relative to motor rotation by DeRosier [51]; rotational

switching by Bren and Eisenbach [31]; and the flagellar structure by Namba et al [120].

In most cases, a peritrichous type of bacteria, such as Escherichia coli or Salmonella

typhimurium, has been used as the experimental model organism. However, Roberts

and Doetsch [134] investigated flagellar properties of monotrichous bacteria.

In order to observe the movement of bacteria under chemoattractants, Berg and

Brown [14] created a tracking microscope in 1972 to track bacterial movement. They

created a gradient of chemoattractants by inserting attractants at the wall of the

tracking chamber. In 1973, Berg and Anderson [15] showed that bacteria swim by us-

ing flagellar rotation. In 1974, Silverman and Simon [138] provided data and further

experimental evidence in support of these conclusions. In one of their experiments, Sil-

verman and Simon tethered two bacteria together and observed the counter rotation

of the bacteria. The flagellum was found to be the fundamental organelle for bacterial

motility. It is a semi-rigid passive appendage and rotates rigidly about the flagellar

axis as it protrudes behind the cell body [15, 8]. The flagellum has three major compo-

nents: a basal body, a hook and a filament [57]. The basal body is a reversible motor

composed of several proteinaceous rings with diameters of about 45nm [51, 13]. The

motor’s rotational frequency can vary from 15Hz when the bacterium is tethered up

to 300 Hz when the bacterium is swimming [86, 26]. The hook, with length of about

45-50nm, extends from the motor to the helical filament [49, 86, 138]. The flagellar

filament is composed of 11 protofilaments which are comprised of protein monomers

known as flagellin. This whip-like hollowed appendage can grow 10-15 µm in length.
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Its atomic structure has been studied in detail by Namba and colleagues [120] with

X-ray crystallography and electron cryomicroscopy.

This passive bacterial flagellum is very different from the eukaryotic flagellum due

to fundamental differences in the flagellar structures [6]. The “9+2” axoneme of a

typical eukaryotic flagellum consists of an outer ring of 9 microtubule doublets and

two inner microtubules. The bending of the eukaryotic flagellum is induced by sliding

between neighboring pairs of doublet microtubules. The sliding of adjacent pairs of

doublet microtubules is produced by the activity of thousands of molecular motors

known as dyneins. The sliding induced by the dyneins are powered by the hydrolysis

of adenosine triphosphate (ATP) [55].

In flagellated bacteria, a rotational motor, embedded in the cell body, turns a rigid

helical flagellum. The rotation of the flagellum drives the fluid motion [15, 8]. The

motor rotation is generated by a transmembrane flow of proton ions. Many motile

bacteria are sensitive to chemical attractants in the environment and have evolved a

complex mechanism for moving up (or down) chemical gradients by alternating the

flagellar rotational directions between counterclockwise (CCW) and clockwise (CW).

By convention, the rotational direction CCW and CW are taken with respect to a

viewpoint behind the cell body [26, 144, 146].

A left-handed helix is commonly found in flagellated bacteria as they swim forward

with a CCW flagellar rotation. However, this is not a unique flagellar configuration.

Some flagellated bacteria have been found to swim forward with a right-handed helical

flagellum rotating CW [1, 72]. According to Namba [120], a reversal of the bacterial

motor forces the configuration of the flagella’s 11 protofilaments to change state from

L-type to R-type or from L-type to R-type. This change of state is accompanied by

8



changes in flagellar handedness as well as changes in amplitude and pitch.

The bacterial response to chemical gradients is known as chemotaxis. Bacterial

cells sense chemoattractants or repellent through a complex signal transduction pro-

cess [139, 27]. Bacteria are unable to sense a chemical gradient directly. Instead,

the bacteria sense changes in chemical concentration over time. In the classic run

and tumble model for E.coli, a bacterium swims forward under the combined clock-

wise rotation of its flagella, and undergoes a tumble or change of direction when the

flagella reverse rotational direction [5, 13, 91]. In high concentrations of chemoattrac-

tants, the attractants bind to chemoreceptors, methyl-accepting chemotaxis proteins

(MCPs), and block the function of phosphorylated cytoplasmic protein CheY causing

the motor to rotate CCW [30, 115].

The flagellum of monotrichous bacteria such as Pseudomonas aeruginosa are

dragged into a left-handed helix in CCW rotation to generate the fluid flow that

propels the cell body to forward. For peritrichous bacteria such as Escherichia coli

and Salmonella typhimurium, the flagella form a helical bundle and propel the bac-

teria forward if all the motors rotate CCW [109, 107, 87]. This is known as the

running mode. In peritrichous bacteria, a tumble mode occurs when a reversal of

flagellar rotation causes the flagellar bundle to unravel. The tumble mode was first

photographed in Salmonella in 1965 by Mitani and Iino, and in E. coli by Ramsey

and Adler in 1966-1969 [14]. The duration of the run and tumble modes are approx-

imately 1 second and 0.1 seconds respectively [11]. However, this tumble mechanism

may not be appropriate for monotrichous bacteria.

The bacterial cell body rotates in the opposite direction of flagellar rotation. This

counter rotation of the cell body produces an overall torque balance with the torque
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induced by the rotation of the flagellar motor and flagellum [130, 93]. Turner, Berry

and Berg [18, 21] have investigated the torque generated by the motor in CW and

CCW rotation. Changes in the configuration of the flagellum due to changes in

rotational direction have been investigated by Arkhipov, Freddolino, Imada, Namba

and Schulten in 2006 [3, 2].
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1.2 Flagellar Hydrodynamics

The fluid dynamics of swimming organisms is a complex system and difficult to ana-

lyze. In bacterial swimming, the factors involved in motility include the quantity or

density of the bacteria in the domain, physiological conditions of the bacteria such as

size, mass and elasticity, the structure of the cell body and flagella, the configuration

of the flagellum, the bacterial swimming methodology, environmental factors such as

the density, viscosity and temperature of the fluid, as well as other conditions such

as chemical substrates, particles in the fluid, and gravity.

The Reynolds number is a dimensionless ratio of inertial force and viscous force

defined as

Re =
LU

µ/ρ
=

LU

ν
=

Inertialforce

V iscousforce

where L is the characteristic length, U is the characteristic velocity, µ is fluid viscosity,

ρ is fluid density and ν = µ/ρ is kinematic viscosity. We show typical values in

Tables 1.1 for bacterial swimming in water.

Symbol Parameter Data
L characteristic length 1 µm
U characteristic velocity 20 µm/sec
µ fluid viscosity 10−2 g/cm.sec
ρ fluid density 1g/cm3

ν kinematic viscosity µ/ρ

Table 1.1: Typical parameters for bacterial swimming.

Childress [33] provided a table to show the distinct Reynolds numbers of a vari-

ety of animals and organisms with different sizes and swimming velocities, such as

spermatozoan with Re ≈ 10−2 − 10−3 and medium sized fish with Re ≈ 104. The

Reynolds number for a bacterium is approximately Re = 10−5, due to its size and
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velocity. Since the fluid viscosity dominates the fluid dynamics of swimming bacteria,

the initial forces are typically neglected and the fluid mechanics can be represented

by the Stokes equation with momentum equation:

−∇p + µ4u + F = 0 (1.2.1)

and the continuity equation:

∇ · u = 0 (1.2.2)

where u is the fluid velocity, p denotes the pressure, µ is fluid viscosity, F is the

external force applied to the fluid.

Since the Stokes equations are linear, they are more amenable to mathematical

analysis than the Navier-Stokes equations which will be described later. The modern

study of the hydrodynamics of swimming organisms and cilia began with Gray [73, 75]

in the 1920’s. In 1950 and 1952, G.I. Taylor [142, 143] studied the swimming of

microscopic organisms in the low Reynolds number regime and interaction of the tails

of microscopic organisms. The resistive-force theory of Gray and Hancock [74, 78,

79, 33, 101, 102] provided estimates for the effective normal and tangential resistance

coefficients KT and KN for a segment of a moving flagellum.

Later, slender-body theory, originally initiated by Burgers in 1938, was developed

by Cox [41] and Batchelor [4] for a long slender solid body. Cox investigated the

interaction between two or more long slender bodies and the swimming behavior in the

neighborhood of solids walls. Batchelor extended this theory from Cox’s assumption

of a slender body with circular cross-section to a more general noncircular crosssection.

Keller and Rubinow [88, 89] used the method of matched asymptotic expansions to

study the flow passing a slender body with circular cross section and allowed the

slender body to twist. Machin [108], Brokaw [32], Hines and Blum [80] investigated
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bending wave propagation in eukaryotic flagellum. Winet, Chwang and Wu [42, 43,

44, 45, 46, 47] have investigated the locomotion of spirochetes which propagate a 3D

helical wave along their elongated body. Their analysis of spirochete motility followed

the resistive theory of Gray and Hancock and included the counter rotation of the

cell body and the torque generated by the flagellum.

Lighthill’s [101, 102] refinement of slender body theory led to a modification

of the resistance coefficients and an improved analysis of flagellar hydrodynamics.

Higdon [81, 82, 83] studied microorganism swimming by flagellar propulsion using

stokeslets, dipoles and rotlets to represent the cell body and applied slender body

theory to represent the flagellum with a set of the stokeslets and dipoles. Moreover,

an image system was used to eliminate the velocity induced by those singularities on

the flagellum and represent the fluid velocity as a system of singular integral equa-

tions. A similar approach was used by Phan-Thieh, Tran-Cong and Ramia [129] to

study the hydrodynamics of microorganism motility. Lighthill provided a detailed de-

scription of microorganism motility in his monograph on aquatic animal locomotion

at low Reynolds number in his book, Mathematical Biofluiddynamics [101]. Chil-

dress provided an overview of flagellar hydrodynamics of the swimming flagellated

organisms in his book, Mechanics of swimming and flying [33].
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1.3 The Immersed Boundary Method

The immersed boundary method, was originally developed by Charles Peskin in 1972

and applied to the study of the blood flow of heart valves in 1977 [122, 123, 124].

Peskin and McQueen have extended the method to the three-dimensional biofluid

dynamics of the heart [125, 126, 127]. The immersed boundary method has also

been used by Eggleton and Popel to study blood cell deformation [59], by Bottino

to model viscoelastic networks in the actin cytoskeleton of ameboid cells and in cell

deformation [29], by Fogelson and Fauci to model platelet aggregation and adhesion

in blood clotting [67, 65, 68, 150], by Vesier and Yoganathan to model blood flow

in elastic vessels [148], by Byer to model signal transduction by cochlea in the inner

ear [22], by Givelberg and Bunn in a 3D model of the cochlea [70], by Fauci and others

to model the swimming of various aquatic animals, organisms and micro-organisms

including eels, leech, nematodes, sperm, biflagellated algal cells [61, 62, 52, 63, 64, 38]

and, by Dillon, Fauci, Gaver, and Fogelson to model biofilm formation [53, 54].

The immersed boundary method can be described by Equations (1.3.1)-(1.3.4),

ρ(ut + (u · ∇)u) = −∇p + µ4u + F(x, t) (1.3.1)

∇ · u = 0 (1.3.2)

F(x, t) =

∫
f(s, t)δ(x−X(s, t))ds (1.3.3)

∂X

∂t
= u(X(s, t), t) =

∫
u(x, t)δ(x−X(s, t))dx (1.3.4)
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where u is the fluid velocity, p is pressure, x and s are Eulerian and Lagrangian

variables, δ(x) is the Dirac delta function. ρ is fluid density and µ is fluid viscosity.

The first two equations (1.3.1) and (1.3.2) are the Navier-Stokes equations for an

incompressible fluid. An elastic structure or organism is represented as an immersed

boundary at time t denoted by X(s, t). The boundary conditions for the fluid domain

are typically given as periodic and the domain is a regular parallelepiped in three

dimensions. In the basic version of the immersed boundary method, the organism is

assumed to have the same density as the fluid. Thus, the immersed boundary X(s, t)

is assumed to be massless. The forces f(s, t) due to the organism are applied to

the Navier Stokes equations by means of the integral equation (1.3.3) . The Navier-

Stokes equations “see” the organism as additional forces F. The system of equations

is closed by requiring that the immersed boundary X(s, t) move at the local fluid

velocity in Equation(1.3.4). In typical numerical implementations, the fluid domain

is represented as a regular grid. Since the domain shape is a regular parallelepiped, the

equations can be solved efficiently using Fast Fourier Transform methods or multigrid.

Originally, Peskin developed the immersed boundary method to study the flow

pattern around the heart and solved the incompressible Navier Stokes equations us-

ing Chorin’s projection method [122, 123]. In this projection method the fluid ve-

locity vector field u is projected onto the divergence-free vector field according to

the Helmholtz-Hodge Decomposition Theorem [35, 36, 34] by applying the condition

of incompressibility. Later in 1977, a fast Laplace-solver was incorporated into the

immersed boundary method. The spatial discretization was based on a Cartesian

mesh for the Eulerian variables and a moving curvilinear mesh for the Lagrangian

variables. A second order accurate Runge-Kutta method was used in the temporal
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discretization. Several smoothed delta functions [77] used in Equation (1.3.3) and

(1.3.4) have been created to interpolate the Lagrangian elastic force density to the

Cartesian grid and interpolated on the Eulerian grid to the points on the Lagrangian

mesh.

In 1992, Tu and Peskin investigated the stability and instability of the immersed

boundary method using Stokes equations. They compared the stability of explicit,

approximate-implicit and implicit methods. The body configuration was computed

implicitly and the force density term was found by Newton’s method from the gradient

of the elastic energy function. In 1993, Mayo and Peskin [116] used an iterative scheme

defined on the interpolation operator of the boundary configuration and Aitken ex-

trapolation to accelerate the convergence rate. Besides this, volume conservation was

studied by Peskin and Printz [128] in 1993.

The improvement of the immersed boundary method’s spatial order of accuracy

was investigated by Lai and Peskin [90]. A formally second order accurate immersed

boundary method was demonstrated in the flow past a cylinder. Other improve-

ments of the immersed boundary method such as high order convergence rate for a

sufficiently smooth boundary have also been investigated by Griffith and Peskin [77]

using a hybrid numerical scheme in using an approximate projection method for the

intermediate velocity and a strong stability-preserving Runge-Kutta method for time

integration and evolution of the immersed boundary points.

LeVeque and Li, inspired by the immersed boundary method, developed a fully

second order accurate immersed interface method for elliptic and hyperbolic equa-

tions. The immersed interface method incorporates jump conditions at the sharp

interface [97, 98, 99]. The immersed interface method was extended to the Navier
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Stokes equations by Li and Lai in 2001 with the aid of a level set representation for the

interface [100]. Lee and LeVeque [95, 96] extended the immersed interface method to

the framework of Peskin’s immersed boundary method in 2002. Khoo, et.al developed

another type of immersed interface method for the Navier-Stokes equations [94].

A blob projection method was developed by Cortez and Minion which use a finite

difference method for modeling the interaction of elastic membranes immersed in a

viscous incompressible fluid. In the blob projection method, a cutoff or blob function,

was used to regularize the force field [40]. More properties of this blob function are

found in Cortez’s “Method of Regularized Stokeslets” [39] and its applications to the

study of the flagellar bundle [66] by Flores, et al..
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Chapter 2

A 3D Bacterial Swimming Model

We introduce a three-dimensional model for a motile rod-shaped bacterium with

a single polar flagellum. The formulation of the model is based on the immersed

boundary method. The structure of the model bacterial cell consists of a cylindrical

body together with flagellar forces. A 3D bacterial cell body is constructed from a

set of points and elastic links. The bacterial flagellum, and the rotational forces due

to the bacterial motor are represented in an idealized fashion. The helical flagellum

is modeled as set of discrete points along its helix and its flagellar hook. We assume

that the flagellum is rigid and impose a fixed rotational velocity. The flagellar forces

on each of the discrete flagellar immersed boundary points are derived by considering

the drag force on each small segment of the rotating flagellum [11, 33] The counter

rotation of the bacterial cell body is induced by torque balance forces applied to the

cell body. At each point in time, the model bacterial cell applies a zero net force

and a zero net rotational force or torque to the surrounding fluid. The net force and

net torque are obtained by a summation of the individual contributions to the force

and torque over the entire bacterial model organism. The flagellar forces drive the

fluid motion and the swimming of the bacterial cell. We represent the fluid mechanics
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by means of the fully three-dimensional time dependent Navier-Stokes equations for

incompressible flow. We note that the Reynolds number for bacterial swimming is

very low and that the Stokes equations could be used for this model. We show a

detailed description of the bacterial structure in Chapter 2.1.

In Chapter 2.2, we discuss Lighthill’s analysis of flagellar hydrodynamics and

describe the flagellar force structure of our 3D model. The flagellar force structure

and its mathematical representation will be provided. The immersed boundary model

will be introduced in Chapter 2.3 along with the numerical algorithm for this model.
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2.1 The Rod-Shaped Bacterial Cell Body

Figure 2.1: A 3D bacterium with a helical flagellum shown from two viewpoints.

The 3D rod-shaped bacterial model, as shown in Figure 2.1, is designed to model

the motility of a neutrally buoyant bacterium with a single polar flagellum. The bac-

terial cell body is modeled by a set of immersed boundary points connected by elastic

links to form the cylindrical structure of a rod-shaped bacterium. The rigidity of the

cell body is obtained by employing elastic links with sufficient stiffness. Figure 2.2

shows the configuration of the cell body from several view points. As shown in the

left panel of Figure 2.2, the body is composed of annular rings. Each of the rings is

constructed with a discrete set of immersed boundary points and elastic links. As

shown in the middle and right panels of Figure 2.2, neighboring annular rings are

interconnected with additional elastic links that serve to maintain the rigidity of the

cell body. The number of immersed boundary points on the inner and outer rings of

each annulus are taken to be the same in order to simplify the link structure. The
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link structure is described in detail in Chapter 2.3.

Figure 2.2: 3D view of the cell body from different view points.

The bacterial flagellum is modeled as left-handed helical filament and rotates

in the counterclockwise (CCW) direction as viewed from tail when the cell swims

forward. Figure 2.3 shows the top-down view of the flagellar forces and torque forces

on the cell body. The flagellar amplitude and the cell body radius are the same so

that the flagellum’s main cylindrical helix is hidden behind the cell in Figure 2.3.

The left panel on Figure 2.3 shows the cell body links and the left-handed filament

coiling behind the cell body in the top-down view. In Figure 2.3 (right), we show

the model cell with flagellar and torque forces. Figure 2.4 (left) shows a side-on

view of the cell body and flagellar filament, and in Figure 2.4 (right), the flagellar

forces on the filament. A series of frames from a numerical simulation that illustrated

a single flagellar rotation from the top-down viewpoint is shown in Figure 2.5 and

in Figure 2.6. The bars pointing out from the filament in Figure 2.6 represent the

flagellar vector forces due to the rotation of the flagellum.
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Figure 2.3: (left) Cell body links and flagellum. (right) Force illustration.

Figure 2.4: (left) Model cell and (right) flagellar forces .
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Figure 2.5: XY-view of one revolution of the flagellum with forces.
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Figure 2.6: XZ-view of one revolution of flagellum with force vectors repre-
sented.
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2.2 Flagellar Forces

In [102], Lighthill analyzed bacterial flagellar motion by considering the distribution

of Stokeslets along a helical flagellum. A Stokeslet represents the flow generated by a

concentrated force f acting at a point of fluid governed by the Stokes equations with

the momentum equation:

−∇p + µ4u + fδ(r) = 0. (2.2.1)

and the continuity equation:

∇ · u = 0. (2.2.2)

where u is the fluid velocity, p is pressure, f is a force vector and δ is the Dirac

delta function. By taking the divergence of Equation (2.2.1) and using the continu-

ity Equation (2.2.2), one can obtain the Poisson equation (2.2.3) in an unbounded

domain.

∇2p = ∇ · fδ(r) (2.2.3)

The Poisson equation can be solved for the pressure p = ∇ · (− f
4πr

) which is a dipole

field with r = ‖r‖ and r is the vector displacement from the point where the external

force is applied. The associated velocity field u can be represented as

u =
r2f + (f · r)r

8πµr3
(2.2.4)

In Lighthill’s analysis, the velocity field generated by a helical flagellum can be

represented as distributions of Stokeslets and a chosen dipole in order to satisfied the

no-slip boundary condition. Under the assumption that the ratio of the flagellar radius

a to the flagellum length L is small [33], the flagellar velocity w can be represented
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in terms of the flagellar force distribution f approximately as

w(s0) =
fn(s0)

4πµ
+

∫

r0>ρ

r2
0f + (f · r0)r0

8πµr3
0

ds (2.2.5)

where s is the distance along the centerline of the flagellum, f(s0) is the flagellar

velocity of a cross-section of the flagellum at s = s0, and r0 is the position vector of

the point s0. fn(s0) is the vector normal to the centerline of the flagellum at s = s0

by projecting the force f(s) on the plane normal to the center line and ρ = 1
2
a
√

e.

The rotation of a spiral with constant radius and constant pitch can be represented

by the equations

x(s) = αs, y(s) = b cos(κs− ωt), z(s) = b sin(κs− ωt)

where b, κ and ω are the radius, period and angular velocity at time t. The wavelength

with respective to s is given by Λ = 2π
κ

and the wavelength or pitch with respect to x

is given by λ. Hence, α = λ/Λ < 1 be defined as the contraction of the spiral. Then

from the periodicity we get

x(s + Λ) = x(s) + λ, y(s + Λ) = y(s), z(s + Λ) = z(s)

If the wave travels along the spiral with a velocity c, then the wave velocity on

the X-axis is given by V = αc. The force f(s) per unit length along the centerline at

t = 0 can be approximated by f(s) = (ĝ, ĥ sin(κs),−ĥ cos(κs)) for some constants ĝ

and ĥ. Dillon, Fauci and Gaver [52] built a 2D flagellar bacterial swimming model

by projecting Lighthill’s spiral flagellar forces onto the 2D plane. We adopted this

concept for the flagellar force in this 3D bacterium model and consider the flagellar

force field on the cross-section of the flagellum distributed along the helix and rotating

about the flagellar axis. The model flagellar force vectors, shown in Figure 2.7,
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are the sum of a tangential and radial vector. In Figure 2.8 we show the radial

flagellar force unit vectors, and in Figure 2.9, the tangential flagellar force unit vectors.

The torque balance forces shown in Figure 2.10 are applied to the cell body and

have the opposite orientation from the flagellar force tangential vectors. Detailed

mathematical formulation of these forces and the torque balance equation will be

given in Chapter 2.3.

Figure 2.7: Flagellum with flagellar force vectors.

Figure 2.8: Flagellum with tangential force vectors.

We assume that the length of the rod-shaped cell body with radius r is twice its

diameter and that the helical flagellum has two pitches. The length of each pitch,

along the flagellar axis, is equal to one cell body length. Let r be the amplitude of

the helix and L be the pitch length of the helix, then L = 4r. The model bacterial

27



Figure 2.9: Flagellum with radial force vector.

Figure 2.10: Flagellar and torque balance forces.

flagellum consists of two parts, (1) a helical filament with constant amplitude r and (2)

a helical “hook” with a variable radius that tapers from r down to zero and connects

the main part of the flagellum to the cell body at the centroid of the disk on the lower

end of the bacterial body. The two components of the flagellum can be described

mathematically by the equations in cylindrical coordinates for the cylindrical helical

filament in component (1)





z = ξ, −2L ≤ ξ ≤ Lhook,

x = r cos(−2π
L

ξ),

y = r sin(−2π
L

ξ),

(2.2.6)
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and the hook in component (2)





z = ξ, Lhook ≤ ξ ≤ 0

x = −4r
L

ξ cos(−2π
L

ξ),

y = −4r
L

ξ sin(−2π
L

ξ),

(2.2.7)

where Lhook is the length of the hook. Since the amplitude of the main component

of the flagellum is the same as the radius of the cell body, the flagellum lies directly

below the cell body when viewed from the top, as in Figure 2.5, and is obscured by

the outer ring of the cell body unless the cell body is tilted with respect to the Z-axis.

However, we can clearly see the hook in the top down XY-view in Figures 2.7-2.10.
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2.3 Mathematical Model and Numerical Algorithm

The mathematical model of the immersed boundary method can be described briefly

by Equations (2.3.1)-(2.3.4).

ρ(ut + (u · ∇)u) = −∇p + µ4u + F(x, t) (2.3.1)

∇ · u = 0 (2.3.2)

F(x, t) =

∫
f(s, t)δ(x−X(s, t))ds (2.3.3)

∂X

∂t
= u(X(s, t), t) =

∫
u(x, t)δ(x−X(s, t))dx (2.3.4)

where x and s are the Eulerian and Lagrangian variables and δ(x) is the Dirac delta

function. Equations (2.3.1) and (2.3.2) are the Navier-Stokes equations for an incom-

pressible fluid. Here ρ is fluid density, µ is fluid viscosity, u is the fluid velocity, p

denotes the pressure. The bacterial cell body and its flagellum are considered as an

immersed boundary and denoted by X(s, t) with an associated force density f(s, t)

representing the elastic forces of the bacterial cell. s is a Lagrangian parameter. The

Lagrangian forces generated by the bacterium f(s, t) are communicated to the Eule-

rian fluid domain in the calculation of F(x, t) by Equation (2.3.3). This force field

F(x, t) drives the fluid motion in Equations (2.3.1). The bacterial structure X(s, t)

moves at the local fluid in Equation (2.3.4). The F(x, t) term in the Navier-Stokes

equation (2.3.1) is the force density over the Eulerian computational domain taken

as cube or a rectangular parallelepiped. This force density of the 3D bacterial model

includes those forces due to the elasticity of the microbial cell wall, the swimming

force field due to the flagellar hydrodynamics and the rotational torque force on the
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cell body. These can be summarized by the following formula:

F(x, t) = Fbody + Frotate + Fswim (2.3.5)

where Fbody is the elastic force density due to the elasticity of the bacterial cell body,

Fswim is the flagellar force, and Frotate is the torque balance force that drives the

counter rotation of the bacterial cell body. The various contributions to the Eulerian

force field in Equation (2.3.6) are obtained from the Lagrangian force defined on the

model bacterial cell

f(s, t) = fbody + frotate + fswim (2.3.6)

and communicated to the Eulerian fluid domain by Equation (2.3.3) where fbody is

the elastic force due to the elasticity of the bacterial cell body, fswim is the flagellar

force, and frotate is the torque balance force which drives the counter rotation of the

bacterial cell body. A detailed description of each term will given below.

In our 3D bacterial model, we discretize the cell body to obtain a set of immersed

boundary points Xi,j,k(t) where 1 ≤ i ≤ NP , 1 ≤ j ≤ NL, k = 1, 2, NP and NL are

the number of points on each annular ring and the number of annular rings on the

body, k = 1 on the outer cylinder, k = 2 on the inner cylinder. There are three types

of links:

• Horizontal links on the outer and inner rings. These are links between the

immersed boundary points on the same ring Xi,j,k and Xi±p,j,k for p = 1, 2, 3

• Vertical links between adjacent layers. These are links between the immersed

boundary points Xi,j,k and Xi±p,j±1,k for p = 0, 1, 2, 3, 4

• Links between inner and outer rings on the same level or annulus. These are

links between the immersed boundary points Xi,j,k and Xi±p,j,k for p = 0, 1, 2
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The force contribution on the immersed boundary point Xq due to the elastic

link with the immersed boundary point Xr is given by Hook’s law for a linear elastic

spring fqr = Sqr (‖ Xr −Xq ‖ −Lqr)
Xr −Xq

‖ Xr −Xq ‖ where Sqr and Lqr are the spring

force constant and resting length of the link between the two immersed boundary

points. The force on Xr is given by frq = −fqr The total force on the immersed

boundary point Xq is the sum of forces fq =
∑

fqr where the sum is over all immersed

boundary links to Xq. Then, the total cell body force are found to be fbody = {fq}. A

discretized version of Equation (2.3.3) is used to interpolate the Lagrangian force fq

to the Eulerian grid force and obtain Fq, hence Fbody =
∑

Fq.

Torque and Flagellar Forces In order to maintain conservation of momentum

and angular momentum, the sum of all forces and of all torque forces produced by the

model bacterial cell must sum to zero. This condition is automatically satisfied by the

cell body forces because they are all represented as elastic links and
∑

fq = 0. The

flagellar forces and torque balance forces also sum to zero because they are applied

axisymmetrically with respect to the bacterial cell axis. That is, an individual flagellar

force vector has a complementary flagellar force vector on the opposite side of the

flagellar helix and the sum of the forces is zero. A similar approach is used for the

torque balance forces on the cell body. We also balance the torque generated by the

flagellar forces with the torque produced by the torque balance forces.

• The torque balance forces frotate and Frotate:

Let N is the unit axial vector aligned with the cell body axis, and R is the

unit outward normal vector to the cylindrical body at Xij1. The magnitude of

the torque force constant ct is chosen to obtain torque balance with the torque

forces induced by the rotation of the flagellum and will be defined in the torque
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balance equation (2.3.12). The unit tangential force vector f t
ij at the immersed

boundary point Xij1 is found by the cross product of N and R as Equation

(2.3.7):

f t
ij ≡

N×R

‖ N×R ‖ (2.3.7)

The total torque balance force frotate in Equation (2.3.6) at the cell’s outer

immersed boundary points Xij1 can be found as a vector field frotate = (ctf
t
ij),

and the total torque balance force Frotate in Equation (2.3.5) can be found as

Equation (2.3.8):

Frotate = Σj=NL
j=1 Σi=NP

i=1 ctf
t
ijδ(x−Xij1) (2.3.8)

• The swimming force fswim and Fswim:

Let the unit flagellar force vector f f
i at the immersed boundary point Xf

i of the

flagellum is defined by Equation (2.3.9):

f f
i ≡

f̂ f
i

‖ f̂ f
i ‖

(2.3.9)

where the flagellar force, Equation (2.3.10), is defined as the sum of vectors −R

and the unit tangential vector −f t
ij found in Equation (2.3.7),

f̂ f
i ≡ (−R) + (−f t

ij) = (−R) + (− N×R

‖ N×R ‖) (2.3.10)

Hence the total swimming force fswim in Equation(2.3.6) can be found as a

vector field (cf f
f
i ), hence the total swimming force Fswim in Equation (2.3.5) is

given by Equation (2.3.11):

Fswim = Σi=NHNP
i=1 cf f

f
i δ(x−Xf

i ) (2.3.11)

Here Xf
i is the immersed boundary point on the flagellum where 1 ≤ i ≤ NHNP

with NH is the number of pitches on the filament.
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Torque Balance The torque generated by the rotation of the flagellum and the

body must be balanced under the conservation of angular momentum. The magnitude

of the torque generating forces on the body must balance the torque produced from

the flagellar force. The torque balance equation (2.3.12) is given as follows:

NP
4∑

i=1

(riur × cfuf⊥) +

NH ·NP∑

i=1+
NP
4

(rαur × cfuf⊥) = −NL ·NP (rur × ctut) (2.3.12)

The first term on the left-hand side of the equation represents the torque generated

by the flagellar hook. The second term on the left is the torque produced by the main

flagellar component with constant amplitude αr where α is the ratio of the amplitude

of the cylindrical helix to the radius r of cell body. The term on the right hand side

of the equation is the torque driving the body rotation. The parameters for equation

(2.3.12) are summarized in Table 2.1. After simplification we obtain an expression

for the body force constant ct as a function of the flagellar force constant cf .

ct = cf (
NH − 1

8

NL

)α cos θ (2.3.13)
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r is the radius of the cell body.
NP is the number of points on each ring.
NL represents the layers of rings on the cell body.
NH is the number of pitches of the flagellum.
α is the ratio of the amplitude of the flagellum to the radius of the

cell body, when α = 1 means the amplitude equal radius, take
0 ≤ α ≤ 1.

ri is the distance from the point on the hook part to the axis of the
helix. ri = i·α·r

(1+
NP
4

)

ur is the unit outward (radius) normal vector of the cell body.
ut is the unit tangential vector of the cell body.
uf is the unit flagellar force vector.
θ is the angle between the unit tangential vector −ut and the unit

flagellar force vector uf .
uf⊥ uf⊥ = cos θ‖uf‖(−ut) = cos θ(−ut) is the orthogonal component

of the unit flagellar force vector uf which generates the torque, i.e
uf⊥ = uf cos(π

4
).

cf is the flagellar force parameter.
ct is the torque balance force parameter.

Table 2.1: Parameters used in the torque balance equation.
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Numerical Solution of the Model Equations The numerical method for

solving the model equations (2.3.1)-(2.3.4) is based on Peskin’s immersed bound-

ary method. The fluid domain is discretized using a uniform 3D rectangular grid.

The fluid variables un, pn, and Fn are defined at time tn at these grid points. Sim-

ilarly, as described above, the cell body, and flagellum are discretized to obtain im-

mersed boundary points Xi,j,k for the cell body and Xf
i for the flagellum. Once

the force density F is determined we can solve the Navier Stokes equations (2.3.1)

and (2.3.2) with periodic boundary conditions using efficient Fast Fourier Transform

(FFT) methods. Here we use a method that is similar to one used by Peskin and

McQueen [125, 127, 117, 118]. This method is also described in Dillon and Oth-

mer [56]. Equations (2.3.1) and (2.3.2) are discretized using finite differences. In the

discretized equation we use a semi-implicit method in which the fluid velocities on

the right hand side of (2.3.1) and the pressure p in Equation (2.3.1) are represented

at time tn+1. We use a forward difference scheme for the time derivative and an

upwind scheme for the nonlinear momentum term (u · ∇)u. The fluid velocities in

the momentum term are represented at time tn as is the force field F. The resulting

system of algebraic equations is solved using FFT methods. The approximate 3D

Dirac Delta function δh(x) in (2.3.3) and (2.3.4) is the product of three continuous

functions, that is δh(x) = d(x)d(y)d(z) where h is the mesh width and d(r) is shown

in Equation (2.3.14).

d(r) =

{
1
4h

(1 + cos(πr
2h

) , ‖r‖ < 2h

0 , ‖r‖ ≥ 2h
(2.3.14)

This is a standard form for the delta function and was introduced by Peskin 1977 [123].

The compact support of this approximate delta function lends itself to efficient com-

putation as the forces from each immersed boundary point are interpolated to a
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small number of nearby grid points. Detailed descriptions of the immersed boundary

method can be found in [124, 61, 52, 53].

The algorithm of the immersed boundary method is summarized as follows. At

time tn we have the fluid velocities un and current configuration of the bacterial cell

body Xn. In order to find the fluid velocities and configuration of the cell at time

tn+1, we:

1. Find the force densities fbody and frotate from the location of the cell’s immersed

boundary points Xn and elastic link structure.

2. Determine the location of the flagellar immersed boundary points Xf . We

assume that the flagellar reference frame moves with the cell body. We calculate

the location and orientation of the flagellar reference frame from Xn, determine

the updated flagellar configuration Xf at the new rotation angle θn.

3. Calculate the flagellar force fswim from the updated flagellar configuration Xf .

4. Spread the force densities fbody, frotate, and fswim using the approximate delta

function to obtain the Eulerian force distribution Fn+1 in Equation (2.3.3)

5. Solve the Navier Stokes equation (2.3.1) and (2.3.2) for the fluid velocity un+1.

6. Advect the cell’s immersed boundary points at the local fluid velocity using

un+1 in Equation (2.3.4) to obtain Xn+1
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Chapter 3

Numerical Simulations of Bacterial
Swimming

In this chapter, we present numerical results for the 3D bacterial swimming model.

The results for a single model cell include a numerical convergence study shown in

Chapter 3.1, the behavior of a single cell swimming forwards in Chapter 3.2, a sin-

gle cell swimming forwards and backwards in Chapter 3.3. In Chapter 3.4 we show

numerical results for the interaction or two or more swimming bacteria. The hy-

drodynamic interaction between multiple bacterial cell is investigated in Chapter 3.5.

Since the simulations are fully three-dimensional, we show bacterial swimming results

from several viewpoints in order to visualize the model results.

In this study, the fluid temperature, fluid density and viscosity are considered as

constants. The organism is assumed to be massless and neutrally buoyant. The com-

putational domain is a rectangular parallelepiped with period boundary conditions for

the fluid velocities. We use fluid markers to visualize the fluid flow of the simulations.

These fluid markers are advected in the fluid velocity field at each time step during

the course of the simulations and have no influence on the simulation results. One set

of fluid markers is introduced around the cell body for the purpose of visualizing the
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fluid flow near the bacteria. A second set of fluid markers is placed initially at each

grid point in the fluid domain for the purpose of visualizing the overall fluid flow.

We show physical parameters, such as the values of the fluid viscosity, fluid density,

fluid grid size and computational time step in Table 3.1.

Parameter Symbol Data
Density ρ 1g/cm3

Viscosity µ 0.01 gcm−1s−1 (1cP)
Grid size h 0.625 µm
Time step ∆t 2.4× 10−7 sec

Table 3.1: Fluid and computational parameters.

Since the size of the computational domain varies, the dimensions will be reported

with the discussion of each simulation. Table 3.2 shows the physical parameters for

the bacterial model.

3D model information Data Unit
Bacterial boundary points 12 point
Bacterial body layers 11 layers
Bacterial diameter 1.25 µm
Bacterial body length 2.29 µm
Bacterial body thickness 0.21 µm
Bacterial body rotational frequency 10-15 rps
Body stiffness S0 2.4×10−1 dynes/µm
Flagellar amplitude 0.625 µm
Flagellar pitch (wave length) 2.3958 µm
Number of pitches 2
Flagellar length 9.33 µm
Flagellar force cf 1.0× 10−3 (or indicated) pN
Flagellar rotational frequency 200 rps
Swimming speed 10-25 µm/sec

Table 3.2: Physical parameters for the bacterial model.
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3.1 Swimming Trajectory and Convergence Study

Centroid Trajectory Purcell [131, 132], considered bacteria with a characteristic

size of 1∼2 µm in length and a swimming velocity of 10∼90 µm/sec in the low

Reynolds number regime. He argued that reciprocal motions could not be used for

motility for low Reynolds number swimming since symmetric motions would produce

negligible net motion. Moreover, Purcell showed that the rotating helical flagellum

used by flagellated bacteria would efficiently propel a swimming microorganism. A

typical bacterial flagellum consists of a cylindrical helical filament and a helical hook

that connects the cylindrical helix to the bacterial motor at the cell body. The geom-

etry of our 3D model bacterial flagellum mimics the form of the wild-type bacterial

flagellum.

The tangential forces applied to the cell body produce counter rotation and provide

torque balance with the flagellum [21]. Keller and Rubinow [88, 89] studied the path

of a flagellated bacterium and argued that its trajectory would form a helix with

small radius. Berg and Brown [14, 11] found that swimming bacteria meandered in

each run. In Figure 3.1(right) we show the centroid trajectories of our model cell.

Figure 3.1(left) shows the trajectory of a model cell with total run time of 0.05

seconds. The trajectory forms a left-handed helix when viewed from below. In Fig-

ure 3.1(right), the centroid trajectory is shown for a total swimming time of 1.0833

seconds. Aside from the differences in running time, the two simulations are iden-

tical. There is a 1:22 difference in the spatial scales shown in the two figures. In

this simulation, the computational domain is 10 × 10 × 40µm3 with a 16 × 16 × 64

computational grid. The bacterial swimming velocity is 17.182 µm/sec.

Numerical Convergence Study The computational domain for the numerical
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Figure 3.1: The helical trajectory of the model swimming bacterium.

convergence study is a cube with edges of length 10 µm. We employed a set of

N3 computational grid with N=16, 32, 64, and 128. We used a fixed time step of

∆t = 0.875 × 10−8 for each of the simulations. The time step was chosen small

enough so that the simulations remained stable even on the finest grid. The velocity

fields were compared at time t = 1.75× 10−6 seconds which corresponds to 200 time

steps. The computation on the finest grid required two hours of CPU time running

on a single processor on the AMD cluster at the Center for Computational Science

at Tulane University. The bacterial cell size is shown in Table 3.2. We used a fixed

number of cell body and flagellar immersed boundary points and a fixed value for the

flagellar and torque force constants cf and ct on each grid.

Let u128 = uexact + chp, where h is the grid size of the finest scheme. The velocity

approximations are u128 = uexact +chp, u64 = uexact +c(2h)p, u32 = uexact +c(4h)p and
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u16 = uexact + c(8h)p where c is a constant. We compute the ratios k0 and k1 given by

k0 =
A

B
=
‖ u128 − u64 ‖
‖ u128 − u32 ‖ =

‖ 1− 2p ‖
‖ 1− 4p ‖ , k1 =

AA

BB
=
‖ u64 − u32 ‖
‖ u64 − u16 ‖ =

‖ 1− 2p ‖
‖ 1− 4p ‖

Therefore, the convergence rate estimates p0 and p1 are given by p0 =
ln(

1−k0
k0

)

ln(2)
and

p1 =
ln(

1−k1
k1

)

ln(2)
.

In Table 3.3 we show convergence results for the centroid velocity and rotational

velocity of the cell body. In Table 3.4 we show convergence results in several vector

norms for the fluid velocity field over the entire computational domain. The velocity

field on each grid is obtained from the solution of the Navier-Stokes equations. The

error between velocities on the various grids is taken at each point of the domain on

the coarsest grid.

Grids Centroid velocity. Rotational velocity.
128 1.129×10−4 6.999×10+1

64 1.152×10−4 5.903×10+1

32 1.231×10−4 4.064×10+1

16 1.324×10−4 1.526×10+1

A=‖ u128 − u64 ‖ 2.3×10−6 1.096×10+1

B=‖ u128 − u32 ‖ 1.02×10−5 2.935×10+1

Ratio k0=A/B 2.305×10−1 3.734×10−1

Power=p0 1.739 0.747

AA=‖ u64 − u32 ‖ 7.9×10−6 1.839×10+1

BB=‖ u64 − u16 ‖ 1.72×10−5 4.377×10+1

Ratio k1=AA/BB 4.576×10−1 4.20×10−1

Power=p1 0.235 0.465

Table 3.3: Convergence study of the body centroid and rotational velocity.

In Table 3.3, we see that the apparent convergent rate improves on the finer grids.

For the centroid velocities, we obtain p0 ≈ 1.7 which is consistent with second order

convergence. For the rotational velocities, we obtain p0 ≈ 0.74 which is consistent
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Fluid vel. L1-norm L2-norm L∞-norm
A=‖ u128 − u64 ‖ 5.410×10−4 5.355×10−4 5.35496×10−4

B=‖ u128 − u32 ‖ 2.271×10−3 1.665×10−3 1.504×10−3

Ratio=A/B 0.238 0.322 0.356
Power=p0 1.677 1.077 0.855

AA=‖ u64 − u32 ‖ 2.311×10−3 1.580×10−3 1.351×10−3

BB=‖ u64 − u16 ‖ 5.437×10−3 3.635×10−3 2.947×10−3

Ratio=AA/BB 0.425 0.435 0.458
Power=p1 0.436 0.380 0.241

Table 3.4: Convergence study of fluid velocity.

with first order convergence. The values for p1 computed on the coarser grid show

much slower convergence rates. In Table 3.4, we see a convergence rate for the fluid

velocity. The value p0 ≈ 1.7 in the L1 norm, p0 ≈ 1.1 in the L2 norm and p0 ≈ 0.85 in

the L∞ norm. These are consistent with second order convergence in the L1 norm, and

first order convergence in the L2 and L∞ norms. Smaller, but positive convergence

rates p1 are found on the coarser set of grids.

43



3.2 Numerical Simulations: Single Cell

In this section, we present numerical results for a single model bacterial cell. The

physical parameters of the model are described in Table 3.2 for each simulation unless

otherwise indicated. The computational domain size is 10 × 10 × 20 µm3 with a

16 × 16 × 32 computational grid. The fluid dynamics are represented by sets of

fluid markers over the entire domain and in the region surrounding the cell. The

cell swimming velocity depends strongly on the flagellar swimming force constant cf

as indicated in each simulation table. The swimming speed is usually between 10-25

µm/sec. The XZ- and XY-viewing windows have the origin at the bottom- left corner.

The YZ-viewing window has the origin at the bottom-right corner.
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3.2.1 Forward Swimming: Short Time Behavior

In this section, we show simulation results of a model bacterial cell swimming forward

in a 10×10×20µm3 domain with a 16×16×32 computational grid with a flagellar force

constant cf = 0.8× 10−3 pN. In Figure 3.2 we show snapshots of the simulation. The

time interval between each frame is 0.1083 seconds. The calculated average swimming

velocity of the bacterial cell is 13.523µm/sec with a total run time of 0.5417 seconds.

Figure 3.3, 3.4 show snapshots from the same simulation in the XZ- and XY-viewing

window.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 0.8× 10−3 pN
Swimming speed 13.523 µm/sec.
Body rotational frequency 7.21 rps
Frames interval 0.10833 sec
Total swimming time 0.5417 sec

Table 3.5: Parameters for forward swimming.
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Figure 3.2: 3D view of model bacterium swimming forward.
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Figure 3.3: XZ-view of the model cell swimming forward.
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Figure 3.4: XY-view of the model cell swimming forward with fluid markers.
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3.2.2 Swimming Forward: Long Time Behavior

In this section we show simulation results for a single swimming model cell over a

longer duration. According to Berg in his book, Random Walks in Biology [11], the

trajectory of a wild-type bacterium E. coli strain AW405 has the characteristics of a

random walk composed of alternating run and tumble modes. A typical run mode

has a duration of about 1 second. In Figure 3.5, we show simulation results for a

model simulation with an overall run time of 1.0833 seconds. This is performed on a

computational domain of 10 × 10 × 40 µm3 and a 16 × 16 × 64 computational grid.

In this simulation the flagellar force parameter cf = 1.0× 10−3 pN. The time interval

between frames is 0.2167 seconds. The average swimming speed is 16.61 µm/sec.

The series of snapshots shown in Figure 3.6 illustrate the fluid dynamics in the fluid

domain. A central layer of fluid in the computational domain has been shown as

the bacterium swims upwards in the XZ-view. The series of snapshots in Figure 3.7

show the simulation in the YZ-view along with fluid markers on the central layer of

the computational domain. The series of snapshots in Figure 3.8 illustrate the fluid

dynamics around the cell body while the bacterium swims up. The series of snapshots

in Figure 3.9 show the fluid dynamics around the cell body and in the domain.

Simulation information Data Unit
Computational domain 10× 10× 40 µm3

Flagellar force cf 1.0× 10−3 pN
Swimming speed 16.61 µm/sec.
Frames interval 0.2167 sec
Total swimming time 1.0833 sec

Table 3.6: Long time swimming simulation.
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Figure 3.5: Bacterium swimming forward (long time).
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Figure 3.6: XZ-view of a bacterium swimming with one layer of fluid markers.
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Figure 3.7: YZ-view of a bacterium swimming with one layer of fluid markers.
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Figure 3.8: Fluid markers surrounding a swimming bacterium.
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Figure 3.9: XZ-view of body with local and one layer of global fluid markers.
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3.2.3 Swimming Forward: Modified Flagellar Force

In this section, we show preliminary results of the model cell swimming with an alter-

native flagellar force model. Here, the inward normal vector R in Equation (2.3.10)

is omitted and replaced with a force vector in the axial direction. The modified force

vector f̂ f
i in Equation (2.3.10) is shown in the following equation:

f̂ f
i ≡ k0N + (−f t

ij) (3.2.1)

where k0 is a constant. Simulation details are provided in Table 3.7.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Axial vector parameter k0 0.1
Flagellar force cf 0.8× 10−3 pN
Swimming speed 3.633 µm/sec.
Frames interval 0.542 sec
Total swimming time 1.0833 sec

Table 3.7: Simulation of the model cell with tangential and axial flagellar force.

The added axial force contribution is offset by axial force vectors in the negative

Z direction on the cell body’s lowest annular ring. The magnitude of the force on the

cell body is chosen so that the resultant axial force sums to zero. This combination

of flagellar forces, results in forward swimming. With the values of k0 and cf used

here the average swimming speed is 3.633 µm/sec. Although this is slower than the

swimming speeds shown in Chapter 3.2.1, we believe that faster swimming speeds can

be obtained with a modification of the axial and tangential flagellar force constants.

We show the simulation results in Figure 3.10-3.12.
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Figure 3.10: 3D view of a cell swimming with axial and tangential flagellar
force.

Figure 3.11: XZ-view of a cell with axial and tangential flagellar force.

Figure 3.12: XY-view of a cell with axial and tangential flagellar force.
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3.3 Reversal of Flagellar Rotation

The bacterial motor is capable of reversing it direction of rotation. Howard Berg

noted that bacterial cells with a single polar flagella such as Vibrio metchnikovii,

first found in a patient with cholecystitis, could swim steadily forward but could re-

verse direction and swim backwards in response to changes in the environment [6].

The lophotrichous bacteria, Chromatium okenii, swims backwards when the rotation

direction of its flagellum is reversed. There is a considerable literature on the run

and tumble motion of peritrichous bacteria, such as Escherichia coli and Salmonella

typhimurium. These bacteria change swimming direction by a tumble motion when

the flagellar bundles disassociate as a response to the reversal of rotational direc-

tion. When the swimming direction of peritrichous bacterium results in a decrease in

chemoattractants, its bacterial motors are more likely to reverse. This changes the

flagellar rotation from CCW to CW in one or more flagella. As a result, the flagel-

lar bundle can unravel and the cell undergoes a tumble. Usually, the bacterial cell

swims in a new direction after its flagellar bundle is reassembled. When the flagellar

rotational direction switches from CCW to CW the flagellum can experience changes

in handedness from left to right as well as changes in pitch, number of pitches, and

amplitude of the cylindrical helix. Macnab and Koshland [111] found that Salmonella

typhimurium flagella experienced such changes as well when the bacteria were stimu-

lated by high intensity light or experienced changes in pH. This flagellar phase change

has also been investigated by Shimada, Kamiya and Asakura [137].

The run and tumble model for chemotaxis may not be appropriate for monotric-

hous bacteria. With only a single flagellum, there is no “flagellar bundle”. Changes in

rotational direction force changes in the handedness and flagellar phase change from
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normal to coiled, semi-coiled, or curly. In Chapter 3.3.1 we reverse the rotational

and swimming direction midway through the simulation. The reversal of rotational

direction is also accompanied by a reversal in the cell body torque force, and change

in flagellar handedness from left to right, but we keep the “normal” flagellar ampli-

tude and pitch. In Chapter 3.3.2, we reverse the rotational direction midway through

the simulation. Here, the helical configuration changes from left- to right-handed.

In addition, the flagellar configuration changes from the “normal” to a “semi-coiled”

configuration. In Chapter 3.3.3, the model cell swims forwards, then backwards, and

then forwards. In the forward swimming direction, the flagellum has the “normal”

left-handed configuration; in backward swimming, a right-handed “semi-coiled” con-

figuration.
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3.3.1 Forward and Backward Bacterial Swimming

In this section, we investigate the swimming behavior of the model cell in forward

and backward swimming. In the first simulation results, we use the same flagellar

amplitude, pitch length of pitches in both forward and backward swimming. In

backward swimming the rotation of the flagellum is reversed, as is the handedness of

the flagellar helix, and the direction of the flagellar and torque forces. The bacterial

cell swims forward for the first half of the simulation and backwards for the second

half. The forward and backward run times are 0.5415 seconds. A summary of the

simulations details are shown in Table 3.8.

In order to understand the single bacterium swimming forward and backward

motion by manipulating the flagellar forces and torque balanced forces, the follow-

ing simulation is designed to keep the physical conditions of the flagellum such as

amplitude, pitch length and number of pitches the same except the handedness and

force direction. The forward and backward running time are each 0.5416 seconds.

Table 3.8 summarizes the simulation information.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 1.0× 10−3 pN
Frames interval 0.2167 sec
Total swimming time 1.0833 sec
Flagellar amplitude 1.0 radius
forward speed 17.70 µm/sec.
Swimming backward speed 17.12 µm/sec.

Table 3.8: Forward and backward swimming.

Simulation results are shown in Figures 3.13-3.15. The net swimming speeds in

forward (17.7 µm/sec) and backward (17.12 µm/sec) swimming are very similar. In
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both forward and backward swimming the trajectories are approximately straight.

Figure 3.13: Forward and backward swimming with amplitude and pitch un-
changed.
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Figure 3.14: Forward and backward swimming with local fluid markers.
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Figure 3.15: XZ-view of local fluid dynamics in forward and backward swim-
ming.
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3.3.2 Rotational Reversal with Changes in Flagellar Config-
uration

Shimada et al, Macnab and Koshland, Jones and Aizawa investigated the changes in

flagellar configuration due to reversal of the rotational direction in Salmonella [137,

111, 86]. They found that the bacterial flagellum changed handedness from left to

right and the flagellar configuration changed from normal to coiled, semi-coiled or

curly. In the simulation results shown above in Chapter 3.3.1 the handedness was

changed from left to right, but the amplitude, pitch, and number of pitches was

held constant. In the following simulation shown in Figure 3.16-3.19, we change the

handedness from left to right as well as the flagellar amplitude and pitch during CW

rotation. A summary of the simulation details is shown in Table 3.9.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 1.0× 10−3 pN
Frames interval (six frames) 0.2167 sec
Frames interval (three frames) 0.5416 sec
Total swimming time 1.0833 sec
Forward flagellar amplitude 0.5 radius
Forward pitch length 2 body long
Swimming forward speed 8.346 µm/sec.
Swimming forward flagellum arc-length 6.641 µm.
Backward flagellar amplitude 0.8 radius
Backward pitch length 1 body long
Swimming backward speed 14.903 µm/sec.
Swimming backward flagellum arc-length 6.607 µm.

Table 3.9: Forward and backward swimming with altered flagellar configura-
tion.

In CCW rotation, we set the flagellar amplitude at one half the cell body radius

and the pitch length at two cell body lengths. In CW rotation we increase the

flagellar amplitude from 0.5 to 0.8 times the cell body radius and the total pitch
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length is shortened to one body length. With this change in flagellar configuration,

the flagellar arc length remaining effectively unchanged as it decreases by only 0.515%.

We use two pitches in both CCW and CW rotation.

In this simulation the model bacterial cell swims forward with CCW flagellar

rotation for 0.5417 seconds and backwards with CW flagellar rotation for 0.5417

seconds. The bacterial cell undergoes a change in direction when it begins to swim

backward, and continues along an approximately linear trajectory. In addition, there

is a speed change. With these changes in flagellar configuration, the cell swims

backward approximately twice as fast as it swims forward. In the XZ- and YZ-

views shown in Figure 3.17 and 3.18 we see that the forward swimming trajectory is

approximately vertical, whereas the backward trajectory tilts toward the lower right

corner. The XY-view shown in Figure 3.19 confirms that the model cell swims nearly

straight up in forward motion but veers toward the corner in backward motion.
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Figure 3.16: Forward and backward swimming with altered flagellar configu-
ration.
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Figure 3.17: XZ-view with flagellar change from normal to semi-coiled.

Figure 3.18: YZ-view with flagellar change from normal to semi-coiled.

Figure 3.19: XY-view with flagellar change from normal to semi-coiled.
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3.3.3 Alternate Swimming Motion by Reversal of Flagellar
Rotation

In the following simulation we show simulation results for a model cell that swims

alternatively forwards, backwards and forwards. We divide the total simulation run

time into three equal periods. In the first and last periods, the model cell swims

forward with a CCW flagellar rotation and a “normal” left-handed flagellar config-

uration. In the middle period, the model cell swims backwards with a CW flagellar

rotation and a “semi-coiled” right-handed flagellar configuration [86]. Here the “nor-

mal” configuration is identical to that used in the previous simulation for forward

swimming. The “semi-coiled” configuration is identical to that used in backward

swimming. We summarize the simulation details in Table 3.10.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 1.0× 10−3 pN
Total swimming time 1.625 sec
Frames interval(six frames) 0.325 sec
Frames interval(four frames) 0.542 sec
Forward flagellar amplitude 0.5 radius
Forward pitch length 2 body long
Swimming forward speed 8.346 µm/sec.
Backward flagellar amplitude 0.8 radius
Backward pitch length 1 body long
Swimming backward speed 14.903 µm/sec.
Forward flagellar amplitude 0.5 radius
Forward pitch length 2 body long
2nd forward speed 5.700 µm/sec.

Table 3.10: Alternate directions with pitch and amplitude changes.

The Figure 3.20 we show the simulation results with forward swimming in the

upper panels, backward swimming in the middle panels and forward swimming in
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the bottom panels. This simulation is identical to that shown above in Chapter 3.3.2

except for the additional segment in which the model cell returns to its initial forward

swimming mode. We see in Figure 3.21 that the cell trajectory is again approximately

vertical as the cell switches from backward to forward swimming.
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Figure 3.20: (top) Forward -(middle) Backward -(bottom) Forward movement.
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Figure 3.21: (top) XZ-view , (middle) YZ-view and (bottom) XY-view .
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3.4 Interaction Between Two Model Cells

The interaction between two bacterial cells has been studied by Liu and Papadopou-

los [103, 105], Dillon, Fauci, and Gaver [52] and, Ishikawa and Hota [85]. In this

section, we investigate the hydrodynamic interaction of two model bacterial cells.

The details of the hydrodynamic interaction between two model swimming cells de-

pends on the initial orientations and locations of the model cells. In this study, we

assume that the model cells are identical and swim with a CCW rotation in the

forward direction. We restrict our study to special cases of initial cell orientation

and location. In Chapter 3.4.1 we show simulations of cells swimming in the same

direction in parallel with the Z-axis with an initial separation. In Chapter 3.4.2 and

Chapter 3.4.3 we show simulations results of two cells oriented in the same direction

with one swimming ahead of the other. In Chapter 3.4.4, we show simulation of

two cells swimming in opposite direction. In these simulations, we see qualitative

similarities with 2D simulations of bacterial motility presented in Dillon, Fauci, and

Gaver [52]. In Chapter 3.4.5, we show simulation results of two cells swimming in

opposite directions with a wide axial spacing. The hydrodynamic interaction between

these cells is much less than in the case shown in Chapter 3.4.4. Hence, the swimming

pattern is totally different.

In this chapter, the force term, Equation (2.3.6), for the multiple cells is replaced

by Equation (3.4.1):

f(s, t) =
∑
nc

(fbody + frotate + fswim) (3.4.1)

where nc is the number of bacterial cells.

71



3.4.1 Same Direction: Side-by-Side

We place two identical model cells adjacent to each other so that each cell’s flagellar

axis is initially aligned with the Z-axis. The initial cell centroid locations are in the

same XY-plane separated by a distance of 2 µm which is approximately the cell body

length. The initial configuration is shown in the upper left panels of Figures 3.22,

Figures 3.24, and Figure 3.25 We summarize the simulation details in Table 3.11.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 1.0× 10−3 pN
Bodies’ axes (center) width 2 µm
Frames interval 0.087 sec
Total swimming time 0.4333 sec

Table 3.11: Two bacteria swimming side-by-side.

In the simulation results shown in Figure 3.22- Figures 3.25 we observe a syn-

chronized swimming pattern. The trajectories of the two cells form a spiral and the

cells rotate about each other. Figure 3.23 includes the fluid markers surrounding the

cell bodies. Figure 3.24, includes the fluid markers initially placed at each point in

the computational grid. In the XY-view shown in Figure 3.25 we see the rotation of

the two model cells about a common axis. This simulation shows that when the axes

of two model cells are aligned and very close to each other, the cells can swim as a

synchronized cluster [119].
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Figure 3.22: Two bacteria swimming forward synchronously.
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Figure 3.23: Two bacteria swimming forward with local fluid markers.
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Figure 3.24: XZ-view of synchronously swimming with global fluid markers.
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Figure 3.25: XY-view of synchronously swimming with global fluid markers.
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3.4.2 Same Direction: Vertical Offset

In the simulation shown in Figures 3.26-3.27 the axes of the two cells are placed on

parallel lines, oriented in the same direction but offset so that one cell is initially

below the other. In this simulation we increase the rotational frequency in order to

more readily observe the hydrodynamic interaction. A summary of the simulation

details is shown in Table 3.12.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar rotational frequency 300 rps
Flagellar force cf 0.4× 10−4 pN
Bodies’ axes width 4 µm
Frames interval(six frames) 0.078 sec
Frames interval(three frames) 0.194 sec
Total swimming time 0.3888 sec

Table 3.12: Same direction with vertical offset.

The initial distance between the parallel cell axes is 4 µm with a 3 µm vertical

offset between the upper and lower cell. The flagellar rotational frequency is increased

to 300 rps from 200 rps used in the previous simulations. In addition, we reduce the

flagellar force parameter cf . Figure 3.26 includes the local fluid markers surrounding

the cell bodies. We see that the fluid dynamics of the lower cell is disturbed by the

flagellar rotation of the leading cell. This hydrodynamic interaction forces the lower

cell to change swimming directions. The snapshots in the top row of Figure 3.27 shows

the cells swimming upward with the rear one tilted away from its initial swimming

direction. In the middle row of Figure 3.27 we see the XZ-view of the computational

domain with local fluid markers. In the bottom row of Figure 3.27, we see an XY-view

of the simulation. Here, the leading cells appears on the right. The formation of the

fluid markers around the lower cell, shown on the left, show considerable deformation
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in comparison with the pattern of the fluid markers of the leading cell. We can infer

that the fluid velocities induced by the flagellar rotation of the leading cell has created

a disturbance in the flow field surrounding the lower cell.

Figure 3.26: Two bacteria swimming with cell centered fluid markers.
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Figure 3.27: Two bacteria swimming one behind the other.
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We show a similar simulation in Figure 3.28, with the flagellar rotational frequency

reduced to taken as 200 rps with a total run time of 1.042 seconds. A summary of

the simulation data is shown in Table 3.13.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar rotational frequency 200 rps
Flagellar force cf 0.4× 10−4 pN
Bodies’ axes width 4 µm
Frames interval 0.521 sec
Total swimming time 1.042 sec

Table 3.13: Two bacteria swimming one behind the other

In the top row of Figure 3.28 a 3D view of the swimming pattern for the two

bacterial cells. The initial conditions are identical to those shown in the previous

simulation. In the middle row of Figure 3.28 we shown an XZ-view of the simulation

with the local fluid markers. In the bottom row of Figure 3.28, we show the XY-

view with local fluid marker. The panel on the lower right gives the impression of

an overlap or collision between the upper cell’s flagellum with the lower cell’s body.

We have carefully examined this simulation from various angles and have determined

that there is always separation between the neighboring flagellum and cell body.
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Figure 3.28: Two bacteria swimming one behind the other.
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3.4.3 Same Direction with Vertical Offset, Part II

In Chapter 3.4.2 we found that the flow field induced by the flagellar rotation of the

leading cell created a disturbance that altered the swimming trajectory of the trailing

cell. In order to further investigate this hydrodynamic interaction, the following

simulation was created. The computational domain doubled in size to 20×20×40µm3

with a 32× 32× 64 computational grid. As shown in Chapter 3.4.2, the axes of the

two bacterial cells are initially parallel with a spacing of 4 µm and a vertical offset of

4 µm. Table 3.14 gives a summary of the simulation data.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Flagellar force cf 1.0× 10−3 pN
Bodies’ axes width 4 µm
Frames interval 0.108 sec
Total swimming time 0.325 sec

Table 3.14: Same direction with vertical offset (large domain).

In the simulation results shown in Figure 3.29-3.31 the lower cell swims around

the trajectory of the leading cell in the direction of the leading cell’s flagellar rotation

but avoids intersection with the leading cell’s flagellum. From the snapshots in Fig-

ure 3.29, we see that the swimming directions of both bacteria are influenced by the

hydrodynamical interaction of the two cells. Figure 3.30 shows the simulation results

in the XZ-view. Here we see the lower cell swimming from the left- to the right-side

of the upper bacteria. The swimming trajectory of the leading cell changes gradually

in the fourth frame in Figure 3.30. Figure 3.31 shows the XY-view of the domain,

viewed from above. The swimming of the bacteria on the left is biased as it swims

upwards and moves closer to the flagellum of the leading cell. However, swimming of

the leading cell is also influenced by the presence of the lower cell. Its axis is tilted
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toward the right. The apparent overlap seen in the third frame of Figure 3.31 is

clarified in the third frame of Figure 3.32 where we see a definite separation between

the two cells.

Figure 3.29: One bacteria in front, the other behind.

Figure 3.30: XZ-view of the interaction between two bacteria.
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Figure 3.31: XY-view of the interaction between two bacteria.

Figure 3.32: YZ-view of the interaction between two bacteria.
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3.4.4 Opposite Directions with Vertical Offset: Narrow Spac-
ing

In this section, we investigate the swimming patterns of two bacterial cells swimming

in opposite directions in a 20×20×40µm3 domain with a 32×32×64 computational

grid. The simulation details are summarized in the Table 3.15.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Flagellar force cf 1.0× 10−3 pN
Bodies’ axes width 4 µm
Frames interval 0.13 sec
Total swimming time 0.65 sec

Table 3.15: Swimming in opposite directions.

The initial axes of the two model cells are aligned in parallel on the same plane.

The axes are separated by a distance of 4 µm. The cell centroids are separated in the

vertical direction by 12 µm. Simulation results are shown in Figure 3.33. In the upper

middle panel of Figure 3.33, the cell trajectories are approximately aligned with the

Z-axis. In the upper right panel of Figure 3.33, the cell orientation begins to change.

In the lower left and lower middle panels, we see the cells swim around each other.

At the end of the simulation, shown in the lower right panel of Figure 3.33, we see

that the cell swimming orientations show a near reversal from the initial orientations.

Figure 3.35 shows the XZ-view of this simulation. Interestingly, in the YZ-view shown

in Figure 3.37, we see that final orientation of the two model cells is reversed with

respect to the Z-axis and that cells are swimming out of the original XZ plane.
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Figure 3.33: Two bacteria swimming in opposite direction.

Figure 3.34: Snapshots between the 4th and 5th frames of Figure 3.33.
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Figure 3.35: XZ-view of two bacteria swimming in opposite directions.

Figure 3.36: Snapshots between the 4th and 5th frames of Figure 3.35.
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Figure 3.37: YZ-view of two bacteria swimming on the y=10 µm plane.

Figure 3.38: Snapshots between the 4th and 5th frames of Figure 3.37.
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Next, two bacterial cells with opposite swimming directions are placed initially

at the same height in a 20× 20× 40µm3 domain with a 32× 32× 64 computational

grid. Simulation details are summarized in Table 3.16. A three-dimensional view of

the simulation is shown in Figure 3.39. The cells begin to swim around each other

at the beginning of the simulation. The rotation and switching of swimming axes is

qualitatively similar to the simulation shown Chapter 3.4.4. The planar XZ-view is

shown in Figure 3.40. In the YZ-view shown in Figure 3.41, we show that the cells

are switching the swimming sides in XZ-view after the rotational interaction and that

the cells are moving out of the original XZ-plane.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Flagellar force cf 1.0× 10−3 pN
Bodies’ axes width 4 µm
Frames interval 0.108 sec
Total swimming time 0.542 sec

Table 3.16: Two bacterial neighbors swimming in opposite directions.
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Figure 3.39: Two neighbor bacteria swimming in opposite directions.
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Figure 3.40: XZ-view of two neighbor bacteria swimming past each other.
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Figure 3.41: YZ-view of two neighbor bacteria swimming past each other.
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3.4.5 Opposite Directions with Vertical Offset: Wide Spac-
ing

In this section, we consider two bacterial cells swimming in opposite directions with

an initial offset of 12 µm and an axial separation of 6 µm in a 20 × 20 × 40µm3

domain with a 32×32×64 computational grid.. This wider spacing between the axes

of the two cells contrasts with the simulations results shown in Chapter 3.4.4. The

simulation details are summarized in the Table 3.17.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Flagellar force cf 1.0× 10−3 pN
Bodies’ axes width 6 µm
Frames interval 0.314 sec
Total swimming time 0.628 sec

Table 3.17: Swimming in opposite directions with wider axial separation.

In the simulation results shown in Figure 3.44 (top) we see that the axial sep-

aration of the two cells narrows as the cells pass each other. However, the general

swimming orientations remain similar to the initial orientations. In the YZ-view

shown in Figure 3.44 (bottom), we see that the close range interaction of the two

cells has resulted in a slight tilt of swimming direction with respect to the Z-axis and

that the cells are swimming out of the XZ-plane.
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Figure 3.42: 3D view of two bacterial cells swimming with wide axial spacing.

Figure 3.43: XZ-view of two bacterial cells swimming with wide axial spacing.

Figure 3.44: YZ-view of two bacterial cells swimming with wide axial spacing.
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3.5 Hydrodynamic Interaction Between Multiple

Bacterial Cells

In this section, we show a simulation with nine swimming bacterial cells. The addi-

tion of more bacterial cells in the fixed 20× 20× 40µm3 domain with a 32× 32× 64

computational grid requires very little additional CPU run time in comparison with

simulations with one or two cells. The model cells in this simulation are the same

size (1.25 µm in diameter and 2.5 µm in length) as in the previous simulations. The

computational cost of our bacterial swimming model does depend on the computa-

tional grid size. A full study of bacterial bioconvection [84], pattern formation in

biofilm [53, 54] or bacterial veil formation [145, 147, 37] would require significantly

more model cells and a much larger computational grid. As a step toward a simplified

bacterial model and the eventual study of the complex behavior of many swimming

bacteria, we employ here a simplified model bacterial cell with only 6 immersed bound-

ary points on each ring and 7 layers of annular rings. Table 3.18 provides summary

of the simulation data.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Bacterial diameter 1.25 µm
Bacterial body length 2.5 µm
Bacterial boundary points 6 points
Bacterial boundary layers 6 layers
Time step 4.8× 10−7 sec
Flagellar force cf 0.5× 10−3 pN
Frames interval 0.0167 sec
Total swimming time 1.00 sec

Table 3.18: Simulation data for nine bacterial swimming cells.
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We show, in Figure 3.45, a 3D view of the simulation. The initial bacterial loca-

tions are shown in the upper left panel. Note that the bacteria are initially aligned

with the Z axis. As the simulation progresses, we see a gradual realignment and

randomization of bacterial orientation, although most of the cells are still swimming

upwards at the end of the simulation.

Figure 3.45: Nine bacteria swimming in the domain simultaneously.

96



Chapter 4

Bacterial Swimming Near Walls
and Cylindrical Boundaries

In this chapter, we consider the hydrodynamic interaction of our model bacterial cell

with walls and cylinders. We present simulations designed to investigate the model

swimming behavior near a wall, or between two walls. In addition, we investigate the

interaction between a model cell swimming within a cylindrical tube or between two

cylinders.

The hydrodynamic interaction of a motile bacterial cell with structures such as

planar walls and the behavior of a bacterial cell swimming in a channel or within and

outside a cylinder has been addressed in several studies of bacterial hydrodynamics.

Cox [41] investigated the behavior of a swimming slender body in the neighborhood

of solids walls. Blake and Chwang [25] studied the fluid flow of some singularities

near a stationary no-slip planar boundary. The importance of the “no slip boundary

condition”, Equation (2.3.4), at the wall was addressed in [23, 24, 25]. Ramia, Tul-

lock and Phan-Thien [133] investigated the interaction of a monotrichous spherical

bacteria cell with walls using the Stokes equations and a boundary element method.

Frymier, Ford, Berg and Cummings [69] traced the trajectories of bacteria swimming
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near a glass surface and found that bacterial swimming speeds were slower near the

glass. The slower speeds were also predicted by Ramia et al. [133]. Goto and Ma-

gariyama, et al. [71, 114], also using a boundary element method, investigated the

hydrodynamic interaction of a motile rod-shaped bacterial cell with stationary walls.

Moreover, Berg and Turner [17] as well as Liu and Papadopoulos [103, 104, 105]

studied bacterial swimming in capillary and micro-capillary chambers and observed

the hydrodynamic interaction of swimming bacteria with other swimming bacterial

cells. Liu and Papadopoulos also studied bacterial aggregation and the formation of

bacterial clusters in the confinement of a narrow tube. Fauci and McDonald studied

sperm motility in a channel with a 2D immersed boundary model [62].

We model planar walls and cylindrical tubes as immersed boundaries. These struc-

tures are considered as immersed elastic structures with large stiffness parameters.

The structures are tethered to fixed points in the computational domain by elastic

links with a large stiffness coefficient and a zero rest length. The simulations in Chap-

ter 4 illustrate the hydrodynamic influence of a wall or cylinder on the swimming of

the model cell. We show simulations of a model cell swimming near a wall, between

two parallel walls, and within a cylindrical tube. We also present a simulation with

one model cell swimming between two cylinders.

We represent the wall or cylinder as a regularly spaced mesh comprised of im-

mersed boundary points X(t). Neighboring immersed boundary points are connected

with elastic links so that the force fpq at the immersed boundary point Xp at time t

due to the elastic link with the neighboring immersed boundary point Xq is obtained

from Hooke’s Law:

fpq = S1(‖ Xq −Xp ‖ −Lpq)
Xq −Xp

‖ Xq −Xp ‖ (4.0.1)
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Here, S1 is the wall or cylinder stiffness constant and Lpq is the resting length of the

elastic link between these two immersed boundary points. The total force at Xp is

defined by fp =
∑

q fpq, where the sum is over all neighbors q. And the total wall or

cylinder force fwall can be found as {fp}. The tether force at Xp at time t is given by

f̂p = Stether ‖ Xp −X∗
p ‖

X∗
p −Xp

‖ X∗
p −Xp ‖ where X∗

p is the initial location of Xp. Thus,

each wall or cylinder immersed boundary point is tethered to a fixed point in the

domain with a linear elastic spring with stiffness Stether and a zero rest length. The

total tether force ftether can be found as {f̂p}.
We spread the wall and tether force densities fp and f̂p in step 4 of the algorithm

shown in Chapter 2.3, to the Eulerian grid to obtain the Eulerian force Fwall and

Ftether. The total Eulerian force density F in Equation(2.3.1), F = Fbody + Frotate +

Fswim + Fwall + Ftether.

In the following simulation, we represent the planar 10× 20µm2 wall with a 32×
64 grid of immersed boundary points. The wall is parallel to the YZ-plane in the

computational domain of 10× 10× 20 µm3. The wall and tether stiffness parameters

S1 = Stether = 105 dynes/µm.
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4.1 Bacterial Swimming Near a Planar Wall

We model a planar wall, as shown in Figure 4.1, as a regular mesh of immersed

boundary points connected by elastic links. The wall is initially embedded in the YZ-

plane and runs from the top to the bottom of the domain. The immersed boundary

points for the wall are tethered to fixed points in the domain and with elastic links

with large stiffness coefficients and zero rest length. The influence of the wall is felt

through the immersed boundary in the following way. Since the wall moves at the local

fluid velocity (2.3.4), wall deformations and deflections create elastic forces which are

communicated to the fluid via the Eulerian force term F(x, t). Thus, the fluid velocity

at the wall is effectively zero. The wall structure is added at very little additional

computational cost in comparison with the cost associated with the solution of the

Navier-Stokes equations. In Chapter 4.1.1, we show two contrasting simulations one

with the immersed boundary wall, and a second with no immersed boundary wall.

In the later case, the points of the wall become fluid markers that have no influence

on the simulation. In Chapter 4.1.2, we enlarge the domain and increase the flagellar

force parameters. These simulations show that the hydrodynamic influence of the

wall reduces the swimming speed of the model cell and induces changes in swimming

orientation.

100



4.1.1 Swimming Near a Wall: Short Time Behavior

Here we show two simulations in order to investigate the wall effect on swimming

behavior. In the first simulation, we include the elasticity of the wall as well as the

tethering forces. In the second, we set the S1 and Stether to zero so that the wall has

no influence on the simulation. Since the immersed boundary points are advected at

the local fluid velocity, the wall’s immersed boundary points function as fluid markers.

The initial spacing between the wall and the cell axis is 2.5 µm. We summarize the

simulation details in the Table 4.1.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 0.8× 10−3 pN
Frames interval 0.2600 sec
Total swimming time 0.52 sec
Swimming speed without wall influence 13.76 µm/sec.
Swimming speed with wall influence 11.94 µm/sec.

Table 4.1: Short time behavior.

We show the simulation results in Figures 4.1-4.3 with a “real” wall (top row)

and a “fake” wall (bottom row). Figure 4.1 shows the 3D view of the bacterial cell

swimming near the wall. The trajectory of the model cell swimming in proximity to

the “fake” wall is approximately vertical as expected. We see that the effective no-

slip boundary condition at the “real” wall changes the fluid dynamics and influences

the swimming trajectory. In Figure 4.2 the “real” wall structure is marked by “*”

(asterisks). In the bottom row, the “fake” wall is marked “+” (cross) markers. In

Figure 4.3, the bacterial cell and wall are shown in the XZ-view. The initial orientation

of the bacterial cell is aligned with the wall. In Figure 4.3, we see that the bacterial cell

orientation changes and begins to swim away from the wall. As shown in Table 4.1,
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the wall effectively reduces the swimming speed of the bacterial cell by 13.23%.

Figure 4.1: (top) With wall influence. (bottom) Fake wall.
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Figure 4.2: XZ-view of a bacterium swimming with and without wall influence.
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Figure 4.3: XY-view of a bacterium swimming with and without wall influence.
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4.1.2 Swimming Pattern Near a Wall in a Large Domain

Here we increase the domain size from 10×10×20 µm3 on a 16×16×32 computational

grid to 20 × 20 × 40 µm3 on a 32 × 32 × 64 computational grid to further elucidate

the influence of the wall on the model cell trajectory. The initial spacing between the

the wall and the cell axis is 3.125 µm. In this simulation, we increase the flagellar

swimming force and swimming speed in order to visualize the cell-wall interaction in

the enlarged domain within a reasonable computational time period. In Table 4.2,

we summarize the simulation parameters.

Simulation information Data Unit
Computational domain 20× 20× 40 µm3

Flagellar force cf 1.2× 10−3 pN
Frames interval(three frames) 0.2083 sec
Frames interval(eight frames) 0.0833 sec
Total swimming time 0.4166 sec
Swimming speed with wall 20.66 µm/sec.
Swimming speed without wall 23.62 µm/sec.

Table 4.2: Long time behavior.

We see, in the top row of Figure 4.4, the model cell orientation rotate toward

the viewer, and in the bottom row of Figure 4.4, rotate away from the wall. In

Figure 4.5, we show a series of snapshots with a smaller time interval (0.0833 seconds)

to illustrate the cell rotation above the YZ-plane (asterisks markers). The rotation

and movement away from the wall are also seen in the XY-view shown in Figure 4.6.

For comparison, results from an identical simulation with “fake” wall (not shown)

show that the bacterial swimming speed is reduced by 12.53%.
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Figure 4.4: (top) 3D viewing box , (bottom) XZ-viewing window.
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Figure 4.5: YZ-view of a bacterium swimming near a wall.

Figure 4.6: XY-view of a bacterium swimming near a wall.
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4.2 Bacterial Swimming Between Parallel Walls

In the following pair of simulations, we show a single model bacterial cell swimming

between two parallel walls. Each immersed boundary wall is identical and modeled

as described above. The additional computational CPU time for an additional wall

is negligible compared to the overall cost of the method. We show a simulation

in Chapter 4.2.1 of a single cell swimming midway between the two walls, and in

Chapter 4.2.2 of a single cell swimming nearer one of the walls. We summarize the

details of the simulation in the simulation information for the two simulations are

shown in Table 4.3.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Flagellar force cf 0.8× 10−3 pN
Frames interval 0.433 sec
Total swimming time 0.867 sec
Swimming speed at midpoint 9.134 µm/sec.
Swimming speed near one wall 8.90 µm/sec.

Table 4.3: Swimming between parallel walls.
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4.2.1 Behavior at the Midpoint

In this simulation, the initial location of the bacterial model cell is exactly between

the parallel walls. The tethered walls are placed in parallel to the YZ-plane with a

spacing of 7.5 µm in the 10× 10× 20 µm3 computational domain with a 16× 16× 32

grid. The axis of the model cell is aligned the the Z-axis and parallel to the walls. We

show a 3D view of the simulation results in the top row of Figure 4.7 in which the walls

are represented as dots. We show the XZ-view of the simulation in the middle row

of Figure 4.7 with both local and global fluid markers. The trajectory of the model

cell is approximately vertical. Compared to the simulation described in Chapter 4.1.1

without influence, the swimming speed here is reduced by 33.62%. Compared to the

simulations described in Chapter 4.1.1 with wall influence, the swimming speed is

reduced by 23.5%
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Figure 4.7: A bacterium swims midway between two walls.
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4.2.2 Behavior Near One Wall

The following simulation shows that the position of the bacteria in the channel formed

by two parallel walls can alter the swimming trajectory of the model bacterial cell

due to the no-slip boundary condition at the wall. The walls are aligned with the YZ-

plane with a spacing of 6.25 µm in a domain of with dimensions 10×10×20µm3 with

a 16× 16× 32 computational grid. The spacing between the model bacterial cell wall

and the wall on the left 1.875 µm. In Figure 4.8 (top row) we show the 3D view of the

simulation. The row of dots on both sides of the bacterial cell represent the location

of the immersed boundary walls. We see in the XZ-view shown in Figure 4.8 (middle

row) and in the XY-view shown in Figure 4.8 (bottom row) that the model cell swims

away from the wall on the left. The model cell swimming speed has been reduced by

2.56% compared with the simulation shown above in Chapter 4.2.1. Table 4.3 shows

the simulation parameters.
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Figure 4.8: A bacterium swims near one of two walls.
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4.3 Influence of Cylindrical Boundaries

Flagellated bacterial cells are found in many types of environments including the lung,

intestinal and urinary tracts, as well as catheters [48, 136]. The interaction between

an elastic cylindrical structure and fluid flow plays an important role in the study of

hydrodynamics. Vesier and Yoganathan [148] have studied steady flow in a flexible

cylinder in the high Reynolds number regime in order to elucidate the interaction of

cardiovascular tissue and blood flow. Liu and Papadopoulos [103, 104] investigated

bacterial swimming inside capillary cylinders with 3 to 50 µm diameters in order to

study bacterial motility, chemotaxis and aggregation within a narrow tube.

In the following, we investigate model cell swimming within a cylindrical immersed

boundary tube. The elastic structure of the cylinder is similar to the outer cylinder

of the model bacterial cell (see Figure 2.2 for reference). The cylinder is constructed

from a set of immersed boundary points which form a regular cylindrical grid. The

cylinder’s immersed boundary points are connected with elastic links with the same

stiffness parameters as the bacterial cell body. As in the construction of the cell

body, we include links between the neighboring immersed boundary points in the

horizontal and vertical directions. Hence, the cylindrical wall can be considered as a

thin cylindrical wall. The cylinder is also tethered to fixed points in the domain that

coincide with the initial position of the cylinder’s immersed boundary points. The

stiffness of elastic springs on the cylinder is the same as the stiffness parameter S0

of the bacterial body. As a result, the cylinder’s immersed boundary points have a

near zero velocity and remain close to their initial positions. The cylinder’s elastic

and tether forces contribute to the force density F in Equation (2.3.1) in the Navier

Stokes equations. The height of the cylinder is designed to be 16.67 µm and the
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stiffness constant of a cylinder is taken as Stether = 2.4× 10−1 dynes/µm.

In Chapter 4.3.1, we show simulation results of a model cell swimming within an

untethered cylinder. In Chapter 4.3.2, we consider a model cell swimming within

a tethered cylinder. In Chapter 4.3.3, we consider a model cell swimming within a

cylindrical wall and placed near one side of the cylinder. In Chapter 4.3.4 through

Chapter 4.3.6, the simulation domain is expanded to 20×20×20 µm3. We investigate

model cell swimming in the larger domain with the cell swimming inside the cylinder

in Chapter 4.3.4 and outside of the cylinder in Chapter 4.3.5. In Chapter 4.3.6, we

conclude with a model cell swimming between two immersed boundary cylinders.
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4.3.1 Swimming Inside a Cylinder: Untethered

We begin with a study of bacterial swimming within an untethered cylinder. The

cylinder, with a diameter of 7.46 µm, is placed in a computational domain with

dimensions of 10× 10× 20 µm3 and a 16× 16× 64 computational grid. We describe

the tube with 150 immersed boundary points on each 81 rings and set Stether = 0.

The simulation details are summarized in Table 3.5.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Diameter of the cylinder 7.46 µm
Flagellar force cf 0.8× 10−3 pN
Frames interval 0.2600 sec
Total swimming time 0.52 sec
Swimming speed inside cylinder 4.54 µm/sec.

Table 4.4: Bacterial cell swimming inside an untethered cylinder.

We show simulation results in Figure 4.9. In Figure 4.9(top) we see that the

cylindrical tube rotates in a clockwise direction when viewed from the top. Thus the

tube is totally in the same direction as the model flagellum. In the XZ-view shown

in Figure 4.9(middle) we can see that the cylinder moves vertically as the bacterial

cell swims upwards. In the XY-view shown in Figure 4.9(bottom) we show the fluid

markers inside and outside of the cylinder. The swimming speed of the bacterial

cell is approximately 4.54 µm/s. For comparison, the bacterial swimming speed was

approximately 13.523 µm/s in the simulation of free swimming shown Chapter 3.2.1.
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Figure 4.9: Swimming inside an untethered cylinder.
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4.3.2 Swimming Inside a Cylinder: Tethered

In the following simulation, we introduce a single model bacterial cell into a tethered

cylinder. The cylinder structure has elastic forces as well as tethered forces. The tube

with height 16.67 µm has 150 immersed boundary points on each of the 81 rings. The

simulation data is summarized in Table 4.5.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Diameter of the cylinder 7.46 µm
Flagellar force cf 0.8× 10−3 pN
Frames interval 0.2600 sec
Total swimming time 0.52 sec
Swimming speed inside cylinder 3.002 µm/sec.

Table 4.5: Swimming inside a tethered cylinder.

This simulation is identical to that shown in Chapter 4.3.1, except that the cylin-

der here is tethered. The bacterial swimming speed in the tethered cylinder is approx-

imately 3.0 µm/s which is a 33.88% reduction compared with the swimming speed

in the untethered cylinder. The simulation results are shown in Figure 4.10. Note

that the patterns of the fluid markers as shown in Figure 4.10 (bottom) appear quite

different from the patterns seen above in Figure 4.9 (bottom).
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Figure 4.10: Swimming inside a tethered cylinder.
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In the Figure 4.11, we show the results of a similar simulation with faster swimming

speeds obtained by doubling the flagellar force constant. This allows us to observe a

longer model cell trajectory with the same amount of computational CPU time. The

total swimming time is 0.813 seconds. The model bacterial cell swimming speed is

7.73 µm/sec. We summarize the simulation information in Table 4.6.

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Diameter of the cylinder 7.46 µm
Flagellar force cf 1.6× 10−3 pN
Frames interval 0.271 sec
Total swimming time 0.813 sec
Swimming speed inside cylinder 7.73 µm/sec.

Table 4.6: Swimming inside a cylinder with flagellar force doubled.

In the top and middle rows of Figure 4.11, we see the model cell swims upwards

in the first two frames, veers to the right in the third and turn back toward the left

in the fourth. We show the XY-view from the top in the bottom row.
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Figure 4.11: Swimming inside a cylinder with increased swimming speed.
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4.3.3 Swimming Inside a Cylinder Near the Cylinder Wall

In the simulations shown in Chapter 4.3.2, we found that the model cell swimming

speed was significantly reduced in the cylinder. Here we increase the model cell

swimming speed by setting the flagellar force parameter to cf = 1.0× 10−3 pN. The

objective is to visualize wall effect on the trajectory of the model cell.

In this simulation, the model cell is 2.1 µm away from the cylinders wall. The

tube with height 16.67 µm comprised of 150 immersed boundary points on each 81

rings. We summarize the simulation results in Table 4.7:

Simulation information Data Unit
Computational domain 10× 10× 20 µm3

Diameter of the cylinder 7.46 µm
Flagellar force cf 1.0× 10−3 pN
Frames interval 0.325 sec
Total swimming time 0.65 sec
Swimming speed with cylindrical wall influence 3.40 µm/sec.

Table 4.7: Swimming near a cylindrical wall.

In the 3D view shown in Figure 4.12 (top) and in the XZ-view shown in Figure 4.12

(middle) we see that the model cell swims upwards with the cell body tilted toward

cylindrical wall. In the XY-view from the top we can see that the cell orientation

moves away from the Z-axis as well. In order to observe the bacterial cell swimming

pattern when it swims nearby the cylinder, a larger flagellar force cf taken. The

bacterium swims at a speed of 3.40 µm/sec.
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Figure 4.12: Swimming near the internal wall of a cylinder.
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4.3.4 Near the Inner Wall of a Tethered Cylinder

In this simulation, the computational domain is 20× 20× 20 µm3 with a 32× 32× 32

grid. The diameter of the cylinder is increased to 7.96 µm from the previous one of

7.46 µm in Chapters 4.3.1-4.3.3. The tube with height of 16.67 µm is comprised of

160 immersed boundary points on each of the 81 rings. The initial spacing between

cell wall and cylindrical wall is 1.355 µm. The flagellar force cf = 0.8× 10−3 pN. The

simulation data is summarized Table 4.8:

Simulation information Data Unit
Computational domain 20× 20× 20 µm3

Diameter of the cylinder 7.96 µm
Flagellar force cf 0.8× 10−3 pN
Frames interval 0.2167 sec
Total swimming time 0.433 sec
Swimming speed near internal cylindrical wall 2.28 µm/sec.

Table 4.8: Swimming near an internal wall.

The bacterial swimming speed is strongly influenced by the no-slip condition of

the cylinder wall, because the initial cell to wall spacing is small. The simulation

results are shown in Figure 4.13.
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Figure 4.13: Swimming near an internal cylindrical wall.
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4.3.5 Near the External Wall of the Fixed Cylinder

In the following simulation, we consider a model bacterial cell swimming outside a

cylinder. The computational domain is 20×20×20 µm3 with a 32×32×32 grid. The

diameter of the cylinder is 5.97 µm. It is comprised of 120 immersed boundary points

on each of the 81 rings with a height of 16.67 µm. In this simulation, the bacterium

is swimming outside the cylinder with an initial spacing of 2.052 µm between the cell

wall and the cylindrical wall.

Simulation information Data Unit
Computational domain 20× 20× 20 µm3

Diameter of the cylinder 5.97 µm
Flagellar force cf 0.8× 10−3 pN
Frames interval 0.2167 sec
Total swimming time 0.433 sec
Swimming speed with cylindrical wall influence 11.96 µm/sec.

Table 4.9: Swimming outside a tethered cylinder.

The total swimming time for the bacterial cell is 0.433 seconds with a swimming

speed 11.96 µm/sec. We show the 3D results for the simulation in the top row of

Figure 4.14. The cell swims upwards but tilted toward the right. We can compare

the simulation results with that of Chapter 4.1.1. In Chapter 4.1.1, the cell swam

near a planar wall, here the cell swims near a cylindrical wall. The flagellar force is

the same in both simulation. The swimming speeds are comparable and in both cases

the cells swim upwards with a tilt toward the right. The XZ-view with fluid markers

is shown in the middle row of Figure 4.14 and the XY-view in the bottom row.
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Figure 4.14: Swimming outside a cylinder.
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4.3.6 Swimming Between Two Cylinders

Finally, we consider the model bacterial cell swimming between two cylinders in a

computational domain of 20×20×20µm3 with a 32×32×32 grid. These two tethered

cylinders are identical in design with diameters of 4.976 µm. Each cylinder’s axis is

aligned with the Z-axis. The spacing between two cylinders walls is 5.024 µm. These

tubes are comprised of 100 immersed boundary points on each of 81 rings with a

height of 16.67 µm. We use a large flagellar force of 1.8×10−3 pN in order to increase

the swimming speed. The total run time is 0.4166 seconds and the average swimming

speed is 22.077 µm/sec. The simulation details are summarized in Table 4.10.

Simulation information Data Unit
Computational domain 20× 20× 20 µm3

Diameter of the cylinder 4.976 µm
Flagellar force cf 1.8× 10−3 pN
Swimming speed 22.077 µm/sec.
Frames interval 0.2083 sec
Total swimming time 0.4166 sec

Table 4.10: Swimming between two cylinders.

We show the 3D view of the simulation results in Figure 4.15 (top) and see the

cell swimming up and biased from its original swimming direction. In the XZ-view,

Figure 4.15 (bottom), the fluid hydrodynamics can be observed with the fluid markers.

In the XY-view, Figure 4.16(top) shows the model cell swimming toward the lower

edge of the frame. In the YZ-view, Figure 4.16 (bottom), we see the cell swimming

up with a direction that is biased away from its initial direction.
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Figure 4.15: Swimming between two cylinders, (top) 3D, (bottom) XZ-view.
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Figure 4.16: Swimming between two cylinders, (top) XY-, (bottom) YZ-view.
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Chapter 5

Conclusions and Future Work

In this dissertation, a 3D rod-shaped flagellated bacterial swimming model has been

successfully created to simulate the motility of monotrichous rod-shaped bacteria such

as Pseudomonas aeruginosa. We have demonstrated the model bacterial cell’s ability

to swim forward by the propulsive forces of a rotating flagellum and the induced

counter-rotation of the bacterial cell body. We presented a numerical convergence

study of the numerical model and numerical methods. We presented a variety of

simulation results including the swimming of a single model cell, interaction of two

swimming cells, the interaction of several swimming cells, the hydrodynamic interac-

tion of a single model cell with a nearby wall or walls and the bacterial swimming

inside and outside of cylindrical tubes. We also investigated the model behavior due

to the reversal of flagellar orientation by assuming a change in flagellar configuration

from normal to semi-coiled as well as the associated change in handedness from left

to right.

The 3D model was loosely based on the 2D bacterial swimming model developed

by Dillon, Fauci and Gaver in 1995 [52] in which the flagellar forces were represented

by a set of four to eight discrete forces and a spherical cell body was represented in
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2D as a circular elastic structure. Here, we have developed a 3D rod-shaped cell body

consisting of annular rings composed of immersed boundary points and interconnected

with elastic links. The 3D bacterial cell body is constructed in the geometrical shape

of a cylinder. The double layer of the cell body structure mimics the structure of

the bacterial cell wall and provides rigidity for the cell body. In this model, the

flagellum structure has been replaced by a set of forces which produces a fluid flow

and propel the cell body forward or backward. The flagellar forces are applied to the

fluid on a rotating curve of a helical flagellum. We have assumed that the flagellum

itself is rigid and inextensible. With this assumption we can model the flagellum in

a simplified fashion and only represent the forces due to the flagellar rotation. The

rotating flagellum consists a helix of constant diameter that is connected by a flagellar

hook to the base of the cell body. The helical flagellar force distribution rotates at

a predetermined rotational rate about the flagellar axis which is an extension of the

cell’s body axis. The normal rotating direction of the flagellum is CCW when viewed

from behind the flagellar axis and the flagellum is given a left-handed helix. This

produces forward swimming. It has been shown in studies by Shimada, Kamiya and

Asakura [137], Macnab and Koshland [111] Taylor and Koshland [141] that a reversal

of flagellar rotational direction typically involves a change in handedness from left- to

right-. We have shown that reversing the rotational direction and handedness results

in a backward swimming motion with approximately the same speed as in forward

swimming. We provided a numerical experiment in which the reversal of rotational

direction was accompanied by a reversal of handedness and an arc-length preserving

change in amplitude and pitch. In this case, the bacterial model cell swam backwards

in approximately the same direction but with a different swimming speed.
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Diagrams of the forces on the cell body and on the flagellum were created to

illustrate the flagellar forces, the torque generating forces and the swimming helical

trajectory. We have developed a novel model for modeling the propulsive forces due

to a rotating flagellum in which forces are applied to the fluid along a rotating helical

filament that moves in the moving frame determined by the location and orientation

of the bacterial cell body. The torque forces applied to the fluid by the flagellum are

offset by torque forces applied to the cell body.

In all our simulations, total force and total torque applied to the fluid by the model

bacterial cell sum to zero. For the cell structure, this condition was automatically

satisfied because the link forces are produced in pairs so that the net contribution of

each link is zero. The forces produced by the rotating flagellum were also produced in

pairs in order to assure a zero force condition on the flagellum. The torque contribu-

tion of the flagellar forces with respect to the flagellar and cell axis are summed. The

magnitude of the torque forces applied to the cell body is chosen to satisfy a torque

balance equation for the entire model organism. The cell body torque forces produce

a counter rotation of the cell body with respect to direction of flagellar rotation.

We provided many simulation results. In one set of simulations, we demonstrated

the numerical convergence of the method as the computational grid was refined. In the

convergence study we used a set of four computational grid on a N3 cubic domain

with grids of 163, 323, 643, and 1283. With four grids, we were able to produce

two convergence estimates. These results showed positive convergence rates for all

measured quantities which included global fluid velocities in several norms, bacterial

swimming and rotational velocities. The convergence results on the finer set of three

grids (N = 32, N = 64, N = 128) produced numerical convergence results consistent
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with first order convergence in the L2 and L∞ norms, second order in the L1 norm

in fluid velocities and roughly first order convergence in bacterial swimming and

rotational velocities. These results are consistent with numerical convergence studies

of other immersed boundary models. We showed the expected helical trajectory for

a free swimming bacterial cell.

We have provided preliminary studies of the model cell behavior in forward and

backward swimming, of the interaction of two swimming model cells, of a single model

cell with one or two walls and one or two cylinders. Forward and backward swimming

was investigated by Goto, et al. [114] using a boundary element method. They found

that bacteria swim more slowly near a wall have trajectories that curve in the CCW

direction when viewed from above. Our results, in Chapter 3.3, are in qualitative

agreement with this study, and shows that a nearby wall reduced swimming speeds

and produced changes in swimming direction. Lauga, et al in 2006 [92] found exper-

imentally that bacteria swimming near a wall have curved trajectories. Our results

in Chapter 4.1.2 found that the model cell trajectory was all curved in the CCW

direction when the swimming in parallel to a nearby wall.

In future work, we plan to continue our development of the bacterial model cell.

Several directions include:

• A more comprehensive study of two cell interaction in the rectangular paral-

lelepiped as well as a study of two cell interaction within a cylinder.

• A comprehensive study of the interaction of bacterial swimming with walls.

This study would also investigate the effect of wall and cylinder elasticity on

the bacterial trajectory and the influence of cylindrical radius on cell swimming

inside and outside of the cylinder.
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• Reduction of the bacterial model by using a much smaller number of immersed

boundary and flagellar points for the purpose of doing larger scale simulations

of the collective swimming behavior of many bacteria seen in veil formation and

bioconvection.

• A refinement of the current model to include a more detailed representation of

the flagellum and bacterial motor [28] in which the material properties of the

flagellum and motor are explicitly modeled by the immersed boundary method.

The starting point for as model of this type is the immersed boundary model

for a rotating filament introduced by Lim and Peskin [106, 152].

134



Bibliography

[1] M. Alam, M. Claviez, D. Oesterhelt and M. Kessel, “Flagella and Motil-

ity Behaviour of Square Bacteria”. The EMBO J.. Vol.3, No.12, p.2899-

2903, 1984.

[2] A. Arkhipov, P. Freddolino and K. Schulten, “Bacterial Flagel-

lum: The Flagellum and Bacterial Motility”. Available from: http://

www.ks.uiuc.edu/Research/flagellum/

[3] A. Arkhipov, P. Freddolino, K. Imada, K. Namba and K. Schulten,

“Coarse-Grained Molecular Dynamics Simulations of a Rotating Bac-

terial Flagellum”. Biophys. J.. Vol. 91, p.4589-4597, Dec.2006.

[4] G.K. Batchelor, “Slender-body theory for particles of arbitrary cross-

section in Stokes flow”. J. Fluid Mech.. Vol.44, Part 3, p.419-440, 1970.

[5] H.C. Berg, “Dynamics properties of bacterial flagellar motors”. Nature.

Vol.249, p.77-79, May.1974.

[6] H.C. Berg, “Bacterial behavior” Nature. Vol.254, p.389-392, Apr.1975.

[7] H.C. Berg, “Chemotaxis in Bacteria”. Annual Reviews. p.119-136, 1975.

[8] H.C. Berg, “How Bacteria Swim”. Sci. Am.. Vol.233, p.36-44, 1975.

[9] H.C. Berg, “Motile Behavior of Bacteria”. Physics Today on the Web-

Cover Story. Available from: http://www.aip.org/pt/jcn00/berg.htm

135



[10] H.C. Berg, “Chemotaxis Gene Unveiled”. Nature. Vol.321, p.200-201,

May.1986.

[11] H.C. Berg, “Random Walks in Biology: Expanded Edition”. Princeton

University Press. 1993.

[12] H.C. Berg, “Symmetries in Bacterial Motility”. Proc. Natl. Acad. Sci.

USA.. Vol.93, p.14225-14228, Dec.1996.

[13] H.C. Berg, “The Rotary Motor of Bacterial Flagella”. Annu. Rev.

Biochem.. Vol.72, p.19-54, 2003.

[14] H.C. Berg and D.A. Brown, “Chemotaxis in Escherichia coli Analysed

by Three-Dimensional Tracking”. Nature. Vol.239, p.500-504, Oct.1972.

[15] H.C. Berg and R.A. Anderson, “Bacteria Swim by Rotating their Flag-

ellar Filaments”. Nature. Vol.245, p.380-382, 1973.

[16] H.C. Berg and L. Turner, “Movement of Microorganisms in Viscous En-

vironments”. Nature. Vol.278, p.349-351, Mar.1979.

[17] H.C. Berg and L. Turner, “Chemotaxis of Bacteria in Glass Capillary

Array: Escherichia coli, Motility, Microchannel Plate and Light Scatter-

ing”. Biophys. J.. Vol.58, p.919-930, Oct.1990.

[18] H.C. Berg and L. Turner, “Torque Generated by the Flagellar Motor of

Escherichia coli”. Biophys. J.. Vol.65, p.2201-2216, Nov.1993.

[19] H.C. Berg and L. Turner, “Cells of Escherichia coli Swim Either End

Forward”. Cell Biology. p.477-479, 1994.

[20] R.M. Berry, L. Turner and H.C. Berg, “Mechanical Limits of Bacterial

Flagellar Motors Probed by Electrorotation”. Biophys. J.. Vol.69, p.280-

283, Jul.1995.

136



[21] R.M. Berry and H.C. Berg, “Torque Generated by the Flagellar Motor of

Escherichia coli While Driven Backward”. Biophys. J.. Vol.76, p.580-587,

Jan.1999.

[22] R.P. Beyer, Jr., “A Computational Model of the Cochlea Using the Im-

mersed Boundary Method”. J. Comput. Phys.. Vol.98,No.1, p.145-162,

Jan.1992.

[23] J.R. Blake, “A Note on the Image System for a Stokeslet in a No-Slip

Boundary”. Proc. Camb. Phil. Soc.. Vol.70, p.303-310, 1971.

[24] J.R. Blake, “A Model for the Micro-Structure in Ciliated Organisms”.

J. Fluid Mech.. Vol.55, p.1-23, 1972.

[25] J.R. Blake and A.T Chwang, “Fundamental Singularities of Viscous

Flow”. J. Eng. Math.. Vol.8, No.1, p.23-29, Jan.1974.

[26] D.F. Blair, “The Bacterial Rotary Motor”. Nanotechnology. Vol.2,

p.123-133, 1991.

[27] D.F. Blair, “How Bacteria Sense and Swim”. Annu. Rev. Microbiol..

Vol.49, p.489-520, 1995.

[28] S.M. Block and H.C. Berg, “Successive Incorporation of Force-

Generating Units in the Bacterial Rotary Motor”. Nature. Vol.309,

p.470-472, May.1984.

[29] D.C. Bottino, “Modeling Viscoelastic Networks and Cell Deformation

in the Context of the Immersed Boundary Method”. J. Comput. Phys..

Vol.147, p.86-113, 1998.

[30] A. Boyd and M. Simon, “Bacterial Chemotaxis”. Ann. Rev. Physiol..

Vol.44, p.501-517, 1982.

137



[31] A. Bren and M. Eisenbach, “Changing the Direction of Flagellar Rota-

tion in Bacteria by Modulating the Ratio Between the Rotational States

of the Switch Protein Flim”. J. Mol. Biol.. Vol.312, p.699-709, 2001.

[32] C.J. Brokaw, “Swimming with Three-Dimensional Flagellar Bend-

ing Waves”. Available from: http://www.cco.caltech.edu/∼brokawc/

Suppl3D/Swim3D.pdf

[33] S. Childress, “Mechanics of Swimming and Flying”. Cambridge Univer-

sity Press. 1977.

[34] A.J. Chorin and J.E. Marsden, “A Mathematical Introduction to Fluid

Mechanics: Third Edition”. Springer. 2000.

[35] A.J. Chorin, “Numerical Solution of the Navier-Stokes Equations”.

Math. Comput.. Vol.22, p.745-762, 1968.

[36] A.J. Chorin, “On the Convergence of Discrete Approximations to the

Navier-Stokes Equations”. Math. Comput.. Vol.23, p.341-353, 1969.

[37] N.G. Cogan and C.W. Wolgemuth, “Pattern Formation by Bacteria-

Driven Flow”. Biophys. J.. Vol.88, p.2525-2529, Apr.2005.

[38] R. Cortez, L.J. Fauci, N. Cowen and R. Dillon, “Simulation of Swimming

Organisms: Coupling Internal Mechanics with External Fluid Dynam-

ics”. Comput. Sci. and Eng.. Vol.6, No.3, p.38-45, 2004.

[39] R. Cortez, “The Method of Regularized Stokeslets”. SIAM. J. Sci. Com-

put.. Vol.23, No.4, p.1204-1225, 2001.

[40] R. Cortez and M. Minion, “The Blob Projection Method for Immersed

Boundary Method”. J. Comput. Phys.. Vol.161, p.428-453, 2001.

138



[41] R.G. Cox, “The Motion of Long Slender Bodies in a Viscous Fluid. Part

1. General Theory”. J. Fluid Mech.. Vol.44, Part 4, p.791-810, 1970.

[42] A.T. Chwang, T.Y. Wu and H. Winet, “Locomotion of Spirilla”. Bio-

phys. J.. Vol.12, p.1549, 1972.

[43] A.T. Chwang, H. Winet and T.Y. Wu, “ A Theoretical Mechanism for

Spirochetal Locomotion”. J. Mechanochem, Cell Motil.. 1973.

[44] A.T. Chwang and T.Y. Wu, “Hydromechanics of Low-Reynolds-Number

Flow. Part 1. Rotation of Axisymmetric Prolate Bodies”. J. Fluid Mech..

Vol.63, p.607-622, 1974.

[45] A.T. Chwang and T.Y. Wu, “Hydromechanics of Low-Teynolds-Number

Flow. Part 2. Singularity Method for Stokes Flows”. J. Fluid Mech..

Vol.67, p.787-815, 1975.

[46] A.T. Chwang, “Hydromechanics of Low-Reynolds-Number Flow. Part

3. Motion of a Speroidal Particle in Quadratics Flows”. J. Fluid Mech..

Vol.72, p.17-34, 1975.

[47] A.T. Chwang and T.Y. Wu, “Hydromechanics of Low-Reynolds-Number

Flow. Part 4. Translation of Spheroids”. J. Fluid Mech.. Vol.75, p.677-

689, 1976.

[48] C.V. Delden amd B.H. Iglewski, “Cell-to-Cell Signaling and Pseu-

domonas aeruginosa Infections”. Emerging Infectious Diseases. Vol.4,

No.4, p.551-560, 1998.

[49] M.L. DePamphilis and J. Adler, “Fine Structure and Isolation of the

Hook-Basal Body Complex of Flagella from Escherichia coli and Bacillus

subtilis”. J. Bact.. Vol.105, No.1, p.384-395, Jan.1970.

139



[50] M.L. DePamphilis and J. Adler, “Attachment of Flagellar Basal Bodies

to the Cell Envelope: Specific Attachment to the Outer, Lipopolysac-

charide Membrance and the Cytoplasmic Membrane”. J. Bact.. Vol.105,

No.1, p.396-407, Jan.1971.

[51] D. DeRosier, “The Turn of the Screw: The Bacterial Flagellar Motor”.

Cell. Vol.93, p.17-20, Apr.1998.

[52] R. Dillon, L.J. Fauci and D. Gaver III, “A Microscale Model of Bacte-

rial Swimming, Chemotaxis and Substrate Transport”. J. Theor. Biol..

Vol.177, p.325-340, 1995.

[53] R. Dillon, L.J. Fauci, A.L. Fogelson and D. Gaver, “Modeling Biofilm

Processes Using the Immersed Boundary Method”. J. Comput. Phys..

Vol.129, p.57-73, 1988.

[54] R. Dillon and L.J. Fauci, “A Microscale Model of Bacterial and Biofilm

Dynamics in Porous Media”. John Wiley and Sons, Inc.. 2000.

[55] R. Dillon and L.J. Fauci, “An Integrative Model of Internal Axoneme

Mechanics and External Fluid Dynamics in Ciliary Beating”. J. Theor.

Biol.. Vol.207, p.415-430, 2000.

[56] R. Dillon and H.G. Othmer, “A Mathematical Model for Outgrowth and

Spatial Patterning of the Vertebrate Limb Bud”. J. Theor. Biol.. Vol.197,

p.295-330, 1999.

[57] R.N. Doetsch and R.D. Sjoblad, “Flagellar Structure and Function in

Eubacteria”. Ann. Rev. Microbiol.. Vol.34, p.69-108, 1980.

[58] T.B. Doyle, A.C. Hawkins and L.K. McCarter, “The Complex Flagellar

Torque Generator of Pseudomanas aeruginosa”. J. Bact.. p.6341-6350,

2004.

140



[59] C.D. Eggleton and A.S. Popel, “Large Deformation of Red Blood Cell

Ghosts in a Simple Shear Flow”. Phys. Fluids. Vol.10, No.8, p.1834-1845,

1998.

[60] R. Erban and H.G. Othmer, “Taxis Equations for Amoeboid Cells”. J.

Math. Biol. Vol.54, p.847-885, 2007.

[61] L.J. Fauci and C.S. Peskin, “A Computational Model of Aquatic Animal

Locomotion”. J. Comput. Phys.. Vol.77, No.1, p.85-108, Jul.1988.

[62] L.J. Fauci and A. McDonald, “Sperm Motility in the Presence of Bound-

aries”. Bull. Math. Biol.. Vol.57, No.5, p.679-699, 1995.

[63] L.J. Fauci, “Computational Modeling of the Swimming of Biflagellated

Algal Cells”. Contemporary Mathematics. Vol.141, 1993.

[64] L.J. Fauci, “A Computational Model of the Fluid Dynamics of Undula-

tory and Flagellar Swimming”. Amer. Zool.. Vol.36, p.599-607, 1996.

[65] L.J. Fauci and A.L. Fogelson, “Truncated Newton Method and the Mod-

eling of Complex Immersed Elastic Structures”. J. Communications on

Pure and Applied Mathematics. Vol.XLVI, p.787-818, 1993.

[66] H. Flores, E. Lobaton, S. Mendez-Diez, S. Tlupova and R. Cortez, “A

Study of Bacterial Flagellar Bundling”. Bull. of Math. Bio.. Vol.67,

p.137-168, 2005.

[67] A.L. Fogelson, “A Mathematical Model and Numerical Method for Study

Platelet Adhesion and Aggregation during Blood Clotting”. J. Comput.

Phys. Vol.56, No.1, Oct.1984.

[68] A.L. Fogelson, “Continuum Models of Platelet Aggregation: Mechanical

Properties and Chemically-Induced Phase Transitions”. Fluid Dynamics

141



in Biology. Contemporary Mathematics Series, American Mathematical

Society. 1993.

[69] P.D. Frymier, R.M. Ford, H.C. Berg and P.T. Cummings, “Three-

Dimensional Tracking of Motile Bacteria Near a Solid Planar Surface”.

Proc. Natl. Acad. Sci. USA.. Vol.92, p.6195-6199, Jun.1995.

[70] E. Givelberg and J. Bunn, “A Comprehensive Three-Dimensional Model

of the Cochlea”. J. Comput. Phys.. Vol.191, No.2, p.377-391, 2003.

[71] T. Goto, K. Nakata, K. Baba, M. Nishimura and Y. Magariyama, “A

Fluid-Dynamic Interpretation of the Asymmetric Motion of Singly Flag-

ellated Bacteria Swimming Close to Boundary”. Biophys. J.. Vol.89,

p.3771-3779, 2005.
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