
ALGORITHMS FOR THE UNITARY

EIGENVALUE PROBLEM

By

RODEN JASON A. DAVID

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Mathematics

MAY 2007

c Copyright by RODEN JASON A. DAVID, 2007
All Rights Reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of
RODEN JASON A. DAVID find it satisfactory and recommend that it be accepted.

Chair

ii

ALGORITHMS FOR THE UNITARY

EIGENVALUE PROBLEM

Abstract

by Roden Jason A. David, Ph.D.
Washington State University

May 2007

Chair: David S. Watkins

Eigenvalues of unitary matrices arise in a variety of contexts in applied mathematics.

This dissertation present four new algorithms for computing the eigenvalues of unitary

matrices. In chapter 1, we give an overview these algorithms, and then survey the

major applications where eigenvalues of unitary matrices arise. In chapter 2, we

present the unitary QR algorithm, an algorithm that can used to compute all of the

eigenvalues of a unitary matrix. In chapter 3, we present two Krylov space algorithms

that approximate some of the eigenvalues of a large unitary matrix. Finally, in chapter

4, we present an algorithm that compute the eigenvalues of a unitary matrix U when

U is expressed as a product U = U1 · · · Un of unitary matrices of the same order. As

a special case, we consider the generalized eigenvalue problem for unitary matrices.

iii

Table of Contents

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Basic Definitions . 2
1.2 Overview of the Algorithms . 4
1.3 Some Applications . 6

1.3.1 Frequency Estimation . 6
1.3.2 Approximation by Trigonometric Polynomials 8
1.3.3 Other Applications . 8

2 The Unitary QR Algorithm 10
2.1 Elementary Matrices . 11
2.2 Hessenberg Matrices . 16
2.3 Schur Parametrization of Unitary Matrices 18
2.4 The Multi-Shift QR Algorithm . 21
2.5 Efficient Unitary Multi-Shift QR Iteration 24

2.5.1 Enforcement of Unitarity . 29
2.5.2 Operation Count . 29
2.5.3 Shift Strategies . 30
2.5.4 Numerical Results . 32

3 Krylov Space Algorithms 35
3.1 The Arnoldi Process and its Variants 36

3.1.1 The Isometric Arnoldi Process 41
3.1.2 The Hermitian Lanczos Process 47

iv

3.2 The Implicitly Restarted Arnoldi Method 49
3.3 An Inexact Arnoldi-Schur Algorithm 53

3.3.1 Initial Construction of the Krylov Space 55
3.3.2 Contraction Phase . 57
3.3.3 Expansion Phase . 60
3.3.4 Reduction to Hessenberg Form 61
3.3.5 Implicit Upward Bulge Chase 65
3.3.6 Convergence and Locking . 68
3.3.7 Inexact Arnoldi-Schur as Subspace Iteration 69
3.3.8 Numerical Results . 75

3.4 A Cayley Transformed Lanczos-Schur Algorithm 78
3.4.1 The Cayley Transform . 79
3.4.2 The Cayley Transformed Lanczos-Schur Algorithm 81
3.4.3 Numerical Results . 85

4 The Product Unitary Eigenvalue Problem 89
4.1 A Product Unitary QR Algorithm . 89
4.2 Numerical Results . 95
4.3 The Generalized Eigenvalue Problem for Unitary Matrices 95

Bibliography 97

v

List of Tables

2.1 Maximum error in the computed eigenvalues 34

3.1 Uniformly Distributed Eigenvalues 76
3.2 Eigenvalues Clustered near Real Line 77
3.3 Quadrant I Limited Eigenvalues . 78
3.4 Uniformly Distributed Eigenvalues 86
3.5 Real Clustered Eigenvalues, target τ1 = 1 87
3.6 Real Clustered Eigenvalues, target τ2 = i 87
3.7 Quadrant I Limited Eigenvalues . 88

4.1 Product Unitary Eigenvalues . 95
4.2 Generalized Eigenvalues . 96

vi

List of Figures

3.1 Eigenvalues of a Unitary Matrix of the Second Type 77

vii

Chapter 1

Introduction

During the last ten years, there has been considerable progress in the development

of specialized algorithms that compute the eigenvalues of unitary matrices. Algo-

rithms that were developed include several techniques that make use of the Schur

parametrization of a unitary matrix to efficiently implement the QR algorithm [25, 4],

the divide-and-conquer methods [9, 27, 28], and the bisection method [13]. There was

also an approach based on matrix pencils [12], and several algorithms designed for

orthogonal matrices [8, 2]. The major applications that stimulate research in this

area of eigenvalue computation lie in signal processing [32, 2, 14, 15], in time series

analysis [6], in Gaussian quadrature on the unit circle [24, 25], and in trigonometric

approximations [33, 23].

This dissertation is an effort to contribute to the growing body of specialized algo-

rithms that compute eigenvalues of unitary matrices. In developing these new algo-

rithms, we have incorporated techniques from several recent algorithms that compute

1

eigenvalues in general. Among these were the Krylov-Schur algorithms [35], and the

product QR algorithms [42].

In the following sections we will review some basic definitions, give an overview

of the new algorithms, and motivate the problem of computing the eigenvalues of

unitary matrices by considering some of its applications.

1.1 Basic Definitions

We denote by Mn(C) the set of all n×n matrices with complex entries, and by Cn the

set of all n × 1 complex vectors. If A = (aij) is a matrix, its Hermitian transpose AH

is defined as AH = (aji) where a is the complex conjugate of a. A matrix U ∈ Mn(C)

is unitary if and only if UH U = I where I is the n × n identity matrix.

An inner product on Cn is a map h, i : Cn × Cn 7→ C that satisfies

1. (positive definiteness) hx, xi ≥ 0 with hx, xi = 0 if and only if x = 0

2. (Hermitian symmetry) hx, yi = hy, xi

3. (linearity in the first argument) hαx + βy, zi = αhx, zi + βhy, zi

for all x, y, z ∈ Cn and all scalars α and β. An example of an inner product in Cn is

the standard inner product in Cn defined by hx, yi = yH x. This is the inner product

that we will use throughout this dissertation.

A norm on Cn is a map k·k : Cn 7→ R+ ∪ {0} which satisfies

2

1. (positive definiteness) kxk ≥ 0 with kxk = 0 if and only if x = 0

2. (absolute homogeneity) kαxk = |α |kxk

3. (triangle inequality) kx + y k ≤ kxk + ky k

for all x, y ∈ Cn and all scalars α. An example of a norm in Cn is the 2-norm defined

p

by kxk2 = hx, xi.

If U ∈ Mn(C) is unitary, then it follows that hUx, Uyi = hx, yi, and that kUxk2 =

kxk2 for all x, y ∈ Cn .

A scalar λ is called an eigenvalue of a matrix A ∈ Mn(C) if and only if there exists

a nonzero vector x ∈ Cn such that

Ax = λx.

Such a vector x is called an eigenvector of A associated with λ. We shall refer to the

set of all eigenvalues of a square matrix A as the spectrum of A. If U ∈ Mn(C) is

unitary, and λ is an eigenvalue of U , then |λ | = 1.

Two matrices A, B ∈ Mn(C) are said to be similar if and only if there exists a

nonsingular matrix P ∈ Mn(C) such that B = P −1AP. A matrix C ∈ Mn(C) is said

to be diagonalizable if and only if there exists a diagonal matrix D ∈ Mn(C) such

that C is similar to D. A matrix N ∈ Mn(C) is normal if and only if NH N = NNH .

It is well-known that the set of normal matrices are precisely those that are unitarily

3

diagonalizable. In particular, unitary matrices are normal, hence unitary matrices

are unitarily diagonalizable.

1.2 Overview of the Algorithms

Topics that serve as background material for the whole dissertation are given in

chapter 2. We consider the construction of elimination matrices and the Schur

parametrization of unitary unreduced upper Hessenberg matrices.

After these introductory topics, we introduce the unitary QR algorithm. This

is an implementation of the QR algorithm in terms of its Schur parametrization.

The algorithm is not without precedent. An implementation of the QR algorithm

for unitary upper Hessenberg matrices in terms of its Schur parameters has been

introduced by Gragg in [25]. In this implementation, only one shift can be used. The

implementation suffers from instability problems. In [36], M. Stewart showed how

this instability can be remedied.

Our implementation of the unitary QR algorithm is an improvement over Gragg’s

implementation in the sense that it can do multi-shift QR iterations of arbitrary

degree. We also prove its backward stability. Finally, our implementation is concep-

tually straightforward and easy to understand.

The unitary QR algorithm seeks out all of the eigenvalues of a unitary matrix. In

applications where the order of the matrix is large, the usual goal is to approximate the

eigenvalues which lie in a specified region of the spectrum. In this case, Krylov space

4

methods are often used, where the original matrix is approximated by its restriction

on a Krylov space.

We present two Krylov space algorithms in chapter 3. The first is an inexact

Krylov-Schur algorithm that approximates the eigenvalues of a unitary matrix nearest

a specified target point that lies in the unit circle. The algorithm is implemented

purely in term of Schur parameters. The approximating Krylov space is constructed

by a variant of Gragg’s isometric Arnoldi process [24, 26] that uses a pair of two-term

recurrence relations. The process of generating the Krylov space can be restarted

implicitly using the same pair of recurrence relations.

The second Krylov space algorithm in chapter 3 performs a Cayley transform on

the unitary matrix to give rise to an Hermitian matrix. A Lanczos-Schur algorithm

is used to find the eigenvalues of the Hermitian matrix of largest magnitude. These

dominant eigenvalues are mapped to the eigenvalues of the unitary matrix nearest

the specified target by the inverse Cayley transform.

In chapter 4, we consider the product eigenvalue problem for unitary matrices.

Given U ∈ Mn(C) as a product of unitary matrices, we perform a modified product

QR algorithm to the corresponding cyclic matrix, and then use the unitary QR

algorithm presented in chapter 2 to compute all of the eigenvalues of U . We treat the

generalized eigenvalue problem for unitary matrices as a special case for the algorithm

developed for the product unitary eigenvalue problem.

5

1.3 Some Applications

In this section, we cover a sampling of applications where the eigenvalues of unitary

matrices arise. The applications cited here are not meant to be exhaustive. We refer

the reader to [3], and to the references cited below for details.

1.3.1 Frequency Estimation

As a first application, we consider the problem of estimating the frequencies of a wide

sense stationary random process x(n) given by

p
X

x(n) = Ake inωk + w(n)
k=1

where the amplitudes Ak are complex,

Ak = |Ak |e iφk

with φk uncorrelated random variables uniformly distributed on the interval [−π, π],

and where w(n) is white noise with mean zero and variance σ2 . The frequencies ωk

are not random but unknown, and in typical applications, they are the “information

bearing” part of the signal. In speech signals, for example, these frequencies corre-

spond to the format frequencies [31], while in sonar signals they represent bearing or

velocity information [29].

Pisarenko [32, 2] showed that if Mp+1 is the autocorrelation matrix of x(n), then

the smallest eigenvalue λmin of Mp+1 is equal to the variance σ2 of the white noise.

6

1

Further if λmin is of algebraic multiplicity one, and v = (vj)
p
0 is an eigenvector of Mp+1

associated with λmin normalized so that vp = 1, then the polynomial

p
X

ψp(t) = vj t
j

j=0

iω̂1 iω̂phas p distinct zeroes e , · · · , e on the unit circle where the phase angles {ω̂j }p

are estimates for the frequencies {ωj}p
1. These estimates {ω̂j}p

1 are called Pisarenko

frequency estimates.

The computational problem of Pisarenko frequency estimation is divided into two

subproblems:

1. The determination of p, the determination of the autocorrelation matrix Mp+1,

and the computation of λmin = σ2 .

2. The estimation of the frequencies {ωj}p
1 and of the amplitudes |Ak |.

Some aspects of the first subproblem are discussed in the papers [16, 19, 18]. We

are concerned with the second subproblem. To find the zeros of ψp, we can form the

companion matrix

⎛ ⎞

0 0 0 · · · −vp
⎜1
⎜

0 0 · · · ⎟−vp−1
⎟

⎜0
⎜

1 0 · · · ⎟−vp−2
⎟

⎜ ⎟ .
⎝ · · · . . ⎠

0 0 0 · · · −v1

of ψp. This matrix however is not unitary, even if its eigenvalues lie on the unit circle.

7

In [2], the authors showed how to construct an upper Hessenberg unitary matrix

H whose characteristic polynomial is ψp(t). Using the Szegö recursion (or Levinson’s

algorithm), the unitary matrix H is constructed in terms of its Schur parameters,

making it convenient to directly apply the unitary QR algorithm described in section

2.5.

1.3.2 Approximation by Trigonometric Polynomials

Given a set of m distinct node points {θk}mk=1 on the interval [0, 2π), and a set of

positive weights {wk
2}mk=1, consider a real-valued function f(θ) whose values at θk are

known. In [33], the authors presented an algorithm that approximates f(θ) by the

trigonometric polynomial

l
X

t(θ) = a0 + aj cos(jθ) + bj sin(jθ)
j=1

where l < m/2 which minimizes the discrete least squares error
!1/2m

kf − tk =
X

|f(θk) − t(θk) |2 wk .
k=1

The algorithm is based on a scheme for solving an inverse eigenvalue problem

for unitary Hessenberg matrices presented in [5]. The least-squares approximant is

obtained by incorporating the node information one at a time.

1.3.3 Other Applications

We briefly cite other applications of eigenvalues of unitary matrices that are found in

the literature. In the area of time series analysis and discrete-time control theory, the

8

computation of the poles of a stable autoregressive model from the Schur parameters

of a unitary Hessenberg matrix H is presented in [6]. The eigenvalues of H represent

the poles of an associated lossless model, and from these eigenvalues, the zeroes of

the desired Szegö polynomials are computed using a continuation method [7].

More recently, the distribution of the eigenvalues of unitary random matrices have

been investigated [22], and have found applications in telephone encryption, and in

connection with the Riemann zeta function [20].

Finally, all of these applications are rooted in the fact that the Schur parame-

ters of a unitary Hessenberg matrix have an intimate connection with the theory of

orthogonal polynomial on the unit circle and on Gaussian quadrature [38, 40, 24, 26].

9

Chapter 2

The Unitary QR Algorithm

We begin the development of algorithms for the unitary eigenvalue problem in this

chapter. The basic algorithmic tools are the elementary elimination matrices which

we introduce in sections 2.1 and 2.2. For unitary matrices, there is an elegant factor-

ization of unreduced upper Hessenberg unitary matrices in term of Given’s reflectors.

The entries of the Given’s reflector are the Schur parameters of the unitary matrix.

We shall introduce this factorization and the Schur parametrization in section 2.3.

Fundamental to eigenvalue computations is the QR algorithm. In this chapter, we

present an implementation of the QR for unitary matrices using the Schur parameters

of the matrix. We review the QR algorithm in section 2.4, and finally present the

unitary QR algorithm in section 2.5.

10

2.1 Elementary Matrices

Let u, v ∈ Cn . A matrix E of the form

E = I − uv H (2.1.1)

is called an elementary matrix. If vH u =6 1, then

� �

H H H H
�

H
� uv uv uv uvH −I − uv I − = I − uv +

H H Hv u − 1 v u − 1 v u − 1
H H H−uvH (v u − 1) − uvH + uv uv

= I +
Hv u − 1

H H H−(v u)uvH + uvH − uvH + uv uv
= I +

Hv u − 1

= I.

Huv
Thus if E = I − uvH where vH u =6 1, then E is nonsingular and E−1 = I − .

Hv u − 1

Let x, y ∈ Cn . We begin with the problem of finding an elementary matrix E such

that Ex = y. This is an underdetermined system of n equations in n2 unknowns.

Since E has the form E = I − uvH , we have

�

H
�

I − uv x = y

x − uv H x = y.

Solving for u we get

x − y
u =

H
(2.1.2)

v x

11

provided vH x 6= 0. We can choose v ∈ Cn such that vH x 6= 0, and define u by (2.1.2).

It follows that if E = I − uvH , then Ex = y.

x − y
Proposition 2.1. Let x, y ∈ Cn . If v ∈ Cn such that vH x 6= 0 and u =

H
then

v x

E = I − uvH satisfies Ex = y.

Consider now an elementary matrix P defined by

HP = I − 2uu

where kuk2 = 1. In the notation of (2.1.2), we have v = 2u where u ∈ Cn , kuk2 = 1.

Such a matrix P is called a Householder reflector.

We note two basic properties of a Householder reflector. First

P H = (I − 2uu H)H = I − 2uu H = P

hence P is Hermitian. Further

P H P = PP H = (I − 2uu H)(I − 2uu H)

= I − 2uu H − 2uu H + 4uu H uu H

= I.

Thus P is unitary.

Proposition 2.2. If P = I − 2uuH is a Householder reflector, where u ∈ Cn , kuk2 =

1, then P is Hermitian and unitary.

12

Let x ∈ C
n , x =6 0. We consider next the problem of finding a Householder

reflector P such that Px = αe1 for some constant α. Since P is unitary, it follows

that α = βkxk2 for some complex constant β with |β| = 1. Further, by proposition

2.1, u takes the form

1
u = (x − αe1)

γ

where γ = vH x = 2uH x, from which we get

|γ|2 = 2(kxk2
2 − αx1).

Since the left side of this equation is real, and the quantity kxk2 is real, it follows

x1
that αx1 must be real. This forces β = ± provided x1 =6 0. If x1 = 0, then we |x1|
can take β = 1.

x1
Computationally, we take β = − whenever x1 6= 0 to avoid a loss-of-significance|x1|

x1
error. To see this, let c = − so that |x1|

x1
α = ckxk = − kxk2.2 |x1|

This implies that

x1
αx1 = − kxk2x1|x1|

|x1|2

= − kxk |x1| 2

= − |x1| kxk2

from which we see that αx1 is a nonpositive real number, and that αx1 = αx1 = αx1.

13

Define ξ = kx − αe1 k2 so that

ξ2 2 = kx − αe1 k2

= (x H − αeT
1)(x − αe1)

= x H x − αx1 − αx1 + |α|2

= 2kxk2 − 2αx1

= 2(kxk2 + |x1|)kxk2.

Hence the expression for kx − αe1 k2
2 does not involve the subtraction of two positive

real numbers. Further,

(x H − αeT
1)x = x H x − αx1

= kxk2
2 − (− |x1| kxk2)

= ξ2/2.

Hence the expression for (xH − αeT
1)x also does not involve the subtraction of two

positive real numbers.

14

Finally we verify that if P = I − 2uuH , where u = (x − αe1)/kx − αe1 k2, then

Px = (I − 2uu H)x

2(x − αe1)(x
H − αeT

1)x
= x −

kx − αe1 k22

xξ2 2(x − αe1)ξ
2/2

= −
ξ2 ξ2

= x − (x − αe1)

= αe1.

x1
Thus the choice β = − for x1 6= 0 computationally avoids a loss-of-significance er-|x1|
ror whenever we compute Px for which P = I−2uuH where u = (x−αe1)/kx − αe1 k2

with α = βkxk2.

Proposition 2.3. Let x = (xi) ∈ Cn , x =6 0. Define β by β = −
x1

if x1 6= 0 and |x1|
β = 1 if x1 = 0. Let α = βkxk2. If P = I − 2uuH where

x − αe1
u = ,kx − αe1 k2

then P is a Householder reflector that satisfies Px = αe1.

Finally we state Schur’s triangularization theorem which guarantees what can be

achieved with eigenvalue algorithms.

Proposition 2.4. If A ∈ Mn(C), then there exists a unitary U ∈ Mn(C) and an

upper-triangular T ∈ Mn(C) such that UH AU = T, where the diagonal entries of T

are the eigenvalues of A.

15

Proof. We use by induction on the order of the matrix n. The result holds for n = 1.

Assume now that each (n − 1) × (n − 1) matrix is unitarily similar to an upper

triangular matrix. Let A ∈ Mn(C). Let (λ, x) be an eigenpair of A with kxk2 = 1.

By proposition 2.3, we can construct a Householder reflector R = RH = R−1 such

that Rx = e1 or equivalently x = Re1. Hence the first column of R is x, and we have

R = (x V) for some V such that V H x = 0. We have

�

H
�

x � �

RH AR = λx AV
V H

� �

x xH AV
=

0 V H AV

The matrix V H AV is of order n − 1. By the induction assumption, there exists a

unitary matrix Q such that QH (V H AV)Q = T̃ is upper triangular. Taking

� �

1 0
U = R

0 Q

we get
� �

λ xH AV Q
UH AU = = T˜0 T

which is upper triangular having the eigenvalues of A along the main diagonal.

2.2 Hessenberg Matrices

A matrix H = (hij) ∈ Mn(C) is said to be an upper Hessenberg matrix if hij = 0

for i > j + 1. Further if H is an upper Hessenberg matrix and hj+1,j 6= 0 for

j = 1, . . . , n − 1, then H is said to be an unreduced upper Hessenberg matrix.

16

Given a matrix A = (aij) ∈ Mn(C), we consider the construction of a unitary

matrix P such that P AP H is upper Hessenberg. Take x1 = Ae1, the first column of
q

A. Let y1 = (hi1) ∈ Cn, i = 1, . . . , n where h11 = a11, h21 = β1 |a21|2 + · · · + |an1|2 ,

and h31 = h41 = · · · = hn1 = 0, and where β1 is chosen such that β1 = −a21/ |a21| if

a21 6= 0 and β1 = 1 if a21 = 0. By proposition 2.3, we can construct a unitary matrix

P1 such that P1x1 = y1. Further since P1 acts as an identity on the first row of x1, it

follows that P1 has the form
� �

1 O
P1 =

O P̂1
(2.2.3)

ˆwhere P1 is an (n − 1) × (n − 1) Householder matrix that satisfies
⎛ ⎞ ⎛ ⎞

a21 h21
⎜ . ⎟ ⎜ . ⎟P̂1 ⎝ .. ⎠ =

⎝

.. ⎠ .

an1 hn1

Thus the transformation A 7→ P1A maps the first column of A to the first column

of an upper Hessenberg matrix. The form of P1 in (2.2.3) implies that the trans-

formation P1A 7→ P1AP1
H leaves the first column of P1A unchanged, and hence the

unitary similarity transformation A 7→ P1AP1
H maps the first column of A to upper

Hessenberg form.

Similarly, if x2 = (xi2) = P1AP1
H e2, we let y2 = (hi2) ∈ Cn where h12 = x12, h22 =

q

x22, h32 = β2 |x32|2 + · · · + |xn2|2 and hk2 = 0 for k = 4, . . . , n, and where β2 is

defined as β2 = −x32/ |x32| if x32 =6 0 and β2 = 1 if x32 = 0. By proposition 2.3, we

17

construct a unitary matrix P2 having the form

� �

I2 O
P2 = ˆO P2

such that the unitary similarity transformation P1AP H 7→ P2(P1AP H)P H maps the1 1 2

second column of P1AP1
H to upper Hessenberg form, and leaves the first column

unchanged.

Repeating this process, we construct unitary matrices P3, P4, . . . , Pn−1 such that

if Â
i−1 = Pi−1 · · · P1AP1

H · · · Pi
H
−1, then the unitary similarity transformation Â

i−1 7→

PiÂ
i−1Pi

H maps column i of Â
i−1 to upper Hessenberg form. The final matrix

H = Pn−1 · · · P1AP1
H · · · Pn

H
−1

is an upper Hessenberg matrix which is unitarily similar to A. This reduction of A

to upper Hessenberg form can be implemented using 10
3 n

3 + O(n2) flops [41].

2.3 Schur Parametrization of Unitary Matrices

ˆ ˆ ˇLet U ∈ Mn(C) be unitary. We reduce U to upper Hessenberg form U using the

reduction algorithm described in the preceding section. Assume further that Ǔ = (ǔij)

is unreduced, so that ǔi+1,i 6= 0 for i = 1, . . . , n − 1. Performing a diagonal unitary

similarity transformation, we can make the subdiagonals real positive to obtain a

ˆunitary matrix U similar to U . We now describe an algorithm that expresses U as a

product of matrices of a very simple form [25]:

U = G1G2 · · · Gn−1Gn, (2.3.4)

18

�

�

�

�

�

�

where Gk = diag{Ik−1, G̃
k, In−k−2},

� �

γk σk 2˜ + σ2Gk = , σk > 0, |γk | k = 1,
σk −γk

for k = 1, . . . , n − 1, and Gn = diag{In−1, γn} with |γn | = 1.

The matrices Gk are unitary and we will refer to them as Givens reflectors. We

will refer to the numbers γ1, . . . , γn, σ1, . . . , σn−1 collectively as Schur parameters.

For distinction, we will call γ1, . . . , γn as the Schur parameters and σ1, . . . , σn−1 as

the complementary Schur parameters of U .

Let
⎛ ⎞

u11 u12 u13 · · · u1,n−1 un,1
⎜ ⎟

⎜

u21 u22 u23 · · · u2,n−1 u2,n
⎟

⎜ ⎟

U = ⎜ 0 u32 u33 · · · u3,n−1 u3,n
⎟

⎜ ⎟
⎝ ⎠

0 0 0 · · · un,n−1 un,n

where ui+1,i > 0 for i = 1, . . . , n − 1. Since the first column of U is a unit vector, we

2have |u11|2 + u21 = 1. We define γ1 := u11, σ1 := u21 and

� �

γ1 σ1G̃1 :=
σ1 −γ1

so that if G1 = diag{G̃
1, In−2}, then

⎛ ⎞

1 0 0 · · · 0 0
⎜

(1) (1) (1) (1)
⎟0 u u · · · u u

⎜ 22 23 2,n−1 2,n⎟
⎜ ⎟

⎜

0 u32 u33 · · · u3,n−1 u3,n⎟
G−1U = ⎜ ⎟ .1

⎜

0 0 u43 · · · u4,n−1 u4,n⎟
⎜ ⎟
⎝

.
⎠.

0 0 0 · · · un,n−1 un,n

2
(1) (1)

Similarly, the matrix G−
1

1U is unitary, hence u22 +u32
2 = 1. Define γ2 := u22 , σ2 :=

19

�

�

�

�

�

�

andu32
� �

γ2 σ2G̃2 :=
σ2 −γ2

so that if G2 = diag{I1, G̃
2, In−3}, then

⎛ ⎞

1 0 0 · · · 0 0
⎜0 1 0 · · · 0 0 ⎟
⎜ ⎟

G−1G−1U2 1

⎜0
⎜

=
⎜0
⎜

0
0

(2)
u33

u43

· · ·
· · ·

(2)
u3,n−1

u4,n−1

(2)
⎟u3,n⎟
⎟

. u4,n⎟
⎜ ⎟
⎝ ⎠

0 0 0 · · · un,n−1 un,n

We repeat this process and continue the construction of the matrices G3, . . . , Gn−1

that satisfy
⎛ ⎞

1 0 0 · · · 0 0
⎜ ⎟0 1 0 · · · 0 0
⎜ ⎟

⎜ ⎟

G−1 G−1G−1 0 0 1 · · · 0 0
n−1 · · 2 = ⎜ .· U1 ⎟

⎜ ⎟
⎝ ⎠

(n−1)
0 0 0 · · · 0 un,n

(n−1) (n−1)
Note that un,n = 1, hence if Gn = diag{1, 1, . . . , 1, un,n }, then

G−1G−1 G−1G−1 · · U = I. n n−1 · 2 1

Thus we get the factorization

U = G1G2 · · · Gn.

˜The construction of each Gk gives us one algorithm to carry out the factorzation

(2.3.4).

Alternatively, we can assume that each Gk has the form Gk = diag{Ik−1, G̃
k, In−k−2},

where
� �

γk σk 2G̃k = , σk > 0, |γk | + σk
2 = 1,

σk −γk

20

for k = 1, . . . , n − 1, and Gn = diag{In−1, γn} with |γn | = 1. Multiplying explicitly

the factors Gk, k = 1, . . . , n, we have
⎛

γ1 σ1γ2 σ1σ2γ3 · · · σ1 · · · σn−1γn
⎞

⎜ σ1 −γ1γ2 −γ1σ2γ3 · · · −γ1σ2 · · · σn−1γn ⎟
⎜ ⎟

⎜ σ2 −γ2γ3 · · · −γ2σ3 · · · σn−1γn ⎟
⎜

U = G1 · · · Gn =
⎜

⎜
σ3 · · · . . .

⎟

⎟
.

⎟

⎜ ⎟..
⎝ . . ⎠. .

−γn−1γn

We see that the entries of U and its Schur parametrization are completely determined

by its diagonal and subdiagonal entries. With this observation, we have a second

procedure to carry out the Schur parametrization of an unreduced upper Hessenberg

unitary matrix with positive subdiagonal entries.

2.4 The Multi-Shift QR Algorithm

The algorithm that we will present in the next section is an efficient implementation

of the multi-shift QR algorithm [11, 43]. We shall refer to that algorithm as the

unitary QR algorithm. We will first begin with a brief review of how the multi-shift

QR algorithm is implemented implicitly.

Given a matrix A ∈ Mn(C) in unreduced upper Hessenberg form and shifts µi ∈ C

for i = 1, 2, . . . , m, a multi-shift QR iteration of degree m carries out the steps

ˇ ˇ(A − µiI) = QiRi

Ǎ
i := Ř

iQ̌
i + µiI

ˆ ˇfor i = 1, 2, . . . , m implicitly. The final matrix A := Am is produced directly from A

21

and is unitarily similar to A by

Â = QH AQ (2.4.5)

ˇ ˇ ˇwhere Q = Q1Q2 · · · Qm. It can be shown [11, 43] that Q is also the unitary factor in

the unitary-upper triangular decomposition

(A − µmI)(A − µm−1I) · · · (A − µ1I) = QR.

ˆThe transformation (2.4.5) from A to A is carried out implicitly as follows:

1. Construct a unitary matrix V ∈ Mn(C) that satisfies

1
V e1 = (A − µmI)(A − µm−1I) · · · (A − µ1I)e1

α

where α = k(A − µmI)(A − µm−1I) · · · (A − µ1I)e1 k2.

2. Reduce the matrix V H AV to upper Hessenberg form.

Since A is upper Hessenberg, the unitary matrix V has the block diagonal form

∈ C(m+1)×(m+1)V = diag{Ṽ
1, In−m−1} where Ṽ

1 is unitary. In fact, the matrix V H

maps the vector

v = (A − µmI)(A − µm−1I) · · · (A − µ1I)e1

to y = (α, 0, · · · , 0)T ∈ Cn .

Because of the form of V , the transformation A 7→ V H A acts only on the first

(m + 1) rows and the transformation V H A 7→ (V H A)V acts only on the first (m + 1)

22

columns. Hence the unitary similarity transformation A 7→ Ã := V H AV introduces

an initial bulge of size (m + 1) × (m + 1) given by the submatrix
⎛ ⎞

ã2,1 · · · ã2,m+1
⎜ . . ⎟

⎝ ⎠
. (2.4.6)

ãm+2,1 · · · ãm+2,m+1

˜To return A to upper Hessenberg form, a unitary matrix P1 is built such that

the tranformation Ã 7→ P1
H Ã acts only on rows 2, · · · , m + 2 of Ã to zero out the

entries ã3,1, · · · , ãm+2,1. Matrix P1 has the block diagonal form diag{I1, P̃
1, In−m−2}.

The transformation P1
H Ã 7→ (P1

H Ã)P1 acts only on the columns 2, · · · , m + 2, leaving

the newly created zeros unaffected, and creates a new row to the bulge. Hence the

˜ ˜unitary similarity transformation A 7→ P1
H AP1 returns the first column to upper

Hessenberg form and moves the bulge one row and one column down. A second

˜ (P H ˜unitary matrix P2 is built so that the tranformation P1
H AP1 7→ P2

H
1 AP1)P2 returns

the second column to Hessenberg form and moves the bulge one row and one column

down. The process is repeated until the bulge is chased off the bottom of the matrix

˜and A is eventually returned to upper Hessenberg form. In all, unitary matrices

P1, P2, · · · , Pn−2 are created to carry out this reduction. The kth unitary matrix has

the block diagonal form
⎛ ⎞

Ik

Pk = ⎝ P̃
k

⎠ (2.4.7)
In−m−k−1

for k = 1, 2, . . . , n − m − 2 and

� �

IkPk = (2.4.8)
P̃k

23

for k = n − m − 1, . . . , n − 2. It can be shown [11, 43] that the upper Hessenberg

˜ ˆmatrix that is obtained at the end of this reduction of A is the matrix A in (2.4.5).

ˆHence matrices A and A are related by

Â = (Pn
H
−2 · · · P2

H P1
H V H)A(V P1P2 · · · Pn−2).

If A is unitary Hessenberg, we make the following modification in the scheme: The

matrices P1, P2, · · · , Pn−2 are constructed such that we get real, positive subdiagonal

entries in Â. We require this so that Â has a factorization of the form (2.3.4). Matrix

˜P1 for instance can be chosen as the unitary matrix that maps the first column of A

to the vector (ã11, ξ, 0, 0, · · · , 0)T ∈ Cn where ξ = k(ã21, · · · , ãm+2,1)k2.

2.5 Efficient Unitary Multi-Shift QR Iteration

We now show how to implement a multi-shift QR iteration efficiently on a unitary

matrix in factored form. Let U ∈ Mn(C) be a unitary matrix in upper Hessenberg

form with uj+1,j > 0 for j = 1, . . . , n − 1. As described in section 2.3, U has a

factorization

U = G1G2 · · · Gn−1Gn, (2.5.9)

where
⎛ ⎞

Ik−1
⎝Gk = G̃k

⎠ (2.5.10)
In−k−2

with
� �

G̃k =
γk

σk

σk

−γk
, σk > 0, 2|γk | + σ2 = 1,k

24

for k = 1, . . . , n − 1, and
� �

In−1Gn = (2.5.11)
γn

with |γn | = 1. The implementation of a QR iteration which we shall describe will

produce a new unitary matrix Û in factored form:

ˆ ˆ ˆ ˆ ˆU = G1G2 · · · Gn−1Gn. (2.5.12)

We define two vectors g = (γ1, · · · , γn) ∈ Cn and s = (σ1, · · · , σn−1) ∈ Rn−1 to

store matrix U . Let µi ∈ C for i = 1, . . . , m be the shifts. The first part of the implicit

algorithm is as follows. We construct a matrix V = diag{Ṽ
1, In−m−1} as described in

the preceding section. If Ũ := V H UV then Ũ contains the initial bulge given by the

submatrix Ũ(2 : m +2, 1 : m + 1). The second part of the algorithm is to return Ũ to

upper Hessenberg form Û by chasing this bulge. The idea behind our implementation

is to multiply together the first few of the Gi factors to build a leading submatrix of

U that is big enough to accommodate the bulge. We then build the bulge and begin

to chase it downward. As we do so, we must multiply in additional Gi factors to

ˆaccommodate the progressing bulge. However, we also get to factor out matrices G1,

Ĝ2, . . . , from the top since, as soon as the bulge begins to move downward, we can

begin to refactor the top part of the matrix, for which the iteration is complete. At

any given point in the algorithm, the part of the matrix that contains the bulge can

be stored in a work area of dimension (m + 2) × (m + 2). On each forward step we

must factor in one new Gi at the bottom of the work area, and we get to factor out

25

a Ĝ
j at the top. The total storage space needed by our algorithm is thus O(n + m2).

Let
⎛ ⎞

� � � �I1
G̃1 Im

W1 = ⎝ G̃
2

⎠ · · · ˜ .
Im Gm+1Im−1

Thus W1 is the (m + 2) × (m + 2) leading principal submatrix of G1G2 · · · Gm+1. This

goes into the work area initially. Note that the submatrix W1(:, 1 : m + 1) consisting

of the first (m + 1) columns of W1 is the submatrix U(1 : m + 2, 1 : m + 1) of U . It

˜follows that the submatrix U(1 : m + 2, 1 : m + 1) which contains the initial bulge

is the first m + 1 columns of W2 := V1
H W1V1 where V1 = diag{Ṽ

1, I1}. In computing

W2, we have thus performed the transformation U 7→ V H UV by working only with

matrix W1.

We now chase the bulge. The matrix P1 = diag{I1, P̃
1, In−m−2} is constructed

such that the transformation Ũ 7→ P1
H Ũ returns the first column of Ũ to upper

Hessenberg form. In terms of the working matrix, we perform the transformation

(1) ˜(1)∗
P̃ (1) ˜W2 7→ W2 := P1 W2 where = diag{I1, P1}. Further, P̃

1 is constructed so that

(1) (1)
the entry W2 (2, 1) > 0. Hence the first column of W2 is (γ̂1, σ̂1, 0, · · · , 0)T . We can

then perform the factorization

�

(1) �� �

˜ I1(1) G1W2 = (1) . (2.5.13)˜Im W2

where
� �

(1) γ̂1 σ̂1G̃ = .1 σ̂1 −γ̂1

26

(1)
The matrix Ĝ

1 = diag{G̃
1 , Im−2} is the first matrix in the factorization (2.5.12) The

first entries of the vectors g and s are replaced with the new Schur parameters γ̂1

(1)˜and σ̂1. From (2.5.13), we see that W2 is the trailing (m + 1) × (m + 1) principal

(1) (1) (1)˜submatrix of diag{G̃ , Im}
H

W . We extract W and let1 2 2

�

(1) �

˜(2) W2W :=2 .
I1

This is our new working matrix. The next factor in (2.5.9) is multiplied in:

� �

(3) (2) Im
W := W2 2 ˜ .

Gm+2

Finally to carry out the transformation P1
H Ũ 7→ Ũ

1 := (P1
H Ũ)P1 we note from (2.4.7)

that P1 commutes with Gm+3, · · · , Gn. Thus if

� �

˜(3) P1W3 := W2 I1

˜then the first (m + 1) columns of W3 form the submatrix U1(3 : m + 3, 2 : m + 2),

˜which contains the new bulge. This completes the transformation Ũ 7→ P1
H UP1.

In general, for k = 2, . . . , n − m − 2, we have the working matrix Wk+1 whose

first (m + 1) columns contain the bulge. The matrix Pk having the form (2.4.7) is

built. In this block diagonal form, the unitary matrix P̃
k is constructed such that the

transformation

(1) (1)∗˜Wk+1 7→ W := P Wk+1, (2.5.14)k+1 k

˜where P̃
k
(1)

= diag{I1, Pk}, returns the first column of Wk+1 to upper Hessenberg form

27

(1)
and makes the entry Wk+1(2, 1) > 0. Next, the factorization

�

(1) �� �

˜ I1(1) GkW = (2.5.15)k+1 (1)˜Im Wk+1

is performed, where
� �

(1) γ̂k σ̂kG̃ = .k σ̂k −γ̂k

The kth entries in the vectors g and s are updated with γ̂k and σ̂k respectively. The

(1)˜submatrix Wk+1 is extracted and the working matrix

�

(1) �

˜(2) W
W := k+1 (2.5.16)k+1 I1

is formed. The next factor in (2.5.9) is multiplied in:

� �

(3) (2) Im
W := Wk+1 k+1 G̃m+k+1

and a full working matrix is formed by

� �

˜(3) PkWk+2 := Wk+1 . (2.5.17)
I1

When k = n − m − 1, the working matrix begins to shrink. After the operations

(2.5.14) and (2.5.15), there is no need to make the extension indicated by (2.5.16),

˜because Gn = [γn] is only 1 × 1, not 2 × 2. On subsequent steps the working matrix

continues to shrink, because there are no more factors to multiply in. By the time

the bulge chase is complete, the working matrix has been reduced to 2 × 2 and can

be factored to form
� �� �

γ̂ ˆ 1 0n−1 σn−1 . −ˆ 0σ̂n−1 γn−1 γ̂n

28

The new Schur parameters γ̂ σn−1, and γ̂ replace the old ones in g and s, andn−1, ˆ n

the iteration is complete.

2.5.1 Enforcement of Unitarity

One other important detail needs to be mentioned. Each new pair of Schur parameters

γ̂k, σ̂k satisfies | γ̂k |2 + σ̂2 = 1 in principle, but in practice roundoff errors will causek

this equation to be violated by a tiny amount. Therefore the following normalization

step is required:
� 2 �1/2

ν ← | γ̂k | + σ̂2
k

γ̂k ← γ̂k/ν
σ̂k ← σ̂k/ν

This should be done even when k = n, taking σ̂n = 0. This enforcement of unitarity

is essential to the stability of the algorithm. If it is not done, the matrix will (over

the course of many iterations) drift away from being unitary, and the algorithm will

fail. A proof of the backward stability of the unitary QR algorithm is found in [17].

2.5.2 Operation Count

The bulk of the arithmetic in our algorithm is contained in the steps (2.5.14) and

(2.5.17). Each unitary transformation is taken to be the product of a reflector followed

by a diagonal phase-correcting transformation to enforce the condition ûk+1,k > 0.

The latter costs O(m) arithmetic; the real work is in applying the reflector. Each of

these is at most (m + 1) × (m + 1) (smaller at the very end of the iteration), and the

cost of applying it efficiently to the working matrix on left or right is about 4m2 flops

29

[41, § 3.2]. Since the reflector is applied only to the small work area and not to the

full Hessenberg matrix, the amount of arithmetic is O(m2) instead of O(nm); this is

where we realize our savings. Since n − 1 reflectors are applied (on left and right) in

the whole iteration, the arithmetic cost is about 8nm2 flops.

If m is fixed and small, then we can say that the cost of an iteration is O(n),

in the sense that the arithmetic is bounded by Cmn, where Cm is independent of

n. However, the fact that Cm grows like m2 as m is increased shows that it will be

inefficient to take m too large.

There is another important reason for keeping m fairly small. If m is made much

bigger than 8 or 10, roundoff errors interfere with the mechanism of shift transmission

and render the QR iteration ineffective [39]. This phenomenon is known as shift

blurring.

2.5.3 Shift Strategies

Eberlein and Huang [21] presented a globally convergent shift strategy for the QR

algorithm, and they showed that it converges at least quadratically. Wang and Gragg

[37] proposed a family of strategies that includes that of Eberlein and Huang. They

demonstrated global convergence and showed that the convergence rate is always at

least cubic. These strategies are for single QR iterations, the case m = 1.

Since we are taking multiple steps, we need a different strategy. The most common

way to obtain m shifts is to take the eigenvalues of the trailing m × m submatrix of

30

U . Watkins and Elsner [44] showed that this strategy is cubically convergent when

it converges. However, it is not globally convergent, as the following well-known

example shows. Let U be the unitary circulant shift matrix, which looks like
⎛

1
⎞

⎜ 1
⎜

⎝ 1

⎟

⎟

⎠

1

in the 4 × 4 case. For any m < n, if we take the eigenvalues of the trailing submatrix

as shifts, we get shifts 0, . . . , 0, which are equidistant from all of the eigenvalues. A

QR iteration on U with these shifts goes nowhere.

Since the eigenvalues of a unitary matrix lie on the unit circle, it make sense to

choose shifts that are on the unit circle. We tried two strategies. The first computes

the eigenvalues of the trailing m × m submatrix and normalizes each of them by

dividing it by its absolute value. If any of the tentative shifts happens to be zero,

it is replaced by a random number on the unit circle. If we use this strategy on the

circulant shift matrix, we get m random shifts.

A second strategy stems from the following observation. The last m rows of the

unreduced Hessenberg matrix U are orthonormal. Since un−m+1,n−m > 0, the trailing

m × m submatrix U(n − m + 1 : n, n − m + 1 : n) is not unitary, but it is nearly

unitary. Its rows are orthogonal, and they all have norm 1, except that the top row

U(n − m + 1, n − m + 1 : n) has norm less than one. Unitarity can be restored by

dividing this row by its norm. In the rare case when the whole top row is zero, a

31

suitable first row can be generated by orthonormalizing a random row against rows 2

through m. The m eigenvalues of the modified matrix then give m shifts on the unit

circle.

When this strategy is used on the circulant shift matrix, the orthonormalization

process will generate a first row of the form (0, . . . , 0, γ) with |γ | = 1. The shifts are

then the roots of the equation zm − γ = 0, which are equally spaced points on the

unit circle.

We found that these two strategies work about equally well. Both are cubically

convergent. As un−m+1,n−m → 0, the trailing m × m submatrix becomes closer and

closer to unitary. Its eigenvalues become ever closer to the unit circle, and normalizing

them as in the first strategy moves them only slightly. On the other hand, if we

modify the matrix as in the second strategy by normalizing its first row, that also

moves the eigenvalues only slightly, because the rescaling factor is very close to 1.

Thus both strategies behave asymptotically the same as the strategy that simply

takes the eigenvalues of the trailing submatrix as shifts; that is, if they converge,

then they converge cubically.

We conjecture that both strategies converge globally.

2.5.4 Numerical Results

We implemented the unitary QR algorithm in MATLAB and tried it out on numerous

unitary matrices. Test problems with known eigenvalues were generated as follows.

32

A unitary diagonal matrix D was generated and its eigenvalues noted. A unitary

matrix Q, random with respect to Haar measure, was generated, and the random

unitary matrix B = QDQH formed. Then B was transformed to upper Hessenberg

form to yield an upper Hessenberg unitary matrix A with known eigenvalues, which

was then factored into the form (2.3.4).

The eigenvalues of unitary matrices are perfectly conditioned, so we always expect

to be able to compute them to very high accuracy. We found that our algorithm was

able to do this. The results in Table 2.1 are typical. We computed the eigenvalues

with our code using m = 2, 3, . . . , 10 and obtained accurate results in all cases.

The test matrices included matrices with many repeated eigenvalues and others with

tight clusters of eigenvalues. The eigenvalues of smaller matrices are computed with

slightly more accuracy than are those of large ones.

For real orthogonal matrices one should always take m ≥ 2, and the complex

shifts should be taken in conjugate pairs. Then the matrix (A − µmI) · · · (A − µ1I)

is real, and all operations can be done in real arithmetic.

33

Table 2.1: Maximum error in the computed eigenvalues
Size m = 2 m = 3 m = 4 m = 5 m = 6

200 9.12 × 10−15 9.56 × 10−15 6.36 × 10−15 5.50 × 10−15 1.01 × 10−14

400 1.92 × 10−14 1.72 × 10−14 1.54 × 10−14 1.31 × 10−14 1.13 × 10−14

600 2.83 × 10−14 2.17 × 10−14 2.21 × 10−14 1.86 × 10−14 1.63 × 10−14

800 4.50 × 10−14 3.00 × 10−14 2.75 × 10−14 2.62 × 10−14 2.45 × 10−14

1000 4.07 × 10−14 3.02 × 10−14 2.56 × 10−14 2.24 × 10−14 2.32 × 10−14

Size m = 7 m = 8 m = 9 m = 10

200 5.42 × 10−15 4.31 × 10−15 4.81 × 10−15 4.00 × 10−15

400 1.09 × 10−14 8.53 × 10−15 6.70 × 10−15 1.01 × 10−14

600 1.57 × 10−14 1.52 × 10−14 1.48 × 10−14 1.54 × 10−14

800 2.59 × 10−14 2.29 × 10−14 2.42 × 10−14 2.55 × 10−14

1000 2.03 × 10−14 2.05 × 10−14 1.51 × 10−14 1.48 × 10−14

34

Chapter 3

Krylov Space Algorithms

In this chapter, we present a family of related algorithms in which a unitary matrix

U is approximated by its restriction on a Krylov space defined by

Km(U, q) = hq, Uq, U 2q, ..., Um−1qi

where kq k2 = 1. One procedure that generates an orthonormal basis for this space

is the Arnoldi process [10]. The equation that relates the Krylov space Km(U, q), the

matrix U , and its approximate restriction Hm on Km(U, q) is

UQm = QmHm + hm+1,mqm+1e Hm.

The columns of Qm form an orthonormal basis for Km(U, q). Matrix Hm is upper

Hessenberg (hij = 0 for i > j + 1). The unit vector qm+1 is orthogonal to the columns

of Qm and hm+1,m is a scalar. If hm+1,m = 0, then

UQm = QmHm.

35

This implies that the space Km(U, q) is invariant under U , that Hm represents the

restriction of U on Km(U, q), and that the spectrum of Hm is a subset of the spectrum

of U . If hm+1,m =6 0, then the eigenvalues of Hm are approximations of the eigenvalues

of U . We can improve the quality of the approximation on each iteration by choosing

the generating vector q appropriately, and we can perform implicit restarts. We

collectively refer to these related algorithms as Krylov space eigenvalue algorithms.

This chapter is organized as follows: We define Krylov spaces and the Arnoldi

process in section 3.1. We also consider two special cases of the Arnoldi process: the

isometric Arnoldi process for unitary matrices, and the Lanczos process for Hermitian

matrices. The isometric Arnoldi process is used in an inexact Arnoldi-Schur algo-

rithm in section 3.3. The Hermitian Lanczos process is used in a Cayley transformed

Lanczos-Schur algorithm in section 3.4. The implicitly restarted Arnoldi method pre-

sented in section 3.2 ties up all the algorithms in the chapter to subspace iteration

driven by polynomial filters.

3.1 The Arnoldi Process and its Variants

Fundamental to all the algorithms in this chapter is the notion of a Krylov space.

Definition 3.1. Let A ∈ Mn(C), q ∈ Cn , q =6 0. Let m be a positive integer. The

mth Krylov space associated with A and q is the space Km(A, q) defined as

Km(A, q) = hq, Aq, . . . , Am−1qi.

36

We briefly summarize a few basic properties of a Krylov space.

Proposition 3.1. If A ∈ Mn(C), q ∈ Cn , q =6 0, then:

1. Km(A, cq) = Km(A, q) for any nonzero scalar c

2. Km(A, q) ⊆ Km+1(A, q)

3. AKm(A, q) ⊆ Km+1(A, q)

4. Km(A, q) = {p(A)q | p ∈ Pm−1}

5. If {q, Aq, . . . , Am−1q} is a linearly independent set, then Km(A, q) is invariant

under A if and only if {q, Aq, . . . , Am−1q, Amq} is a linearly dependent set.

While {q, Aq, . . . , Am−1q} is a basis for Km(A, q) whenever it is a linearly inde-

pendent set, it is usually an ill-conditioned basis in the sense that the vectors Ajq

increasingly point to the direction of the dominant eigenvector of A. To obtain a well-

conditioned orthonormal basis for Km(A, q), we could apply the Gram-Schmidt pro-

cess to q, Aq, . . . , Am−1q. An equivalent orthonormalization procedure is the Arnoldi

process which we now introduce.

Given q ∈ C
n , q 6= 0, such that {q, Aq, . . . , Am−1q} is linearly independent, we

shall obtain an orthonormal set {q1, q2, . . . , qm} such that

hq1, . . . , qki = hq, Aq, . . . , Ak−1qi = Kk(A, q)

37

for k = 1, 2, . . . , m. The first step is a normalization:

q1 = q/kq k.

Next for k = 1, 2, . . . , m − 1, define

k
X

q́ k+1 = Aqk − qj hjk (3.1.1)
j=1

where hjk = hAqk, qji and define

hk+1,k = k q́ k+1 k2, (3.1.2)

qk+1 = q́ k+1/hk+1,k. (3.1.3)

This is the Arnoldi process. It can be shown that in exact arithmetic, this pro-

cedure generates exactly the same sequence of vectors as the Gram-Schmidt process

applied to q, Aq, . . . , Akq. To avoid the gradual loss of orthogonality inherent in nu-

merical orthogonalization processes, each new qk+1 must be re-orthogonalized against

every qj that has been generated.

The following result [41] links the Arnoldi process with the Krylov space it gen-

erates.

Proposition 3.2. Let {q, Aq, . . . , Am−1q} be a linearly independent set. If q1, q2, . . . , qm

are orthonormal vectors generated by the Arnoldi process (3.1.1),(3.1.2),(3.1.3), then:

1. hq1, q2, . . . , qki = Kk(A, q) for k = 1, 2, . . . , m

38

2. hk+1,k > 0 for k = 1, 2, . . . , m − 1

3. hm+1,m = 0 if and only if {q, Aq, . . . , Am−1q, Amq} is a linearly dependent set,

which holds (by Prop. 3.1) if and only if Km(A, q) is invariant under A.

The Arnoldi orthonormalization procedure can be recast in matrix form. Equa-

tions (3.1.1) and (3.1.2) can be written as

k+1
X

Aqk = qj hjk (3.1.4)
j=1

for k = 1, 2, . . . , m. If

C
n×mQm := (q1 q2 · · · qm) ∈

and Hm is the upper Hessenberg matrix
⎛ ⎞

h11 h12 · · · h1,m−1 h1,m
⎜

⎜

h21 h22 · · · h2,m−1
⎟h2,m
⎟

⎜ 0Hm := ⎜ h32 · · · h3,m−1
⎟h3,m
⎟ ∈ C

(m+1)×m

⎜ ⎟ .
⎝ . . . · · · ⎠

0 0 · · · hm,m−1 hm,m

then (3.1.4) can be written as

AQm = QmHm + hm+1,mqm+1em
H . (3.1.5)

An equation of this form is called an Arnoldi decomposition of order m. The distin-

guishing property of this equation is that Qm has orthonormal columns and Hm is

upper Hessenberg with positive subdiagonals. If this is the case, then the columns of

Qm and the entries in Hm are uniquely determined by the vector q1.

39

Proposition 3.3. Let the columns of

C
n×mQm = (q1 q2 · · · qm) ∈

∈ Cm×mbe orthonormal vectors, and let Hm be upper Hessenberg with hj+1,j > 0 for

j = 1, 2, . . . , m − 1. Let qm+1 ∈ Cn be a unit vector orthogonal to the columns of Qm

and let hm+1,m > 0. If Qm, Hm, qm+1 and hm+1,m satisfy (3.1.5), then q1, q2, . . . , qm

are the vectors produced by the Arnoldi process on the matrix A with starting vector

q1.

If Qk consists of the the first k columns of Qm, then (3.1.1) can be written as

q́ k+1 = (I − QkQk
H) Aqk

from which we see that q́ k+1 is the orthogonal projection of Aqk into the space

Kk(A, q)⊥ . Normalization is carried out by (3.1.2) and (3.1.3).

In equation (3.1.5), the eigenvalues of Hm are called the Ritz values. If hm+1,m = 0

then Hm represents the restriction of A on Km(A, q) and the Ritz values are exact

eigenvalues of A. If hm+1,m =6 0, then the Ritz values approximate the eigenvalues of

A. In either case, if (µ, x) is an eigenpair of Hm, then (µ, Qmx) is an exact eigenpair

of the perturbed matrix

A − hm+1,mqm+1qm
H .

Hence, the pair (µ, Qmx) is an approximate eigenpair of A and the following result

gives the corresponding residual norm.

40

Proposition 3.4. Let Qm, Hm, and hm+1,m be generated by the Arnoldi process so

that (3.1.5) holds. Let (µ, x) be an eigenpair of Hm. If v = Qmx then

kAv − µv k = |hm+1,m ||xm |

where xm is the mth component of x.

In the preceding proposition, if the eigenvector x of Hm is scaled such that

kxk2 = 1, then the quantity kAv − µv k represents the relative error of the resid-

ual. Otherwise, the quantity represents the absolute error of the residual.

3.1.1 The Isometric Arnoldi Process

If the matrix A is unitary, then the Arnoldi process can be expressed as a pair of

intertwining short-term recurrence relations that can be used to build the spaces

Km(A, q) and Km(A−1, q). The procedure is known as the isometric Arnoldi process

of Gragg [24, 26].

To derive the isometric Arnoldi process, we shall assume U ∈ Mn(C) is unitary.

Let q ∈ Cn , q =6 0. Suppose we build the spaces Km(U, q) and Km(U−1, q) simultane-

ously. Then by (3.1.1) and (3.1.2) we have

q1 := q/kq k =: w1

j
X

hj+1,j qj+1 = Uqj − hUqj , qiiqi (3.1.6)
i=1

j
X

kj+1,j wj+1 = U−1 wj − hU−1wj, wiiwi (3.1.7)
i=1

41

for j = 1, . . . , m.

Thus

Kj(U, q) = hq, Uq, . . . , U j−1qi = hq1, . . . , qj i (3.1.8)

for j = 1, . . . , m where q1, . . . , qj is an orthonormal basis for Kj (U, q). Similarly

Kj(U
−1 , q) = hq, U−1q, . . . , U−(j−1)qi = hw1, . . . , wji (3.1.9)

for j = 1, . . . , m where w1, . . . , wj is an orthonormal basis for Kj (U
−1, q).

Multiplying (3.1.9) by U j−1 we get

U j−1hw1, . . . , wji = hq1, . . . , qji (3.1.10)

from which it also follows that

U−(j−1)hq1, . . . , qji = hw1, . . . , wji. (3.1.11)

Hence if we generate qj+1 from (3.1.6) by orthogonalizing Uqj against U j−1w1, . . . , U
j−1wj

instead of q1, . . . , qj , we have

j
X

hj+1,jqj+1 = Uqj − hUqj , U
j−1 wii U j−1 wi. (3.1.12)

i=1

Since U j−2hw1, . . . , wj−1i = hq1, . . . , qj−1i ⊥ qj , it follows that

U j−1hw1, . . . , wj−1i ⊥ Uqj .

Thus

hUqj , U
j−1 wii = 0

42

for i = 1, . . . , j − 1, and (3.1.12) simplifies to

wji U j−1hj+1,jqj+1 = Uqj − hUqj , U
j−1 wj

= Uqj − γjU
j−1 wj (3.1.13)

H
j
H U−(j−2)where γj := wj (U

j−1)H Uqj = w qj . Similarly, (3.1.7) simplifies to

qj iU−(j−1)kj+1,jwj+1 = U−1 wj − hU−1 wj, U
−(j−1) qj

U−1 wj − δj U
−(j−1)= qj (3.1.14)

where δj := qj
H U j−1U−1wj = qj

H U j−2wj = γj. To summarize, equations (3.1.13) and

(3.1.14) can be written as

hj+1,jqj+1 = Uqj − γjU
j−1 wj (3.1.15)

U−1 wj − δj U
−(j−1)kj+1,jwj+1 = qj (3.1.16)

Further qj+1 ⊥ hq1, . . . , qji = U j−1hw1, . . . , wji which implies that qj+1 ⊥

U j−1wj . Hence by the Pythagorean theorem, equation (3.1.15) yields

2 2 2khj+1,jqj+1 k + kγjU
j−1wj k = kUqj k = 12 2 2

and therefore

2(hj+1,j)
2 + |γj | = 1.

Since hj+1,j is a nonnegative quantity, being the norm of a vector, we define σj :=
q q

hj+1,j = 1 − |γj |2 . Similarly kj+1,j = 1 − |δj |2 = σj . If we define q̃j := U j−1wj

43

for j = 1, . . . , m, then multiplying (3.1.16) by U j we get

σj q̃j+1 = q̃j − δjUqj .

Thus we can write (3.1.15) and (3.1.16) as a pair of intertwining short-term recur-

rences as

σj qj+1 = Uqj − γj q̃j (3.1.17)

σj q̃j+1 = q̃j − γj Uqj (3.1.18)

for j = 1, 2, · · · , m. We generate qj+1 by (3.1.17) but generating q̃j+1 using (3.1.18)

can be numerically unstable when σj is near zero. Solving for Uqj in (3.1.17) and

substituting into (3.1.18), we get

q̃j+1 = σj q̃j − γjqj+1. (3.1.19)

This is the expression that we will use to generate q̃j+1.

Equation (3.1.6) can be written as

UQj = QjHj + hj+1,jqj+1e Hj

for j = 1, . . . , m, which are Arnoldi decompositions of orders 1 through m. To

complete the description of the isometric Arnoldi process, it remains to show that

γ1, . . . , γm and σ1, . . . , σm−1 are the Schur parameters of Hm.

44

Comparing (3.1.6) with (3.1.17), we see that

γj ̃qj =
j
X

hUqj , qiiqi

i=1

=
j
X

hij qi (3.1.20)
i=1

Since q1, . . . , qj are linearly independent, it follows that for each fixed j, the coefficient

hij of qi in (3.1.20) is uniquely determined by q̃j .

We shall now find an expression for hij in terms of γ1, . . . , γm and σ1, . . . , σm−1.

First we shall prove by induction that

!

j−1 j j−1
Y X Y

q̃j = q1 σk + qi −γi−1 σk . (3.1.21)
k=1 i=2 k=1

Using the recursion (3.1.19), we verify that

q̃2 = σ1q1 − γ1q2

q̃3 = σ2q2 − γ2q3

= σ2(σ1q1 − γ1q2) − γ2q3

= σ1σ2q1 − γ1σ2q2 − γ2q3

q̃4 = σ1σ2σ3q1 − γ1σ2σ3q2 − γ2σ3q3 − γ3q4

45

Assuming now (3.1.21), from (3.1.19) we get
!!

j−1 j j−1
Y X Y

q̃j+1 = σj q1 σk + qi −γi−1 σk − γj qj+1

k=1 i=2 k=1
!

j j+1 j−1
Y X Y

= q1 σk + qi −γi−1 σk

k=1 i=2 k=1

which proves (3.1.21).

Next, we introduce the simplifying notation

j−1
Y

τij := σk

k=i

with τjj := 1. Equation (3.1.21) becomes

j
X

� �

q̃j = q1τ1j + qi −γi−1τij . (3.1.22)
i=2

Rewriting (3.1.17) as Uqj = γj q̃j + σj qj+1, and substituting the result from (3.1.22),

we get
j
X

� �

Uqj = q1τ1j γj + qj −γi−1τij + σj qj+1.
i=2

Comparing the coefficients of qi with those of (3.1.20) we find that
⎧

⎪
τij γj

⎪

if i = 1
⎨

γi−1τij γihij =
⎪ σj
⎪

if
if

2 ≤ i ≤ j
i = j + 1

⎩

0 if i > j + 1

Hence
⎛

γ1 σ1γ2 σ1σ2γ3 · · · σ1 · · · σm−1γm
⎞

⎜ σ1 −γ1γ2 −γ1σ2γ3 · · · −γ1σ2 · · · σm−1γm ⎟
⎜ ⎟

⎜ σ2 −γ2γ3 · · · −γ2σ3 · · · σm−1γm ⎟
⎜

Hm = ⎜ . .
⎟

⎟

σ3 · · · ⎜ . ⎟

⎜ ⎟ ..
⎝ . . ⎠. .

−γm−1γm

and we conclude that γ1, . . . , γm and σ1, . . . , σm−1 are the Schur parameters of Hm.

46

Proposition 3.5. Let U ∈ Mn(C) be unitary such that

HUQm = QmHm + hm+1,mqm+1em

is an Arnoldi decomposition of order m, where Qme1 = q/kq k2 for some nonzero vec-

tor q ∈ Cn . If the vectors q1, . . . , qm and the numbers γ1, . . . , γm, and σ1, . . . , σm−1 are

obtained from the isometric Arnoldi process (3.1.17), (3.1.19) with q1 = w1 = q/kq k2,

then q1, . . . , qm are the respective columns of Qm, and γ1, . . . , γm, and σ1, . . . , σm−1

are the Schur parameters of Hm.

3.1.2 The Hermitian Lanczos Process

In section 3.4, we shall present a Cayley transformed Lanczos-Schur algorithm for

large unitary matrices. Our interest in the Hermitian Lanczos process in this section

lies in the fact that the Cayley transform of an unitary matrix is a Hermitian matrix.

Hence an algorithm that seeks the dominant eigenvalue of a Hermitian matrix can be

used to find the eigenvalues of a unitary matrix which are near a specified target on

the unit circle.

If the matrix A in (3.1.5) is Hermitian, then the Arnoldi process also assumes a

simpler form. The corresponding process is called the Hermitian Lanczos Process.

Historically, it was the Lanczos process that was first used to find eigenvalues of

linear and integral equations in 1950. It was Arnoldi who applied the method to

non-symmetric matrices in 1951.

47

Let A ∈ Mn(C) be Hermitian. Given a starting vector q ∈ C
n , q 6= 0, after

performing m steps of the Arnoldi process, we have

AQm = QmTm + tm+1,mqm+1e Hm (3.1.23)

where Qm has orthonormal columns, and Tm is upper Hessenberg with positive sub-

diagonal entries. Pre-multiplying QH
m, and using the fact that qm+1 is orthogonal to

the columns of Qm, we get

QH
mAQm = Tm.

Since A is Hermitian, so is Tm. Hence Tm is tridiagonal:
⎛ ⎞

α1 β1
⎜ ⎟β1 α2 β2
⎜ ⎟

⎜ . . . ⎟ .Tm = ⎜ ⎟

⎜ ⎟

⎝ ⎠βm−1

βm−1 αm

where βi > 0 for i = 1, . . . , m − 1. The entries of Tm can be stored in O(m) memory

locations. The Arnoldi decomposition (3.1.23) simplifies to a three-term recurrence

known as the Hermitian Lanczos Process:

βkqk+1 = Aqk − αkqk − βk−1qk−1

where αk = hAqk, qki. Since A is Hermitian, the expression for αk implies that αk is

in fact real, and hence Tm is in fact a real symmetric matrix.

48

3.2 The Implicitly Restarted Arnoldi Method

In typical applications, only a few eigenvalues of a large matrix are desired. The other

eigenvalues are unwanted in the sense that they are not of immediate use, and no

excessive computational effort need be expended in inadvertently calculating them.

In the following sections, we shall describe Krylov space algorithms that seek precisely

those eigenvalues that are desired.

The Krylov space eigenvalue algorithms for large matrices generally consist of

an expansion phase and a contraction phase. In the initial expansion phase, the

Krylov space Km(A, q) is built for some staring vector q =6 0. If an orthonormal basis

{q1, . . . , qm} for Km(A, q) is to be used, the Arnoldi process described in the preceding

section can be employed to construct this basis. The procedure is expressed by the

equation

AQm = QmHm + hm+1,mqm+1e Hm.

The vectors q1, . . . , qm are stored as columns of Qm, and are kept for two reasons: for

re-orthogonalization when constructing the space, and for computing the eigenspaces

associated with the desired eigenvalues. The upper Hessenberg matrix Hm approx-

imates A on the space Km(A, q). If hm+1,m =6 0, then the Ritz values are used to

approximate the eigenvalues of A.

In the contraction phase, the approximating Krylov space Km(A, q) is purged

of eigenvectors associated with the unwanted eigenvalues. The result is a Krylov

49

space of a smaller dimension k, from which a new starting vector q̌ is selected. The

space is then expanded to dimension m, giving rise to a new set of Ritz values that

approximate the eigenvalues of A.

The construction of the new space Km(A, q̌) does not begin from the one-dimensional

space hq̌i. Instead the construction begins from the space Kk(A, q̌). This k dimensional

space is implicitly constructed during the contraction phase, and amounts to what is

called an implicit restart.

In this section, we shall describe one implicit restart strategy that uses the QR al-

gorithm and is based on a paper by Sorensen [34]. The resulting eigenvalue algorithm

is known as implicitly restarted Arnoldi (IRA) method. Our interest in IRA lies in

the fact that it effects a simultaneous subspace iteration through a polynomial filter,

a notion which unifies the theory of the Krylov space algorithms in this chapter.

Suppose we have an Arnoldi decomposition of order m :

AQm = QmHm + hm+1,mqm+1e Hm (3.2.24)

For some fixed k, we choose j := m − k shifts µ1, . . . , µj and use them to perform j

steps of the implicit QR algorithm on Hm. From the discussion in section 2.4, this

is equivalent to generating a unitary matrix Q such that Ȟ := QH HmQ is upper

Hessenberg. Such a matrix Q in fact satisfies

g(Hm) = (Hm − µ1Im) · · · (Hm − µjIm) = QR (3.2.25)

50

where R is upper triangular and g is the j degree polynomial

g(t) = (t − µ1) · · · (t − µj).

Post-multiply Q to (3.2.24) to get

A ˇ ˇ ˇ HQm = QmHm + hm+1,mqm+1emQ (3.2.26)

ˇwhere Qm := QmQ.

From (3.2.25), we notice that Q is j−Hessenberg, hence em
H Q has m−j −1 leading

zeroes. If we drop the last j entries from this vector, we get a vector of the form βeH
k

for some scalar β. Thus extracting the first k columns of (3.2.26) we get

AQ̌
k = Q̌

kȞ
k + (h̆

k+1,kq̆k+1 + βhm+1,mqm+1)ek
H . (3.2.27)

Let q̌k+1 := α(h̆
k+1,kq̆k+1 + βhm+1,mqm+1) where α is the unique positive scalar chosen

so that k q̌k+1 k2 = 1. If ȟ
k+1,k = 1/α, then (3.2.27) becomes

A ˇ ˇ Ȟ
k + ˇ HQk = Qk hk+1,kq̌k+1ek

ˇwhich is an Arnoldi decomposition of order k. By Prop.3.3, the columns of Qk are

ˇexactly the vectors generated by the Arnoldi process using q̌1 = Qkek as the starting

vector. We have thus built the Krylov space Kk(A, q̌1) by implicitly restarting the

Arnoldi process with the vector q̌1.

ˇThe space Kk(A, q̌1) can now be expanded to Km(A, q̌1). A new Hm would approx-

imate A over Km(A, q̌1), from which a new set of Ritz values would approximate the

51

eigenvalues of A. The quality of the new approximating Ritz values depends on the

starting vector q̌1. We now consider how to construct the vector q̌1 so that Km(A, q̌1)

would contain the eigenspaces corresponding to the desired eigenvalues.

It can be shown by induction that (3.2.24) implies

g(A)Qm = Qmg(Hm) + Ej (3.2.28)

where the first k = m − j columns of Ej ∈ Cn×m are zero. Using the factorization

(3.2.25) we have

g(A)Qm = QmQR + Ej . (3.2.29)

Since R is upper triangular, and q̌1 = QmQe1, the first column of (3.2.29) is

g(A)q1 = q̌1r11

from which we get an expression for the new starting vector q̌1 as

1
q̌1 = g(A)q1.

r11

This expression gives us a rationale for choosing the shifts µ1, . . . , µj. The informa-

tion about the eigenvalues of A are coming from the Ritz values of Hm. Suppose the

Ritz values are ρ1, . . . , ρm. If we are seeking k eigenvalues of A and ρk+1, . . . , ρm are j

Ritz values that lies in the part of the spectrum of A that is unwanted, then choosing

µ1 = ρk+1, . . . , µj = ρm deemphasizes the components of q̌1 along the eigenspace asso-

ciated with the unwanted part of the spectrum. Such a choice of shifts is called exact

52

in the sense that shifts are eigenvalues of Hm. More generally, if we choose the shifts

to lie in the part of the spectrum of A that is unwanted, then the implicit restart

process deemphasizes those very eigenvalues.

Further, since

Ki(A, q̌1) = g(A)Ki(A, q1),

we see that

hq̌1, . . . , q̌ii = g(A)hq1, . . . , qii (3.2.30)

for i = 1, . . . , k which is a simultaneous subspace iteration on nested subspaces of

dimensions 1 through k. We can loosely describe the IRA as a simultaneous subspace

iteration driven by the polynomial g.

3.3 An Inexact Arnoldi-Schur Algorithm

In this section, we describe a second strategy for implicitly restarting the Arnoldi

process. The strategy has been generalized to arbitrary bases for the Krylov space,

not just the orthonormal ones, and has been called the Krylov-Schur algorithm [35].

Since we restrict our attention to orthonormal bases generated by the Arnoldi process,

we shall refer to the algorithm as an Arnoldi-Schur algorithm. Further we shall limit

our attention to unitary matrices.

We begin with an overview of the algorithm. Then we discuss the details in the

subsections. Let U be an n × n unitary matrix. Suppose n is large and we are seeking

53

k eigenvalues of U nearest a target τ where k � n. Let q be a vector of 2-norm one.

We construct an orthonormal basis q1, q2, ..., qk for the Krylov space

Kk(U, q) = hq, Uq, U 2q, ..., Uk−1qi

using the Arnoldi process. In matrix form, we can write this orthonormalization

procedure as

UQk = QkHk + hk+1,kqk+1e Hk (3.3.31)

where q1, q2, ..., qk are the columns of Qk, and Hk is an upper Hessenberg matrix that

approximates U on the space Kk(U, q). Like all implicitly-restarted Krylov space

algorithms, the algorithm consists of an expansion phase, where the underlying Krylov

space is extended, and a contraction phase, where the unwanted approximations to

the eigenvalues of U are purged from the decomposition. We initially build the Krylov

space Kk(U, q) of dimension k, and then expand the space by an additional dimension

of j. If m := k + j, we then have a Krylov decomposition of order m given by

UQm = QmHm + hm+1,mqm+1e Hm. (3.3.32)

The eigenvalues of Hm are estimates of eigenvalues of U . Since Hm is not unitary, we

˜ ˜modify it slightly to make a unitary matrix Hm and use the eigenvalues of Hm as our

estimates of eigenvalues of U . In the contraction phase, we trim down the space to

dimension k by picking out the k-dimensional Krylov subspace associated with the k

eigenvalues of H̃
m nearest the target τ . The space is again expanded by an additional

54

dimension j from which we get a new set of eigenvalues that approximate those of

U . The new Krylov space is Km(U, q̂) where q̂ is a new starting vector chosen so

that Km(U, q̂) is a better approximating space than Km(U, q) in a sense that we will

describe in Section 3.3.7.

We describe details in the following subsections.

3.3.1 Initial Construction of the Krylov Space

The construction of Kk(U, q) and its initial expansion to Km(U, q) can be combined

in one construction. Hence we will begin by considering the Krylov decomposition

(3.3.32). We will assume that Hm is unreduced upper Hessenberg (hi,i+1 6= 0) and

that its subdiagonal entries are real and positive. Thus we can write Hm as a product

of reflectors:

Hm = G1G2 · · · Gm−1Gm,

where Gr = diag{Ir−1, G̃
r, Im−r−2},

� �

γr σr 2˜ + σ2Gr = , σr > 0, |γr | = 1,
σr −γr

r

for r = 1, . . . , m − 1, and Gm = diag{Im−1, γm}.

Since U is unitary, we use the isometric Arnoldi process to carry out the or-

thonormalization procedure. The columns of Qm and the Schur parameters of Hm

55

are generated by the short-term recurrence

σj qj+1 = Uqj − γj q̃j (3.3.33)

q̃j+1 = σj q̃j − γjqj+1. (3.3.34)

for j = 1, 2, · · · , m as described in section 3.1. Each new qj is re-orthogonalized

against the columns of Qj−1. The orthonormality of the columns of Hm is enforced

by making sure that the Schur parameters of Hm satisfy |γk |2 + σk
2 = 1 for k =

1, 2, . . . , m − 1. Thus in the initial expansion, given a unit vector q, we generate the

matrix Qm and the Schur parameters of Hm by the following algorithm:

q1 ← q
q̃1 ← q
Q ← []
for j = 1 : m
⎡

Q ← [Q qj]
⎢ Hγj ← q̃j Uqj
⎢

⎢ qj+1 ← Uqj − γj q̃j
⎢

⎢ {re − orthogonalization}
⎢

⎢ d ← QH
⎢

qj+1
⎢

(3.3.35)
⎢

qj+1 ← qj+1 − Qd
⎢ σj ← kqj+1 k
⎢ 2
⎢ {enforce unitarity}
⎢

⎢
� 2 �1/2

⎢ ν ← |γj | + σ2
⎢

j
⎢ γj ← γj/ν
⎢

⎢ σj ← σj /ν
⎢

⎢ qj+1 ← qj+1/σj
⎢

⎣ q̃j+1 ← σj q̃j − qj+1γj

q̃j+1 ← q̃j+1/k q̃j+1 k2

56

3.3.2 Contraction Phase

In the exact Krylov-Schur algorithm [35], we would use the eigenvalues of Hm as

approximations to the eigenvalues of U . However, since the eigenvalues of U lie on

the unit circle, we would prefer to use approximants which also lie on the unit circle.

Now the columns of Hm are orthogonal and the first m − 1 columns are orthonormal.

The matrix Hm fails to be unitary because its last column is not of unit length. We

˜normalize this last column to form a unitary matrix Hm having Schur parameters γ1,

γ2, . . . , γm−1, γm/|γm | and σ1, σ2, . . . , σm−1. Thus Hm = H̃
m + peH for some vector m

p and we have an inexact Krylov configuration

HUQm = QmHm + hm+1,mqm+1em

= Qm(H̃
m + pe Hm) + hm+1,mqm+1e Hm

˜= QmHm + pẽ H
m (3.3.36)

˜where p̃ := Qmp + hm+1,mqm+1. The eigenvalues of Hm, called isometric Ritz values

[30], all lie on the unit circle and we will use them to approximate the eigenvalues of

U . It is in this sense that we refer to the algorithm as inexact.

˜The unitary matrix Hm has several well-known properties. For instance, the

˜eigenvalues of Hm interlace with those of U [30], and that with respect to the 2−

˜norm, Hm is the closest unitary matrix to Hm [7].

57

˜Since Hm is normal, its Schur decomposition takes the form

SH H̃mS = D

where D is diagonal and S is unitary. Further we assume that the eigenvalues of

H̃m along the main diagonal of D are ordered such that the leading k entries of the

diagonal of D are the eigenvalues of H̃
m which are nearest the target τ . The reduction

˜of Hm to D uses the unitary QR algorithm presented in section 2.5. This algorithm

˜manipulate only the Schur parameters of Hm to yield the Schur parameters of D.

The main-diagonal entries of D are the isometric Ritz values, and the first k are

the ones we wish to retain. Write

D = diag{D11, D22}, (3.3.37)

∈ Ck×kwhere D11 . Thus D11 contains the isometric Ritz values we want to keep.

� �

C
n×kPartition S as S = S1 S2 , where S1 ∈ . Then the columns of S1 are

˜eigenvectors of Hm corresponding to the isometric Ritz values we wish to retain. In

other words, S = R(S1) is the invariant subspace of H̃
m associated with these values.

Post-multiplying S to (3.3.36) gives

UQ̃
m = Q̃

mD + pz̃ H

where ˜ := QmS and zH := eH S. Extracting the first k columns, we getQm m

U ˜ ˜ HQk = QkD11 + p̃z̃ (3.3.38)

58

where Q̃
k is the first k columns of Q̃

m, and z̃ consists of the first k entries of z. Note

that

Q̃k = QmS1. (3.3.39)

˜In retaining Qk, we are keeping that portion of the space that corresponds to the

isometric Ritz values in D11.

Let W be a unitary matrix such that z̃H W = αeH
k where α := k z̃k2. Post-

multiplying W, we get

UQ̃
kW = Q̃

kWF + αpẽ H
k

where F := W H D11W is a full matrix. Finally we return F to upper Hessenberg

form Ĥ
k from the bottom up with V H FV = Ĥ

k where V is unitary. In doing so, the

last term is not affected, and hence we have

UQ̂
k = Q̂

kĤ
k + αpẽ H

k (3.3.40)

where

ˆ ˜Qk := QkW V. (3.3.41)

We can carry out the reduction from W H D11W to Ĥ
k by an upward bulge chase

procedure that manipulates only the Schur parameters of D11 in a manner analogous

to the one presented in section 2.5. This procedure yields the Schur parameters of

ˆ HHk obtained from the Schur parameters of D11 and the information contained in z̃ .

Details are given in 3.3.4.

59

ˆThus in (3.3.40), Hk is expressed in terms of its Schur parameters. Equation

(3.3.40) however is not a Krylov decomposition of order k since p̃ is not necessarily

ˆorthogonal to the columns of Qk. Noting that the last term of (3.3.40) only affects

the last column, we throw away the final column and get

UQ̂
k−1 = Q̂

kĤ
k,k−1

= Q̂
k−1Ĥ

k−1 + ĥ
k,k−1q̂kek

H
−1 (3.3.42)

which is a Krylov decomposition of order k − 1. By Prop. 3.3, equation (3.3.42) is

ˆprecisely the result of an Arnoldi process with q̂ := Qke1 as the starting vector. We

have thus built the space Kk(U, q̂) implicitly.

3.3.3 Expansion Phase

All that we need to restart the isometric Arnoldi process are the new vectors q̃k−1

and q̃k that would have been generated by the isometric Arnoldi process if q̂ had been

used as the starting vector. The vectors q̂k−1 and q̂k, and the quantities σ̂k−1, and

γ̂k−1 are known from (3.3.42). We now drop the hats and refer to these quantities

as the new qk−1, qk, σk, and γk. We can generate the new q̃k−1 using (3.3.33) with j

replaced by k − 1:

q̃k−1 = (Uqk−1 − σk−1qk)/γk−1.

Next we generate the new q̃k using (3.3.34) with j + 1 replaced by k:

q̃k = σk−1q̃k−1 − γk−1qk.

60

With the new q̃k and the current qk we can carry out the subspace expansion using

the loop in (3.3.35), letting j run from k to m.

3.3.4 Reduction to Hessenberg Form

We now fill in the details of the transformation from (3.3.38) to (3.3.40). The unitary

matrix W is completely determined by the vector z̃. With the information contained

H ˆin the entries of z̃ , we will obtain the Schur parameters of Hk from the Schur

parameters of D11, bypassing the explicit construction of the matrix F = W H D11W

and of the unitary matrix V . While there are several variations on how this reduction

can be done, we will describe one which immediately returns all intermediate matrices

to the upper Hessenberg form.

(0) (0) (0)
Let D11 = diag(d1, d2, . . . , dk) having Schur parameters γ , γ , . . . , γ and1 2 k

(0) (0) (0) (0)
σ , σ , . . . , σ Since D11 is diagonal, we have σ = 0 for i = 1, 2, . . . , k − 1,1 2 k−1. i

(0) (0)
and the main diagonal entries are given by di = −γi−1γi for i = 2, 3, . . . , k, and

d1 = γ1
(0)

. Let z̃H = (z1 z2 z3 · · · zk). Construct a unitary matrix W1 such that
q

(1) (1) 2 2Hz̃H W1 = z(1) := (0 z2 z3 · · · zk) where z2 := |z1 | + |z2 | . Matrix W1 takes the

form
� �

Ŵ1W1 =
Ik−2

where Ŵ
1 is a 2×2 unitary matrix that maps (z1, z2) to (0, z2

(1)
) by post-multiplication.

61

Performing a unitary similarity transformation to D11, we have

⎛ ⎞

(1) (1)
d d11 12

⎜ (1) (1) ⎟

⎜
d21 d22 ⎟

(1) ⎜ ⎟

D11 := W1
H D11W1 =

⎜
d3 ⎟

.
⎜ ⎟ .
⎝

.
⎠.

dk

(1)
If the subdiagonal entry d21 is not real positive, we do an additional similarity

transformation by a diagonal unitary matrix to make it positive. Thus without

(1) (1)
loss of generality, we can assume d > 0. The Schur parameters of D are21 11

(1) (1) (0) (0) (1) (1) (1) (1) (1)
γ , γ , γ , . . . , γ and σ , 0, 0, . . . , 0, where γ = d γ = −d and1 2 3 k 1 1 11 , 2 22 /γ1

(1) (1) (1) (1)
σ = d Only the first two Schur parameters γ , γ differ from those of D11,1 21 . 1 2

(1)
and only the first complementary Schur parameter σ1 differ from that of D11.

Next we construct a unitary matrix W2 such that

H H (2)
z(1)W2 = z(2) := (0 0 z3 z4 · · · zk),

q

2(2) (1) 2where z := |z | + |z3 | . Matrix W2 takes the form3 2

⎛ ⎞

I1

W2 = ⎝ Ŵ
2

⎠

Ik−3

(1) (2)ˆwhere W2 is a 2×2 unitary matrix that maps (z2 , z3) to (0, z3). The transformation

(1) (1) (1)
D 7→ D affects only the second and third columns of D11 , creating possibly 11 11 W2

(1)
nonzero entries in the (1, 3) and (2, 3) positions, and the transformation D11 W2 7→

(1) (1)
W2

H D11 W2 affects only the second and third rows of D11 W2. We thus have a unitary

62

similarity transformation
⎛ ⎞(2) (2) (2)ˆ ˆ ˆd d d11 12 13
⎜

(2) (2) (2)
⎟ˆ ˆ ˆd d d

⎜ 21 22 23 ⎟

⎜ (2) (2) (2) ⎟ˆ ˆ ˆ(2) (1) ⎜ d d d ⎟ˆ 31 32 33D := W H D = .11 2 11 W2 ⎜ ⎟

⎜ d4 ⎟

⎜ ⎟ .
⎝ . ⎠.

dk

(2)ˆWe now return D11 to upper Hessenberg form. We construct a unitary matrix

(2) (2) (2) (2)
V such that the transformation D̂ 7→ D̂ V zeroes out the (3, 1) entry. Hence1 11 11 1

the matrix
⎛ (2)

d11
(2)

d12
(2)

d13

⎞

⎜
(2)

d
⎜ 21

(2)
d22

(2)
d23

⎟

⎟

⎜

(2) (2) (2) (2) ⎜

)H ˆD := (V D V = 11 1 11 1 ⎜

⎜

(2)
d32

(2)
d33

d4

⎟

⎟

⎟

⎟

⎜ ⎟

⎝

. . . ⎠

dk

is in upper Hessenberg form, and by an additional unitary similarity transformation,

(2) (2)
we can assume that the subdiagonals d and d are positive. We thus obtain21 32

(2) (2) (2) (2) (0) (0) (2) (2)
the Schur parameters of D as γ , γ , γ , γ . . . , γ and σ , σ , 0, . . . , 0. In11 1 2 3 4 k 1 2

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
particular γ = d = −d /γ ,γ = −d /γ , and σ = d = d1 11 ,γ2 22 1 3 33 2 1 21 ,σ2 32 .

(i−1)
In general, for i = 2, 3, . . . , k−1, given the vector zH = (0 . . . 0 z zi+1 . . . zk)(i−1) i

q

(i−1) 2 2where zi := |z1 | + · · · + |zi | , we construct a unitary matrix Wi that maps,

(i)
by post-multiplication, the vector zH to zH := (0 . . . 0 zi+1 zi+2 . . . zk) where(i−1) (i)

q

(i) 2 2 zi+1 := |z1 | + · · · + |zi+1 | . The matrix Wi takes the form

⎛ ⎞

Ii−1

Wi = ⎝ Ŵ
i

⎠ (3.3.43)
Ik−i−1

63

(i−1) (1)ˆwhere Wi is a 2 × 2 unitary matrix that maps (z , zi+1) to (0, z) by post multi-i i+1

(i−1)
plication. The upper Hessenberg matrix D11 has the form

⎛

(i−1)
d11

⎜ (i−1)
⎜ d21
⎜

⎜

⎜

⎜

(i−1) ⎜

D = 11 ⎜

⎜

⎜

⎜

⎜

⎜

⎝

(i−1)
d12

(i−1)
d22

(i−1)
d32

· · ·
· · ·
· · ·
. . .

(i−1)
d1,i−1

(i−1)
d2,i−1

(i−1)
d3,i−1

. . .
(i−1)

di,i−1

(i−1)
d1,i

(i−1)
d2,i

(i−1)
d3,i

. . .
(i−1)

di,i

di+1
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dk

(i−1) (i−1) (0) (0) (i−1) (i−1)
with Schur parameters γ , . . . , γ , γi+1, . . . , γ , and σ , . . . , σ , 0, . . . , 0.1 i k 1 i−1

(i−1) (i−1) (i−1)
The transformation D 7→ D Wi affects only columns i and i +1 of D , and11 11 11

(i−1) (i−1)
the transformation D Wi 7→ W H D Wi affects only rows i and i + 1. Hence the11 i 11

(i−1) (i−1) (i−1)
unitary similarity transformation D 7→ W H D Wi =: D̂ introduces a bulge11 i 11 11

(i−1)
in the Hessenberg structure of D11 . Specifically, the bulge is the 3 × 3 submatrix

(i−1)
D̂11 (i − 1 : i + 1, i − 1 : i + 1). We chase this bulge upward by a series of unitary

similarity transformations that act on two consecutive columns and two consecutive

rows at a time. Specifically, the unitary matrix

⎛ ⎞

Ii−2
(i) (i) (i)

V = ⎝ V̂ ⎠ V̂ ∈ M2 (3.3.44)1 1 1

Ik−i

(i) (i) (i)
is constructed such that the map D̂ 7→ D̂ V acts only on columns i − 1 and i of11 11 1

ˆ (i) ˆ (i) (i) (i)
)H ˆ (i) (i)

D and zeroes out the (i + 1, i − 1) entry. The map D 7→ (V D acts11 11 V1 1 11 V1

only on rows i − 1 and i, and moves the bulge one row left and one column up. The

64

(i) (i)
form of V in (3.3.44) implies that zH V = zH A second unitary matrix1 (i) 1 (i).

⎛ ⎞

Ii−3
(i) (i) (i)

V = ⎝ V̂ ⎠ V̂ ∈ M22 2 2

Ik−i+1

is constructed such that the similarity transformation

(i)
)H ˆ (i) (i) (i) (i) (i) (i) (i)

(V1 D11 V1 7→ (V2)H (V1)H D̂
11 V1 V2

chases the bulge one row and one column up. In general, the unitary matrix
⎛ ⎞

Ii−j−1
(i) (i)

V = ⎝ V̂ (i)
⎠ V̂ ∈ M2j j j

Ik−i+j−2

(i)
is constructed to chase the bulge one row and one column up, and each V acts asj

an identity on z(
H
i) by post-multiplication. After a series of such unitary similarity

(i) (i)ˆtransformations, we would have returned D to upper Hessenberg form D11 11 .

Each of the unitary matrices constructed must also be applied by post-multiplication

˜to the matrix Qk. Since each of these unitary matrices only affects two consecutive

columns at a time, the implementation can be done in a way that we only manipulate

˜ ˆ ˜two columns of Qk at a time. The resulting matrix in the end is Qk = QkW V.

3.3.5 Implicit Upward Bulge Chase

The reduction described in the preceding section can be done without forming matrix

D11 explicitly. Only the Schur parameters of D11 are manipulated. The idea is to build

from the Schur parameters the submatrix that contains the bulge. As we chase the

bulge upward, we multiply in additional Givens reflectors which contain the old Schur

65

parameters, and factor out Given reflectors that contain updated Schur parameters.

Since the unitary matrices that we construct to carry out the Hessenberg reduction

only affect two consecutive columns and rows at a time, the part of the matrix that

are being manipulated can be stored in a working area of size 3 × 3. This technique

is identical to the one presented in section 2.5 except that we will chase the bulge

upward instead of downward.

To illustrate the technique, we consider the matrix
⎛ ⎞

(i−1) (i−1) (i−1) (i−1)
d d · · · d d11 12 1,i−1 1,i

⎜ (i−1) (i−1) (i−1) (i−1) ⎟

⎜ d d · · · d d ⎟21 22 2,i−1 2,i
⎜ ⎟

(i−1) (i−1) (i−1)
⎜ ⎟d · · · d d
⎜

32 3,i−1 3,i
⎟

⎜ . . . ⎟ . . .(i−1) ⎜ . . . ⎟

D11 = ⎜ ⎟

(i−1) (i−1)
⎜ ⎟d d
⎜ i,i−1 i,i ⎟

⎜ ⎟

⎜

di+1
⎟

⎜ . ⎟ .
⎝ . ⎠

dk

(i−1) (i−1) (0) (0)
having Schur parameters γ1 , . . . , γi , γi+1, . . . , γk stored in a vector g, and com-

(i−1) (i−1)
plementary Schur parameters σ , . . . , σ , 0, . . . , 0 stored in vector s. The last1 i−1

k − i Schur parameters in g, and the last k − i − 1 complementary Schur parameters

in s are those of D11. Since Wi in (3.3.43) only affects columns i and i + 1, we build

the initial working matrix
⎛ ⎞⎛ ⎞⎛ ⎞(i−1) (i−1)

γ σ 1 1
i−1 i−1
(i−1) (i−1) (i−1)

⎝ ⎠⎝ ⎠⎝ 1 ⎠Bi = σ −γ γi 0
i−1 i−1

(i−1) (0)
1 0 −γ γ

i i+1
⎛ ⎞

(i−1) (i−1) (i−1)
γ σ γ 0i−1 i−1 i

⎜ (i−1) (i−1) (i−1) ⎟

=
⎝ σ −γ γ 0 ⎠

.i−1 i−1 i
(i−1) (0)−γ γi i+1

66

(i−1) (i−1)
The bulge introduced in the unitary similarity D 7→ W H D Wi is contained in11 i 11

the working area by the transformation

� � � �

1 1(1)
B := Bi .i ˆ ˆW H

i Wi

The transformation

(i) (i) (i)
D̂ 7→ D̂ V (3.3.45)11 11 1

(i)ˆthat zeroes out the (i + 1, i − 1) entry of D11 is done in the working area by

�

(i) �

ˆ(2) (1) V1B := B .i i 1

(1) (i)
This zeroes out the (3, 1) entry of Bi . Further V̂

1 can be constructed so that it

leaves the (3, 2) entry of Bi
(2)

positive. Hence we can construct a Givens reflector

!

(i) (i)
2

˜(i) γi σi (i) (i) (i)
)2G = (i) , σi > 0, |γi | + (σ = 1,i (i) i

σ −γi i

such that
�

(2) �� �

˜ 1(2) BiBi = (i) .˜1 Gi

(i) (i) (i) (i−1) (i−1)˜The entries γ and σ of G update the Schur parameters γ and σ = 0i i i i i

respectively. The next Givens reflector is multiplied in:

� �� �

(i−1)˜ 1(3) G˜ i−1B :=i (2)˜1 Bi

where
!

(i−1) (i−1)
˜(i−1) γi−1 σi−1G = i−1 (i−1) (i−1) .

σ −γi−1 i−1

67

(i) (i) (i) (i)
The transformation (3.3.45) is completed to a similarity D̂ 7→ (V)H D̂ V by 11 1 11 1

� �H
1(3) (3)˜B := B .i (i) iV̂1

Thus the bulge has been chased one row and one column up. This process is repeated

until the bulge has been chased off the top of the matrix, and the all of the old Schur

parameters have been updated.

3.3.6 Convergence and Locking

We use the same convergence and locking procedure as the standard Krylov-Schur

algorithm uses. Because U is unitary, the procedure is simpler than it is in general.

The natural opportunity to check for convergence occurs in the contraction phase at

(3.3.38). In the equation

UQ̃
k = Q̃

kD11 + p̃z̃H

write z̃H = (z1 z2 · · · zk), as before. If any of the entries zj is zero, then the jth

column of Q̃
m
(k)

is an eigenvector of U with eigenvalue dj. In practice we count zj as

zero whenever |zj | < � for some specified tolerance �. Any eigenvectors so detected

can be permuted to the front of the decomposition. Thus, if i eigenpairs have been

detected, then after the permutation, the new permuted version of z̃H will have the

(k)˜form (0 · · · 0 zi+1 · · · zk). The first i columns of Qm will then be eigenvectors.

These can remain locked in place, that is, left untouched, from now on. They do not

participate in the subsequent reduction to Hessenberg form. The Hessenberg matrix

68

Ĥk in (3.3.40) has the form Ĥ
k = diag{d1, . . . , di, H}, where H is an unreduced upper

Hessenberg matrix of dimension k − i. On subsequent contraction phases they will

remain unchanged, because in the reduction of Hm to diagonal form, the top part

of the matrix is already diagonal. Once the desired number of eigenpairs has been

locked in, the algorithm halts.

3.3.7 Inexact Arnoldi-Schur as Subspace Iteration

As seen in (3.2.30), the effectiveness of the implicitly restarted Arnoldi process can be

attributed to the fact that each restart cycle effects nested subspace iterations driven

by g(U), where g is a filter polynomial that amplifies eigenvectors associated with

part of the spectrum while suppressing unwanted eigenvectors. The Krylov-Schur

algorithm [35] is justified by showing that it is equivalent to the implicitly restarted

Arnoldi process. In this section we show that the inexact Arnoldi-Schur method

also does nested subspace iterations driven by a filter polynomial, even though it is

“inexact”. We proceed by two stages, proving first a basic result (Proposition 3.6),

then a refined result (Proposition 3.8).

Before the contraction phase of our process we have a matrix Qm with m or-

thonormal columns. Let Qk denote the submatrix of Qm consisting of the first k

ˆ ∈ Cn×kcolumns. After the contraction phase we have a new matrix Qk satisfying

R(Q̂
k) ⊆ R(Qm), which will be used to start the next expansion step.

Proposition 3.6. Suppose the eigenvalues of D11 are disjoint from those of D22

69

in (3.3.37). Let g(t) = (t − µ1)(t − µ2) · · · (t − µj), where µ1, µ2, . . . , µj are the

eigenvalues of D22. Then

R(Q̂
k) = g(U)R(Qk).

The zeros of g are exactly the isometric Ritz values that we are discarding in

the contraction phase. The effect of g(U) is to suppress components corresponding

to eigenvalues of U near µ1, . . . , µj and to enhance components associated with

eigenvalues away from µ1, . . . , µj, including the eigenvalues closest to the target τ .

Thus filtering is achieved.

Proof. Let H̃
m be the unitary matrix defined in Section 3.3.2, and consider g(H̃

m).

Since µ1, . . . , µj are eigenvalues of H̃
m, g(H̃

m) is highly rank deficient. In fact,

g(H̃
m) = Sg(D)SH = Sdiag{g(D11), 0}SH , so the rank of g(H̃

m) is exactly k, and

R(g(H̃
m)) is exactly the invariant subspace associated with the eigenvalues of D11.

We named this subspace S in Section 3.3.2. The eigenvalues of D11 are the isometric

Ritz values that are not discarded in the contraction phase. Since H̃
m is an unreduced

upper Hessenberg matrix, and g has degree j = m − k, the first k columns of g(H̃
m)

are linearly independent and therefore span S.

Now consider a decomposition g(H̃
m) = PN , where P is unitary and N is upper

� �

triangular. Partition P as P = P1 P2 , where P1 has k columns. Then R(P1) =

R(g(H̃
m)) = S. Let Q̌

m = QmP and

Q̌k = QmP1. (3.3.46)

70

Starting from (3.3.36), one easily proves by induction that

g(U)Qm = Qmg(H̃
m) + Ej ,

where the first k columns of Ej are zero. Then, using the decomposition g(H̃
m) = PN ,

we obtain

g(U)Qm = Q̌
mN + Ej .

Now, retaining only the first k columns of this equation, we obtain

ˇ ˇg(U)Qk = QkN, (3.3.47)

ˇwhere N is the k × k leading principal submatrix of N and is nonsingular. Therefore

R(Q̌
k) = g(U)R(Qk).

Finally we notice that since R(P1) = S = R(S1), equations (3.3.39), (3.3.41), and

(3.3.46) show that R(Q̂
k) = R(Q̌

k). Thus R(Q̂
k) = g(U)R(Qk).

In the case when R(Q̂
k) is not invariant under U (which is always the case up

until convergence has been achieved), we can get a sharper result.

Proposition 3.7. Let A ∈ Cn×n and let V be a subspace of Cn that is not invariant

under A. Suppose V = Kk(A, q̌) = Kk(A, q̂). Then q̌ and q̂ are multiples of one

another.

Proof. Since V is not invariant, q̂, Aq̂, . . . , Ak−1q̂ are linearly independent, and Akq̂ 6∈

V. q̌ ∈ Kk(A, q̂), so

q̌ = c1q̂ + c2Aq̂ + · · · + ckA
k−1 q̂

71

for some uniquely determined c1, . . . , ck, not all of which are zero. Let r be the largest

integer for which cr =6 0. If r > 1, then Ak−r+1q̌ ∈ Kk(A, q̌) = V. On the other hand,

Ak−r+1 ˇ = c1A
k−r+1 ˆq q + · · · + cr−1A

k−1 q̂ + crA
k q,̂

so

� �

Ak ˆ −1 Ak−r+1 q̌ − c1A
k−r+1 ˆq = cr q − · · · − cr−1A

k−1 q̂ ∈ V.

This contradicts the non-invariance of V under A. Therefore we must have r = 1 and

q̌ = c1q̂.

For i = 1, . . . , k − 1, let Qi denote the matrix consisting of the first i columns of

ˆQk, and likewise for Qk.

Proposition 3.8. Under the conditions of Proposition 3.6, assume further that R(Q̂
k)

is not invariant under U . Then

R(Q̂
i) = g(U)R(Qi), i = 1, 2, , . . . , k.

In particular, taking i = 1, we see that the original and the restarted starting vector

are related by q̂ = αg(U)q for some nonzero constant α.

Proof. Equation (3.3.42) implies that R(Q̂
k) is a Krylov subspace: R(Q̂

k) = Kk(U, q̂),

ˆwhere q̂ is the first column of Qk. Better yet,

R(Q̂
i) = Ki(U, q̂), i = 1, 2, . . . , k. (3.3.48)

72

ˇWe now wish to establish that similar relationships hold for Qk as defined in

(3.3.46). Using the transforming matrix P from the decomposition g(H̃
m) = PN ,

ˇ = P H ˜define Hm HmP . The equations

g(H̃
m) = PN and Ȟ

m = P H H̃
mP

together constitute an iteration of the QR algorithm of degree j. Since all of the

shifts µ1, . . . , µj are eigenvalues of H̃
m, Ȟ

m has the special form [43]

� �

Ȟk X
Ȟm = ,

0 Y

ˇwhere Hk is k × k and unreduced upper Hessenberg.

Multiply equation (3.3.36) by P on the right to obtain

U ˇ ˇ ˇ TQm = QmHm + pẽ mP.

The first k − 1 entries of eT
mP are zero so, retaining the first k − 1 columns of this

equation, we have

U ˇ ˇ ˇQk−1 = QkHk,k−1, (3.3.49)

ˇ ˇ ˇwhere Hk,k−1 is the k × (k − 1) obtained by deleting the last column of Hk. Since Hk

is upper Hessenberg, (3.3.49) implies that

R(Q̌
i) = Ki(U, q̌), i = 1, 2, . . . , k, (3.3.50)

ˇwhere q̌ is the first column of Qk.

73

In the proof of Theorem 3.6 we found that R(Q̂
k) = R(Q̌

k), so Kk(U, q̂) =

Kk(U, q̌). Since this space is not invariant, we can invoke proposition 3.7 to de-

duce that q̂ and q̌ are multiples of one another. Thus, by (3.3.48) and (3.3.50),

R(Q̂
i) = R(Q̌

i) for i = 1, . . . , k.

ˇNow revisit (3.3.47). Since N is nonsingular and upper triangular, this equation

shows that R(Q̌
i) = g(U)R(Qi) for i = 1, . . . , k. Since R(Q̌

i) = R(Q̂
i) for i = 1,

. . . , k, we are done.

The algorithmic import of proposition 3.8 is as follows: On one hand, suppose we

perform an Arnoldi-Schur iteration on the inexact Krylov configuration

˜UQm = QmHm + pẽ H
m (3.3.51)

to yield an Arnoldi decomposition

ˆ Hk−1 + ˆUQ̂
k−1 = Qk−1

ˆ hk,k−1q̂kek
H
−1.

Such a procedure is carried out in equations (3.3.36) through (3.3.42). On the other

hand, suppose we perform an IRA iteration on (3.3.51) using the polynomial filter

g(t) = (t − µ1) · · · (t − µj)

where µ1, . . . , µj are the eigenvalues of the matrix D22 defined in (3.3.37), to yield an

Arnoldi decomposition

U ˇ ˇ ˇ HQk = QkHk + ȟ
k+1,kq̌k+1ek .

74

ˇ ˇIf Qk−1 is the matrix that consists of the first k − 1 columns of Qk, then proposition

3.8 states that

ˆ ˇQk−1 = Qk−1,

provided D11 and D22 have disjoint spectra. This shows that an Arnoldi-Schur itera-

tion applied to (3.3.51) yields the same result as an IRA iteration applied to (3.3.51)

using the polynomial filter g.

The careful reader will have noticed that the proofs given in this section contain

all of the same elements as the proof that ordinary Krylov-Schur is equivalent to

ordinary implicitly restarted Arnoldi. We have included the details for completeness

and because we believe our viewpoint may help to improve understanding of this

class of methods. The main enabling equation is (3.3.51) which, while not an Arnoldi

decomposition, is enough like one to allow us to draw our conclusions.

3.3.8 Numerical Results

We tested the inexact Arnoldi-Schur algorithm on a variety of unitary matrices. With-

out loss of generality, we used diagonal unitary matrices. The eigenvalues were se-

lected on the unit circle. We then used the algorithm to seek 20 of the eigenvalues

nearest a specified target τ that also lies on the unit circle. The initial dimension of

the Krylov space is k + j. Then the space is contracted to dimension k, and then

re-expanded to dimension k + j. A tolerance of � = 10−8 was used, where � is as

defined in Section 3.3.6. We computed the residual norm and the difference between

75

each computed eigenvalue and the actual eigenvalue it approximated. We also noted

the number of iterations and the number of Arnoldi steps taken. We report the results

on three types of unitary matrices.

Table 3.1: Uniformly Distributed Eigenvalues
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

2000 28 2852 1.10 × 10−8 5.20 × 10−15

4000 55 5579 1.21 × 10−8 5.78 × 10−15

6000 114 11538 1.19 × 10−8 9.31 × 10−15

8000 161 16285 1.22 × 10−8 9.30 × 10−15

10000 188 19012 1.17 × 10−8 9.04 × 10−15

The first type has eigenvalues which are uniformly distributed around the unit

circle. The target τ is a random point on the unit circle. We used k = 25 and

j = 100. The results are shown in Table 3.1.

The residuals were about as expected, given the tolerance that was used. The

column labeled “Max. Error” gives the maximum error in the 20 computed eigen-

values. This too was about what one would expect, given that unitary matrices are

normal. The Arnoldi process is best at finding eigenvalues on the periphery of the

spectrum and has a harder time with eigenvalues in the “interior”. Thus the problems

in this class are “hard” problems, in the sense that every eigenvalue is essentially an

“interior” eigenvalue. This is reflected in the large number of iterations needed to get

convergence. The number of iterations increases in a fairly regular way as the matrix

dimension goes up.

The second type of matrix that we considered has eigenvalues clustered near the

76

Figure 3.1: Eigenvalues of a Unitary Matrix of the Second Type

Table 3.2: Eigenvalues Clustered near Real Line
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

2000 4 328 1.01 × 10−9 5.35 × 10−15

4000 8 632 1.16 × 10−8 3.41 × 10−15

6000 13 1012 1.04 × 10−8 5.03 × 10−15

8000 23 1772 1.09 × 10−8 4.00 × 10−15

10000 26 2000 1.18 × 10−8 5.54 × 10−15

real line. The eigenvalues were generated using the MATLAB commands

lambda = 10*randn(n,1)+i*randn(n,1);

lambda = lambda./abs(lambda);

The spectrum of a matrix of this type is shown in Figure 3.1. The eigenvalues near i

are more like isolated or peripheral eigenvalues, so we expect to be able to compute

them relatively quickly. The results in Table 3.2, for which we took τ = i , confirm

this. We used k = 25 and j = 75.

77

Table 3.3: Quadrant I Limited Eigenvalues
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

2000 7 556 1.59 × 10−9 3.68 × 10−15

4000 10 784 5.95 × 10−9 5.11 × 10−15

6000 13 1012 1.01 × 10−8 9.35 × 10−15

8000 14 1088 8.94 × 10−9 1.05 × 10−14

10000 16 1240 1.01 × 10−8 9.55 × 10−15

The third type of matrices has eigenvalues limited to the first quadrant. The

eigenvalues were generated by:

lambda = exp(i*pi/2*rand(n,1));

Setting τ = i , we hoped to pick off the eigenvalues at one edge of the spectrum fairly

quickly. Table 3 confirms that we were able to do this. We used k = 25 and j = 75.

3.4 A Cayley Transformed Lanczos-Schur Algorithm

As discussed in the numerical results of the preceding section, when a unitary matrix

U has a tight cluster of eigenvalues, and the target τ is chosen to be inside the

cluster, the inexact Arnoldi-Schur algorithm suffers from the fact that all eigenvalues

are interior eigenvalues. When the target is inside a tight cluster of eigenvalues,

what is required is a way to separate the eigenvalues near a target from the rest

of the spectrum. A method to do this is to perform a Cayley transform on the

unitary matrix. The resulting matrix H is Hermitian, in which the eigenvalues of U

nearest the target are mapped to the largest eigenvalues of H. Moreover we can use

the Hermitian Lanczos process to generate the approximating Krylov space for this

78

Hermitian matrix. If we use a Schur decomposition to carry out the implicit restart,

the decomposition would involve a diagonal matrix having real entries.

The Cayley transformation, however, involves matrix inversion. If the unitary

matrix is extremely large, then this shift-and-invert method is not even an option.

For that case, we can resort to the inexact Arnoldi-Schur algorithm

3.4.1 The Cayley Transform

Let τ be a complex number such that |τ |2 = 1. The Cayley transform with respect to

τ of a unitary matrix U ∈ Mn(C) is defined as

)−1C(U) = i (U + τIn)(U − τIn ,

√
provided τ is not an eigenvalue of U , and i = −1.

Given a unitary matrix U ∈ Mn(C), let H := C(U). Since U is normal, there

exists a diagonal matrix D = diag{λ1, . . . , λn} and a unitary matrix X such that

U = XDX−1 .

79

Then

H = i (U + τI) (U − τI)−1

� � �−1
= i XDX−1 + τXX−1

�

XDX−1 − τXX−1

= i X (D + τI) X−1
�

X (D − τI) X−1
�−1

= i X (D + τI) (D − τI)−1 X−1

= DX−1X ˆ

where
� �

λ1 + τ λn + τ
D̂ := diag i , . . . , i .

λ1 − τ λn − τ

This proves that H is normal. It also shows that if λ is an eigenvalue of U with

associated eigenvector x, then x is an eigenvector of H associated with the eigenvalue

λ + τ
µ = i .

λ − τ

Further if we define the Möbius transformation f by

z + τ
f(z) = i ,

z − τ

then f maps the unit circle into the extended real line, with τ mapped to infinity and

to negative infinity, while −τ is mapped to 0. In particular, f maps the eigenvalues

of U to the eigenvalues of H. Thus the eigenvalues of H are real, and by continuity

of f on C\{τ}, the eigenvalues of U nearest τ are mapped to the eigenvalues of H of

80

largest magnitude. Finally since H is normal and its eigenvalues are real, it follows

that H is Hermitian. This result enables us to use the Lanczos-Schur algorithm to

find the eigenvalues of H.

Proposition 3.9. If U ∈ Mn(C) is unitary, then the Cayley transformed matrix

H = i (U + τIn)(U − τIn)−1 is Hermitian.

3.4.2 The Cayley Transformed Lanczos-Schur Algorithm

We now present an algorithm that makes use of the Cayley transform to find the

eigenvalues of a large unitary matrix nearest a specified target τ . Let U ∈ Mn(C) be

unitary, where n is large. Suppose we are seeking k eigenvalues of U nearest a target

τ where kτ k2 = 1, and where k � n. We further assume that τ is not an eigenvalue

of U. This is not a severe restriction. With probability zero, τ is an eigenvalue of U,

and if this is the case, then we have found an eigenvalue and work with a deflated

matrix.

The matrix H defined by the Cayley transform

H := i (U + τI)(U − τI)−1

is Hermitian. Let the eigenvalues µ1, . . . , µn of H be ordered so that

|µn | ≤ |µn−1 | ≤ · · · ≤ |µ1 |.

From the results of the preceding subsection, it follows that

λi + τ
µi = i i = 1, . . . , k

λi − τ

81

where λ1, . . . , λk are the k eigenvalues of U nearest τ. To compute λ1, . . . , λk, we

need to compute the eigenvalues µ1, . . . , µk of H, and then compute each λi by the

transformation

µi + i
λi = τ i = 1, . . . , k. (3.4.52)

µi − i

To find µ1, . . . , µk, we will use a Lanczos-Schur algorithm on H. The Krylov space

Km(H, q), q =6 0, is generated by the Hermitian Lanczos process. The restart strategy

makes use of the Schur decomposition. This is equivalent to the thick restart strategy

proposed by Wu and Simon [45] for symmetric matrices. We briefly describe the

details of the Lanczos-Schur algorithm below. The implementation is straightforward.

Let q ∈ Cn , q 6= 0. We begin with an initial expansion. Performing the Lanczos

process on H with q as the starting vector, we set q1 = q/kq k2 and generate the

vectors qi+1 for i = 1, . . . , m by

βiqi+1 = Hqi − αiqi − βi−1,iqi−1. (3.4.53)

Each qi+1 is re-orthogonalized against q1, . . . , qi. The parameters αi are given by

αi = hHqi, qii i = 1, . . . , m.

For each i = 1, . . . , m, the parameter βi is chosen as the unique positive scalar such

that kqi+1 k2 = 1.

After m steps of the Lanczos process, we have the Arnoldi decomposition

HQm = QmTm + tm+1,mqm+1e Hm (3.4.54)

82

where Tm is tridiagonal:
⎛ ⎞

α1 β1
⎜ ⎟β1 α2 β2
⎜ ⎟

⎜ . . . ⎟ . . .Tm =
⎜ . . . ⎟

⎜ ⎟

⎝ ⎠βm−1

βm−1 αm

and where qm+1 is a unit vector orthogonal to the columns of Qm. Matrix Tm is stored

into two vectors a and b containing the parameters α1, . . . , αm and β1, . . . , βm−1

respectively. As noted in section 3.1.2, the matrix Tm is real symmetric, and the

parameters α1, . . . , αm and β1, . . . , βm−1 are real.

The contraction phase makes use of the Schur decomposition. Let

SH TmS = D

be the Schur decomposition of Tm. Since Tm is symmetric, it follows that D is

diagonal. We further assume that the eigenvalues of Tm appear along the diagonal of

D in decreasing order of magnitude. Thus if

� �

D11 0
D = (3.4.55)

0 D22

where D11 ∈ Ck×k , then D11 contains k eigenvalues of Tm of largest magnitude. These

are precisely the Ritz values we want to keep.

Post-multiply S to (3.4.54) to get

H ˆ ˆ HQm = D + tm+1,mqm+1e SQm m

83

ˆwhere Qm = QmS. Extracting the first k columns, we get

HQ̂
k = Q̂

kD11 + tm+1,mqm+1sk
H (3.4.56)

where sH
k consists of the first k entries of the mth row of S. Construct a unitary

matrix W such that tm+1,msH
k W = βek

H where β = k tm+1,msk k2. Post-multiply W to

(3.4.56) to get

HQ̂
kW = Q̂

kWW H D11W + βqm+1e Hk . (3.4.57)

Finally construct a unitary matrix V such that W H D11WV =: Ť
k is upper Hessenberg

with positive subdiagonals. Post-multiplying the matrix V to (3.4.57), and noting

that V acts an identity on the last term, we get

HQ̌
k = Q̌

kŤ
k + βqm+1e Hk (3.4.58)

ˆwhere Q̌
k := QkWV . Since the columns of Q̌

k are orthonormal and the subdiagonals

of Ť
k are positive, (3.4.58) is an Arnoldi decomposition by Prop. 3.3. It follows that

Ťk is symmetric tridiagonal. The entries in the vectors a and b can now be replaced

with the new diagonal and subdiagonal entries of Ť
k respectively.

Restarting the Lanczos process is surprisingly easy. Set b(k) = β and set qk+1 =

qm+1. These are known from the last term of (3.4.58). Generate the new vectors

using (3.4.53) with i running from k + 1 to m. Re-orthogonalization is done against

ˇthe columns of Qk. Locking and convergence are identical to those of the Krylov-

Schur algorithm. With the ordering of the eigenvalues done in (3.4.55), the implicit

84

restart performs a polynomial filter that suppresses the eigenvalues of small magni-

tude. Hence the Lanczos-Schur algorithm seeks the eigenvalues µ1, . . . , µk of H of

largest magnitude. The corresponding eigenvalues of U nearest τ are computed using

(3.4.52).

3.4.3 Numerical Results

We used the Cayley transformed Lanczos-Schur algorithm to seek 10 eigenvalues near-

est a target τ. We report the results on the same types of matrices as in section 3.3.8:

unitary matrices with uniformly distributed eigenvalues, matrices with eigenvalues

clustered near the real line, and matrices with quadrant 1 limited eigenvalues. The

size of the test matrices for this algorithm is at least one order of magnitude larger

than those of 3.3.8. The initial size of the Krylov space was k + j, which was then

contracted to j in each iteration, and then re-expanded to k + j. We used the values

k = 10 and j = 10 in each case. The tolerance � = 10−8 was used for the relative

error of the residual.

Table 3.4 shows the results for unitary matrices with uniformly distributed eigen-

values. The target τ was a randomly chosen point on the unit circle. Within a few

iterations, the locking tolerance of � = 10−8 was attained by the Lanczos-Schur algo-

rithm, the usual figure being in the order of 10−12 . This represents the relative error of

the residual norm kHv̂ − µ̂v̂ k2, where (µ̂, v̂) is the computed eigenpair of the Cayley

transformed Hermitian matrix H. Since the largest eigenvalues of H are usually in

85

the order of 103 , the absolute error of the residual norm is in the order of 10−15 . When

we transform these eigenvalues to the eigenvalues of the unitary matrix, the absolute

error remains in the order of 10−15 . Moreover since each eigenvalue of the unitary

matrix is of modulus one, the relative error of the residual norm of the unitary matrix

is also the absolute error. We further note that the maximum errors (both relative

and absolute) between the computed eigenvalues and the true eigenvalues are in the

order of MATLAB’s eps permanent variable, representing the distance from 1.0 to

the next largest floating point number.

Table 3.4: Uniformly Distributed Eigenvalues
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

100000 5 60 8.08 × 10−15 2.48 × 10−16

200000 3 40 2.53 × 10−16 2.22 × 10−16

300000 5 60 2.78 × 10−16 2.29 × 10−16

400000 3 40 1.78 × 10−16 1.57 × 10−16

500000 7 80 1.31 × 10−15 3.34 × 10−16

For unitary matrices with spectra having a thick cluster near the real axis, the

eigenvalues were generated by the MATLAB commands

lambda = 100*randn(n,1)+i*randn(n,1);

lambda = lambda./abs(lambda);

The factor of 100 was used to exaggerate the clustering of the eigenvalues near the

real axis. We report the results of two runs of the algorithm with different targets.

On the first run, the target was τ1 = 1, in the center of the thick cluster. The results

86

are summarized in table 3.5. The table shows that the algorithm can find eigenvalues

nearest a target which is embedded in the center of a thick cluster. The residual

norms are in the order of eps. Some of the maximum errors are already less than

eps, and we expect them to be smaller if multi-precision arithmetic is used.

Table 3.5: Real Clustered Eigenvalues, target τ1 = 1
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

100000 5 60 2.24 × 10−16 1.11 × 10−16

200000 5 60 2.25 × 10−16 2.22 × 10−16

300000 7 80 4.76 × 10−16 1.11 × 10−16

400000 10 110 2.48 × 10−15 2.22 × 10−16

500000 6 70 2.65 × 10−16 2.22 × 10−16

On the second run, the target was τ2 = i, far from the thick cluster, and in the

region of the spectrum where the eigenvalues are isolated. The results are presented

in table 3.6. The table shows that the algorithm also performed well in seeking

eigenvalues in the region of isolated eigenvalues. It is interesting to note that the

residual norms are larger for this situation where the eigenvalues being sought are far

from the thick cluster. Some of the maximum errors are smaller than eps.

Table 3.6: Real Clustered Eigenvalues, target τ2 = i
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

100000 4 50 1.92 × 10−12 2.22 × 10−16

200000 4 50 8.84 × 10−12 2.22 × 10−16

300000 4 50 1.61 × 10−11 1.11 × 10−16

400000 4 50 6.88 × 10−13 1.11 × 10−16

500000 4 50 5.09 × 10−12 2.23 × 10−16

87

Table 3.7 shows the results for unitary matrices with eigenvalues limited in quad-

rant I. The target was τ = 1. The table shows that the algorithm can seek eigenvalues

at the edge of the spectrum.

Table 3.7: Quadrant I Limited Eigenvalues
Size No. of Iters No. of Arnoldi steps Max. Residual Max. Error

100000 6 70 3.84 × 10−14 2.22 × 10−16

200000 7 80 1.35 × 10−14 2.22 × 10−16

300000 7 80 3.39 × 10−14 2.22 × 10−16

400000 5 60 2.97 × 10−14 1.11 × 10−16

500000 8 90 6.51 × 10−15 1.11 × 10−16

88

Chapter 4

The Product Unitary Eigenvalue
Problem

In this chapter, we consider the problem of finding the eigenvalues of the product

U = UkUk−1 · · · U1 (4.0.1)

where each Ui ∈ Mn(C) is unitary. Such a problem arises in quantum Schubert

calculus, for instance, where the product

I = UkUk−1 · · · U1

is considered [1]. We shall employ the strategy used in product eigenvalues in general

[42].

4.1 A Product Unitary QR Algorithm

The algorithm that computes the eigenvalues of the product (4.0.1) is based on the

following result.

89

Proposition 4.1. Let Ui ∈ Mn(C) be unitary for i = 1, . . . , k. Then there exist

unitary matrices Qi ∈ Mn(C), i = 1, . . . , k such that

=Q1U1Q
H
k In

=Q2U2Q
H
1 In

=Q3U3Q
H
2 In

. . .

Qk−1Uk−1Q
H
k−2 = In

QkUkQ
H
k−1 = H

where H ∈ Mn(C) is upper Hessenberg with positive subdiagonal entries.

We shall illustrate a constructive proof of proposition 4.1 using n = 4 and k = 3.

The construction of H serves as an algorithm which we shall refer to as the reduction

algorithm.

Let Ui ∈ M4(C) be unitary for i = 1, 2, 3. Consider the cyclic matrix

⎛ ⎞

U3

C = ⎝U1 ⎠ .
U2

The objective is to reduce U3 to upper Hessenberg form by performing unitary sim-

ilarity transformations to C that simultaneously reduces U1 and U2 to the identity.

Since the first column of U1 is a unit vector, we can construct a unitary matrix

(1) (1)
Q1 ∈ Mn(C) such that Q1 U1e1 = e1. Forming the block diagonal unitary matrix

90

(1)
diag{I, Q1 , I} and performing a unitary similarity transformation to C, we get

⎛ ⎞⎛ ⎞⎛ ⎞H ⎛ ⎞

I U3 I U3
(1) (1) (1)

=: C(1)
⎝ ⎠⎝ ⎠⎝ ⎠ = ⎝Q ⎠ .U1Q1 U1 Q1 1

(1)HI U2 I U2Q1

⎛ ⎞

0
The first column of C(1) is a block vector of the form ⎝e1

⎠. The first column of
0

(1)H (1)
U2Q1 is a unit vector, hence we can construct a unitary matrix Q2 ∈ Mn(C) such

(1) (1)H (1)
that Q = Forming the block diagonal matrix diag{I, I, Q } and2 U2Q1 e1 e1. 2

performing a unitary similarity transformation to C (1), we get

⎛ ⎞ ⎛ ⎞H
I I

C(1)
⎝ I ⎠ ⎝ I ⎠

(1) (1)
Q2 Q2

⎛

(1)H
⎞

U3Q2
⎜ (1) ⎟

=: C(2)=
⎝Q1 U1 ⎠

.
(1) (1)H

Q2 U2Q1

⎛ ⎞

0
(3)

The fifth column of C(2) is a block vector of the form ⎝e1
⎠. Let U3 = (uij) i =

0
(1)H

1, 2, 3, j = 1, 2, 3. To reduce U3Q2 to upper Hessenberg form, we construct a

unitary matrix
� �

1
Q3 =

Q
(1)
3

(1)

ˆ

(1) (1)H (3) (1)
such that Q U3Q = u where α > 0. The form of Q shows that3 2 13 e1 + αe2 3

(1) (1)H
premultiplying Q3 to U3Q2 does not affect the first row. Similarly, postmultipli-

(1) (1)H
cation of Q1 by Q does not affect the first column. Thus in carrying out theU1 3

91

similarity transformation

⎛ ⎞ ⎛ ⎞H(1) (1)
Q3 Q3

⎝ ⎠C(2)
⎝ ⎠I I

I I
⎛ ⎞

(1) (1)H
Q3 U3Q2

⎜ (1) (1)H ⎟

=
⎝Q1 U1Q3 ⎠

=: C2
(1) (1)H

Q2 U2Q1

(1)H
we have reduced the first column of U3Q1 to upper Hessenberg form, and preserved

(1)H (1) (1)H
the first columns of U1Q and Q U2Q both of which are the first column the3 2 1

identity matrix. Schematically, the form of C2 is
⎛ ⎞

x x x x
⎜ x x x x⎟
⎜ ⎟

⎜ 0 x x x⎟
⎜ ⎟

⎜ 0 x x x⎟
⎜ ⎟

⎜1 0 0 0 ⎟

⎜ ⎟

⎜0
⎜C2 =
⎜0

x
x

x
x

x
x

⎟

⎟ .
⎟

⎜ ⎟

⎜0 x x x ⎟

⎜ ⎟

⎜ 1 0 0 0 ⎟

⎜ ⎟

⎜ 0 x x x ⎟

⎜ ⎟

⎝ 0 x x x ⎠

0 x x x

We repeat the process of cycling through the block matrices to generate the unitary

92

(2)
matrices Qi for i = 1, 2, 3 and obtain a block matrix of the form

⎛ ⎞

x x x x
⎜ x x x x⎟
⎜ ⎟

⎜ 0 x x x⎟
⎜ ⎟

⎜ 0 0 x x⎟
⎜ ⎟

⎜1 0 0 0 ⎟

⎜ ⎟

⎜0
⎜C3 =
⎜0

1
0

0
x

0
x

⎟

⎟ .
⎟

⎜ ⎟

⎜0 0 x x ⎟

⎜ ⎟

⎜ 1 0 0 0 ⎟

⎜ ⎟

⎜ 0 1 0 0 ⎟

⎜ ⎟

⎝ 0 0 x x ⎠

0 0 x x

Repeating this process, we obtain the unitary matrices

(4) (3) (2) (1)
= Q Q Q QQ1 1 1 1 1

(4) (3) (2) (1)
Q2 = Q Q Q Q2 2 2 2

(4) (3) (2) (1)
Q3 = Q Q Q Q3 3 3 3

that satisfy

Q1U1Q
H
3 = I3

Q2U2Q
H
1 = I3

Q3U3Q
H
2 = H

where H is upper Hessenberg with positive subdiagonals. This completes the descrip-

tion of the reduction algorithm.

Consider now the product

U = UkUk−1 · · · U1

93

where each Ui ∈ Mn(C) is unitary. Performing the reduction algorithm, we obtain

unitary matrices Q1, . . . , Qk such that

Q1U1Q
H = k In

. . .

QkUkQ
H
k−1 = H

where H is upper Hessenberg with positive subdiagonals. Notice that

H = I · I · · · I · H

= (QkUkQ
H) · (Qk−1Uk−1Q

H) · · · (Q1U1Q
H)k−1 k−2 k

= QkUk · · · U1Q
H
k .

Thus H is unitarily similar to U . To find the eigenvalues of U , we perform the unitary

QR algorithm to H as described in chapter 2. This amounts to an eigenvalue algo-

rithm which we will call the product unitary QR algorithm. The reduction algorithm

implicitly performs the multiplication U = UkUk−1 · · · U1 and the reduction of U to

upper Hessenberg form, at a total cost of O(8
3 kn3) flops. Performing the multiplica-

tion explicitly costs O(2kn3) flops and a separate reduction of U to upper Hessenberg

form costs O(10
3 n

3) flops. The reduction algorithm is cheaper when k ≤ 5.

94

4.2 Numerical Results

We tested the unitary product QR algorithm on the product U = Uk · · · U1 for k =

2, . . . , 6 and the size n = 100, 200, 300, 400. The following table shows the maximum

error of the computed eigenvalues from the true eigenvalues of the product. The

individual factors Ui have randomly distributed eigenvalues around the unit circle.

Table 4.1: Product Unitary Eigenvalues
Size k=2 k=3 k=4 k=5 k=6

100 9.44 × 10−14 9.90 × 10−14 1.30 × 10−13 5.50 × 10−14 4.83 × 10−14

200 5.79 × 10−13 5.73 × 10−13 4.08 × 10−13 3.24 × 10−13 5.22 × 10−13

300 5.77 × 10−13 1.32 × 10−12 1.32 × 10−12 9.84 × 10−13 1.03 × 10−12

400 1.44 × 10−12 2.30 × 10−12 2.69 × 10−12 1.42 × 10−12 1.61 × 10−12

4.3 The Generalized Eigenvalue Problem for Uni-

tary Matrices

As a special case of the unitary product eigenvalue algorithm, we consider the gener-

alized eigenvalue problem

Ax = λBx (4.3.2)

where A, B ∈ Mn(C) are both unitary. Multiplying by B−1 , we convert this to an

ordinary eigenvalue problem

B−1Ax = BH Ax = λx.

We then use the product eigenvalue algorithm to find the eigenvalues of BH A.

95

We tested this method for n ranging from 500 to 1000 in increments of 100. The

following table shows the maximum error of the computed eigenvalues. Both A and

B have uniformly distributed eigenvalues.

Table 4.2: Generalized Eigenvalues
500 600 700 800 900 1000

k=2 1.34 × 10−12 2.10 × 10−12 2.72 × 10−12 4.10 × 10−12 2.75 × 10−12 1.90 × 10−12

96

Bibliography

[1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary ma-

trices and quantum Schubert calculus, Mathematical Research Letters, 5 (1998),

pp. 817–836.

[2] G. Ammar, W. Gragg, and L. Reichel, Detemination of Pisarenko fre-

quency estimates as eigenvalues of an orthogonal matrix, in Proc. SPIE, Ad-

vanced Algorithms and Architectures for Signal Processing II, F. T. Luk, ed.,

vol. 826, San Diego, 1987, pp. 143–145.

[3] , Direct and inverse unitary eigenproblems in signal processing: an overview,

in Linear Algebra for Large Scale and Real-Time Applications, F. T. Moonen,

G. H. Golub, and B. L. D. Moor, eds., The Netherlands, 1993, pp. 341–343.

[4] G. Ammar, W. B. Gragg, and C. He, An efficient QR algorithm for a

Hessenberg submatrix of a unitary matrix, in New Directions and Applications

in Control Theory, Springer, 2005.

[5] G. Ammar, W. B. Gragg, and L. Reichel, Constructing a unitary Hes-

senberg matrix from spectral data, in Numerical Linear Algebra, Digital Signal

Processing, and Parallel Algorithms, Springer, 1991, pp. 385–396.

[6] G. S. Ammar, D. Calvetti, and L. Reichel, Computing the poles of au-

toregressive models from the reflection coefficients, in Proc. 31st Annual Allerton

97

Conference on Communication, Control, and Computing, Monticello, IL, 1993,

pp. 255–264.

[7] , Continuation methods for the computation of zeros of szego polynomials,

Lin. Alg. Appl., (1996), pp. 125–155.

[8] G. S. Ammar, W. B. Gragg, and L. Reichel, On the eigenproblem for

orthogonal matrices, in Proc. 25th IEEE Conference on Decision and Control,

Athens, Greece, 1986, pp. 1963–1966.

[9] G. S. Ammar, L. Reichel, and D. C. Sorensen, An implementation of a

divide and conquer algorithm for the unitary eigenproblem, ACM Trans. Math.

Software, 18 (1992), pp. 292–307.

[10] W. Arnoldi, The principle of minimized iterations in the solution of the matrix

eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[11] Z. Bai and J. Demmel, On a block implementation of the Hessenberg multishift

QR iteration, Internat. J. High Speed Comput., 1 (1989), pp. 97–112.

[12] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution

of the unitary eigenproblem, Linear Algebra Appl., 154–156 (1991), pp. 741–778.

[13] A. Bunse-Gerstner and C. He, On a Sturm sequence of polynomials for

unitary Hessenberg matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1043–

1055.

[14] G. Cybenko, A general orthogonalization technique with applications to time

series analysis and signal processing, Math. Comp., 40 (1983), pp. 323–336.

[15] , Pisarenko frequency estimates, in Proc. 18th Annual Princeton Conference

on Information Systems and Sciences, Princeton, New Jersey, 1984, pp. 587–591.

98

[16] G. Cybenko and C. van Loan, Computing the minimum eigenvalue of a

symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat. Comp., 7 (1986),

pp. 123–131.

[17] R. J. David and D. S. Watkins, Efficient implementation of the multi-shift

QR algorithm for the unitary eigenvalue problem, SIAM J. Matrix Anal. Appl.,

28 (2006), pp. 623–633.

[18] P. Delsarte and Y. Genin, An efficient algorithm for computing Pisarenko’s

harmonic decomposition using Levinson’s recursion, IEEE Trans. Acoust. Speech

Signal Process, 34 (1986), pp. 485–491.

[19] , The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process,

34 (1986), pp. 470–478.

[20] P. Diaconis, Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture,

Bull. Amer. Math. Soc., 40 (2003), pp. 155–178.

[21] P. J. Eberlein and C. P. Huang, Global convergence of the QR algorithm

for unitary matrices with some results about normal matrices, SIAM J. Numer.

Anal., 12 (1975), pp. 421–453.

[22] A. Edelman and N. R. Rao, Random matrix theory, Acta Num., (2005),

pp. 233–297.

[23] H. Fassbenber, On numerical methods for discrete least-squares approximation

for trigonometric polynomials, Math. Comp., 66 (1997), pp. 719–741.

[24] W. B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for

isometric operators, and Gaussian quadrature on the unit circle, in Numerical

Methods in Linear Algebra, E. S. Nikolaev, ed., Moscow University Press, 1982,

pp. 16–23. (in Russian).

99

[25] , The QR Algorithm for unitary Hessenberg matirces, J. Comput. Appl.

Math., 16 (1986), pp. 1–8.

[26] , Positive definite Toeplitz matrices, the Arnoldi process for isometric oper-

ators, and Gaussian quadrature on the unit circle, J. Comput. Appl. Math., 46

(1993), pp. 183–198. (English translation of [24]).

[27] W. B. Gragg and L. Reichel, A divide and conquer algorithm for the unitary

and orthogonal eigenproblems, Numer. Math., 57 (1990), pp. 695–718.

[28] M. Gu, R. Guzzo, X.-B. Chi, and X.-Q. Cao, A stable divide and conquer

algorithm for the unitary eigenproblem, SIAM J. Matrix Anal. Appl., 25 (2003),

pp. 385–404.

[29] M. H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley

and Sons, 1996.

[30] S. Helsen, A. B. Kuilaars, and M. van Barel, Convergence of the iso-

metric Arnoldi process, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 782–809.

[31] R. J. McAulay and T. F. Quatieri, Speech analysis/synthesis based on

sinusoidal representation, IEEE Tran. Acoust. Speech Signal Process., 34 (1986),

pp. 744–754.

[32] V. F. Pisarenko, Retrieval of harmonics from a covariance function, Geophys.

J. R. Astr. Soc., 33 (1973), pp. 347–366.

[33] L. Reichel, G. S. Ammar, and W. B. Gragg, Discrete least squares ap-

proximation by trigonometric polynomials, Math. Comp., 57 (1991), pp. 273–289.

[34] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi

method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

100

[35] G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J.

Matrix Anal. Appl., 23 (2001), pp. 601–614.

[36] M. Stewart, An error analysis of a unitary Hessenberg QR algorithm, Tech.

Rep. TR-CS-98-11, Department of Computer Science, Australian National Uni-

versity, 1998. http://eprints.anu.edu.au/archive/00001557/.

[37] T.-L. Wang and W. B. Gragg, Convergence of the shifted QR algorithm for

unitary hessenberg matrices, Math. Comp., 71 (2002), pp. 1473–1496.

[38] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Review,

(1993), pp. 430–471.

[39] D. S. Watkins, The transmission of shifts and shift blurring in the QR algo-

rithm, Linear Algebra Appl., 241–243 (1996), pp. 877–896.

[40] D. S. Watkins, Unitary orthogonalization processes, J. Comp. Appl. Math.,

(1997), pp. 335–345.

[41] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley and Sons,

Second ed., 2002.

[42] D. S. Watkins, Product eigenvalue problems, SIAM Review, (2005), pp. 3–40.

[43] D. S. Watkins and L. Elsner, Chasing algorithms for the eigenvalue problem,

SIAM J. Matrix Anal. Appl., 12 (1991), pp. 374–384.

[44] , Convergence of algorithms of decomposition type for the eigenvalue problem,

Linear Algebra Appl., 143 (1991), pp. 19–47.

[45] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigen-

value problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

101

http://eprints.anu.edu.au/archive/00001557

	Structure Bookmarks
	Table 3.1: Uniformly Distributed Eigenvalues
	Table 3.2: Eigenvalues Clustered near Real Line
	Table 3.3: Quadrant I Limited Eigenvalues
	Table 3.4: Uniformly Distributed Eigenvalues
	Table 3.5: Real Clustered Eigenvalues, target τ=1
	Table 3.6: Real Clustered Eigenvalues, target τ=i
	Table 3.7: Quadrant I Limited Eigenvalues
	Table 4.1: Product Unitary Eigenvalues
	Table 4.2: Generalized Eigenvalues

