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DESIGN OF WIDE-AREA DAMPING CONTROL SYSTEMS FOR POWER SYSTEM  

LOW-FREQUENCY INTER-AREA OSCILLATIONS 

Abstract 

by Yang Zhang, Ph.D. 
Washington State University 

December 2007 

Chair: Anjan Bose 

The recently developed robust control theories and wide-area measurement 

technologies make the wide-area real-time feedback control potentially promising. The 

objective of this research is to develop a systematic procedure of designing a centralized 

damping control system for power grid inter-area oscillations by applying wide-area 

measurement and robust control techniques while putting emphasis on several practical 

considerations. 

The first consideration is the selection of stabilizing signals. Geometric measures 

of controllability/observability are used to select the most effective stabilizing signals and 

control sites. Line power flows and currents are found to be the most effective input 

signals. The second consideration is the effects of time-delay in the communication of 

input/output signals. Time-delays reduce the efficiency of the damping control system. In 

some cases, large delays can destabilize the system. Time-delays should be modeled in 

the controller design procedure so that the resulting controller can handle a range of time-

delays. In this work, time-delays are modeled by Padé Approximations and the delay 

uncertainty is described by Linear Fractional Transformations (LFT). The third 
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consideration is the controller robustness. The synthesis of the controller is defined as a 

problem of mixed H2/H∞ output-feedback control with regional pole placement and is 

resolved by the Linear Matrix Inequality (LMI) approach. The controller designed by 

robust control techniques has satisfactory performance in a wide range of operating 

points. The fourth consideration is the efficiency of the controller designed by linear 

techniques in realistic nonlinear discrete environments. A tuning process and nonlinear 

simulations are used to modify the controller parameters to ensure the performance and 

robustness of the controller designed with linear techniques. The last consideration is the 

selection of PMU data reporting rates. The performance of controllers designed in the s-

domain is tested in digital environments and proper PMU data reporting rates are selected 

with consideration of the effects of time-delay.  

The design procedure of wide-area damping systems is illustrated by three study 

systems. The first study system is a two-area four-machine system. The second one is the 

New England 39-bus 10-machine system. The last one is a 29-generator 179-bus study 

system, which is a reduced order model of the Western Electricity Coordinating Council 

(WECC) system.  

Keywords: Damping controller, data reporting rate, H∞ synthesis, LMI, PMU, inter-area 

oscillations, robust control, time-delay, wide-area. 
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Chapter 1. Introduction 

1.1 Motivation 

Power systems contain many modes of oscillation as a consequence of interactions of its 

components, as for example one generator rotor swinging relative to another. There are 

two distinct types of oscillations which have presented problems in power systems, local 

mode oscillations and inter-area oscillations. Local mode oscillations occur when a 

generator (or group of generators) under voltage regulator control at a station is swinging 

against the rest of the system. Inter-area oscillations involve combinations of machines 

on one part of a system swinging against machines on another part of the system. The 

characteristic frequency of inter-area modes of oscillation is generally in the range of 0.1 

to 1.0 Hz. 

Local plant modes, control modes and torsional modes are usually induced by the 

interaction between the mechanical and electrical modes of a turbine-generator system. 

Inter-area modes may be caused by either high-gain exciters or heavy power transfers 

across weak tie-lines [1]. Large power systems typically exhibit multiple dominant inter-

area swing modes, which are associated with the dynamics of power transfers and involve 

groups of machines oscillating relative to each other. When present in a power system, 

this type of oscillation limits the amount of power transfer on the tie-lines between the 

regions containing the groups of coherent generators [2]. With the increasing of the 

interconnections and inter-changes of energy in electrical networks, low-frequency inter-

area oscillations become more poorly damped and power system oscillatory stability 

becomes more and more of concern. Large disturbances tend to induce inter-area 
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oscillations in major grids throughout the world: at 0.6 Hz in the Hydro-Québec system 

[44], 0.2 Hz in the western North-American interconnection [45], 0.15-0.25 Hz in Brazil 

[46] and 0.19-0.36 Hz in the UCTE/CENTREL interconnection in Europe [47]. The 

recent 2003 blackout in eastern Canada and US was accompanied by severe 0.4-Hz 

oscillations in several post-contingency stages [48]. Over the years, many incidents of 

system outage resulting from these oscillations have been reported. Following examples 

are some of system failures owing to oscillations: 

a. In early 1960's, oscillations were observed when the Detroit Edison (DE), Ontario 

Hydro (OH) and Hydro-Québec (HQ) systems were inter-connected 

b. In 1969, oscillations were observed under several operating conditions in the Finland-

Sweden (and Norway)-Denmark interconnected system 

c. In 1971 and 1972, over 70 incidents of unstable inter-area oscillations occurred in the 

Mid-Continent Area Power Pool (MAAP) system in North America 

d. In 1975, unstable oscillations of 0.6 Hz were encountered on the interconnected 

power system of New South Wales and Victoria 

e. In 1982 and 1983, the State Energy Commission of Western Australia (SECWA) 

experienced lightly damped system oscillations in the frequency range of 0.2-0.3 Hz 

f. On August 10, 1996, the Pacific AC Inter-tie (PACI) in WECC experienced unstable 

low frequency inter-area oscillations following the outage of four 400 kV lines 

The traditional approach to damp out inter-area oscillations is by installing power system 

stabilizers (PSS) that provide supplementary control action through the excitation system 

of generators. In recent years, supplementary modulation controllers (SMC) are added to 
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flexible ac transmission systems (FACTS) devices to damp out the inter-area oscillations. 

Both PSSs and FACTS SMC are single input single output (SISO) non-coordinated local 

controllers designed by conventional damping control design synthesis, for example a 

residue based method which considers a single operating condition of the system. These 

controllers usually use local inputs and cannot always be effective in easing the problem 

due to two main shortcomings. First, based on a linearization of the system model in a 

nominal operating point, conventional local controllers designed by the classical control 

techniques have their validity restricted to a neighborhood of this point. But power 

systems constantly experience changes in operating conditions due to variations in 

generation and load patterns, as well as changes in transmission networks. Even under 

nominal operating conditions, there is still some uncertainty present due to only an 

approximate knowledge of the power system parameters, neglected high frequency 

dynamics, or invalid assumptions made in the model formulation process. Second, local 

controllers lack global observation of inter-area modes. It has been proved that under 

certain operating conditions an inter-area mode may be controllable from one area and be 

observable from another [3]. In such cases, local controllers are not effective for the 

damping of that mode. 

The recently developed wide-area control technologies and robust control theory offer a 

great potential to overcome the shortcomings of conventional local controllers. Robust 

control techniques have been applied to design controllers that formally guarantee the 

system stability with an acceptable performance for a wide range of operating conditions 

[4]-[7]. With the technology of global positioning system (GPS) based phasor 
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measurement units (PMU), dynamic data of power systems, such as voltage, current, 

angle, and frequency can be accurately measured, synchronized and transferred in the 

range of the whole power system by wide-area measurement systems (WAMS) [8, 9]. 

This makes possible the construction of wide-area damping control systems. In contrast 

to conventional local controls, wide-area damping control systems have many benefits. 

Reference [10] shows that wide-area controls are more efficient than local controls in 

preventing loss of synchronism and local controls need large gain (from 4 to 20 times 

more) than wide-area controls [11] to achieve a similar damping effect.  

Even though promising simulation results achieved by researchers in applying robust and 

wide-area techniques into the design of damping control systems for inter-area 

oscillations, wide-area damping control is still in its infancy due to many difficulties in 

designing and implementing such systems. This research is motivated by the objectives 

of finding solutions to the difficulties in the design and implementation of wide-area 

damping control systems and thus improving the damping of power system low-

frequency inter-area oscillations. 
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1.2 Literature Review on Wide-Area Damping Control for Power 

Systems  

Many researchers achieved promising results from applying wide-area measurements and 

robust control techniques into wide-area control of power system oscillations.  

A research group in Hydro-Québec has done significant work in the field of damping of 

inter-area oscillations. In reference [12], a decentralized/hierarchical structure with two-

loop PSSs is proposed. Wide-area signals based PSS is used to provide additional 

damping to local ones. A sequential optimization procedure is used to tune the global and 

local loop of the proposed controller.  

Reference [13] uses multi-agents concepts to coordinate several supervisor PSSs (SPSS) 

based on remote signals and exchanging information with local PSSs to improve power 

systems stability. The SPSS is designed by H∞ optimization methods. Rule based fuzzy-

logic and robust control techniques are used to deal with uncertainties introduced by 

nonlinear terms and operating conditions.  

Reference [14] proposes a control structure that employs a combination of remote 

stabilizing signals with diverse modal contents to improve the observability and damping 

effects. It has shown that an optimum and weighted combination of local and global 

signals could successfully be used for the control design of PSS and TCSC.  

A Remote Feedback Controller (RFC) design methodology using PMU measurements is 

presented in reference [15]. In a typical implementation, one or more of the generators in 
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a system are selected as RFC Controllers.  The RFC Controller received synchronized 

phasor measurements from one or more remote phasor sources.  The RFC Controller 

analyzes the phase angles from the multiple sites and determines if an inter-area 

oscillation exists. If an oscillation exists, a control signal is sent to the generator’s 

voltage regulator that effectively modulates the voltage and effectively damps out the 

oscillations. 

The research group in Washington State University designed a real time control system to 

enhance the small signal stability of power systems [16]. The proposed controller will 

initiate specific control actions only when it detects the emergence of poorly damped or 

negatively damped oscillatory modes in the power system being monitored. The 

controller is designed for real-time implementation in the large power systems by 

utilizing the wide-area measurements together with the heuristic control rules developed 

by offline studies. When the oscillatory instability is detected, the central controller 

switches the operation of a specific SVC from the normal voltage regulation mode into an 

aggressive power system damping control (PSDC) mode for damping out the oscillations. 

Reference [17] demonstrates the enhancement of inter-area mode damping by multiple 

FACTS devices. Power system damping control design is formulated as an output 

disturbance rejection problem. A decentralized H∞ damping control design based on the 

mixed-sensitivity formulation in the linear matrix inequality (LMI) framework is 

proposed. 
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1.3 Objective and Contributions 

Wide-area damping control system is still in its infancy because many issues remain 

unresolved in the design and implementation of such systems. Some of them are listed as 

follows: 

Measurement types and locations – what kind of measurements are suitable for 

stabilizing signals? Where and how can these signals be measured? 

Control devices and locations – what devices should be controlled and what are best 

control sites? 

Control system structure – which structure is suitable, centralized or decentralized? 

Time-delay – How to design a controller that can handle a range of time-delay? 

System uncertainties – when designing a controller, how to deal with all kinds of 

uncertainties produced in the system modeling process? 

Digital communication and control techniques – what measurement speed and data-

reporting rates are enough? Are digital communication and control techniques 

suitable for continuous feedback control? 

Measurement processing – error, corruption, loss, noise and aliasing; 

Controller design and implementation – how to design a controller to meet the robust 

and performance requirements for inter-area oscillations damping? How and where 

to implement such a controller? 

The objective of this research is to propose a systematic procedure of designing a wide-

area damping control system for power system inter-area oscillations, with particular 
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attention to several practical issues like time-delays, digital environment, and controller 

robustness. The contributions of this dissertation are: 

1) Proposed a systematic procedure to design wide-area damping control systems 

with centralized architectures and shows that it is an effective way to damp out 

inter-area oscillations by providing remote measurements to the controller and 

control actions through generator excitation systems supplemental to the action of 

local PSSs. 

2) Demonstrated that geometric measures of modal controllability/observability are 

effective in evaluating the comparative strength of candidate stabilizing signals of 

widely differing types with two numerical examples. 

3) Demonstrated that mixed H2/H∞ output-feedback control with regional pole 

placement can be applied to the wide-area damping controller synthesis with good 

results which cannot be obtained by only using either one. 

4) Shown the effects of time-delays on wide-area damping control systems and 

proposed a method to design a wide-area damping controller (WADC) that can 

handle time-delays. 

5) Tested the robustness of the designed controller by evaluating the damping 

control system performance under different operating conditions and the system 

response to various disturbances using time domain simulation based on nonlinear 

power system models.  

6) Shown that for the small size systems considered, one stabilizing signal is enough 

for the input of a wide-area damping controller. Multiple inputs improve the 
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control performance only slightly for such small systems but are expected to be 

necessary for acceptable control performance in large systems. 

7) Established the effectiveness of controllers designed with continuous and linear 

techniques by testing in realistic nonlinear environments and with discrete 

(digital) communication of measurement and control signals.  

8) Shown that the data reporting rates of PMUs should be chosen with consideration 

of time-delay effects.   
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1.4 Organization of This Dissertation 

This dissertation consists of five chapters.    

Chapter 1. Introduction describes the motivation, objectives and contributions. A 

literature review is also given in this chapter that summarizes others’ work in the field of 

wide-area damping control for inter-area oscillations.  

Chapter 2. Modeling gives the detailed power system component dynamic models and 

load models used in this research. Modal analysis of linearized models is outlined. 

Chapter 3. Wide-Area Damping Control System Design describes a systematic procedure 

of designing damping controllers for low-frequency inter-area oscillations.  The 

comparative strength of candidate wide-area measurements and the performance of 

controllers at different control sites are evaluated by geometric measures of 

controllability/observability. The synthesis of the robust controller is defined as a 

problem of mixed H2/H∞ output-feedback control with regional pole placement and is 

resolved by the LMI approach. Practical issues like time delays, digital environments and 

controller robustness are also discussed. 

Chapter 4. Case Studies gives three design examples. The first one is a two-area four-

machine system. The second study system is the New England 39-bus 10-machine 

system. The last one is a 179-bus 29-machine test system that is a reduced order model of 

the Western Electricity Coordinating Council (WECC) system.  

Chapter 5. Conclusions and Future Work summarizes the findings of this research and 

lists several topics for the future work.  
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Chapter 2. Modeling 

2.1 Power System Component Dynamic Model and Load Model 

2.1.1 Synchronous Generator Model 

Synchronous generators form the principal source of electric energy in power systems. 

The power system stability problem is largely one of keeping interconnected synchronous 

machines in synchronism. Therefore, an understanding of their characteristics and 

accurate modeling of their dynamic performance are of fundamental importance to the 

study of power system stability. In this thesis, a fourth-order (two-axis) model, as 

described in [18] has been used. 

Fig. 2.1 Synchronous generator schematic diagram 

11 



 

 

 

                                                                                                    

                                                                            

                                                                       

                                                                                   

      

     

     

     

     

     

     

     

     

     

     

     

The dynamic equations of the synchronous generator, which is shown in Fig.2.1, for the 

two-axis model can be stated as: 

• 

δ = (ω −1)ωs  (2.1) 

• 

2H ω = Pm − Pg − KD (ω −1)  (2.2) 

• 
' ' ' 'T Eq = −Eq − (xd − x )Id + E fd  (2.3)do d 

• 
' ' ' 'Tqo Ed = −Ed + (xq − xq )Iq              (2.4) 

where 

δ  generator rotor angle; 

ω                     generator rotor frequency in per unit; 

Eq 
'  internal quadrature-axis voltage; 

Ed 
'  internal direct-axis voltage; 

E fd  exciter output; 

H  generator inertia constant; 

Pm                     generator input mechanical power; 

Pg  generator output electrical power; 

KD                    damping coefficient; 

Tdo 
' ,Tqo 

'              direct and quadrature axis transient field winding time constants; 

xd , xd 
'                direct axis synchronous and transient reactances; 

xq , xq 
'                 quadrature axis synchronous and transient reactances. 
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The equations relating the external bus quantities and the internal machine transformed 

(Park’s) equations are: 

Vd = V sin(δ −θ )  (2.5) 

Vq = V cos(δ −θ )  (2.6) 

Pg = Vd Id +VqIq  (2.7) 

Qg = VqId −Vd Iq  (2.8) 

' ' Id  Ra − xq 
−1 

Ed −V sin(δ −θ )  
  =      (2.9)
Iq x R  E ' −V cos(δ −θ )   d 

' 
a   q  

2 2 2I g = Id + Iq              (2.10) 

2 2 2V = Vd + Vq  (2.11) 

where 

V, θ                  external bus voltage magnitude and phase; 

Pg ,Qg                generator internal real and reactive power injections; 

Ra                      armature resistance; 

Vd ,Vq                 internal Park transformed components of terminal bus voltage V; 

Id , Iq                  internal Park transformed components of terminal bus current Ig . 

Park’s coordinate frame is rotating synchronously with the rotor. The effect of Park’s 

transformation is simply to transform all stator quantities from phases a, b and c into new 

variables, the frame of reference of which moves with the rotor. This leads to great 

simplification in the mathematical description of the synchronous machine. The 
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transformation depends on the difference in phaseδ −θ , between the terminal voltage 

and the internal rotor angle.  

2.1.2 Exciter Model 

The exciter model used in this study is the standard IEEE type DC1A exciter. Its block 

diagram is shown in Fig. 2.2.  

Fig. 2.2 IEEE DC1A exciter block diagram 

This model is used to represent field controlled dc commutator exciters with continuously 

acting voltage regulators (especially the direct-acting rheostatic, rotating amplifier, and 

magnetic amplifier types). The exciter may be separately excited or self excited, the latter 

type being more common. When self excited (the voltage regulator operating in buck-

boost mode), KE is selected so that initially VA =0.5 [1], representing operator action of 

tracking the voltage regulator by periodically trimming the shunt field rheostat set point. 

A value of KE =1 is used to represent a separately excited exciter. The major time 

constant,TA , and gain, K A , associated with the voltage regulator are shown incorporating 

non-windup limits typical of saturation or amplifier power supply limitations.  The 
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mathematical model representing the dynamics of this exciter is given by the following 

equations: 

• 

T V = −V + K (V −V −V −V )                                                  (2.12) A A A A ref F S 

• 

TE E fd = −KE E fd + VA − Sex (E fd )E fd               (2.13) 

TF VF = −VF + KF E fd  (2.14) 

The term Sex (E fd ) is a nonlinear function with a value defined at any chosen E fd . The 

output of this saturation block, is the product of the input, E fd , and the value of the 

nonlinear function, Sex (E fd ) , at this exciter voltage. VS is a supplementary stabilizing 

signal from the power system stabilizer. 

2.1.3 Governor Model 

The prime mover provides the mechanism for controlling the synchronous machine speed 

and hence voltage frequency. In order to automatically control speed and frequency, a 

device must sense either speed or frequency in such a way that comparison with a desired 

value can be used to create an error signal to take corrective action. The block diagram of 

such a model for a time constant governor with speed regulation R is shown in Fig. 2.3: 

The mathematical model of this governor is the following equation:               

• 1T P = −P + P − (ω −1)  (2.15)G m m ref R 
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Fig. 2.3 Governor model block diagram 

2.1.4 Power System Stabilizer Model 

The basic function of a PSS is to add damping to the generator rotor oscillations by 

controlling its excitation using auxiliary stabilizing signals. A PSS is added to the 

automatic voltage regulator (AVR), which controls the generator stator terminal voltage. 

PSS uses stabilizing feedback signals such as shaft speed, terminal frequency and/or 

power to change the input signal of the AVR. Power system dynamic performance is 

improved by the damping of system oscillations. To provide damping, PSS must produce 

a component of electrical torque in phase with the rotor speed deviations. The basic 

blocks of a typical PSS with two phase compensation are illustrated in Fig. 2.4.  

V reg 

+V1VWSTW K 1+ ST1 1+ ST3 
V 2 V S 

+ 
pss1+ STW 1+ ST 1+ ST2 4 -

-
Other Signals V f 

Fig. 2.4 Block diagram of power system stabilizer 
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The first is the gain block. The stabilizer gain K pss determines the amount of damping 

introduced by the PSS. Ideally, the gain should be set at a value corresponding to 

maximum damping; however, it is often limited by other considerations. The second is 

signal washout block. It serves as a high-pass filter with the time constant TW high 

enough to allow signals associated with oscillations in rotor speed to pass unchanged, but 

does not allow the steady state changes to modify the terminal voltages. It allows the PSS 

to respond only to changes in speed. The lead/lag phase compensation blocks provides 

the appreciate phase lead characteristic to compensate for the phase lag between the 

exciter input and the generator electrical (air-gap) torque. Normally, the frequency range 

of interest is 0.1 to 2.0 Hz, and the phase-lead network should provide compensation over 

this entire frequency range. Generally some under-compensation is desirable so that the 

PSS, in addition to significantly increasing the damping torque, results in a slight increase 

of the synchronizing torque. The differential equations describing a PSS shown in Fig.2.4 

are: 

T V = −V + TW ω  (2.16)W W W 

T2 V1 = −V1 + K pss (VW + T1VW )           (2.17) 

T V = −V + (V + T V )  (2.18)4 2 2 1 3 1 

2.1.5 Load Model 

The modeling of loads in stability studies is a complex problem due to the unclear nature 

of aggregated loads (e.g. a mix of fluorescent, compact fluorescent, incandescent lamps, 
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refrigerators, heater, motor, etc.). Load models are typically classified into two broad 

categories: static and dynamic. The loads can be modeled using constant impedance, 

constant current and constant power static load models. Constant impedance load model 

is a static load model where the real and reactive power is proportional to the square of 

the voltage magnitude. It is also referred to as constant admittance load model. Constant 

current load model is a static load model where the real and reactive power is directly 

proportional to the voltage magnitude. Constant power load model is a static load model 

where the real and reactive powers have no relation to the voltage magnitude. It is also 

referred to as constant MVA load model. These load models can be described by the 

following polynomial equations [19]: 

 2 V  V 
PL = kP0 A1 + A2 + A3                (2.19) 

V V 0  0    

 2 V  V 
QL = kQ B1 + B2 + B3                     (2.20) 

V0 
 V0  0    

where A + A + A = B + B + B =1; P  and Q , the so-called nominal powers, are the 1 2 3 1 2 3 0 0 

load real and reactive powers consumed under nominal conditions, i.e., at the reference 

voltage V0 and the nominal frequency f0 . The actual or consumed load power PL  and 

QL are the powers consumed by the load under current conditions of voltage V and 

frequency f . Although the actual load in a system is usually frequency dependent, this 

frequency dependence is ignored in this study for simplicity. The value k is an 

independent demand variable called loading factor. Such a load model is often referred to 

as the ZIP load model.  
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2.2 Linearized State Space Model of Power Systems 

The synchronous machine model along with the associated regulating devices thus 

becomes an eleventh-order model (eleven state variables for each synchronous machine). 

The dynamic states for this model are: 

x = [δ ω E ' E ' V V E V V V P ]T 
d d q A F fd W 1 2 m 

In the design proposed in this research, the control inputs to the system are additional 

wide-area stabilizing signals added to AVR. Then the control inputs are: 

u = [u u2 ... ung ]1 

where ng is the number of globally controlled generators. 

Thus, for the ith machine, the 11 differential equations describing its dynamics are: 

• 

δ = (ω −1)ω  (2.21)i i s 

• 

2Hi ωi = Pmi − Pgi − KDi (ωi −1)                           (2.22) 

• 
' ' ' 'T Eqi = −Eqi − (xdi − x )I di + E fdi                                                 (2.23) doi di 

• 
' ' ' 'Tqoi Edi = −Edi + (xqi − xqi )Iqi                  (2.24) 

• 

T V = −V + K (V −V − V −V + u )                                     (2.25) Ai Ai Ai Ai refi i Fi Si i 

• 

T E = −K E + V − S (E )E                     (2.26) Ei fdi Ei fdi Ai exi fdi fdi 

TFi VFi = −VFi + KFi E fdi  (2.27) 
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• 1T P = −P + P − (ω −1)  (2.28)Gi mi mi refi iRi 

T V = −V + T ω  (2.29)Wi Wi Wi Wi i 

T2i V1i = −V1i + K pssi (VWi + T1i VWi )                          (2.30) 

T V = −V + (V + T V )             (2.31) 4i 2i 2i 1i 3i 1i 

For the bus i, the following power flow equations can be derived from (2.5)-(2.11): 

Pgi − PLi − Pi (xd , xa ) = 0  (2.32) 

Qgi − QLi − Qi (xd , xa ) = 0  (2.33) 

where xa are bus voltage magnitudes and phase angles, which are algebraic variables; 

Pi (xd , xa ) is the active power injection, Qi (xd , xa ) is the reactive power injection, PLi  and 

QLi are active and reactive loads, which are described with ZIP model. If there is no 

generators at bus i, Pgi  and Qgi  are equal to zero.  

Equation (2.21) – (2.31), together with equation (2.32) and (2.33) can be written as 

differential functions of xd , xa and u in the following form: 

 • 

xd = f (xd , xa ,u)  (2.34) 
0 = g(x , x ,u) d a 

Equation (2.34) is called the DAE model of the power system dynamics. 

Therefore, the full dynamic behavior of power system may be described by a set of 

nonlinear vector valued differential-algebraic equations:  

• 

x = f (x , x ,u)  (2.35)d d a 
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0 = g(xd , xa,u)  (2.36) 

y = h(xd , xa ,u)  (2.37) 

where xd  and xa are the vectors of dynamic and algebraic variables respectively while u 

and y are vectors of the input and output variables. Equation (2.35) describes the 

dynamics of power system and equation (2.36) is in fact the power flow equations. (2.37) 

are equations of output variables described in terms of state variables and input variables.  

According to the small signal theory, the dynamic behavior of power systems around an 

equilibrium point can be analyzed with a model linearized around this point. The 

linearized model is valid only in the neighborhood of the equilibrium point, that is, it’s 

only valid for analyzing the dynamics of the system under small disturbances. Suppose 

0 0 0 0the equilibrium point of the system is ( xd , xa ,u , y ) , then small deviations from the 

0 0 0 0linearization point are: ∆x = x − x , ∆x = x − x , ∆u = u − u , ∆y = y − y .d d d a a a 

A linear DAE model is obtained by partial differentiation of the nonlinear functions f, g 

and h: 

• 

∆ xd = A ∆x + A ∆x + B ∆u  (2.38)1 d 2 a 1 

0 = A ∆x + A ∆x + B ∆u  (2.39)3 d 4 a 2 

∆y = C ∆x + C ∆x + D ∆u  (2.40)1 d 2 a 1 

where the Jacobian matrices are: 
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 ∂f   ∂f   ∂g   ∂g  ∂f  ∂g A1 = , A2 = , A3 = , A4 = , B1 = , B2 =       
∂xd  ∂xa  ∂xd  ∂xa  

∂u  ∂u  

 ∂h   ∂h  ∂h C1 = , C2 = , D1 =    
∂xd  ∂xa  

∂u  

In the following, ∆ is omitted as all linear equations use variables that denote deviations 

from the linearization point. Assuming that A4 is invertible, then, the algebraic variables 

can be uniquely determined from (2.39): 

xa = −A4 
−1(A3∆xd + B2∆u)  (2.41) 

To eliminate algebraic variables in (2.38) and (2.40) by (2.41), we have the general form 

of linearized state space model of power systems, which is a set of ordinary differential 

equations (ODE): 

• 

x = Ax + Bu  (2.42) 

y = Cx + Du  (2.43) 

Where x is the vector of system state variables, y is the vector of output variables. A is 

state matrix or the plant matrix, B is input matrix, C is output matrix and D is 

feedforward matrix. 

A = A − A A−1 A1 2 4 3 

B = B1 − A2 A4 
−1B2 
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C = C − C A−1 A1 2 4 3 

D = D − C A−1B1 2 4 2 

While both the ODE and DAE descriptions can be considered as state space 

representations, control design methods known as state space methods predominantly 

handle only ODE models. An alternative to the state space approach is frequency domain 

methods based on transfer functions. Starting out from an ODE model, the corresponding 

set of transfer functions is defined as: 

Y (s) )−1G(s) = = C(sI − A B + D  (2.44)
U (s) 

where s is the Laplace operator or complex frequency. Transfer functions are well suited 

for determining transfer function zeroes. An input signal having the frequency of a 

transfer function zero is blocked and will not affect the output. While being unique for 

SISO systems, the definition of transfer zeroes for multi-input-multi-output (MIMO) 

systems is less clear. As a transfer function maps inputs to outputs, it is very convenient 

when a model is to be based on measurements. Transfer functions carry magnitude and 

phase information of a signal path as a function of frequency which is used when 

selecting the proper phase shift of a controller. 
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2.3 Modal Analysis and Small Signal Stability 

Once the state space system for the power system is written in the general form given by 

(2.42) and (2.43), the small signal stability of the system can be calculated and analyzed. 

First, the eigenvalues λi  are calculated for the A matrix. They are the non-trivial solutions 

of the equation: 

Aφ = λφ  (2.45) 

where φ is an n×1 vector. Rearranging (2.45) to solve for λ  yields 

det(A − λI ) = 0  (2.46) 

The solutions of (2.46) are the eigenvalues of the n×n matrix A. These eigenvalues are of 

the form σ ± jω .The stability of the operating point may be analyzed by studying the 

eigenvalues. The operating point is stable if all of the eigenvalues are on the left-hand 

side of the imaginary axis of the complex plane; otherwise it is unstable. If any of the 

eigenvalues appear on or to the right of this axis, the corresponding modes are said to be 

unstable, as is the system.  

This stability is confirmed by looking at the time dependent characteristic of the 

ioscillatory modes corresponding to each eigenvalue λi , given by etλ . The latter shows 

that a real eigenvalue corresponds to a nonoscillatory mode. If the real eigenvalue is 

negative, the mode decays over time. The magnitude is related to the time of decay: the 
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larger the magnitude, the quicker the decay. If the real eigenvalue is positive, the mode is 

said to have aperiodic instability.  

On the other hand, the conjugate-pair complex eigenvalues (σ ± jω ) each correspond to 

an oscillatory mode. A pair with a positiveσ represents an unstable oscillatory mode 

since these eigenvalues yield an unstable time response of the system. In contrast, a pair 

with a negative σ represents a desired stable oscillatory mode. Eigenvalues associated 

with an unstable or poorly damped oscillatory mode are also called dominant modes 

since their contribution dominates the time response of the system. It is quite obvious that 

the desired state of the system is for all of the eigenvalues to be in the left-hand side of 

the complex plane. 

The damped frequency of the oscillation in Hertz and damping ratio are given by: 

ωf =  (2.47)
2π 

−σ 
=  (2.48) 

In a linear system, the dynamics can be described as a collection of modes. A mode is 

characterized by its frequency and damping and the activity pattern of the system states. 

If the damping is low, which is the case for electro-mechanical modes or swing modes in 

power systems, they can be thought of as resonances. The mode concept is based on a 

change of coordinates by diagonalization. As in many engineering areas an adequate 

choice of coordinates can decouple complex relations. This is particularly true with 

22 ωσ 
ξ 

+ 
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modal coordinates, which offer a convenient simplification of the system while being 

valid for the full system. 

The system matrix A can be diagonalized by the square right modal matrixφ : 

φ −1 Aφ = Λ  (2.49) 

The columns of φ are the right eigenvectors φi  to A, while the diagonal elements of the 

diagonal matrix Λ are the eigenvalues λi  of A. Similarly the left modal matrix ψ holds 

the left eigenvectors ψ i  as rows and also diagonalizes A: 

ψAψ −1 = Λ  (2.50) 

For convenience, the right and left modal matrix are normalized so that:  

ψφ = I  (2.51) 

(2.51) is conveniently guaranteed by computing ψ as the inverse of φ . If there are 

eigenvalues at the origin, φ can however not be inverted. ψ i  and φi  corresponding to 

such an eigenvalue are orthogonal and their product is zero. In practice eigenvalues are 

unlikely to exactly equal zero. Instead they take a very small value, leading to an ill-

conditioned matrix. The inverse of ψ can then be computed, but its validity depends on 

the numerical accuracy that is used. It is therefore necessary to verify that the product of 

associated left and right eigenvectors of interest is one. 
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Provided that ψ  and φ are available, the ODE system can be transformed into modal 

coordinates z through a transformation x = φ z : 

• 

z = Λ z + ψ Bu  (2.52) 

y = C φ z + Du           (2.53) 

After such transformation, the dynamics now are governed by uncoupled first order 

differential equations – the modes. Once the state equations are decoupled through this 

transformation, the response of a particular state variable, say ∆xk , may be examined in 

each ith mode in the right eigenvector φ . This response is called the mode shape of the 

particular oscillatory mode. 

Sometimes it’s useful to quantify how important a dynamic state is to the mode. 

Conveniently, this is done by computing the participation factors [20]. A matrix called 

the participation matrix, denoted by P, provides a measure of association between the 

state variables and the oscillatory modes. It is defined as: 

P = [ p p ... p ]  (2.54)1 2 n 

with 

 p1i  φ1iψ i1  
   pi = M  = M  (2.55)   
 p  φniψ ni  in  

The element pki = φkiψ ik is called the participation factor, and gives a measure of the 

participation of the kth state variable in the ith mode. 

As seen in (2.52), the input u j affects the mode i through element (i,j) of the mode 
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controllability matrix ψB [21]. As a result, if the ith row is zero, the inputs have no effect 

on that mode and the mode is considered to be uncontrollable.  

Analogously mode j appears in the output yi to an extent that is determined by element 

(i,j) of the mode observability matrixCφ . If the ith column is zero, the outputs do not 

contribute to that mode and the mode is considered to be unobservable. 

For a SISO system input matrix B and output matrix C are column and row matrices 

respectively. The controllability of mode k from the ith input is given by: 

contki =ψ k Bi  (2.56) 

The observability of mode k from the jth output is given by: 

obsvkj = C jφk  (2.57) 

The D matrix in the power system described by (2.42) and (2.43) is usually a zero matrix. 

Thus, we can rewrite (2.44) as follows: 

Y (s)G(s) = = C(sI − A)−1 B
U (s)  (2.58) 

= Cφ[sI − Λ−1 ]ψB 

G(s) can be expanded in partial fractions as: 

nY (s) RkG(s) = = ∑  (2.59)
U (s) k =1 s − λk 

where Rk is the residue of the G(s) at the eigenvalue or pole λk . 

For a SISO system, G(s) can be expanded in partial fractions of the Laplace transform of 

y in terms of input, output matrices and the right and left eigenvectors as: 

n nR Cφ(:,k)ψ (k,:)BG(s) = ∑ k = ∑                     (2.60) 
k =1 s − λk k =1 (s − λk ) 

The residue Rk can be said to quantify the participation of mode k in the dynamics as seen 
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between the input and the output. The residue Rk of a particular mode k gives the measure 

of that mode's sensitivity to a feedback between the output and the input. It is the product 

of the mode's observability and controllability [22, 23]: 

R = Cφ ψ B  (2.61)k k k 
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Chapter 3. Wide-area Damping Control System Design 

3.1 General Design Procedure 

The design of wide-area damping controllers for inter-area oscillations includes the 

following steps: 

1) Get the full-order nonlinear model of the studied system: The multi-machine 

dynamic model of the test system is calculated by Matlab [24]. All generators are 

represented by the detailed model, i.e. two-axis model with exciter, governor and 

conventional PSS. 

2) Model linearization and small signal analysis: The full-order nonlinear model is 

linearized around a chosen operating point. Then, small signal analysis is 

conducted with this linear model. The eigenvalues and eigenvectors are calculated 

to get the frequencies, shapes and damping ratios of local and inter-area modes. 

3) Selection of measurements and control sites: The measurements that can be easily 

obtained, synchronized and have the highest observability of critical inter-area 

modes are good candidates for stabilizing signals.  Geometric measures of joint 

Controllability/Observability[28] are used to evaluate the comparative strength of 

candidate signals and the performance of controllers at different locations with 

respect to a given inter-area mode. 
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4) Linear model reduction: The controller obtained by LMI approach is of full order, 

that is, the same size as the design model including weighting functions. A middle 

size system usually has several hundreds of states. To design a controller with 

such a high order model is neither practical nor necessary. Therefore, model 

reduction is often applied to obtain a lower order model for controller design. The 

reduced order model should be assured to have the same global characteristics as 

the original system [25]. In this research, the balanced model reduction via the 

Schur method provided by the robust control toolbox in Matlab [26] is used for 

the model reduction task. 

5) Controller synthesis: An LMI approach to the mixed H2/H∞ output-feedback 

control with regional pole placement is applied to design a wide-area damping 

controller for inter-area oscillations. The designed controller should meet the 

requirements of robust stability, robust performance and acceptable transient 

response. Time-delays should be modeled in the controller synthesis problem so 

that the designed controller can handle time-delays.  Sometimes the order of 

obtained controller needs to be reduced for easy implementation. In this case, the 

balanced model reduction is applied again.  

6) Closed-loop verification and nonlinear time domain simulation: The performance 

of the controller and its digital counterpart are evaluated in the closed-loop system 

with the full-order linear model using Matlab. Since the controller is designed 
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with liner techniques, it’s necessary to tune the controller parameters and verify 

its effectiveness with nonlinear simulations. PMU data reporting rates selected 

with consideration of the effects of time-delays. The controller performance in the 

nonlinear power system model is evaluated by time domain simulation with the 

help of Transient Security Assessment Tool (TSAT) [27].  
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3.2 Wide-area Damping Control System Architecture 

Generally speaking, there are two classes of solutions to design damping controllers, the 

decentralized approach and the centralized approach. The main advantage of the first 

approach comes from the fact that it is based on local measurements hence additional 

telecommunication equipments are not needed. But, it is less clear that 

decentralized/local control alone will suffice to economically and efficiently satisfy the 

damping needs of the heavily stressed networks of the future [11].  On the contrary, 

centralized wide-area damping control provides a more efficient solution due to the 

availability of a large amount of system wide dynamic data and better observations of 

inter-area modes. Wide-area controls include any control that requires some 

communication link to either gather the input or to send out control signals [29]. It is 

found that if remote signals are applied to the controller, the system dynamic 

performance can be enhanced with respect to inter-area oscillations [3], [15], [30]. Even 

though additional telecommunication equipment is needed for the realization of such a 

centralized wide-area damping control system, it still turns out to be more cost-effective 

than installing new control devices. 

In most power systems, local oscillation modes are often well damped due to the 

installation of local PSS, while inter-area modes are often lightly damped because the 

control inputs used by those PSS are local signals and often lack good observations of 

some significant inter-area modes. This suggests that a wide-area controller, which uses 

wide-area measurements as its inputs to create control signals supplement to local PSSs, 
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may help to improve the damping of inter-area oscillations. A centralized control system 

structure is thus proposed and shown in Fig. 3.1.  

Fig. 3.1 Architecture of wide-area damping control systems 

In the proposed wide-area damping control system, selected stabilizing signals are 

measured by PMUs and sent to the controller through dedicated communication links. 

The wide-area damping controller calculates modulation signals and sends them to the 

selected generator exciters. This control scheme is a centralized architecture because 

every measurement is fed back through central controller to every controller/control 

device. In practice, there are two ways to implement the proposed wide-area damping 
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controller. The first way is to install a centralized controller in the control center. The 

controller collects all measurements, calculates the control signals and sends them to 

control locations. Another way is to install one controller at each globally controlled 

generator. Thus, a completely peer-to-peer architecture can be applied to achieve the 

same function. 

In this design, all local PSSs are still conventional controllers designed by classical 

methods. They are modeled in the open loop state-state representation, on which the 

design of the WADC is based. The whole damping system includes two levels. The first 

level is fully decentralized and consists of conventional local PSSs. The second level is 

centralized and provides supplemental damping actions in addition to the first level for 

lightly damped inter-area oscillations.  
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3.3 Selection of Measurements and Control Locations 

The selection of appropriate stabilizing signals and locations of control sites is an 

important consideration in the design of wide-area damping control systems. For FACTS 

devices, the most often used input signals are line current, line active power and 

generator angular speed. Reference [2] concluded that the most suitable auxiliary input 

signal for the SVC for damping improvement is the locally measured transmission line-

current magnitude. References [32, 38] select locally measured active power as input 

signal and references [42, 43] use generator angular speed as input signals.  Reference 

[91] shows that for high stress conditions, current magnitude is a better input signal for 

the modulation of the parallel Pacific HVDC Intertie to damp Pacific AC Intertie (PACI) 

oscillations. For PSS, shaft speed, integral of power and terminal frequency are among 

the commonly used input signals [1]. For local mode oscillations, the largest residue is 

associated with a local signal (e.g., generator rotor speed signal for a PSS). This means 

that local signals always have the highest observabily and thus the most effective 

damping effects for local modes. But for inter-area modes, local signals may not have the 

maximum observability. The signal with maximum observability for a particular mode 

may be derived from a remote location or as a combination of signals from several 

locations. It has been proved that under certain operating conditions an inter-area mode 

may be controllable from one area and be observable from another [3, 49].  

The remote stabilizing signals are often referred to as “global signals” to illustrate that 

they contain information about overall network dynamics as opposed to local control 

signals which lack adequate observability of some of the significant inter-area modes. 
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The recent advances in WAMS technologies using PMUs make it possible to deliver 

synchronous phasors and control signals at a high speed (e.g., at a 60-Hz sample rate). It 

is also possible to deploy PMUs at strategic locations on the grid and obtain a coherent 

picture of the entire network in real time [50].  

Methods developed to select feedback signals and control sites resulting in the maximum 

damping effects can be classified into two categories: controllability/observability 

analysis and damping torque analysis. Controllability/observability analysis is derived 

from modal control theory of linear time-invariant system [31, 32]. With this method, 

measures of modal controllability and observability are calculated to resolve problems of 

the best control sites and the selection of the stabilizing signals for PSS and FACTS 

devices [33-37]. Damping torque analysis [38-40] gives more physical meanings to the 

criteria of selection of control sites and stabilizing signals. But, as pointed out in [41], 

residue analysis is equivalent to damping torque analysis.  

The linearized state-space MIMO model of the studied system can be written as: 

• 

x = Ax + Bu  (3.1) 

y = Cx  (3.2) 

where x is the n× 1 state vector, u is the m×1 input vector and y the p×1 measured output 

vector; A (n×n), B (n× m) and C (p×n) are state, input and output matrices respectively. 

Suppose matrix A has n distinct eigenvalues ( λk , k = 1,...n ) and the corresponding 

matrices of right and left eigenvectors respectively φ  andψ . 
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Residue Rk can be said to quantify the participation of mode k in the dynamics as seen 

between inputs and outputs. Residue matrix Rk associated with the kth natural mode is a 

p×m matrix and defined as the product of the mode's observability and controllability: 

R = Cφ ψ B  (3.3)k k k 

The residue-based measures of controllability mci (k)  and observability moj (k) 

associated with mode k can be derived in a normalized form as follows [11]: 

Rk (:,i)mci (k) = (i = 1,..., m)  (3.4)
|| Rk || 

Rk ( j,:)moj (k) = ( j = 1,..., p)  (3.5)
Rk 

If mci (k) = 0, then mode k is uncontrollable from input i. If moj (k) = 0, then mode k is 

unobservable from output j. With the above definitions, the strength of a signal or the 

performance of a controller with respect to a given mode can be assessed using relative 

controllability and observability measures for the ith input and jth output. 

In the design of SISO controller, the selection of input signals can’t be only based on the 

measures of observability and the selection of control device locations can’t be only 

based on the measures of controllability. Input and output signals are always 

simultaneously selected when designing a control loop. This is explained by considering 

the sensitivity of the kth eigenvalue to the gain K of a proportional feedback controller: 
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∂λ 
∂K

k =|| Cφkψ k B ||= = σ k  (3.6)Rk 

In this case, the residue is the modal sensitivity of the constant gain controller. Therefore, 

the amount of damping that can be added to a given mode k by shifting it towards the left 

on the Laplace plane is proportional to the residue. When Rk ( j, i) vanished, the control 

input i has no influence on mode k response if the feedback is based on the measured 

output signal j. Even though large feedback gains can still keep the system 

observable/controllable, there are lots of detrimental effects such as increased sensitivity 

to noise, control saturation during large disturbances and gain and phase margin 

limitations [22, 52]. Therefore, when choosing control loops or input/put pairs, large 

residues or joint controllability/observability measures are desirable. Conventionally, the 

joint controllability/observability measure is defined by [53]: 

m (i, j) = mci (k)moj (k)  (3.7)cok 

The joint controllability/observability measure mcok is a good index for the SISO control 

loop selection. Nonzero mcok (i, j)  means that mode k can be damped using input i and 

output j. The input/output pairs with maximum mcok are the most efficient control loops. 

If maximum mcok (i, j) is achieved with i and j in the same location, local control is the 

best choice for damping mode k. Otherwise, wide-area control should be considered for 

better damping of mode k. 

The limit of residue based modal controllability/observability measures is that they are 

only valid for the signals of the same type. When signals of a widely differing physical 
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significance, such as power flow in a tie-line (MW), bus frequency (Hz), shaft speed 

(rad/s), angle shift (deg.), etc. are involved in the output matrix simultaneously, the 

residue approach suffers a scaling problem. The validity of the relative measure can be 

ensured only when all outputs are of the same type [12]. To overcome this shortcoming, 

geometric measures introduced by Hamdan [28] are used to evaluate the comparative 

strength of a signal and a control site with respect to a given model. The geometric 

measures of controllability gmci (k) and observability gmoj (k)  associated with the mode k 

are: 

|ψ kbi |
gmci (k) = cos(α (ψ k ,bi )) =  (3.8)

ψ k bi 

T | c jφk |
gmoj (k) = cos(θ (φk ,c j )) =  (3.9) 

cφk j 

with bi  the ith column of input matrix B (corresponding to the ith input) and c j  the jth 

row of output matrix C (corresponding to the jth output). |z| and ||z|| are the modulus and 

Euclidean norm of z respectively; α (ψ k ,bi ) is the geometrical angle between the input 

vector i and the kth left eigenvector, while θ (φk ,c
T
j ) is the geometrical angle between the 

output vector j and the kth right eigenvector. These equations show that the controllability 

measure is related to the angle between the left eigenvectors and the columns of the input 

matrix B and that the observability measure is related to the angle between the right 

eigenvectors and the rows of the output matrix C. 
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If gmci (k) = 0 , then the mode k is uncontrollable from input i. If gmoj (k) = 0 , then the 

mode k is unobservable from the output j. Being based on directional properties of the 

underlying column vectors in the system matrices, the geometrical measures remain 

effective classifiers, even for inputs and outputs of widely differing types.  
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3.4 Design of Local PSSs 

In the proposed design of wide-area damping control systems, the first level of damping 

is provided by conventional PSSs for local modes and the damping for inter-area modes 

are provided by the second level. To implement such a wide-area damping control 

system, local PSSs need to be redesigned for local modes. The design method for local 

SISO controller used in this research is the conventional residue-based method. The 

design procedure is as follows: 

Suppose we design a SISO feedback damping controller. The closed loop system is 

shown in Fig. 3.2, where G(s) represents the plant model (which is the open loop transfer 

function between measurements y(s) and reference input uref, and H(s) is the transfer 

function of the damping controller.  

Fig. 3.2 Closed loop system with damping controller 

The eigenvalue sensitivity is expressed by [54]: 

∂λi ∂(K ⋅ H (s))
= Ri = RiH (s) (3.10)

∂K ∂K 

where, Ri / λi is the residue/eigenvalue associated with the ith mode, and K is the gain of 
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the damping controller. The small change in the ith eigenvalue ∆λi caused by the 

changes of feedback gain ∆K  is given by: 

∆λi = RiH (s) ⋅ ∆K  (3.11) 

From equation (3.11), it’s clear that with the same gain of the feedback loop, a larger 

residue will result in a larger change of the corresponding oscillation mode. Therefore, 

the best feedback loop is the one with the largest residue for the considered oscillation 

mode. The effect of the controller transfer function in the feedback path is to modify the 

sensitivity of the eigenvalue of the original system by the value of the controller transfer 

function evaluated at the original eigenvalue.  A desired controller is to move the loci of 

the inter-area modes to the left half of the complex plane as they depart from the open 

loop poles. This can be done by shaping the phase of controller transfer function H(s) 

using phase lead compensation.  

jω 

Ri 

θ i
Direction of ∆λi = ∆K ⋅ H (s) ⋅ Ri 

∆λi arg(Ri ) 

λ i 
λ 0 

i 
1 

σ 

Fig. 3.3 Shift of ith mode/eigenvalue with the damping controller 

Fig. 3.3 shows the compensation angle needed to move the eigenvalue direct to the left 

parallel with the real axisθi , which is given by [55]: 

θi = 180o − arg(Ri )  (3.12) 

If H(s) is a static gain, i.e. H(s) = K, then 
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∆λ = ∆σ + j∆ω = K ⋅[Re(R ) + j Im(R )]i i i i i  (3.13) 

Equation (3.13) shows that the change of damping and frequency of the ith mode, due to 

the static feedback gain, is proportional to the real and imaginary parts of the residue 

respectively. 

The controller designed is made up of washout filter and lead-lag blocks, with the 

transfer function: 

sT 1+ sTw 1 nH (s) = K ( )          (3.14) 
1+ sTw 1+ sT2 

where Tw is the washout filter time constant and its value can be taken as a number 

between 1 and 20 seconds. Since the limit of phase compensation of the lead-lag block is 

about 60o [56], the number of the lead-lag blocks (n) can be determined by taking the 

nearest larger number of θ / 60 . The time constant T1  and T2  are calculated from: 

θi1− sin( )Tα = 1 = n 
T2 1+ sin(θi )

n 

1T2 = αT1 , T1 =  (3.15)
ωi α 

where ωi is the frequency of ith mode, n is the number of lead-lag blocks.  

desThe controller gain K is computed as a function of the desired eigenvalue location λi : 

λdes −λi iK =  (3.16)
Ri H (s) 
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3.5 Robust Controller Design Based on H∞ Technique 

3.5.1 Introduction 

The power system stabilizer adds damping to generator rotor oscillations by adjusting the 

generator excitation so that it provides a component of electrical torque in phase with 

rotor speed deviations. The conventional and most popular method to design a PSS is the 

residue-based method and the controller is single input and single output. A SISO 

controller designed by conventional residue-based method has several shortcomings. One 

of the biggest problems inherent to the classical linear controller design for electric power 

systems comes from the fact that the controller performance depends strongly on the 

system operating point, and the system operating conditions usually have significant 

variations along the day. This system characteristic hinders the achievement of a 

required performance for the controllers designed by the classical control techniques, 

given that such techniques are based on a linearization of the system model at a nominal 

operating point, thus having its validity restricted to a neighborhood of this point [57]. 

For example, a PSS designed to provide damping for a system with weak tie line by 

means of phase compensation at the rotor oscillation frequency will not provide adequate 

phase compensation for another situation, say a strong tie line situation. This is because 

the increase in reactance with a strong tie line will increase the synchronizing torque 

thereby increasing the natural frequency of oscillation and also the phase lead 

compensation requirement. Therefore a PSS, well tuned for a particular operating 

situation is unable to provide the same sort of performance for another operating 

condition. 
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Robust controllers were designed using advanced multi-variable control techniques like 

LQ, LQG, H2 and H∞ in the last decade. The main objective of these robust control 

methods is to design controllers that are capable of handling modeling errors and 

uncertainties and produce control actions that stabilize the plant. Additionally, the 

controller designed should ensure stability and meet performance specifications for all 

possible plant behavior defined by an uncertainty. These two requirements of the closed 

loop system are called robust stability and robust performance. Among the various multi-

variable control methods the H∞ based optimization technique is popular. H∞ [63] is a 

space of functions on the complex plane that are analytic and bounded in the right half 

plane. The relevance of H∞ theory to robust stabilization was provided in the work of 

Glover in 1986 [64]. The H∞ based optimization technique provides the design engineer 

the freedom to formulate his demands using frequency domain based weighting functions, 

unlike the LQ and H2 theory which have a purely time domain based performance 

criterion. The H∞ design method is based on minimizing the H∞ norm of a cost function 

specified to reflect robust stability and robust performance. H∞ based controllers have 

been designed successfully for servo applications, flight control applications, process 

control etc. as shown in a number of published literatures. There have been a few 

attempts at applying H∞ based controllers in the area of power system control [58-62], but 

the design process proved very complex with limitations in the controllers designed.  

3.5.2 Definitions of Norms 

H∞ methods of control design, broadly speaking, works by minimizing the H∞ norm of a 

certain closed loop transfer function specified to reflect robust stability and robust 
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performance. The norm denotes a measure of the performance of the system by the size 

of signals, transfer functions and uncertainties.  

In the s-domain, the output signal vector y(s), of a system modeled by the transfer 

function matrix,G(s) , to any input signal vector, u(s), is defined asY (s) = G(s)U (s) . 

The performance of this system can be measured by the size of signals u(t), y(t) in the 

time domain and the size of the transfer function matrixG(s) , and its uncertainty. These 

are mathematically denoted as the ‘norms’ of the signal and function. The L2 and L∞ 

norms have particular significance in the control system design. The L2 norm is given 

as u( )t 
2 

=
∞ 

u ( )  ( )  T t u t dt . The L∞ norm, which is the least upper bound on the signal∫−∞ 

u( )t 
∞

= sup max u (t) ; where ( ) = [ t ,u t ,...,u ( )  u t u ( ) ( )  t ].absolute value is given as r 1 2 n r =1,2,...,nt ≥0 

The performance of SISO systems with feedback is influenced strongly by the variation 

of the open loop gain with frequency. The disturbance rejection and accuracy of tracking 

also depend on the open loop gain. In the multivariable case the concept of gain is 

replaced by the singular value of the transfer function matrix. They are also called 

‘principal gains’. Similar to Bode plots of SISO systems, the singular values are plotted 

with frequency for a multivariable system.  

The transfer function matrix G(s) can be characterised by a non-negative number using 

the H2 norm and H∞ norm. To define these norms, let’s first define singular value. 

Singular values of a matrix are good measures of the “size” of the matrix and the 
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corresponding singular vectors are good indications of strong/weak input or output 

directions [65]. 

× m×mF m nFor a matrix A∈ , there exist unitary matrices U = [u1,u2 ,...,um ]∈ F  and 

Σ1 0n×nV = [v1,v2 ,...,vn ]∈ F  such that A = UΣV * , Σ =  , 0 0  

σ1 0 L 0  
 0 σ L 0 

Where Σ1 =  2  , andσ1 ≥ σ 2 ≥ L ≥ σ p ≥ 0, p = min{m,n}.
 M M O M  
  
 0 0 L σ p   

Then σ i is the ith singular value of A, and the vectors ui and v j are, respectively, the ith 

left singular vector and the jth right singular vector. The following notations for singular 

values are often adopted: 

σ (A) = σ max (A) = σ1 =  the largest singular value of A; 

σ (A) = σ (A) = σ p =  the smallest singular value of A.min 

The H2 norm can be interpreted as an average system gain taken over all frequencies. In 

fact, the squared H2 norm of system transfer function coincides with the total ‘output 

energy’ in the impulse response of the system. Another nice characteristic of H2 norm is 

that it has an interpretation in terms of the asymptotic output variance of the system when 

it is excited by white noise input signals. This characteristic makes H2 performance 

particularly useful in handling stochastic aspects such as noise attenuation and random 

undisturbance rejection. 
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H2 norm is given as  

1 ∞ 
T 1 ∞ n 

2G( jω)
2 

= ∫ tr{G( jω)G (− jω)}dω = ∫ ∑σ r (G( jω))dω  (3.17)
2π 2π r =1−∞ −∞ 

where tr{.} denotes the trace of the matrix; σ (.),σ 2 (.),⋅ ⋅ ⋅,σ n (.)denotes the singular values.  1 

H∞ norm provides a measure of a worst-case system gain. Consider a stable SISO linear 

y(t)
2 ,system with transfer function G(s) . The H∞ norm is defined as G( )s 

∞
= sup 

u( )tu (t )≠0 2 

where y(t) and u(t) are the system output and input signals, respectively. For stable 

systems this definition has the form: 

G( jω)
∞

= sup G( jω)  (3.18) 
ω 

The value of this norm corresponds to the peak on the magnitude Bode plot for the 

system.  

For a multivariable (MIMO) system the H∞ norm is defined as 

G( jω)
∞

= supσ (G( jω))  (3.19) 
ω 

G( jω) is the factor by which the amplitude of a sinusoidal input with angular frequency 

ω is magnified by the system. It is seen that the H∞ norm is simply a measure of the 

largest factor by which any sinusoid is magnified by the system. The value of this norm 

corresponds to the peak on the magnitude Bode plot for the system. 
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The value of G( jω) 
∞ 

can be read off from a frequency response plot of the largest 

singular valueσ (G( jω)) . The H∞ norm is the maximum factor by which the magnitude of 

any vector-valued sinusoidal input is magnified by the system.  

3.5.3 Performance and Stability Requirements 

The controller K(s) which stabilizes the nominal plantG(s) , is required to ensure stability 

and meet performance specifications for all possible plants defined by an uncertainty. 

This behaviour of the closed loop system is called robust stability and robust 

performance. These concepts are explained for a multivariable closed loop system whose 

block diagram is shown in Fig. 3.4. G(s) is the plant transfer function matrix and K(s) is 

the controller transfer function matrix; y(t), r(t), d(t), n(t) and e(t) denotes the output, 

reference, disturbance, measurement noise and tracking error signal vectors, respectively.  

Using Laplace transforms, 

−1 −1Y = (I + GK ) GK[r − n]+ (I + GK ) d (3.20) 

The first term in the expression, (I + GK )−1GK is the closed loop transfer function 

denoted as the complementary sensitivity function, T.  

The second term (I + GK )−1 is called the sensitivity function, S. The closed loop 

performance requirements of the multivariable feedback system can be expressed in 

terms of their principal gains: 

• to reduce the influence of disturbances on the output signal, the sensitivity function 
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measured as σ (S( jω )) should be as small as possible over the frequency band of the 

disturbances; 

d(t) 

K(s) 
+e(t) u(t) 

r(t) y(t)G(s) 
_

 + n(t) 

Fig. 3.4 Multivariable closed loop 

• to reduce the influence of measurement noise on the output signal, the complementary 

sensitivity function measured as σ (T ( jω )) should be as small as possible over the 

frequency band of the measurement noise. 

These control objectives can be reformulated using frequency dependent bounds on the 

sensitivity and complementary sensitivity functions, and norms. Bounds are 

approximated by gains of transfer functions W1(s) and W3(s) that are chosen in an 

arbitrary manner. The sensitivity and complementary sensitivity functions performance 

are represented as 

σ (W ( ωj )  (  ωS j )) 1≤1 , (3.21) 

σ (W ( ωj )  (  T jω )) 1≤3 (3.22)  

For a multivariable system, the frequency dependent bounds are defined by matrices 

W1(s) and W3(s). 
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Conditions for robust stability of a multivariable system can be derived from a 

multivariable version of the small gain theorem. The small gain theorem is a modification 

of Nyquist stability criterion. It states that the closed loop system will remain stable if a 

gain measure of the product of all transfer function matrices constituting the feedback 

path is less than unity [65].  

Dealing with, and understanding the effects of uncertainty are important. Reducing the 

effect of some forms of uncertainty (initial conditions, low frequency disturbances) 

without catastrophically increasing the effect of other dominant forms (sensor noise, 

model uncertainty) is the primary job of the feedback control system. Over the years, 

precise and fixed linear control schemes have been used extensively in many engineering 

applications. These kinds of designs do not take into account the uncertainties that could 

be encountered in both the plant and controller models. The uncertainty may have several 

origins [66]. 

1) There are many parameters in the linear model, which are only known 

approximately or are simply in error. 

2) The parameters in the linear model may vary due to changes in the operating 

conditions. 

3) Measurement devices cause errors. 

4) There are neglected dynamics when simplifying the system model. 

5) Uncertainties can be caused by the controller model reduction or by 

implementation inaccuracies. 
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The two dominant forms of model uncertainty are: Uncertainty in parameters of the 

underlying differential equation models, and frequency-domain uncertainty, which often 

quantifies model uncertainty by describing absolute or relative uncertainty in the 

process's frequency response. When the plant modeling uncertainty is not too big, we can 

design high-gain, high-performance feedback controllers. High loop gains significantly 

larger than one in magnitude can attenuate the effects of plant model uncertainty and 

reduce the overall sensitivity of the system to plant noise. But if the plant model 

uncertainty is so large that the sign of the plant gain is not known, then it’s not possible to 

use large feedback gains without the risk that the system will become unstable. Thus, 

plant model uncertainty can be a fundamental limiting factor in determining what can be 

achieved with feedback. 

The first step of the robust control methodology is to model and bound the above 

uncertainties in an appropriate way. The next step is to try to design a controller that is 

insensitive to the difference between the actual system and the model of the system; i.e., a 

controller that can handle the worst-case perturbations. 

Uncertainty is normally classified into two categories [65], the structured uncertainty, 

which is represented by bounds or ranges on system parameters; unstructured uncertainty, 

which is given by bounds on the frequency response of the system. The unstructured 

uncertainty is more important than the structured one because all models include 

uncertainty to take care of un-modeled dynamics. 

The unstructured uncertainty is modeled in the control system design as  
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• the additive uncertainty ∆a(s) which is used to model errors due to high frequency 

dynamics 

~ 
∆ ( )s = G( )s − G( )s        (3.23)  a 

~ where G( )s represents the actual model of the plant. 

• the multiplicative uncertainty ∆m(s) which is used to represent the relative error in the 

models 

~ G( )s − G( )s
∆ ( )s =       (3.24)  m G( )s 

~ The multiplicative uncertainty which is also represented asG(s) = (I + ∆ s G s( )) ( ) , is usedm 

to model the dynamics of sensors. The two models of uncertainty are shown in Fig. 3.5. 

e(t) u(t) 

∆a(s) 

+
K(s)

+ r(t) G(s) I +∆m(s) y(t) 
_ 

Fig. 3.5 Additive/Multiplicative Uncertainty. 

In the case of SISO plants, the frequency at which there are uncertain variations in the 

plant of size|∆m|=2 marks a critical threshold beyond which there is insufficient 

information about the plant to reliably design a feedback controller. With such a 200% 

model uncertainty, the model provides no indication of the phase angle of the true plant, 

which means that the only way to reliably stabilize the plant is to ensure that the loop 

gain is less than one. Allowing for an additional factor of 2 margin for error, the control 
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system bandwidth is essentially limited to the frequency range over which multiplicative 

plant uncertainty ∆m has gain magnitude |∆m |<1. 

For stable additive and multiplicative uncertainty transfer functions ∆a(s) and ∆m(s) 

under the small gain theorem, the closed loop system shown in Fig. 3.5 will remain 

robustly stable if for all frequencies ω , the uncertainty models satisfy the following 

conditions: 

∆ (  ) < 
1additive uncertainty, a jω (  ) (  ) ;

K jω S jω 

∆ (  ) < 
1multiplicative uncertainty, .m jω ( )  T jω 

Using the H∞ norm these inequalities are expressed as  

σ (S(  ) (  ) (  )jω K jω ∆a jω ) <1      (3.25)  

and σ (T (  ) (  )jω ∆ jω ) <1       (3.26)  m 

As a consequence of this it is common to specify the stability margins of control systems 

via singular value inequalities,  

−1(S( jω ) (  )ωσ K j ) ≤W ( jω ) (3.27)  2 

and σ (T ( jω )) ≤W −1( )jω (3.28)  3 

These inequalities imply that the smaller the H∞ norm of the complementary sensitivity 

function, T, the better the robust stability of the system. From Fig. 3.5, it is seen that 

[ (  ) (  )ω K j is the transfer function from d(t) to u(t). Thus the robust stability S j ω ] 

constraint (eqn. 3.27) also limits the maximal control input energy.  
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3.5.4 Standard H∞ Optimization Problem 

In its abstract “standard” formulation, the H∞ control problem is one of disturbance 

rejection. Specifically, it consists of minimizing the closed-loop random-mean-squares 

(RMS, the largest gain over all square-integrable inputs) gain from w to z in the control 

loop of Fig. 3.6. This can be interpreted as minimizing the effect of the worst-case 

disturbance w on the output z. Fig. 3.6 consists of a modified plant G(s) which includes 

the weighting functions and a controller K(s) which is to be obtained by H∞ optimization. 

The plant inputs are grouped into: 

• u, the vector of control input signals; 

• w, the vector of exogenous input signals. 

The plant outputs are divided into two vectors: 

• y, the vector which consists of signals that are measured and used as the input vector 

of the controller to produce the control signal u; 

• z, the vector which consists of a set of signals used in measures of the closed loop 

system performance. 

G(s) 

K(s) 
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yu 
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Fig. 3.6 Two-port block diagram of the control 

The modified plant G(s) may be partitioned as 
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G (s) G ( )s 
G( )s =  

11 12 
       (3.29)  

sG21 ( )s G22 ( ) 

So that the two port system equations are given as 

Z ( )s = G ( )  ( )+ Gs W s ( )s U (s)      (3.30)  11 12 

Y ( )s = G ( )  ( )+ Gs W s ( )s U (s)      (3.31)  21 22 

U ( )s = ( ) ( )  (3.32)K s Y s 

From these equations the closed loop transfer function relating vectors z(t) and 

F ( ( )  ( ) ] ( )w(t), Z ( )s = [ G s , K s )W sL 

Where, ( ( )  ( )) = G11 ( )+ G s K s (I − G22 ( ) ( ))−1 G  (3.33)FL G s , K s s 12 ( ) ( ) s K s 21 (s) 

is called the linear fractional transformation. 

A suitable definition of the signals w(t) and z(t) or equivalently the corresponding transfer 

function matrix G(s) allows many control system design problems to be cast into the two-

port representations. Different measures of FL (G(s), K (s)) can be used to describe the 

desired control system performance.  

The plant G(s) can also be represented in the state-space form as 

x&( )t = Ax( )t + B w( )t + B2u(t)1  (3.34a) 

z( )t = C x( )t + D w( )t + D u(t)1 11 12 (3.34b) 

y( )t = C2 x( )t + D21w( )t + D22u(t) (3.34c) 
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resulting in a packed form notation of, 

 A 
G( )s = 

C1 

C 2 

B1 B2  
D D  (3.35)11 12  

D D 21 22  

From the above representation, the standard H∞ control problem can be stated as follows; 

“Find an internally stabilizing and realizable controller K(s) for a given plant G(s) such 

that the H∞ norm of the linear fractional transformation matrix FL ( ( ) ( ) is below aG s , K s ) 

given level γ”. 

∞ 
<γ ; with γ ∈ℜ and γ > 0i.e. FL (G( )  ( )s , K s )

3.5.5 Formulation of Weighted Mixed Sensitivity Problem 

For the closed-loop system shown in Fig. 3.4, we distinguish various ‘closed-loop’ 

transfer functions: 

• The sensitivity S = (I + GK )−1 , which maps the reference signal r to the (real) tracking 

error r - y and the disturbance d to y. 

• The complementary sensitivityT = (I + GK )−1GK = I − S , which maps the reference 

signal r to the output y and the sensor noise n to y. 

• The control sensitivity R = (I + GK )−1 K = SK , which maps the reference signal r, the 

disturbance d and the measurement noise n to the control input u. 
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Good reference signal tracking, i.e., a small error e=r-y, is achieved if the sensitivity 

function S is small. On the other hand, suppression of measurement noise n requires the 

complementary sensitivity function T to be small. In the mean time, we also want the 

control sensitivity function R to be small to avoid actuator saturation. However, due to 

the relation S+T=I, both S and T cannot be small simultaneously. Hence there is 

necessarily a trade-off between reference signal tracking and sensitivity to measurement 

noise. Fortunately, the frequency contents of the tracking signal r and the noise signal n 

are usually concentrated to different frequency ranges: r consists typically of low-

frequency components, whereas the noise n is important at higher frequencies. Therefore, 

controllers with both good (low-frequency) tracking properties and (high-frequency) 

noise suppression can be designed by making S small at low frequencies and T small at 

higher frequencies. To have a trade-off between these quantities, the ‘weighted mixed 

sensitivity problem’ was formulated [67]. This is the most commonly used configuration 

since it captures many different practical and physical features and reflects different 

performance and robustness specifications. 

The cost function, FL (G( )  ( )s , K s ) , whose H∞ norm is to be minimized is given by 

W1S 
W3T , where G(s) is the plant, K is the controller to be designed. W1 is the weighting 

W2 SK 
∞ 

on tracking error, W2 is the weighting on the control signal, W3 is the weighting on the 

plant output as shown in Fig. 3.7 
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u
K(s) 
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Fig. 3.7 Weighted Mixed Sensitivity Problem 

It is seen from Fig. 3.7 that the weighted mixed sensitivity problem is exactly in the same 

form as the standard problem, therefore for the above given cost function, using the 

expressions for S and T and comparing with general form of eqn. 3.35 results in a 

modified plant given by, 

W1 (s) −W1 (s)Go (s) 
0 W3 (s)Go (s) 

  

G(s) = 



 




 

0 W2 (s) 
I − Go (s) 

(3.36) 

  

where I denotes identity matrix. 

It is not necessary that all the specifications are considered for one problem; hence all the 

three weighting functions need not be specified for a problem. In this research, the 

following mixed sensitivity (S/R) design objective is adopted: 

W1S 
≤ γ

W2 R ∞ (3.37) 

where γ is the bound on H∞ norm. 
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This design would minimize a weighted mix of the sensitivity function S that ensures 

disturbance rejection and good tracking and control sensitivity function R that handles the 

robustness issues and constrains the controller effort.  

Selection of the weighting matrices W1(s), W2(s) and W3(s) is the most important part of 

the design process since a proper choice of the weighting functions based on knowledge 

of the plant is required to meet the design requirements. Choosing the weighting 

functions is based on the knowledge of the plant and design constraints (stability and 

performance requirements). There are no systematic procedures available for the 

selection of the weighting functions. Generally speaking, the weight filters should be 

large on frequency ranges where it is important to constrain the magnitudes of the 

associated closed-loop transfer functions, and small at other frequencies. The weight 

filters which are used to achieve the required closed-loop behavior are typically low-pass, 

high-pass, or band-pass filters.  

3.5.6 Mixed H2/H∞ Output-Feedback Control 

Robust control techniques are introduced into power system damping controller design in 

the last decade to handle modeling errors and uncertainties. The most often used 

approach is the single objective synthesis, in which all control requirements are weighted 

and formulated in a single objective. But in many real-world applications, standard H∞ 

synthesis cannot adequately capture all design specifications. For instance, noise 

attenuation and regulation against random disturbances are more naturally expressed in 

LQG terms (H2 norm). Similarly, pure H∞ synthesis only enforces closed-loop stability 

and does not allow for direct placement of the closed-loop poles in more specific regions 

61 



 

 

 

 

 

 

 

  

of the left-half plane. Since the pole location is related to the time response and transient 

behavior of the feedback system, it is often desirable to impose additional damping and 

clustering constraints on the closed-loop dynamics. This makes multi-objective synthesis 

highly desirable in practice. It’s well known that each robust method is mainly useful to 

capture a set of special specifications [68]. H∞ control maintains good robust performance 

in presence of model uncertainties. But it is mainly concerned with frequency-domain 

performance and does not guarantee good transient behaviors for the closed-loop system. 

H2 control gives more suitable performance on system transient behaviors and is often 

applied to meet performance specifications and impulsive disturbance rejection while 

guaranteeing closed-loop stability. 

In many practical applications, the trade-off between conflicting requirements has to be 

made so that a single norm can represent all design requirements. In this case, minimizing 

this performance index is not very effective because the resulting controller is often 

conservative and the achievable closed-loop performance is limited. What’s more, the 

selection of weighting function to meet the trade-off between conflicting requirements is 

hard and time consuming [25].  

To overcome these limitations of a single objective synthesis technique, the multi-

objective synthesis technique, which can incorporate various design specifications easily, 

is naturally considered. By multi-objective control, we refer to synthesis problems with a 

mix of time- and frequency- domain specifications ranging from H2 and H∞ performance 

to regional pole placement constraints. The H∞ performance is convenient to enforce 

robustness to model uncertainty and to express frequency domain specifications such as 
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bandwidth, low-frequency gain, and roll-off; whereas the H2 performance is useful to 

handle stochastic aspects such as measurement noise and random disturbance. In addition, 

direct placement of the closed-loop poles in specific regions of the left-half plane ensures 

acceptable transient response in terms of decay and damping ratio.  

The configuration of the multi-objective damping controller synthesis is shown in Fig. 

3.8. The output channel z∞ is associated with the H∞ performance and the channel z2  is 

associated with H2 performance. W1(s) is a low-pass filter in the H2 performance channel 

for output disturbance rejection. W2(s) is a high-pass filter or some small constant in H2 

performance channel that is used to reduce the control effort. W3(s) is a high-pass filter in 

the H∞ performance channel to ensure robustness against model uncertainties. 

Fig. 3.8 Multi-objective damping controller synthesis configuration 

In single objective H∞ synthesis approach, the H∞ performance is used to evaluate all 

design specifications like disturbance rejection, robustness and control efforts. In 

contrast, in this multi-objective synthesis approach, the H∞ performance is only used to 

measure robustness against dynamic uncertainty. The H2 performance is used to measure 

control efforts and output disturbance rejection because H2 control gives more suitable 

63 



 

 

 

performance on system transient behaviors and control cost can be more realistically 

captured by H2 norm [69]. Since our aim is to damp out inter-area oscillations, the center-

of-inertia (COI) differences between areas are selected as controlled output associated 

with H2 performance. 
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 3.6 LMI Approach to H∞ Controller Design 

The solution to the H∞ control problem has been attempted by many researchers. The 

state space approach was developed in the late 1980’s [70]. The characterization involves 

the solution of two algebraic Riccati equations, of the same order as the modified plant. 

The solution to the H∞ control design problem based on the Riccati equation approach 

generally produces a controller that suffers from pole-zero cancellations between the 

plant and the controller [71]. Furthermore, some of the specifications in the time domain, 

such as settling time, peak overshoot (closed-loop damping ratio) cannot be captured in a 

straight forward manner in Riccati-based design [72]. Riccati-based design depends 

heavily on the proper selection of weights for conditioning the plant. There is no clear 

procedure for weight selection in power system damping design.  

Recently, LMI techniques have been used to provide a solution to the H∞ synthesis 

problem. These LMIs correspond to the inequality counterpart of the usual H∞ Riccati 

equations. The numerical approach to solution through a LMI formulation has several 

distinct advantages. First, the resulting controllers do not in general suffer from the 

problem of pole-zero cancellation [73]. Second, because LMI’s intrinsically reflect 

constraints rather than optimality, they tend to offer more flexibility for combining 

several constraints on the closed-loop system or objectives in a numerically tractable 

manner, even where the analytical solution is not possible [74, 75]. By definition, the 

LMI solution, if it exists, is robust and optimal. Last, The LMI approach is well-adapted 

to the power system controller problem since a posteriori determination of the optimality 

or robustness requires many long, time-consuming simulations. Several researchers have 
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investigated the use of LMI techniques for H∞ based power system damping controller 

design [15, 72, 76-78]. Reference [68] gives a detailed description of an LMI approach to 

such a complex problem of mixed H2/ H∞ output-feedback control with regional pole 

placement. 

3.6.1 Introduction to LMI  

A linear matrix inequality is any constraint of the form 

A(x) := A + x A + ... + xN A < 0  (3.38)0 1 1 N 

where 

• x = (x1,..., xN ) is a vector of unknown scalars (the decision or optimization variables) 

• A0 , A1,..., AN are given symmetric matrices 

• < 0 stands for “negative definite,” i.e., the largest eigenvalue of A(x) is negative 

The LMI (3.38) is a convex constraint on x and finding a solution x to (3.38), if any, is a 

convex optimization problem. 

LMI techniques are applicable to three general types of control problems: feasibility 

(3.39), linear objective minimization (3.40) and generalized eigenvalue minimization 

(3.41) problems. These problems are respectively expressed as follows: 

Finding a solution x to A(x)<0 (3.39) 

Minimizing CT x subject to A(x)<0 (3.40) 
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A(x) < λB(x)
Minimizing λ subject to  B(x) > 0  (3.41) 
 C(x) < 0 

To formulate the LMI problem for a linear time-invariant system, the following state-

space representation is used: 

dxE = Ax(t) + Bu(t)
dt  (3.42) 

y(t) = Cx(t) + Du(t) 

where A, B, C, D and E are real matrices and E is invertible. This formulation is useful 

for specifying parameter-dependent systems. Recalling the traditional state-space system 

used for power systems, it’s convenient that the LMI method is developed in the same 

general form. 

3.6.2 LMI formulation for Multi-Objective Synthesis  

The control problem is sketched in Fig. 3.9. The output channel  z∞  is associated with the 

H∞ performance while the channel z2 is associated with the LQG aspects (H2 

performance). Denoting by T∞ (s) and T2 (s) the closed-loop transfer functions from w to 

z∞  and z2 , respectively, we consider the following multi-objective synthesis problem: 

Design a dynamic output-feedback controller u = K(s)y that 

• Maintains the H∞ norm of T∞ (s)  (RMS gain) below some prescribed valueγ 0 > 0 

• Maintains the H2 norm of T2 (s)  (LQG cost) below some prescribed value ν 0 > 0 

• Minimizes a trade-off criterion of the form 
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2α T∞ ∞
+ β 

2 , with α > 0  and β > 0T2 2 

• Places the closed-loop poles in some prescribed LMI region D 

z∞ 

G(s) 

K(s) 

w 

yu 

2z

Fig. 3.9 Multi-objective H∞ synthesis problem 

Let 

x& = Ax + B1w + B2u  (3.43a) 

z = C x + D w + D u               (3.43b) ∞ ∞ ∞1 ∞2 

z = C x + D w + D u           (3.43c) 2 2 21 22 

y = Cy x + Dy1w  (3.43d) 

and 

• 

x = A x + B y  (3.44a)k k k k 

u = C x + D y  (3.44b)k k k 

be state-space realizations of the plant G(s) and controller K(s), respectively, and let 

x& = A x + B w  (3.45a)cl cl cl 
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z = C x + D w  (3.45b)∞ cl1 cl cl1 

z = C x + D w  (3.45c)2 cl 2 cl cl 2 

be the corresponding closed-loop state-space equations. 

The three design objectives can be expressed as follows: 

• H∞ performance: the closed-loop RMS gain from w to z∞ does not exceed γ if and only 

if there exists a positive definite symmetric matrix χ∞ such that 

 A χ + χ AT B χ CT cl ∞ ∞ cl cl ∞ cl1  
 BT − I DT  < 0  (3.46)cl cl1
 2 C χ D − γ I cl1 ∞ cl1  

• H2 performance: the H2 norm of the closed-loop transfer function from w to z2  does not 

exceed ν if and only if Dcl 2 = 0 and there exist two symmetric matrices χ2  and Q such 

that 

 A χ + χ AT B cl 2 2 cl cl 
  < 0  (3.47) 
 Bcl

T − I  

 Q C χ cl 2 2 
  0  (3.48)T  >

χ C χ 2 cl 2 2  

Trace(Q) < ν 2  (3.49) 

• Pole placement: the closed-loop poles lie in the LMI region 

D = {z ∈C : L + Mz + M T z < 0}  (3.50) 

with L = LT = {λ } and M = [µ ]1 if and only if there exists a positive definite ij ij ≤i, j≤m1≤i, j≤m 

symmetric matrix χ pol satisfying 
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 

[λij χ pol + µij Acl χ pol + µij χ pol Acl
T ]1≤i, j ≤m < 0  (3.51) 

For tractability in the LMI framework, we must seek a single Lyapunov matrix 

χ := χ∞ = χ2 = χ pol that enforces all three sets of constraints. Find matrices M, N, 

R = RT and S = ST  to factorize χ as 

−1  R I  0 S 
χ = χ1χ2 , χ1 :=   , χ2 :=  

M T N T0 I    

and introducing the change of controller variables [79]: 

B := NB + SB DK K 2 K  (3.52) 

C := C M T + D C RK K K y  (3.53) 

AK := NAK M T + NBKCyR + SB2CK M T + S(A + B2 DKCy )R  (3.54) 

The inequality constraints on χ are readily turned into LMI constraints in the variable R, 

S, Q, A , B ,C and DK . This leads to the following suboptimal LMI formulation of theK K K 

multi-objective synthesis problem: 

Minimize αγ 2 + βTrace(Q)  over R, S, Q, A , B ,C , DK and γ 2 satisfying:K K K 

T T T T T AR + RA + B2CK + CK B2 AK + A + B2 DK Cy B1 + B2 DK Dy1 (C∞ R + D∞ 2CK ) 
  

T T T T T T T T AK + ( A + B2 DK Cy ) A S + SA + BK + C y BK SB1 + BK Dy1 C∞ + Cy DK D∞ 2  
< 0 T T (B1 + B2 DK Dy1) SB1 + BK Dy1 − I (D∞1 + D∞ 2 DK Dy1)  

 C R + D C C + D D C D + D D D − γ 2 I ∞ ∞ 2 K ∞ ∞ 2 K y ∞1 ∞ 2 K y1 
 (3.55) 
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

 Q C2 R + D22CK C2 + D22 DKCy   
 (C R + D C )T R I  > 0  (3.56)2 22 K
 T  
 (C2 + D22 DKCy ) I S  

  R I   AR + B C A + B D C 2 K 2 K 2
λij   + µij   + 

 I S   AK SA + BKC2 
 (3.57)

T T T T  RA + CK B2 AK  
µ < 0ji  

T T 
(A + B D C ) (SA + B C ) 2 K 2 K 2 1≤i, j≤m 

Trace(Q) < ν 0
2  (3.58) 

γ 2 < γ 0
2  (3.59) 

D21 + D22 DK Dy1 = 0  (3.60) 

Given optimal solutions γ *,Q* of this LMI problem, the closed-loop H∞ and H2 

performances are bounded by 

∞ 
≤ γ *  (3.61)T∞ 

≤ Trace(Q*) (3.62)T2 2 

3.6.3 LMI Region for Pole Placement Objective 

The transient response of a linear system is related to the location of its poles. Good 

transient response can be achieved by placing all closed-loop poles in a prescribed region. 

It is often desirable to enforce some minimum decay rate or closed-loop damping via 

regional pole assignment. In addition, pole constraints are useful to avoid fast dynamics 
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and high-frequency gain in the controller, which in turn facilitate its digital 

implementation. While achieving acceptable damping ratio and decay rate, excessively 

large controller gains should be avoided, since they could lead to controller output 

saturation and a poor large disturbance response of the system. Thus an unnecessarily 

large shift of the system poles into the left half plane should be avoided, since this would 

be accompanied by large feedback gains. Imposition of additional constraints on the 

closed loop poles restricting their real parts to be greater than a suitable negative number 

inhibits such excessive shifting of the system poles due to the feedback [80]. 

The concept of LMI region is useful to formulate pole placement objectives in LMI 

terms. LMI regions are convex subsets D of the complex plane characterized by 

D = {z ∈ C : f (z) < 0}D  (3.63) 

where fD (z) = α + βz + β T z = [αkl + βkl z + βlk z]1≤k ,l ≤m is called the characteristic function 

m×m m×mof D. α = [α ]∈ R  and β = [β ]∈ R are symmetric matrix. A dynamical system kl kl 

• 

x = Ax is called D-stable if all its poles lie in D. The matrix is D-stable if and only if 

there exits a symmetric matrix X such that 

M D (A, X ) < 0, X > 0  (3.64) 

where M D (A, X ) := α ⊗ X + β ⊗ (AX ) + β T ⊗ (AX )T and ⊗ denotes the Kronecker 

production of matrices.  

72 



 

  

 

       

 

Many convex regions in the complex plane which are symmetric with respect to the real 

axis including half planes, horizontal strips, circles and sectors can be expressed as LMI 

regions. The intersection of a number of LMI regions is also an LMI region. Some typical 

LMI regions are: 

1) Half-plane Re(z) < − α : fD (z) = z + z + 2α < 0 

2) Conic sector with apex at the origin and inner angle 2θ (S(0,0,θ )) : 

sinθ (z + z) − cosθ (z − z)fD (z) =   < 0 
cosθ (z − z) sinθ (z + z)  

One region for all the control purposes discussed above is shown in Fig. 3.10. When the 

closed-loop poles are in this region, it ensures minimum damping ratio ξ = cosθ , 

minimum rate of decayσ , a maximum undamped natural frequencyω  and acceptable 

controller gains. This in turn bounds the maximum overshoot, the frequency of 

oscillatory modes, the decay time, the rise time, settling time and maximum gains. 

Fig. 3.10 LMI region for pole placement 
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3.7 Time-Delay 

3.7.1 Introduction 

With the proposal of wide-area damping control systems, the impact of time-delays 

received more and more concerns because it reduces the effectiveness of control system 

damping or destabilizes the system in some cases [82]. In wide-area damping control 

systems, time-delays are caused by measurements processing, transmission, 

synchronization and control signals calculation and transmission. Usually, the time-delay 

between the instant of measurements being taken and that of the control devices receiving 

control signals is usually considered to be in the order of 100 ms [15]. In the cases of 

fiber optic communication links used for PMU measurements and control signals 

transmission, the total time-delay in a feedback loop is in the range of 150 – 300 ms [81].  

It is often possible to design a control system taking time-delay effects into account for 

fixed time-delay communication links [14]. References [83, 84] proposed a procedure 

based on the unified Smith predictor (USP) approach to design a centralized power 

system damping controller for FACTS devices like SVC and TCSC. Only fixed time-

delays were considered in their approach. But in practice, the value of time-delay is a 

random variable with a large standard deviation so that time-delay becomes a significant 

limitation in the design and operation of wide-area damping control systems [12]. This 

requires that the designed damping controller should be robust not only for different 

operating conditions, but also for the uncertainty in time-delays. Reference [82] proposed 

a design of supervisory power system stabilizer (SPSS) that can handle the time-delay 

uncertainty by using a technique based on H∞ gain scheduling theory. 
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The biggest part of time-delay in a wide-area damping control system is data latency. 

Data latency is the time it takes from measuring the synchrophasor at the PMU to 

delivering the synchrophasor to the application. It is determined by the PMU processing, 

intermediate device reprocessing, network bandwidth, collecting and synchronizing all 

system PMU data and serving the data to applications. The system data latency will be 

defined by the slowest synchrophasor (of those measured at the same instant) delivered to 

applications. Data latency is not generally critical for system monitoring and post event 

analysis. However, it is crucial for real-time continuous damping controls. Time-delays 

are caused by the following factors: 

• Transducer delays 

• Window size of the DFT 

• Processing time of PMU 

• Data size of the PMU output 

• Multiplexing and transitions 

• Communication link involved 

• Data processing and synchronizations 

Delay includes two parts: 

• Fixed delay 

– Delay due to processing, DFT, multiplexing and data processing and 

synchronizations 

– Independent of communication medium used 

– Estimated to be around 75 ms  [81] 

• Propagation delay 
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– Function of the communication link and physical separation 

– Ranges from 20 ms in case of fiber-optic cables to 200 ms in case of low 

earth orbiting (LEO) satellites 

The total time-delays for different communication links, from the instant of data 

measured by PMUs to the instant that control signals arrive at control locations, are 

shown in Table 3-1 [81]. 

Table 3.1: Time-delays for different communication links 

Communication link Associated delay (milliseconds) 

Fiber-optic cables ~ 100-150 

Microwave links ~ 100-150 

Power line (PLC) ~ 150-350 

Telephone lines ~ 200-300 

Satellite link ~ 500-700 

3.7.2 Controller Design Considering Time-delay Uncertainty 

The closed-loop feedback control system with time-delays is shown in the Fig. 3.11. The 

time-delay can be roughly separated into two parts. The first part Tin is the time used for 

measurement processing, synchronization and transmission from PMUs to the centralized 

controller; the second part Tout is the time used for control signal calculations and 

transmission from the controller to control sites. If fiber-optic cables are used for 
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communication links, Tin is usually in the range of [75 - 200] ms and Tout is usually in the 

range of [50 - 150] ms.  
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Fig. 3.11 Controller design with time-delay 

In Matlab, time-delays are expressed in the exponential form ( e−sT ) in the Laplace 

domain. It can be replaced by a first-order Padé Approximation [88]:  

1
− sT + 1 

e − sT ≈ 2  (3.65)
1 sT + 1
2 

Time-delay uncertainty can be described in a state space realization called a Linear 

Fractional Transformation (LFT).  

Let time-delay be given by: 

τ d = a + bδ t , δ t ∈ [−1,1]  (3.66) 

 Where both a and b are constants.  

If the time-delay block is approximated by the first order Padé Approximation in (3.65), 

the state expression for the delay is then derived as: 
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• 2 4 x = − x + u  (3.67a)
τ d τ d 

y = x − u  (3.67b) 

1 
The LFT of is shown in the Fig. 3.12:
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Fig. 3.12 LFT representation of time-delay. 

1 
The term can be represented by a constant matrix and an uncertainty matrix: 

τ d 

−1 −11  − ba a  
 = F , δ  (3.68)u   −1 −1  t τ − ba ad     

Tin = 0.125(1+0.6δ t ). This covers an uncertain time-delay from 75ms to 200ms.  

Tout = 0.1(1+0.5δ t ). This covers an uncertain time-delay from 50ms to 150ms.  

The total time-delay is in the range of [125 – 350] ms. 

Fig 3.13 gives a delay-free system without the controller connected with a time-delay 

block. 
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Delay-free System Time-Delay Block  
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Fig. 3.13 Delay-free system connected with time-delay block 

The state-spaces of these two systems are represented mathematically as: 

• 

X = A X + B U1 1 1 1 1  (3.69)
Y = C X + D U1 1 1 1 1 

• 

X = A X + B Ud d d d d  (3.70)
Y = C X + D Ud d d d d 

Since U2=Y1, we have: 

 X 
• 

1 
  A1 0   X 1   B 1  

•
 =  + U 1      B C A X B D

 X d 
 d 1 d   d   d 1   (3.71) 

 X 1 Y = [D C C ] 
X  + D D Ud d 1 d  d 1 1 

 d  

The A, B, C and D matrices for the connected system are, 

 A1 0   B 1 
A = , B =   

Bd C1 Ad  Bd D1   (3.72) 
C = [Dd C1 C d ], D = D D1d 
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By connecting the time-delay block with a delay-free system with uncertainties, the 

system shown in the Fig. 3.14 is used for robust controller synthesis that can handle time-

delay uncertainty. 
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Fig. 3.14 System connection with the time-delay uncertainty block 
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3.8 Digital Environment 

Digital environment is another issue should be considered in the design of wide-area 

damping controllers. Wide-area damping controllers are usually designed based on 

traditional continuous analog control concepts with the assumption that all measured 

stabilizing signals and control signals are continuous. In practice, most communication 

links use for control purposes are optical fibers. More and more stability controllers are 

digital ones. The performance and robustness of controllers designed with linear 

techniques in the continuous s-domain should be tested in digital environments.  

The use of digital computers to calculate a control action for a continuous, dynamic 

system introduces the fundamental operation of sampling. If sample rates are fast enough, 

digital controllers can be made to closely match the performance of their continuous 

counterparts [86]. In the case of wide-area damping control system design, this becomes 

the problem of selecting suitable Phasor Measurement Units (PMU) data reporting rates. 

In other words, how fast these PMU measurements should be sent to the controller. From 

the viewpoint of control system performance, it’s desirable to select sample rates as fast 

as possible. But the selection of sample rates is a compromise because it is limited by 

several factors such as the cost of hardware, bandwidth of communication links and 

capability of available instruments, etc. For the design of wide-area damping controller, 

the compromise choice is to select the slowest PMU data reporting rate that meets all 

performance specifications. Today’s technologies make it possible to deploy PMUs at 

strategic locations of the grid and to deliver the signals at a speed of as high as 30 Hz data 

reporting rate to obtain a coherent picture of the entire network in real time [50].  
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∑ 

T 

Fig. 3.15 Power systems with digital controllers 

Fig. 3.15 is the block diagram showing a power system with digital controllers. The 

antialiasing filter is used to prevent the aliasing of the higher-frequency components of 

the signal. Analog measurements are sampled by the analog-to-digital (A/D) converter 

with the sample period T. The D/A converts the discrete control signal to an analog 

signal, and a zero-order hold (ZOH) maintains that same value throughout the sample 

period. The resulting control signal u is then applied to the actuator in precisely the same 

manner as the continuous implementation. The performance of a digital control system is 

depended very much on its sample rate (SR), ω s . The SR required depends on the 

closed-loop bandwidth of the system (ω b ). Generally, sample rates should be faster than 

30 times the bandwidth in order to assure that the digital controller can be made to 

closely match the performance of its continuous counterpart. It’s desirable to make 

sample rates as fast as possible. But the selection of sample rates is limited by the cost of 

hardware, bandwidth of communication links, speed of digital controllers and A/D 

converters, and available instruments (PMU). The compromise choice is the slowest 

sample rate that meets all performance specifications.  
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The single most important impact of implementing a control system digitally is the delay 

associated with the hold. A delay in any feedback system degrades the stability and 

damping of the system. Because each value of u(kT) is held constant until the next value 

is available from the controller, the continuous value of u(t) consists of steps that, on the 

average, lag u(kT) by T/2, as shown by the dashed line in Fig.3. 16. 

u 

average u(t) 

u(t) 

u(kT) 

1 2 3 4 5  6 7 8 9 10 11 12 kT 

Fig. 3.16 The delay due to the hold operation 

In this research, simulations based on discrete models derived from their continuous 

counterparts are conducted to test sample rate effects. It should be pointed out that neither 

the continuous model nor the discrete model is the correct one for simulations. Power 

systems are sampled-data systems where discrete signals appear in some places and 

continuous signals occur in other parts. The physical reality of power systems is that the 

digital controller operations are on discrete signals while the power system responses are 

in the continuous world and in order to consider the behavior of power systems between 

sample instants it is necessary to consider both the discrete actions of the digital 

controller and the continuous response of power systems. To do this, time domain 

simulations using a model that represents the realistic power system with all its 

nonlinearities is necessary. 
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Chapter 4. Case Studies 

4.1 Two-area Four-machine System 

The two-area four-machine system was created to exhibit the different types of 

oscillations that occur in both large and small interconnected power systems [87]. 

Detailed model descriptions are given in Appendix A. Fig. 4.1 shows the two-area four-

machine system. All synchronous machines are modeled with static excitation system, 

governor and conventional PSS with two lead-lag compensation blocks. The system is 

stressed by increasing the load at bus 7 to 997 MW and load at bus 9 to 2077 MW. The 

exporting power Ptie from area 1 to area 2 through the tie line is 460 MW and chosen as 

nominal operating point. The exporting power Ptie from area 1 to area 2 is allowed to vary 

in the range [0-500] MW by varying the loads and generations in each area. 

Area1 Area2 
G1 G31 5 6 7 8 9 10  11  3 

L7 L92 4 

WADC 

G2 G4 

Fig. 4.1 Two-area four-machine test system 
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4.1.1 Wide-area Damping Controller Design 

The design of wide-area damping controller includes the following steps: 

1) Full-order Model and Small Signal Analysis: With detailed model, each generator 

has 9 states and the total order of the nonlinear model is 36. The nominal plant is selected 

as the power transfer between two areas is 460 MW. Then, the nonlinear model is 

linearized around this operating point. Small signal analysis shows that this system has a 

lightly damped inter-area mode -0.057 ± 2.9756i with frequency 0.4736 and damp ratio 

0.0192. The objective of the wide-area damping controller is aimed at achieving 

acceptable damping for this mode.   

2) Selection of Measurements and Control Device Locations: Geometric measures are 

used to evaluate the comparative strength of candidate signals and the performance of 

controllers at different locations with respect to this inter-area mode. The candidate input 

signals are real powers of tie-lines, generator rotor speeds and bus voltage angle 

difference and center-of-inertia (COI) difference between two areas.  Table 4-1 shows the 

joint controllability/observability measures for all candidate signals and control locations.  

Table 4.1: Joint controllability/observability measures (Two-area system) 

P6−7 P7−8 P8−9 P9−10 ω1 ω2 ω3 ω4 θ7−9 δ 1a −a2 

G1 0.181 0.193 0.193 0.181 0.042 0.042 0.021 0.021 0.265 0.104 

G2 0.775 0.799 0.799 0.775 0.042 0.042 0.021 0.021 0.587 0.947 

G3 0.422 0.441 0.441 0.422 0.084 0.024 0.043 0.043 0.315  0.547 

G4 0.892 0.916 0.916 0.892 0.084 0.024 0.043 0.043 0.784 1.000 
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The rows of the table correspond to generators and the columns correspond to 

measurements. Pi− j  denotes the real power of transmission line connecting bus i and j. ωi 

denotes the rotor speed of generator i. θ7−9 denotes the voltage angle difference between 

bus 7 and 9. δ a1−a2 denotes the difference of center-of-inertia (COI) between two areas, 

4 

∑ 
2 

δ H ∑δ jHii i 
i=1 j =3which is defined as δ = − , where δ i and H i are rotor angle and a1−a2 2 4 

∑Hi ∑H j 
i =1 j =3 

inertia constant of generator i. The results are normalized so that their values are in the 

range [0 1]. 

From the calculation results shown in Table 4-1, we have the following conclusions: 

1) The most efficient generators for damping the inter-area mode are G4 and G2.  

2) The most efficient stabilizing signal isδ , the difference of center-of-inertiaa1−a2 

(COI) between two areas. 

3) Real tie-line powers are also suitable stabilizing signals because they have high 

joint controllability/observability measure. 

4) None of single generator rotor speed is good choice for input signals of controller 

to damp the inter-area mode. 

According to the above observation, we may choose generator 2 and generator 4 as our 

control locations and real power of tie-line from bus 7 to bus 8 as our stabilizing signal. 

What should be noticed here is that we don’t choose the difference of center-of-inertia 

(COI) between two areas as input signal even though it has the highest measures of 
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controllability/observability with respect to the inter-area mode. We have several reasons 

to do so. First, generator states such as rotor angle are hard to obtain while system output 

like tie-line power are easily obtained by PMUs. This explains why output feedback 

control is more practical than state feedback in wide-area control system design for 

power grids. Second, to calculate COI, all generator rotor angles are needed. This 

increases the cost for measurement devices and communication channels compared to the 

only measurement of tie-line power. At last, even if we can obtain rotor angles easily and 

economically, they still need to be synchronized so that the time-delay may be larger than 

the measurement of tie-line power.  

Fig. 4.2 Bode plots comparison of full-order model and reduced-order model (Two-area 
system) 
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3) Model Reduction: The order of the original linear model is 36. The LMI approach 

needs a large amount time for calculation. On the other hand, not all the states of the 

model are dominant. In fact, no more than a few states can contain the characteristics of 

this small system. Therefore, balanced model reduction is used to reduce the original high 

order model to an 8th-order model. The frequency responses of the full-order model and 

reduced-order model are shown in Fig. 4.2. We can see that for the interested bandwidth, 

the reduced-order model is reliable for robust controller design.  

4) Controller Synthesis: We are now ready to design our robust MIMO controller. The 

control input signal is real tie-line power P7-8 and control locations are generator 2 and 4, 

as shown in Fig. 4.1 Two kinds of disturbances are considered. One is the change of the 

operating point, for example, changes of input mechanical power and voltage reference. 

The other is exogenous noise effecting on measured feedback signal give by remote 

phasor measurement units. For this mixed H2/ H∞  robust synthesis, H∞ performance is 

evaluated by the difference of COI between two areas and H2 performance is evaluated 

by the rotor speed of generator 1, which is dirtied by exogenous noise. The pole-

placement constraint was specified in terms of a conic sector and two half planes as 

shown in Fig. 3.10. The inner angle of conic sector is 2 cos−1(0.1) , which ensures a 

minimum damping ratio of 0.1 for the inter-area mode. Also, the real part of the poles 

should large than -50 and less than -0.5. This constraint ensures a fast decay and at the 

same time a moderate controller gain. Weighting functions are given by: 

10 20s + 5W1(s) = , W2 (s) = 2.0, W3 (s) = 
s +10 s + 20 

The hinfmix function available in the LMI Control Toolbox [24] was used to perform the 

necessary computations. After optimization, it is shown that the guaranteed closed-loop 
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RMS gain (H∞  norm) is 0.1537 and guaranteed closed-loop H2 norm is 0.3944. The order 

of the designed controller by solving the LMIs is the sum of the order of open-loop model 

and weighting function. Thus, a 12th-order controller is obtained. Balanced model 

reduction is used again to simplify this controller to an 8th order one. The controller 

parameters are listed in Appendix C. Fig. 4.3 shows the frequency response of the 

designed controller. 

Fig. 4.3 Frequency response of the designed controller (Two-area system) 

5) Closed-loop Verification and Nonlinear Time Domain Simulation: The resulting 

reduced-order controller is first verified by small signal analysis. The damping ratio the 

inter-area mode is improved to 0.146 under closed-loop conditions. Then, time response 

of linear closed-loop system is used to verify the performance of the controller. Fig. 4.4 

shows the impulse response of the rotor speed deviation of generator 1 without and with 
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the controller. The impulse signal is added to the input mechanical torque of generator 1. 

It’s seen that the wide-area controller improve the damping greatly.  

Fig. 4.4 The rotor speed response of generator 1 to impulse disturbance 

Fig. 4.5 Real tie-line power response to a three phase fault on line8-9 
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Nonlinear time domain simulations are carried out with TSAT to test the effectiveness, 

robustness and performance of the designed controller.  A three phase short current fault 

is applied to the line 8-9 for 0.1 sec. Fig. 4.5 shows the real power of tie-line from bus 7 

to bus 8 without and with the wide-area damping controller. 

4.1.2 Controller Robustness 

The robustness of the designed controller is tested by changing operating conditions and 

fault types. Fig 4.6 shows the real power of tie-line 8-9 response to a three phase fault on 

bus 8 with a duration of 4 cycles. 

Fig. 4.6 Real power of tie-line 8-9 response to a three phase fault on bus 8 

Table 4-2 shows the robustness of the designed controller against changing power flows. 

Table 4-3, 4-4, 4-5 shows the robustness of the designed controller against different load 

types with different tie-line flows. Table 4-6 shows the robustness of the controller 

against different tie-line strength. 
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Table 4.2: Robustness against different tie-line flows (Two-area system) 

P79 -243MW -60MW 98MW 207MW 500MW 612MW 

Frequency 0.607 0.591 0.611 0.603 0.595 0.582 

Damping Ratio 2.71% 4.78% 8.56% 10.4% 12.7% 8.91% 

Table 4.3: Robustness against different load types (Two-area system) 

P79 = 500MW Constant Impedance Constant Current Constant Power 

Frequency 0.595 0.597 0.601 

Damping Ratio 12.7% 12.9% 12.3% 

Table 4.4: Robustness against different load types (Two-area system) 

P79 = 207MW Constant Impedance Constant Current Constant Power 

Frequency 0.603 0.615 0.598 

Damping Ratio 10.4% 10.7% 10.5% 

Table 4.5: Robustness against different load types (Two-area system) 

P79 = 612MW Constant Impedance Constant Current Constant Power 

Frequency 0.582 0.593 0.589 

Damping Ratio 8.91% 8.93% 8.91% 

Table 4.6: Robustness against different tie-line strength (Two-area system) 

P79 = 500MW One line7-8 open Line7-9 +20% One line8-9 open Line8-9 +20% 

Frequency 0.536 0.524  0.541 

Damping Ratio 5.82% 7.83% Transient unstable 4.97% 
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4.1.3 Effects of Time-Delays 

The effect of time-delay is first demonstrated by linear simulation using MATLAB. Fig. 

4.7 shows the impulse response of rotor speed deviation of generator 1 with wide-area 

damping controller that can’t handle time-delays. Fig. 4.8 shows the impulse response of 

rotor speed deviation of generator 1 with wide-area damping controller that handles time-

delays. 

Fig. 4.7 Generator speed deviation with controllers that can’t handle time-delays 

Fig. 4.8 Generator speed deviation with controllers that can handle time-delays 
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The effects of time-delay are also demonstrated by nonlinear simulation using TSAT. Fig. 

4.9 and fig. 4.10 show the active power of tie-line 7-8 responses to a three-phase fault on 

line8-9 for 0.06s. Without modeling time-delays in the controller design procedure, the 

system is small signal unstable with a 250 ms time-delay. With the controller that taken 

time-delays into consideration, the system is small signal stable with a 350 ms time-delay. 

Fig. 4.9 Active tie-line power with controllers that can not handle time-delays. 

Fig. 4.10 Active tie-line power with controllers that can handle time-delays. 

94 



 

 

 

 

4.1.4 Selection of the Sample Rate for Digital Controller 

Simulations using the continuous model can not reveal effects of sample rates of digital 

controllers. The continuous model is converted into its discrete counterpart for testing 

sample rate effects. It should be pointed out that neither the continuous model nor the 

discrete model is the correct one for simulations. Power systems are sampled-data 

systems where discrete signals appear in some places and continuous signals occur in 

other parts. The physical reality of power systems is that the digital controller operations 

are on discrete signals while the power system responses are in the continuous world and 

in order to consider the behavior of power systems between sample instants it is 

necessary to consider both the discrete actions of the digital controller and the continuous 

response of power systems. To do this, time domain simulations using a model that 

represents the realistic power system with all its nonlinearities is necessary.  

Fig. 4.11 Effects of different sample rates (Two-area system). 
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The discrete model is first derived from the continuous model used for the controller 

design. Then this model is used for testing sample rate effects. Fig. 4.11 shows the 

discrete counterpart of the rotor speed deviation of generator 1 to an impulse disturbance 

without time-delays. Even though the output generated is discrete, it still can be seen 

from the figure that the damping decreases as sample rate (SR) is decreased. Fig. 4.12 

shows the same simulation with 200 ms time-delay. It can be seen in this figure that in 

order to achieve a satisfactory damping with such a large time-delay, the sample rate 

should be at least 30 Hz. Table 4-7 gives the lowest sample rates that ensure acceptable 

damping for different time-delays. When time-delay is larger than 500 ms, the system is 

unstable no matter how fast the sample rate is.  

Fig. 4.12 Effects of different sample rates with 200 ms time-delay (Two-area system) 

Table 4.7: Sample rates for different time-delays (Two-area system) 

Time-delay (ms) 100 200 300 400 500 

Sample rate (Hz) 15 20 30 60 --
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4.2 New England 39-bus 10-machine System 

In this section, a wide-area damping controller is designed for New England 39-bus 10-

generator system, which is shown in Fig. 4.13. Detailed model descriptions and all 

parameters including network data and dynamic data for the generators, excitation 

systems, PSSs are given in Appendix B. All synchronous machines (except generator 1, 

which is an equivalent unit) are modeled with static excitation system, governor and 

conventional PSS with two lead-lag compensation blocks. The system is stressed by 

increasing the load and generation level. 

Fig. 4.13 New England 39-bus 10-generator system. 
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4.2.1 Wide-area Damping Controller Design 

1) Full-order Model and Small Signal Analysis: All generators are represented by 

detailed model, i.e. two-axis model with exciter, governor and conventional PSS (except 

the equivalent unit G1). The nonlinear model is linearized around a nominal operating 

point. Small signal analysis shows that this system has several local and inter-area modes 

with damping ratios less than 10%, which is a widely accepted criterion for satisfactory 

damping. The classification of these lightly damped modes is shown in Table 4-8. From 

Table 4-8 we can see that though modes 4 to 8 are local ones. Even though their damping 

ratios are low, they won’t last beyond 10s because of their relatively large frequency. 

Since an overall system settling time of 10-12 is acceptable, it is not necessary to provide 

supplemental damping to these modes. The modal graph is shown in Fig. 4.14 

Table 4.8: Oscillatory modes for IEEE 39-bus system 
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System mode 

1 8, 10 9 2 3 4 5 6 7 

1λ 

2λ 

3λ 
4λ 

5λ 6λ 
7λ 

8λ 

Fig. 4.14 Modal structure of 39-bus 10-generator system. 

2) Selection of Measurements and Control Device Locations: From small signal 

analysis it is seen that the system has three coherent generator groups except the 

equivalent generator G1. (G2, G3), (G8, G9, G10) and (G4, G5, G6, G7) are nuclei of 

there groups correspondingly. Geometric measures are used again to evaluate the 

comparative strength of candidate signals and the performance of controllers at different 

locations with respect inter-area modes. Several kinds of input signals, such as real 

powers of transmission lines, generator rotor speeds and bus voltage angle difference and 

center-of-inertia (COI) difference between different areas, are compared.  Table 4-9 

shows the control locations with maximum controllability and signals with maximum 

observability with respect to different inter-area modes, where Pi− j  denotes the real 

power of transmission line connecting bus i and j. 
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Table 4.9: Maximum controllability/observability measure (IEEE 39-bus system) 

Mode Frequency Maximum Controllability Maximum Observability 

0.4879 G8 P9-39, P1-2 

0.7353 G7 P15-16, P16-17 

0.8056 G3 P4-5, P9-39 

According to Table 4-9, G3, G7 and G8 are selected as control locations. The selection of 

input signals is not so obvious. We don’t want to choose so many measurements as 

controller inputs because this will increase possible interaction between control loops and 

the cost for communication links. We choose P16-17 as input signal for mode 2. Since P9-39 

has good observability for both mode 1 and mode 3, it is also chosen. As shown in 

simulation, these two signals are enough for controller inputs to damp inter-area modes. 

Each tie-line power contains information of all inter-area modes in different levels. In 

fact, P16-17 itself contains enough information for all three inter-area modes and could be 

the only input signals for the controller with the cost of higher gain and a little bit worse 

but still acceptable damping effects.  

3) Model Reduction: The original linear model order is 88. It is reduced to a 12th -order 

model by the method of balanced model reduction. The frequency responses of the full-

order model and reduced-order model are shown in Fig. 4.15. We can see that for the 

interested bandwidth, the reduced-order model is reliable for robust controller design. 
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Fig. 4.15 Bode plots comparison of full-order model and reduced-order model. 

4) Controller Synthesis: With the control input signals selected as tie-line power P15-16 

and P9-39 and control locations are G3, G7 and G8, we may design the wide-area damping 

controller now. We designed two controllers. The first one has two input signals, P16-17 

and P9-39. The second one only has P16-17 as its input. Other design considerations are 

similar to the controller designed for two-area system.  
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For the first controller (C1), the guaranteed closed-loop RMS gain (H∞ norm) is 0.4971 

and guaranteed closed-loop H2 norm is 0.5758. For the second controller (C2), the 

guaranteed closed-loop RMS gain (H∞ norm) is 0.7316 and guaranteed closed-loop H2 

norm is 0.8259. The order of the controller is 14, the sum of orders of weighting function 

and reduced-order model. Balanced model reduction is used again to simplify this 

controller to a 10th order one. Weighting functions are given by 

50 80sW (s) = , W (s) =1.0, W (s) = . The controller parameters are as listed in 1 2 3s + 50 s +80 

Appendix C. 

The frequency response of controller C1 and C2 are shown in Fig. 4.16 and Fig. 4.17. 

Fig. 4.16 Frequency response of controller C1. 
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Fig. 4.17 Frequency response of controller C2. 

5) Closed-loop Verification and Nonlinear Time Domain Simulation: The resulting 

reduced-order controllers are first verified by small signal analysis. Table 4-10 shows the 

improved damping of inter-area modes with wide-area damping controllers. 

Table 4.10: Improved damping of inter-area mode (IEEE 39-bus system) 

Mode Frequency Open-loop 

damping ratio 

Closed-loop 

damping ratio (C1) 

Closed-loop 

damping ratio (C2) 

0.4879 0.0238 0.1351 0.1046 

0.7353 0.0215 0.2187 0.1842 

0.8056 0.0194 0.1893 0.1375 
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Time response of linear closed-loop system is used to verify the performance of the 

controller. Fig. 4.18 shows the impulse response of the rotor speed deviation of generator 

5 without and with the controllers. The impulse signal is added to the input mechanical 

torque of generator 5. 

Fig. 4.18 The rotor speed response of generator 5 to impulse disturbance. 

Fig. 4.19 Real power of tie-line 16-17 response to a three phase fault on bus 16. 
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Nonlinear time domain simulations are carried out with TSAT to test the performance of 

the designed controllers. A three phase short current fault is applied to the bus 16 for 

0.05 sec. Fig. 4.19 shows the real power of tie-line 16-17 without and with the wide-area 

damping controller. 

4.2.2 Controller Robustness 

The eigen-analysis of the system was carried out for different operating points to verify 

the robustness of the designed controller. Table 4-11 displays the robustness of the 

controller C1 in case of the outage of different heavily loaded lines. Table 4-12 shows the 

performance of the controller C1 for different tie-line flows between the area containing 

generator G4, G5, G6 and G7 and the rest part of the system. Same analysis conducted 

for the system with controller C2 showed that controller C2 also improved the damping 

of the inter-area modes satisfactorily.  

Table 4.11: Damping ratios and frequencies of inter-area modes for different line outages 

(IEEE 39-bus system) 
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Table 4.12: Damping ratios and frequencies of inter-area modes for different power flows 

(IEEE 39-bus system) 

To evaluate the performance and robustness of the designed controllers in different fault 

scenarios, nonlinear time domain simulations are conducted using TSAT.  Controller 

output limits are ±10%  of the synchronous machine terminal voltage. 

Two types of faults are simulated. The first type is a three phase short current fault 

applied to buses for 4 cycles. Several critical buses connected with heavily loaded 

transmission lines were tested. The second fault type is a three phase short current fault 

applied to transmission lines for 4 cycles. The fault was cleared by taking out the faulted 

line. Several critical heavily loaded transmission lines were tested. The two controllers 

achieved satisfactory damping effects for all of these scenarios.  

Fig. 4.20 shows the transient response of the active power of line 16-17 to a three phase 

fault applied to bus 16. Fig. 4.21 shows the transient response of the active power of line 

15-16 to a three phase fault applied to line 16-24. Fig. 4.22 shows the transient response 

of the active power of line 15-16 to a three phase fault applied to line 16-17. Fig. 4.23 

shows the transient response of the active power of line 15-16 to a three phase fault 
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applied to line 3-18. Fig. 4.24 shows the transient response of the active power of line 15-

16 to a three phase fault applied to line 13-14. It can be seen that the damping effect of 

controller C1 is a little bit better than controller C2. This may be explained as the benefits 

brought by more measurements, which provide more system dynamic information. 

Fig. 4.20 Active power of line 16-17 response to a three phase fault on bus 16. 

Fig. 4.21 Active power of line 15-16 response to a three phase fault on line 16-24. 
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Fig. 4.22 Active power of line 15-16 response to a three phase fault on line 16-17. 

Fig. 4.23 Active power of line 15-16 response to a three phase fault on line 3-18. 
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Fig. 4.24 Active power of line 15-16 response to a three phase fault on line 13-14. 

4.2.3 Effects of Time-Delays 

The effect of time-delays is first demonstrated by linear simulation using MATLAB. Fig. 

4.25 shows the impulse response of rotor speed deviation of generator 5 with wide-area 

damping controller that can’t handle time-delays. Fig. 4.26 shows the impulse response 

of rotor speed deviation of generator 5 with wide-area damping controller that handles 

time-delays. Without modeling time-delays in the controller design procedure, the system 

is unstable when time-delays are equal to or larger than 150 ms. While with time-delays 

modeled in the design procedure, the resulting controller can handle a 350 ms time-delay. 
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Fig. 4.25 Generator 5’ speed deviation with controllers that can’t handle time-delays. 

Fig. 4.26 Generator 5’ speed deviation with controllers that can handle time-delays. 

The effects of time-delays are also demonstrated by nonlinear simulation using TSAT. 

Fig. 4.27 and Fig. 4.28 show the active power of tie-line 16-17 responses to a three-phase 
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fault on bus 16 for 0.05s. Without modeling time-delays in the controller design 

procedure, the damping is unacceptable with a time-delay of 150 ms. With the controller 

that taken time-delays into consideration, the system is small signal stable with a time-

delay as large as 300ms.  

Fig. 4.27 Active power of tie-line 16-17 with controllers that can not handle time-delays 

Fig. 4.28 Active power of tie-line 16-17 with controllers that can handle time-delays. 
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4.2.4 Selection of the Sample Rate for Digital Controller 

The discrete model is first derived from the continuous model used for the controller 

design. Then this model is used for testing sample rate effects. Fig. 4.29 shows the 

discrete counterpart of rotor speed deviation of generator 5 to an impulse disturbance 

without time-delays. Even though the output generated is discrete, it still can be seen 

from the figure that the damping decreases as sample rate is decreased.  

Fig. 4.29 Effects of different sample rates (IEEE 39-bus system). 

Time-delay is the most important factor affecting the selection of sample rate. Large 

time-delays necessitate higher sample rates to achieve acceptable performance. Fig. 4.30 

shows the counterpart in the z-domain of rotor speed deviation of G5 to an impulse 

disturbance under different sample rates with a 200 ms time-delay. It can be seen in this 
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figure that in order to achieve a satisfactory damping with such a large time-delay, the 

sample rate should be at least 30 Hz.  

Fig. 4.30 Effects of different sample rates with a 200 ms time-delay (IEEE 39-bus system) 

Table 4-13 gives the lowest sample rates that ensure acceptable damping for different 

time-delays. When time-delay is larger than 300 ms, the system is unstable no matter how 

fast the sample rate is.  

Table 4.13: Sample rates for different time-delays (IEEE 39-bus system) 

Time-delay (ms) 50 100 150 200 250 300 

Sample rate (Hz) 15 15 30 30 60 120 
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4.3 WECC 29-generator 179-bus System 

Fig. 4.31 WECC 29-generator 179-bus system one-line diagram. 
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The 29-generator 179-bus study system, shown in Fig. 4.31, is a reduced order model of 

the Western Electricity Coordinating Council (WECC) system, which serves 13 U.S. 

Western states, portions of western Canada and northern Mexico. All 29 generators are 

equipped with conventional, local power system stabilizers (PSS). 

The heavy power transfers from the Pacific Northwest and Arizona into California cause 

two troublesome modes in the WECC system. The first one is associated with the Pacific 

AC Intertie (PACI) which transmits hydro generation from the Pacific Northwest and 

Canada to Central and Southern California. This mode is the source of unstable 

oscillations around 0.3 Hz, including the one broke up the WECC system on August 10, 

1996 [89]. The second one is the source of undamped oscillations around 0.7 Hz when 

there are high power transfers from Arizona to California [90].  

4.3.1 Wide-area Damping Controller Design 

1) Full-order Model and Small Signal Analysis: All generators are represented by the 

detailed model, i.e. the two-axis model with exciter, governor and conventional PSS. The 

model is linearized around a nominal operating point. At this operating point, the system 

has a total generation of 61650 MW and 12448 MVAR, with 3153 MW transferred from 

Pacific Northwest to California through PACI and 3652 MW transferred from Arizona to 

California through California-Arizona corridor. Small signal analysis shows that at this 

operating point, both PACI mode (0.3 Hz mode) and California/Arizona mode (0.7 Hz 

mode) are poorly damped, as shown in Table 4-14. 
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Table 4.14: Inter-area modes of the study system (WECC system) 

Mode Frequency (Hz) Damping ratio 

PACI 0.287 0.042 

California/Arizona 0.695 0.023 

2) Selection of Measurements and Control Device Locations: Geometric measures of 

modal controllability/observability are used to select measurements and control sites. The 

results are shown in Table 4-15. The active power on the intertie connecting bus #83 and 

#170 has the maximum observability for the PACI mode and  the active power on the 

intertie connecting bus #12 and #139 has the maximum observability for the 

California/Arizona mode. They are selected as the input signals. The selection of control 

sites takes some practical considerations, like generator types and locations, into account. 

Generator at bus #15 can’t be chosen as control sites because it’s a nuclear plant. 

Generator at bus #30 isn’t selected because its location is far away and large time-delay 

will be caused in control signal transmissions. Generators at bus #13, #77 and #140 are 

chosen as control sites. Thus, the designed wide-area damping controller has two inputs 

and three outputs, as shown in Fig. 4.31. 

Table 4.15: Maximum controllability and observability measures for WECC system 

Mode 
Maximum  

Controllability 

Maximum  

Observability 

PACI Generators at bus #30, #77 P83-170 

California/Arizona Generators at bus #15, #140 and #13 P12-139 

116 



 

 

 

 

   

3) Model Reduction: The order of the original linear model is 376. It is reduced to a 24th 

-order model by the method of balanced model reduction via the Schur method provided 

by the robust control toolbox in Matlab. 

4) Controller Synthesis: The synthesis of the damping controller is defined as a problem 

of mixed H2/H∞ output-feedback control with regional pole placement and is resolved by 

the LMI approach. The hinfmix function available in the LMI Control Toolbox of Matlab 

was used to perform the necessary computations.  

5) Closed-loop Verification and Nonlinear Time Domain Simulation: The 

performance of the designed controller is verified by eigenvalue analysis of the closed-

loop system and linear simulations. Table 4-16 shows the improved damping of inter-area 

modes with the wide-area damping controller. Fig. 4.32 shows the impulse response of 

the rotor speed deviation of generator at bus #15 without and with the wide-area damping 

controller. Nonlinear time domain simulations are carried out with TSAT to test the 

performance of the designed controller.  A three phase short current fault is applied to the 

bus #83 for 0.05 sec. Fig. 4.33 shows the real power of tie-line 83-170 (PACI) without 

and with the wide-area damping controller. 

Table 4.16: Frequencies and damping ratios of the inter-area modes (WECC system) 

Mode 
Open-loop Closed-loop 

f(Hz) ξ f(Hz) ξ 

PACI 0.287 0.042 0.294 0.113 

California/Arizona 0.695 0.023 0.702 0.154 
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Fig. 4.32 The rotor speed response of generator 15 to impulse disturbance. 

Fig. 4.33 Active power of line 83-170 response to a three phase fault on bus #83. 
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4.3.2 Controller Robustness 

The eigen-analysis of the system was carried out for different operating points to verify 

the robustness of the designed controller. Table 4-17 displays the robustness of the 

controller in case of the outage of different heavily loaded lines. Table 4-18 shows the 

performance of the controller for different PACI flows with 3652 MW transferred from 

Arizona to California through California-Arizona corridor. Table 4-19 shows the 

performance of the controller for different flows between California and Arizona with 

3153 MW transferred from Pacific Northwest to California through PACI.  

Table 4.17: Damping ratios of inter-area modes for different line outages (WECC) 

Line outage PACI mode California/Arizona mode 

f(Hz) ξ f(Hz) ξ 

16-136 0.279 0.106 0.691 0.132 

48-59 0.291 0.111 0.704 0.143 

76-78 0.285 0.107 0.683 0.127 

115-128 0.274 0.102 0.697 0.125 

Table 4.18: Damping ratios and frequencies of inter-area modes for different PACI power 

flows  

PACI power PACI mode California/Arizona mode 

flow (MW) f(Hz) ξ f(Hz) ξ 

2975 0.312 0.114 0.711 0.145 

3107 0.304 0.111 0.704 0.156 

3453 0.293 0.102 0.708 0.154 

3769 0.285 0.097 0.707 0.152 

3980 0.278 0.083 0.703 0.147 
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Table 4.19: Damping ratios and frequencies of inter-area modes for different 

California/Arizona corridor power flows 

California/Arizona PACI mode California/Arizona mode 

power flow (MW) f(Hz) ξ f(Hz) ξ 

3415 0.306 0.103 0.711 0.141 

3659 0.294 0.112 0.702 0.152 

3823 0.297 0.111 0.699 0.143 

4196 0.289 0.108 0.694 0.127 

4370 0.288 0.105 0.685 0.118 

Nonlinear time domain simulations are conducted using TSAT to show the robustness of 

the designed controller for different fault scenarios. Fig. 4.34 shows the transient 

response of the active power of line 27-139 to a three phase fault applied to line 16-136. 

Fig. 4.35 shows the transient response of the active power of line 12-139 to a three phase 

fault applied on bus #139 for 4 cycles. Fig. 4.36 shows the transient response of the 

active power of line 15-16 to a three phase fault applied to one of the double circuit line 

76-78 for 4 cycles. The fault is cleared by taking out the faulted circuit.  

Fig. 4.34 Active power of line 27-139 response to a three phase fault on line 16-136. 
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Fig. 4.35 Active power of line 12-139 response to a three phase fault on bus #139. 

Fig. 4.36 Active power of line 83-172 response to a three phase fault on line 76-78 

4.3.3 Effects of Time-Delays 

The effect of time-delays is first demonstrated by linear simulation using MATLAB. Fig. 

4.37 shows the impulse response of rotor speed deviation of generator 15 with wide-area 
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damping controller that can’t handle time-delays. Fig. 4.38 shows the impulse response 

of rotor speed deviation of generator 15 with wide-area damping controller that handles 

time-delays. Without modeling time-delays in the controller design procedure, the system 

is unstable when time-delays are equal to or larger than 100 ms. While with time-delays 

modeled in the design procedure, the resulting controller can handle a 300 ms time-delay. 

Fig. 4.37 Time-delay effects without time-delays considered in controller design (WECC). 

Fig. 4.38 Time-delay effects with time-delays considered in controller design (WECC). 
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The controller was tuned and its performance in the actual nonlinear power system was 

evaluated by time domain simulation using TSAT. Fig. 4.39 shows PACI tie-line flow for 

three phase fault on bus #83 with different time-delays. Fig. 4.40 shows active power 

flow of line 27-139 for three phase fault on line 16-136 with different time-delays. From 

the simulations we can see that the wide-area damping controller can handle time-delays 

as large as 300ms. The system is unstable when the time-delay is larger than 400ms.  

Fig. 4.39 Active power of line 83-170 response to a three phase fault on bus #83 with 
different time-delays 

Fig. 4.40 Active power of line 27-139 response to a three phase fault on line 16-136 with 
different time-delays. 
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4.3.4 Selection of the Sample Rate for Digital Controller 

The discrete model is first derived from the continuous model used for the controller 

design. Then this model is used for testing sample rate effects. Fig. 4.41 shows the 

discrete counterpart of rotor speed deviations of generator 15 to an impulse disturbance 

without time-delays. Fig. 4.42 shows the discrete counterpart of rotor speed deviations of 

generator 15 to an impulse disturbance with a 100ms time-delay. Fig. 4.43 shows the 

discrete counterpart of rotor speed deviations of generator 15 to an impulse disturbance 

with a 200ms time-delay. Base on linear simulations, we find the lowest sample rates that 

ensure system stability for different time-delays, which is shown in Table 4.20. When 

time-delays are larger than 350 ms, the system is unstable no matter how fast the sample 

rate is. 

Fig. 4.41 Damping effects for different sampling rates without time-delays. 
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Fig. 4.42 Damping effects for different sampling rates with a 200ms time-delay.  

Fig. 4.43 Damping effects for different sampling rates with a 300ms time-delay. 
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Table 4.20: Desirable sample rates for different time-delays (WECC system) 

Time-delay (ms) 200 250 300 350 larger 

Sample rate (Hz) 20 30 60 120 --

Nonlinear simulations using TAST based on a model that represents the realistic power 

system with all its nonlinearities are conducted to verify the results of linear simulation. 

Fig. 4.44 shows active power flow of California/Arizona corridors for three phase fault 

on line 16-136 without time-delays. Fig. 4.45 shows active power flow of line 27-139 for 

three phase fault on line 16-136 with a 100ms time-delay. Table 4.21 lists the damping 

ratios for the PACI mode and California/Arizona mode when there is no time-delay. 

Table 4.22 lists the damping ratios for PACI mode and California/Arizona mode when 

there is a 100ms time-delay.  

Fig. 4.44 Active power flow of California/Arizona corridors for three phase fault on line 
16-136 without time-delays.  
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Fig. 4.45 Active power flow of line 27-139 for three phase fault on line 16-136 with a 
100ms time-delay. 

Table 4.21: Damping ratios for different sampling rates without time-delays 

Sample rate (Hz) 10 20 30 60 120 

Damping ratio for 0.3 Hz mode (%) 12.36 12.72 13.04 13.22 13.95 

Damping ratio for 0.7 Hz mode (%) 7.46 7.97 8.23 8.47 8.78 

Table 4.22: Damping ratios for different sampling rates with a 100ms time-delay 

Sample rate (Hz) 10 20 30 60 120 

Damping ratio for 0.3 Hz mode (%) 10.65 10.82 10.91 11.02 11.15 

Damping ratio for 0.7 Hz mode (%) 6.81 7.24 7.33 7.54 7.56 
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From the above results we can see that when the time-delay is less than 200 ms, 10 Hz 

sampling rate is good enough for ensuring acceptable damping effects. Increasing 

sampling rate only improves damping ratio slightly. 

Fig. 4.46 shows active power flow of line 27-139 for three phase fault on line 16-136 

with a 300ms time-delay. Fig. 4.47 shows active power flow of line 27-139 for three 

phase fault on line 16-136 with a 350ms time-delay. We can see from these simulations 

that for time-delays equal to or larger than 250ms, the sampling rates that ensure the 

acceptable damping ratios increase as time-delays increase. When time-delays are larger 

than 350 ms, the system is unstable no matter how fast the sampling rate is. The results 

are shown in Table 4.23. 

Fig. 4.46 Active power flow of line 27-139 for three phase fault on line 16-136 with a 
300ms time-delay. 

128 



 

 

 

 

 

 

Fig. 4.47 Active power flow of line 27-139 for three phase fault on line 16-136 with a 
350ms time-delay. 

Table 4.23: Desirable sample rates for large time-delays (WECC system) 

Time-delay (ms) 250 300 350 larger 

Sample rate (Hz) 30 60 120 --

We can see from linear and nonlinear simulations that they give different conclusions for 

the selection of PMU data reporting rates. The different results between linear and 

nonlinear simulations justify the necessity of testing the performance and robustness of 

designed controller with linear techniques in practical nonlinear environments. Usually, a 

tuning process is necessary to improve the performance of designed controllers.  
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Chapter 5. Conclusions and Future Work 

5.1 Conclusions 

In this paper, the design procedure of a wide-area damping controller for inter-area 

oscillations is described. A centralized structure is proposed for such a controller. The 

comparative strength of candidate stabilizing signals and the performance of controllers 

at different locations with respect to inter-area modes are evaluated by geometric 

measures of controllability/observability. Time-delay is modeled as an uncertainty in the 

controller design procedure so that the resulting controller can handle a range of time-

delays. The synthesis of the robust MIMO controller is defined as a problem of mixed 

H2/H∞ output-feedback control with regional pole placement and is resolved by the LMI 

approach. The design method is tested on three study systems. Linear analyses and 

nonlinear simulations demonstrated the robustness and efficiency of the designed 

controllers. The effects of time-delays on controller robustness and selection of data 

reporting rates of PMUs are studied. From the simulation results, the following 

conclusions can be drawn: 

• Geometric measures of controllability/observability are effective in evaluating the 

comparative strength of candidate stabilizing signals of widely differing types. 

• Active powers and current magnitudes on tie-lines are good choices for stabilizing 

signals with respect to critical inter-area oscillation modes.  
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• For the small size system considered, one stabilizing signal is enough for the input of a 

WADC. Multiple inputs improve the control performance only slightly for such small 

systems but are expected to be necessary for acceptable control performance in large 

systems.  

• Mixed H2/H∞ output-feedback control with regional pole placement can be applied to 

the wide-area damping controller synthesis with good results which cannot be obtained 

by only using either one. 

• Nonlinear simulation using a typical transient stability program like TSAT is required to 

show that such a design of a wide-area controller is effective in a practical 

implementation. Such a step is shown for the controllers in three examples.  

• Time-delays reduce the damping of control systems. It’s necessary to model time-delays 

in the controller design procedure so that the designed controller can handle time-

delays introduced into wide-area control systems. 

• The controller designed with continuous techniques should be tested in digital 

environments to establish its efficiency.  The selection of PMU data reporting rates for 

digital control systems is affected by time-delays. The larger the time-delay is, the 

higher the rates are necessary to ensure an acceptable damping performance.  
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5.2 Future Work 

Although this research achieved promising results in applying wide- area measurements 

and robust control techniques to the design of wide-area control systems for the damping 

of power system oscillations, the work doesn’t end here. The following aspects should be 

studied further: 

1. Application of FACTS devices in the design of wide-area damping control 

systems: The approach used in this research is to design wide-area measurements 

based controllers that provide control actions through generator excitation 

systems supplemental to the action of local PSSs. For inter-area oscillations, 

FACTS devices may be preferred because they can change the power flow on tie-

lines directly and thus damp power oscillations more efficiently.  

2. Decentralized control: The control system proposed in this research has a 

centralized architecture. The designed centralized controller collects several 

remote measurements and sends control signals to several control devices 

simultaneously. There are several disadvantages in this approach. For example, 

this centralized approach increased time-delays caused by collecting 

measurements to control center and re-routing them or control signals to control 

sites, increased investments for communication network and central computers, 

and the interactions between control loops. By contrast, a decentralized approach 

has less time-delays, less investment for hardware, and reduced interactions 

between control loops. The design of a decentralized wide-area damping control 
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system is an approach not yet addressed for the problem of power system 

oscillations. 

3. Coordination with protection and other control systems: In present day transient 

stability programs, the existing protection systems and other control systems like 

SPS/RAS are not modeled. Therefore, the interactions between the designed 

control system and existing protection and other control systems were not studied 

in this research. In practice, coordination of all kinds of protection and control 

systems is an important and difficult task. Poor coordination between all control 

systems may result in undesirable actions. The reliability of the transmission 

network can be jeopardized by unintentional and unexpected control system 

actions and loss of facilities caused by maloperation or poorly coordinated control 

systems. To study the coordination between wide-area control systems and 

existing protection and other control systems, modeling all these systems in the 

design procedure is desirable. 

4. Robustness: By applying robust control techniques into the design procedure, the 

resulting controller is robust for a range of operating conditions. The achieved 

robustness of designed controllers is very much dependent on the method for 

modeling all kinds of uncertainty. The more realistic the uncertainty modeled, the 

more robustness is achieved. Thus, to ensure the performance of the designed 

controller in a larger operating range, more complex uncertainty models should be 

used in the controller design procedure. 
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5. Controller tuning: When implemented in the actual nonlinear system, the 

controller designed with linear techniques may not have as good performance and 

robustness as in linear simulation because of the loss of some system properties in 

model linearization and model reduction. It’s necessary to tune the controller 

parameters and verify its effectiveness with nonlinear simulations. In our design 

process, controller parameters like gains, zeros and poles are manually modified 

(tuned) from observation of the controller performance in nonlinear simulations. 

This method is time consuming and has no guarantee for finding the optimal 

settings. It’s desirable to propose a systematic tuning method so that the controller 

designed by linear techniques work well in practical nonlinear environments.   
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Appendix A 

Two-area four-machine system parameters 

The system consists of two similar areas connected by a weak tie. Each area consists of 

two coupled units, each having a rating of 900 MVA and 20 kV. The generator 

parameters in per unit on the rated MVA and kV base are as follows: 

X d  = 1.8 

X q =1.7 

X d 
'  = 0.3 

X q 
' =0.55 

Ra = 0.0025 

Td 
'  = 8.0s 

Tq 
'  = 0.4s 

H = 6.5 for G1 and G2 

H = 6.175 for G3 and G4 

KD  = 0 

Each step-up transformer has an impedance of 0+j0.15 per unit on 900 MVA and 20/30 

kV base, and has an off-nominal ratio of 1.0. 
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Fig. A.1 two-area four-machine test system. 

The transmission system nominal voltage is 230 kV. The line lengths are identified in Fig. 

A.1. The parameters of the lines in per unit on 100 MVA, 230 kV base are: 

R = 0.0001 pu/km 

Xl = 0.001 pu/km 

Bc = 0.00175 pu/km 

The system is operating with area 1 exporting 400 MW to area 2, and the generating units 

are loaded as follows: 

G1: P = 700 MW, Q = 185 MVAr, Et = 1.03∠20.20 

G2: P = 700 MW, Q = 235 MVAr, Et = 1.01/10.5 

G3: P = 719 MW, Q = 176 MVAr, Et = 1.03/-6.8 

G4: P = 700 MW, Q = 202 MVAr, Et = 1.01/-17.0 

The loads and reactive power supplied (Qc) by the shunt capacitors at buses 7 and 9 area 

as follows: 

Bus 7: Pl = 976 MW, Ql = 100 MVAr, Qc = 200 MVAr 

Bus 9: Pl = 1767 MW, Ql = 100 MVAr, Qc = 350 MVAr 
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Self-excited dc exciter 

KA = 20.0 

TA = 0.055 

TE = 0.36 

KF = 0.125 

TF = 1.8 

Aex = 0.0056 

Bex = 1.075 

TR = 0.05 
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Appendix B 

IEEE 39-bus system parameters 

Power Flow Data 

The power flow data for this system is divided in:  

• Bus Data 

• Load Data 

• Generation Data 

• Branch Data 

Bus Data 

Table A-1 represents the bus data. The nomenclature for the table headings is: 

Bus Number Number of the bus 

Bus Name Alphabetic identifier for each bus 

Bus BaskV Bus base voltage, in KV 

Bus Type Bus type code: 

(1) Load Bus, PQ bus 

(2) Generator Bus, PV bus 

(3) Swing Bus 
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Bus GL Real component of shunt admittance to ground, in MW 

Bus BL Reactive component of shunt admittance to ground, in Mvar 

Bus Voltage Voltage magnitude, in per unit 

Bus Angle Voltage angle, in degrees 

Table A.1: IEEE 39-Bus Test System: Bus Data 
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Table A.2: IEEE 39-Bus Test System: Bus Data (continue) 

Load Data 

Table A-2 represents the load data. The nomenclature for the table headings is: 
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Bus Number Number of the Bus 

PL Real component of the load, in MW 

QL   Reactive component of the load, in Mvar 

Table A.2: IEEE 39-bus Test System: Load Data 

Generation Data 

Table A-3 represents the generation data. The nomenclature of the table headings is: 
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Bus Number Number of the bus 

PG Generator real power output, in MW 

PQ   Generator reactive power output, in Mvar 

Table A.3: IEEE 39-bus Test System: Generation Data 

Branch Data 

Table A.4 represents the branch (transmission lines and transformers) data. The 

nomenclature for the table headings is: 

Number Number of the branch 

From Bus Branch starting bus number 

To Bus Branch ending bus number 

Resistance (pu) Branch resistance, in per unit 

Reactance (pu) Branch reactance, in per unit 
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Susceptance (B) Branch total charging susceptance, in per unit 

Branch Tap Transformer off-norminal turns ratio 

Table A.4: IEEE 39-bus Test System: Branch Data 
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Table A.4: IEEE 39-bus Test System: Branch Data (continue) 
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Dynamic Data 

The dynamic data are classified as: 

• Generator Dynamic Data  

• Exciter Data 

• Governor Data 

Generator Dynamic Data 

Table A.5 represents the generator dynamic data. The nomenclature for the table 

headings is: 

X d , X d 
'                 Generator direct-axis synchronous and transient reactance, in p.u.; 

X q , X q 
'      Generator quadrature-axis synchronous and transient reactance, in p.u.; 

Ra      Generator armature resistance, in p.u.; 

Td 
' ,Tq 

'      Direct and quadrature axis transient field winding time constants; 

H  Generator inertia constant; 

KD       Damping coefficient; 

Table A.5: IEEE 39-bus Test System: Generator Dynamic Data 

157 



 

 

 

 

  

  

  

  

  

 

  

  

  

  

 

 

 

  

  

Exciter Data 

Table A.6 represents the exciter data. The nomenclature for the table headings is: 

KA Amplifier gain, in per unit 

TA Amplifier time constant, in second 

TE Exciter time constant, in second 

KF Regulator gain, in per unit 

TF Regulator time constant, in second 

AEX, BEX Derived saturation constants for rotating exciters 

VRmax Regulator maximum output, in per unit 

VRmin Regulator minimum output, in per unit 

Efdmax Maximum field voltage, in per unit 

Efdmin Minimum field voltage, in per unit 

Table A.6: IEEE 39-bus Test System: Exciter Data 

The following exciter parameter values were common for all the generators: 

TE 0.36 

KF 0.12 
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TF 0.36 

AEX 0.0056 

BEX 1.07 

VRmax 8.0 

VRmin -8.0 

Efdmax 8.85 

Efdmin -8.85 

Governor Data 

Table A.7 represents the governor data. The nomenclature for the table headings is: 

R Trubine droop setting, in % 

TG Governor time constant, in second 

Table A.7: IEEE 39-bus Test System: Governor Data 
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Appendix C 

Controller Matrices 

1. Controller for two-area four machine system 

-114.6 199.7 -144.5 - 85.12 294.8 -193.2 62.88 6.113 
- 7.9 3.737 - 2.578 1.12 - 0.848 2.927 - 5.6 0.2506 

37.18 - 62.91 47.48 34.54 - 97.03 62.48 - 20.6 -1.669 
119.1 - 204.9 147.9 70.58 - 320.7 211 - 67.1 - 4.421 
36.12 - 51.07 39.38 23.54 - 91.13 52.67 -16.88 -1.277 
14.38 -13.61 11.49 10.46 - 39.5 4.565 - 4.613 - 0.4484 
11.27 - 22.18 16.77 7.987 - 32.31 23.76 - 7.22 - 0.00938 
15.04 - 23.27 16.11 12.14 - 31.57 24.62 -18.28 -1.834 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Ak = 

- 0.017 


 

[

[ 


= 

0 

]TBk - 0.0019 0.0025 - 0.00058 - 0.00041 - 0.0004 0.00072 0.0125= 

709.1 -1347 1027 493.6 - 2024 1408 - 440 - 28.3 
- 795 1057 - 828 - 535.1 1933 - 863 350.4 28.85 

 

 

Ck 

Dk ]T0= 

160 



 

 

 

  

                             

 

 

  

    

 

 

 

 

 

2. Controller C1 for IEEE 39-bus 10-machine system 

- 469.5 1706 - 393.6 -1144 291.7 560.4 - 317.2 833.2 - 581.6 375.2 
1718 - 6608 1572 4432 -1151 - 2308 1054 - 3294 2030 -1480 

- 66.75 299.4 - 79.55 - 207.1 51.76 110.9 - 30.31 152.2 - 60.2 69.01 
1011 - 3905 939.1 2618 - 679.3 -1364 609.2 -1949 1181 - 875.9 
413.8 -1551 356.2 1040 - 277.2 - 345.9 - 562.5 257.2 - 777 515.9 
49.61 - 213.4 52.89 140.6 - 35.11 - 90.7 18.92 -111.9 55.44 - 49.99 

- 807.6 3096 - 737.7 - 2074 540.5 1084 - 496.8 1543 - 950.9 693.3 
- 364.1 1361 - 326.8 - 915.4 235.3 456.2 - 240.7 660.2 - 429.1 302.6 
444.7 -1713 410.1 1149 - 298 - 596.5 270.6 - 852.8 518.5 - 386.3 
- 394.8 1470 - 344.8 - 987.6 253.4 497.6 - 254.8 726.6 - 472.7 326.6 

T780.3 - 3038 139.7 -1797 - 709.3 - 97.88 1424 627.1 - 788.4 675.3 
- 784.6 3034 -135.7 1792 713.6 97.18 -1421 - 625.6 786.1 - 676.6 

-1.003 0.00168 - 0.582 0.066 2.029 0.675 - 2.75 - 2.91 - 2.004 0.0437 
5.284 0.6428 -1.925 1.271 1.878 8.257 11.77 3.903 12.01 3.222 
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3. Controller C2 for IEEE 39-bus 10-machine system 
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