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Sweet cherry (Prunus avium, L.) belongs to the Amygdaloideae subfamily in the Rosaceae 

family and is related to Peach (Prunus persica, L.) which presents a classical example of 

climacteric ripening along with members in other sub-families such as Apple (Malus x domestica 

Borkh). While the fruit ripening process in sweet cherry is non-climacteric, a novel response to 

ethylene has been observed in a subset of cultivars, e.g., ‘Bing’, where a pre-harvest canopy-

wide application of exogenous ethylene results in the formation of a distinct pedicel-fruit 

abscission zone. This decreases the force required to separate fruit from pedicel, presenting the 

possibility of harvesting the fruit mechanically. Some cultivars, e.g., ‘Chelan’, maintain a high 

pedicel fruit retention force, while the abscission zone in ‘Skeena’ develops without exogenous 

ethylene. This natural spectrum of phenotypes for ethylene-inducible abscission zone formation 

presents an interesting forward genetics model to unravel the underlying molecular mechanism. 

This is critical for a perennial crops species where reverse genetics approaches are not feasible 

due to the lack of genetic resources available in annual model system crops. Understanding the 
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causal molecular and genetic underpinnings of the inducible abscission zone formation offers the 

potential to expand the basic knowledge of ethylene’s role in a non-climacteric fruit crop. 

Practical applications from this work include precision in timing the application of chemicals 

that induce abscission zone formation in other non-climacteric horticultural crops to enable 

mechanical harvesting, efficiently manage labor and enhance safety. My research used a 

genomics approach to refine limited genomic data for the ‘Stella’ genotype by resequencing five 

additional genotypes: ‘Bing’, ‘Kimberly’, ‘Glory’, ‘Staccato’ and ‘Sweetheart’. Genes involved 

in ethylene inducible fruit abscission were then characterized using a developmental time-course 

transcriptomic approach. The results are presented in the following chapters.  

Chapter 1: A international collaboration established the reference genome for sweet cherry and 

outlines the rationale for strategies used.  

Chapter 2: Multiple approaches to identify polymorphisms in genomic data were evaluated.  

Chapter 3: The results of the developmental time course, genotypic, and tissue specific 

transcriptome analysis that enabled the identification of co-expressed sequences during ethylene-

induced abscission are described.  
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Foreword 

 The Rosaceae family encompasses a diverse group of agriculturally important crops 

including apple, pear, peach, cherry, strawberry, raspberry, almond, and rose. Members of this 

family provide high-value nutrition and are consumed in various forms including fresh, dried, 

juice, and processed products. Rosaceae fruits are an important dietary source of phytochemicals, 

such as flavonoids and other phenolic compounds including molecules that have demonstrated 

effective anti-cancer properties [1, 2]. Rosaceae fruits, especially sweet cherry, are considered a 

high value commodity with great potential for an increased market share over the next decade. 

This upward trend in sweet cherry’s market share can be further supported through ensuring 

superior fruit quality which can be achieved by deeper understanding of vital biological 

processes that occur within the fruit, most notably ripening and abscission.  

 Sweet cherry, a non-climacteric fruit, does not exhibit a characteristic burst in respiration 

or ethylene biosynthesis as ripening progresses. Rather, the presence of ethylene does not appear 

to be necessary for ripening to occur [3, 4], implying that ripening occurs through other 

methods/signals. This alternative, non-climacteric pathway appears to bypass the known ethylene 

synthesis and perception signal transduction commonly seen in climacteric fruits. Interestingly, 

several non-sense mutations have been discovered in several sweet cherry ACS and ACO genes 

[5] which further support the non-climacteric nature of ripening in sweet cherry. While this is the 

predominant school of thought, it has also been proposed that the ethylene burst may happen 

much earlier during fruit development as the fruit changes color. 

In climacteric fruits there is evidence that ethylene stimulates a molecular regulatory 

cascade leading to the physiological responses associated with ripening processes [6]. 

Interestingly, in some sweet cherry varieties such as ‘Bing’, exogenous application of ethylene to 
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the whole tree induces the formation of a pedicel fruit abscission zone at the time of harvest [7]. 

In a fruit, ripening and abscission are temporally associated developmental stages. As a fruit 

ripens, many complex developmental processes take place that eventually lead to the textural and 

constitutional changes in the fruits determining their final composition. The metabolic changes 

include altering cell structure, changing cell wall thickness, altering permeability of plasma 

membrane, decreasing structural integrity of the cells and increasing the intracellular spaces [8]. 

These textural changes leading to the softening of fruit are the result of enzymatic action altering 

the compositional structure of cell wall, partially or completely solubilizing the major classes of 

cell wall polysaccharides such as pectin and cellulose, hydrolyzing starch and other 

polysaccharides. Abscission, the programmed shedding of plant organs, is the culmination of 

cellular responses to both external (environmental) and internal (hormonal, genetic, etc.) cues 

within plant tissues. Although a commercially important process, abscission has been primarily 

used as a tool for unraveling phytohormone physiology rather than an important developmental 

process deserving careful study in its own right [9]. In sweet cherry, the unique ethylene-

inducible, genotype-specific abscission at the pedicel fruit junction is a novel system to study 

abscission in a non-climacteric plant species.  

Previous studies have evaluated the development of the pedicel-fruit abscission zone of 

sweet cherry using exogenously applied ethylene at the time of harvest [7, 10], however, the 

underlying genetic regulation and control remain uncharacterized. The approach undertaken in 

this dissertation to unravel the complex genetic regulation of abscission in sweet cherry 

combined the advantages of an established physiological model of genotype-dependent 

abscission zone development and next-generation genome and transcriptome analysis. The recent 

increase of genetic and genomic information can now complement the foundational work in 
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anatomy and physiology. One of the most important areas of current and future work is to 

decipher gene regulation. Genetic control over developmental processes and vital agricultural 

traits is an area that should be pursued in order to solve problems in existing cultivars via 

horticultural or chemical approaches and utilize the genetic information for developing superior 

varieties in the future.  

Although genomic data are fundamentally important, they must be generated within a 

genetic, physiological or developmental context. The primary aim of the research described in 

this dissertation is generating valuable genomics resources for sweet cherry. These resources 

provide a framework for understanding the ethylene-inducible genotype-dependent regulation of 

pedicel-fruit abscission zone development in non-climacteric sweet cherry. The result of the 

research is presented in three chapters.  

Chapter 1: Sweet Cherry Genome - Strategies & tools for sequencing, assembling and 

annotation of the sweet cherry genome 

This chapter provides an overview and background to the technological advances and 

techniques that have been used to generate sweet cherry draft assemblies and gene annotations. 

Additionally, it gives specific detail and parameters for the ‘Stella’ sweet cherry genome 

assembly. 

Chapter 2: Evaluation of multiple genomics approaches to identify genome wide polymorphisms 

in Prunus avium. 

 A multi-pronged genomics approach, consisting of gel-based, sequencing-based or a 

hybrid of the two methods, to acquire polymorphism information has been evaluated.  The gel-

based method included the Target Region Amplification Polymorphism (TRAP) approach [11]. 

The hybrid approach to identifying polymorphism consists of utilizing the sweet cherry 
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SNParray developed as part of the RosBREED consortia [12]. Digital methods include TRAPseq 

(a modified reduced representation sequencing approach using TRAP PCR) and whole genome 

sequencing from multiple next-generation sequencing platforms and subsequent SNP analysis. 

Each of the approaches has distinct advantages and drawbacks which have been highlighted in 

this chapter. Further, several data analysis approaches have also been evaluated to identify the 

most optimal one for identification of genome-wide polymorphisms.   

Chapter 3: Developmental time-course transcriptome analysis of ethylene inducible pedicel-fruit 

abscission formation in non-climacteric sweet cherry (Prunus avium L.) 

 While the physiological response to exogenous ethylene in the formation of pedicel fruit 

abscission zone has been well characterized [7], causal genetic underpinnings are poorly 

understood. To correlate established phenotypic responses of abscission zone development to the 

genetic regulation leading to its formation, a time-course transcriptome experiment was 

implemented. Expression of differentially expressed transcripts was validated with qRT-PCR. To 

our knowledge, this is the first investigation describing the transcriptomic analysis of the 

ethylene inducible abscission zone formation within Rosaceae.  

Focus of Research 

Overall, the goal of this dissertation is to describe the basis of the unique genotype-

dependent phenotypic response to exogenous ethylene which leads to the formation of an 

abscission zone at the pedicel-fruit junction. In order to accomplish this goal, genomic sequences 

from five sweet cherry genotypes were generated and a developmental time-course RNAseq of 

the pedicel-fruit abscission zone following ethephon application on three genotypes was 

performed to identify the putative genes involved in this novel process. 



 

 

5 

Results from this work corroborate the overall trends from previous studies in model 

organisms such as Arabidopsis, however, several new and hitherto unannotated and differentially 

expressed transcripts were identified. Further studies are needed to evaluate the functional 

protein products of the genes that were identified as differentially expressed due to ethylene 

application. Characterization of the metabolomic, proteomic and physiological responses to 

ethylene and their effects on pedicel-fruit abscission zone development are expected to provide 

greater context and understanding of direct regulation of these important processes. A broader 

discussion of the results and future directions is presented in the conclusion section of this 

dissertation. 
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Introduction 

 Access to complete genome sequences has long held the promise of enabling one to solve 

both large and small scale biological problems. Genetic sequencing provides information needed 

to identify and subsequently characterize key genes that are involved in various biological 

processes. However, the knowledge gleaned from genome sequences often introduces more 

complex questions about genetic interactions and the cross talk among various gene networks. 

An ever-increasing number of plant genomes are being sequenced due to high-throughput 

sequencing technologies. Key parameters must be carefully considered when sequencing the 

genome of a new species, including overall genome size, the presence of duplications and 

repetitive genomic regions, as well as ploidy, the most important variable tied to genome 

assembly efficiency. Horticultural crop species possess large genomes with areas of sequence 

repeats and duplication. However, a combination of new sequencing platforms is enabling 

sequencing and resequencing of the genomes of these species in order to improve the quality of 

the assembled genomes.  

Genome sequencing technologies 

  A technological transformation over the past fifteen years has occurred in genome 

sequencing processes and technologies. Sanger sequencing, the main sequencing technology 

used over the past thirty years, produces high quality reads up to 1 kb in length and still 

considered the standard for accuracy [1-3]. The Sanger sequencing method has led to many 

significant biological achievements including completing the human draft genome as well as 

many plant and animal genomes. No technology is perfect, and the limitations of this technology 

are what led to the need for improved ways of sequencing many complex genomes [4]. 
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 DNA sequencing throughput has increased approximately 100,000-fold in the years 

following the human genome sequencing project. This unprecedented advancement was 

primarily made possible through the development of next-generation sequencing (NGS) 

technologies, which have increased exponentially in capability and availability while 

simultaneously decreasing costs. These new technologies have been dubbed “second generation” 

sequencing technologies as well as the more recent appearance of third generation technologies 

[5, 6]. 

The new sequencing technologies can be conveniently clustered into three primary 

categories. These include: sequencing by synthesis, sequencing by ligation, and single-molecule 

sequencing, the latter being known as the “third-generation” sequencing platform [7]. The 

primary advantages of NGS include enhanced speed and throughput combined with reduced 

manpower and cost [8]. The development of parallelized processing of raw sequence signal has 

enhanced the speed at which sequencing occurs and large datasets are generated. Depending on 

the technology used, greater than one billion sequencing reads can be generated per run on an 

instrument. These technologies have enabled the development of complex experimental designs 

where one can investigate the genome organization via DNA sequencing and, developmental, 

steady state and temporal changes in genome-wide expression using RNA sequencing. 

The next-generation technologies include Roche 454 pyrosequencing (2005), 

Solexa/Illumina (2006), SOLiD (2007), and Helicos single-molecule sequencing (2008). These 

all take advantage of massive parallel sequencing by concurrently sequencing millions of DNA 

fragments that have been bonded to a surface. The sequenced fragments are relatively short, 

generally ranging from 25 to 400 base pairs. Even though NGS approaches are still used in many 

projects, the use of third generation sequencing is increasing due to its longer reads, relatively 
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short run times, and resolution of single DNA molecules. Third generation technologies have 

become a useful supplement, serving as scaffolds for shorter reads and filling in gaps and repeat 

regions from the large datasets produced by second-generation technology. Companies 

producing third-generation sequencing technologies include Pacific Biosciences (PacBio) and 

Life Technologies Starlight, Oxford (Nanopore) along with several other new and upcoming 

approaches. These different sequencing platforms have recently been systematically reviewed for 

their underlying mechanisms and strengths/limitations [7, 9].  

Since each sequencing technology has unique strengths and weaknesses, combinations of 

technologies have been applied to specific projects in order to complement and optimize 

accuracy and efficiency of data output. A recent study evaluating coverage bias has demonstrated 

that the bias can be corrected by combining second and third-generation sequence technologies 

[10]. The authors of this study concluded that there is no universal ‘best’ platform for all 

purposes. Rather, each of the sequencing technologies has characteristic or inherent errors that 

need to be dealt with using platform specific methods (Table 1).  

Overall, advancements in sequencing technology over the past fifteen years are having a 

transformative impact on the field of genomics and transcriptomics [11]. As costs continue to 

decrease and overall throughput rises, the ability to conduct genomic and transcriptomic analyses 

will enable an increased level of understanding of important and novel biological questions. 

Already, the generation of large amounts of high quality genomic and transcriptomic data is no 

longer the limitation in the research pipeline; rather, data analysis has become the bottleneck. 

Strategies to assemble data from next generation sequencing 

Genome sequencing studies do not generally result in reconstruction of the complete 

chromosome sequence. They lead to a fragmented, yet usable draft genome. Genome assembly 



 

 

12 

software, not unlike working on a puzzle, matches reads and builds contiguous stretches of DNA 

(contigs). The resulting draft genome is often sufficient to identify relevant genes and regulatory 

elements in the species being sequenced. The most commonly used NGS technologies have 

limitations that encumber reconstruction of full chromosomes. This often includes sequencing 

errors and areas of large repeats in the sequence. Assembling genomes require a specific 

minimum threshold combination of genome coverage, read lengths and read quality to efficiently 

accomplish the task [12]. 

 Assembly programs use various heuristic approaches to assemble read data into 

contiguous sequence, resulting in output variability, leading one to question how the quality of 

an assembly can and should be assessed. The primary genome assembly strategies used by 

currently available sequence assemblers can be organized in one of several major groups 

including: overlap-layout-consensus (OLC), de Bruijn graph, and string graph [13]. The 

characteristics of the read data being assembled determine the choice of approach. For instance, 

highly accurate, short reads have been successfully assembled via de Bruijn graph based 

approaches. This is the primary assembler program used by CLC Genomics Workbench. 

Specifically, the de Bruijn graph approach holds an advantage over the overlap-layout-consensus 

and string graph because it possesses an inherent self-correction mechanism using accurate reads 

to refine and correct assembly errors as it progresses through the algorithm [14]. 

 The overlap-layout-consensus (OLC) assembly approach begins by identifying every 

read pair that has a sufficient overlap and then arranges them in a graph with nodes representing 

reads and edges between read pairs overlapping by sequence. This graphical organization 

permits complex assembly algorithms to account for the comprehensive relationship identified 

between reads. The global overlap graph is simplified by removing redundant data. The Celera 
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Assembler [15] made this approach popular and until the second-generation sequencers emerged 

it dominated the genome assembly approaches. The overlap-layout-consensus approach has been 

limited by computational complexity until a new, efficient string indexing approach was 

introduced in the form of the SGA assembler [16]. 

 De Bruijn graph assembler programs function by using read sequence to improve its 

internal graph structure and advance graph correction methods. These processes occur prior to 

and iteratively throughout the actual assembly which is a vital step in achieving a high-quality 

assembly. The Euler assembler [17] made this approach popular, and has influenced design of 

modern assemblers that are primarily focused on short-read data. These recent assemblers 

include Velvet [18], SOAPdenovo [19, 20] and ALLPATHS [21]. The efficiency of the De 

Bruijn graph assembler program is limited by sequencing errors and will most likely decrease 

further with third-generation reads that have an even higher error rate.  

 The string graph approach is similar to a de Bruijn graph in concept, but use the full-

length read instead of forming k-mers. What makes this approach distinct is that it removes 

transitively inferred overlapping sequences. Pacific Biosciences (Menlo Park, CA 94025, USA) 

has produced FALCON, an assembly program for diploid species using string graph assembly 

principles [22]. 

An ideal genome assembly is able to fully capture and reassemble the genome 

representing its native size and structure. With NGS approaches, total genomic DNA is isolated 

from tissues and sheared into pieces of variable size, depending on the platform. NGS platforms 

acquire sequence from size-selected portions of the genome, and produce sequence reads of a 

targeted length. Like Sanger sequence reads, each position’s nucleotide base is assigned a quality 

score such as the Phred score, which is a score calculated by analyzing DNA sequence 
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chromatogram files and assigning quality scores to each base call [23]. This score is based on the 

base calling program developed in 1998 by Phil Green and Brent Ewing (USA). It is used to 

estimate sequence error probability for each base-call, as determined by specific parameters 

computed from tracer data. The confidence of bases called across the length of a read tends to 

follow a predictable pattern, with reduced confidence at the 5’ and 3’ ends of each read [24]. 

Data yield and mean quality (cumulative confidence across a read) can be incorporated into 

algorithms in the assembly of a genome using de novo or reference-guided approaches. The 

approaches taken depend on the characteristics of the data being assembled. Repetitive 

sequences provide some of the biggest technical challenges for modern, short read sequencing 

technology. A genome can be assembled using a de novo approach where the assembler recreates 

the genome based on the provided statistical and computational parameters. Another way to 

assemble a genome is via a reference-guided approach where the data from a new species or 

another genotype of the same species is ‘fitted’ onto an existing genome. 

Each of these approaches has significant strengths and weaknesses. While de novo 

genome assembly minimizes the risk of inaccurate assembly from the reference, it requires 

tremendous read-depth and computational resources as the topology of all pieces are considered 

against each other. As the read count of each portion of a genome increases, the confidence in its 

local topology also increases. However, due to inherent biases of short read sequencing 

approaches, amplification and capture of genome regions is not uniform, meaning read-depth 

will vary from zero to well over 1000X coverage. This often occurs in repeat regions of the 

genome where the assembler cannot easily identify the correct location for reads mapping 

equally well to multiple genomic locations. Thus, de novo genome assembly can, and often does, 

incorrectly reconstruct reads into larger contiguous sequence regions. Downstream in silico 
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processing can compound this inaccuracy as homology between contigs is used to construct 

larger genome ‘scaffolds’ that can span many open reading frames. Sequencing read depth can 

also significantly impact reliability of allelic variation or polymorphisms such as single 

nucleotide polymorphisms (SNPs), microsatellite repeats, SSRs, and insertions or deletions 

(InDels) [25]. In addition to read depth, integrating a combination of sequence platforms into the 

experimental approach may be a viable option to address repeat regions. Applying the best 

features of each technology is expected to result in a more complete, higher quality assembly; 

however, this hybrid approach is limited in efficiency as it demands increased labor and 

consumables cost associated with additional library preparation and machine run-time [26].  

Different runs with varied parameters of any de novo assembler program result in slightly 

different outcomes. This variance comes from multi-threading, or the processor’s ability to 

execute multiple process or threads simultaneously, combined with an artifact from probabilistic 

data structures being generated by the assembly. Running the assembly with a single thread will 

produce the same results every time. The trade-off, however, is that the assembly process will be 

greatly accelerated using multiple parallel processing threads. Each thread constructs contigs in 

an order that follows the order of the thread execution. This element is not user controlled. A 

contig’s size and relative position can be shifted if the contig start site is being built from two 

distinct starting points. This means that nearly identical assembly runs inevitably lead to 

differing outcomes, conditional upon the order of thread execution. Although the output of each 

run varies slightly, the overall assembly content retains its essential nature. 

Together with known weaknesses in various NGS sequencing platforms, these algorithms 

cannot accurately reconstruct genomic regions with poor sequence depth or which contain solely 

repeat regions. The Pacific BioSciences RS NGS platform can yield long reads up to 50 kbp 
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length with uniform base-call confidence (88% confidence) [27]. De novo genome assemblies 

can be improved through the presence of kilobase-sized reads that span gaps from short-read 

paired-end sequencing. As an output of single molecule sequencing technology, these reads have 

not undergone amplification and are therefore not affected by PCR-based artifacts such as GC-

bias and unpredictable amplification [9]. The long reads can span the repeat regions, however 

sufficient sequencing depth and genome representation is required. The Roche 454 and more 

recent Ion Torrent NGS platforms can provide up to 1 kbp reads, but cannot accurately call bases 

in homopolymeric regions of 8 nucleotides or greater (Table 1). The Illumina platform offers 

improved confidence in base calls and increased data yield, but at the cost of generating short 

read lengths (from 35-150 bp) which leads to other problems for assemblers to overcome [28]. 

One of these problems is systematic error– meaning that many individual base-call errors tend to 

occur at similar genomic locations [29]. This error type can be especially problematic for SNP 

identification because the error occurs with cross-genotype consistency. With these strengths and 

weaknesses in mind, the combination of NGS platforms and assemblers must be carefully 

considered prior to the reconstruction of a new genome. Resequencing projects provide critical 

information regarding polymorphic regions. These regions can be converted to molecular 

markers which may be useful for marker-assisted breeding and barcoding projects that are based 

on high-throughput genotyping of breeding stock to cull progeny not carrying a desirable 

haplotype [30-32].  

It is feasible, and becoming increasingly more cost-effective, to construct quality draft 

assemblies completely from the relatively low-cost short reads produced by the standard next-

generation sequencing platform, Illumina. A standard sequencing project ought to focus on 

generating relatively deep coverage (≥ 30×) of paired-end sequences from short DNA fragments 
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(500-1000 bp), and combine this with additional coverage (10-20×) from longer DNA reads (3-

10 kbp) [33]. When designing experiments, users can control parameters such as the sequencing 

platform, the read length, and the size/number of mate-pair libraries. Each choice affects the 

chosen assembler’s ability to correctly reconstruct the sample’s genome. Read length has an 

important influence on the complexity of the assembly. Longer reads lead to fewer repeats in the 

genome that tend to obfuscate the assembly algorithm. Read length can be the most difficult 

parameter to ‘tune’ as it depends fundamentally on the upper length limit defined by the specific 

technology used. 

Assessing assembly quality 

 Determining whether an assembly is correct and comparing assembly quality is difficult 

because the correct answer or ‘standard’ is unknown (otherwise an assembly would not be 

needed). The assembler output is usually fragmented, containing errors ranging from small 

nucleotide substitutions to copy number changes in tandem repeats to large-scale genome 

structure rearrangements. 

The quality of a genome assembly has traditionally been represented as an N50 value, 

calculated using the count and average size of the contigs. The N50 value is a length in base 

pairs from which contigs of that length or greater capture 50% of all captured length in all 

contigs. Generally larger N50 values are associated with greater genome or transcriptome 

sequencing depth in a given project, and will rise as assembled contigs or scaffolds begin to 

resemble the chromosomes [28, 33]. Short read data will however, quickly reach a coverage 

point where little incremental information can be gained. Since the short reads do not span repeat 

regions, the assemblers cannot infer the sequence. This is where the longer reads of third-

generation sequencing technologies are a huge benefit to genome assembly [26, 34]. 
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While the N50 value is an accepted descriptive statistic to assess the relative quality of an 

assembly, the genomics community has sought more robust means to describe assembly 

accuracy [35]. Length statistics alone can be misleading and generally uninformative because 1) 

the percentage of Ns in scaffolds may be very high and 2) there is always contamination from 

organellar DNA and other species in draft assemblies calculated using the count and average size 

of the contigs. Contamination from organellar DNA can be avoided by working with DNA 

isolated directly from nuclei.  

One of the main computational concerns in de novo genome assembly is the possibility of 

improper collapsing of built contigs into a supercontig or consensus sequence. This can take two 

or more unique contigs that may contain unique alleles of a gene or unique gene members of a 

family and ‘collapse’ them into one. In the process, the unique genetic or allelic information is 

lost. There are a few options available to assess what is a ‘best’ framework in which a researcher 

allows an assembler(s) to run beyond iterative assemblies and comparison of summary statistics 

[36]. Further tools are needed to address an assembly’s capture and representation of the 

genome. Tools such as RAMPART have begun to emerge that address the manual inputs needed 

to conduct such approaches, but comprehensive computational methods to address the ‘quality’ 

issue of genome assemblies remain elusive [37]. 

Historical overview and genetic improvement of sweet cherry (Prunus avium L.) 

Sweet cherry (Prunus avium L.) is thought to have been originally domesticated in the 

Caucasus region between the Black and Caspian seas [38]. Greek and Roman civilizations most 

likely acquired and transported cherries from the Anatolian region of modern Armenia. Cherries 

were cultivated extensively in Europe by the beginning of the 17th century [39-41]. 
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Modern sweet cherry cultivars are roughly grouped into two main categories: dark-

fleshed and light-fleshed (‘mahogany’ and ‘blush’). The former includes popular cultivars such 

as ‘Sweetheart’, ‘Kiona’, ‘Cowiche’, ‘Lapins’, ‘Van’ and ‘Bing’. The development of these 

cultivars reflects the evolving disease pressures and market demands in the industry which 

translates to identifying cultivars that mature at different time points to extend the market. They 

are characterized by a dark mesocarp and exocarp due to anthocyanin production, similar to their 

wild cherry relatives. However, variability exists among cultivar’s sweetness, tartness, size, 

pedicel-fruit retention force, resistance to diseases and disorders, ethylene responses, and fruit 

set. ‘Bing’ is perhaps the industry’s most popular cultivar, exhibiting a flavor profile coveted in 

the market along with many other desirable traits including high firmness and sugar content, and 

excellent shelf-life. ‘Rainier’ is the most popular among few light-fleshed or “blush” cultivars. 

‘Rainier’ fruit are less tart than mahogany types and generally higher sugar content- 

commanding a premium price in the market. The blush cultivars are challenging to grow given 

their sensitivity to rain-induced cracking [42] and their high susceptibility to mechanical damage 

(bruising) during harvest and postharvest processing. 

These advanced germplasm, in concert with improved production practices, have allowed 

for significant market growth of fresh and processed cherry industries throughout the Americas, 

Europe and Asia. To date, the sweet cherry industries in these regions have ranged from 

295,000-418,000 tons in annual production in recent years generating $772-843 million annually 

in the United States [41]. Adding to global production figures, Chile and Argentina are rapidly 

expanding production acreage. Fresh cherry inventory imported into American markets (from 

South American production) has expanded the timeline for U.S. consumer access and 

concurrently increased the demand for the fruit. Despite annual variability, long term forecasts 



 

 

20 

suggest that the sweet cherry market will continue expanding, thanks in part to the increased 

export market and improved harvesting technologies. 

Increasingly, consumers have sought access to fresh sweet cherry products rather than 

secondary or processed products. Thus, the processed fruit market sector has diminished as the 

overall industry has expanded. This shift in demand has helped drive cultivar and rootstock 

development towards optimized production efficiency. Modern cherry producers seek rootstock 

and cultivars with precocity, balanced fruit set, minimal blind wood and sucker production, 

resistance to viral, fungal and bacterial pathogens, no fruit cracking and reduced vigor, among 

numerous other traits. Traditional breeding programs and phenotyping of progeny have enabled 

significant gains in available cultivars for large-scale sweet cherry production throughout the 

world. To address the expanding needs of today’s growers, further germplasm improvement has 

applied genomics-based resources [43, 44]. Densely populated linkage maps have provided 

insight into the relative location of loci controlling many commercially desirable traits [45, 46]. 

Studying these traits has revealed a broad multi-loci genetic regulatory effect. These findings 

limit the proposed utility of marker-based approaches in targeted improvement of sweet cherry 

due to the complexity of the genetic control of phenotypes. Direct gene-trait correlations can 

help address the limitations of random molecular marker-trait associations by unraveling the 

underlying biological correlations at the transcriptional, proteomic or metabolic level in sweet 

cherry ontogeny. In parallel, extensive and standardized phenotyping of the breeding germplasm 

can aid in establishing these relationships. 

In order to accelerate genomics-assisted crop improvement there is a need to have access 

to a complete sweet cherry genome. A genome is expected to enable the identification of alleles, 

their association with desirable traits and subsequent movement into breeding material that 
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addresses evolving market needs. Until recently, this resource has not been available. Instead, 

genomics information from model systems such as peach for which a genome is available [47] 

has been used. This strategy has allowed for some improvement of sweet cherry cultivars; it is, 

however, limited in its ability to address horticultural concerns unique or dominant in sweet 

cherry. A draft ‘Stella’ sweet cherry genome was recently released as part of an international 

collaborative effort between groups in the United States and Chile. Sequencing of additional 

sweet cherry cultivars has since been initiated to establish a critical mass of genomic information 

which can serve as a foundation for efficient sweet cherry improvement. 

Sweet cherry fruit displays non-climacteric ripening. However, there is another school of 

thought which proposes that the climacteric stage occurs much earlier in fruit development [48]. 

Despite this difference in opinion, sweet cherry is unique compared to many other Rosaceae 

species including peach, the commonly used model for genetic studies in Rosaceae. A recent 

study using two sweet cherry genotypes, ‘Bing’ and ‘Rainier’, suggested that non-sense 

mutations in several members of the ethylene biosynthesis genes ACS and ACO could be 

responsible for disrupting the ethylene production pathway [49]. These mutations could render 

sweet cherry without the respiratory burst commonly observed in other fruits of the genera after 

harvest. A limiting caveat to this result is that non-sense SNPs do not automatically imply 

protein loss of function. Additionally, the mutations observed in this study could contain errors 

derived from the fact that the sweet cherry reads were aligned to the peach genome rather than to 

sweet cherry. It is possible that respiration may be regulated through a mechanism distinct from 

ethylene receptors and subsequent signal transduction [50]. 

Access to the sweet cherry genome sequence is expected to provide information on 

upstream regulatory regions of genes (promoters and enhancers), aid in identifying gene families 
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and genes not discovered through EST sequencing projects, and, provide a contrast to the peach 

reference genome, a classical climacteric member of the Rosaceae family. 

A high-quality genome assembly in sweet cherry is a critical resource that can 

complement genetic and gene expression studies for establishing cause-effect relationships at the 

gene level. Instead of facilitating further probability-based information for breeding purposes, 

direct gene-trait relationships yield sequence-based information from which biotechnological and 

chemical-based solutions can be developed. A recent gene expression-based study reported 2,000 

SNPs between the dark mahogany ‘Bing’ sweet cherry and blush ‘Rainier’ sweet cherry and 

suggested that variable expression of the transcription factor MYB10 may be a central regulator 

of cherry skin and flesh coloration and follow up studies confirmed this finding [51-53]. Future 

breeding, biotechnological and chemical genomics-based strategies can use this gene-trait 

relationship to modulate desired sweet cherry skin coloration in newly developed sweet cherry 

lines. Similarly, reverse-genetics approaches have applied small molecule screens to identify 

novel chemistries that modulate target protein activity [54]. Combined with gene expression 

analyses, these approaches provide a rapid workflow (relative to perturbative and laborious 

mapping projects) to identify specific phenotypes by understanding the underlying biological 

reasons for the trait at the genome level. 

To fully understand the role of a gene’s control of a complex trait in sweet cherry, it is 

necessary to frame its expression in a plant system in which upstream, downstream and 

interacting genetic elements are described. Environmental influence can significantly alter gene 

expression profiles, and strongly impact how the fruit responds to stress. Development of a high-

quality genome sequence in cherry can provide critical sequence-based information on genes and 

their promoter or other regulatory regions. Promoters are critical in the spatiotemporal regulation 
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of gene expression [55]. Expression of gene family members or an individual gene can be 

differentially regulated between vegetative and fruit tissues, or between different regions of the 

fruit itself. This resource opens up the field for utilization of native sequences and improving 

crops using precision breeding techniques, most notably genome editing technologies such as 

CRISPR/Cas9 [56-58] and related technologies [59]. These technologies complement traditional 

breeding methods and allow for additional possible trait introduction to the plant breeder. 

Burgeoning knowledge of cis-acting regulatory elements in promoter regions from non-model 

plants has enabled improved accuracy in predictive modelling to identify environmental and 

transcriptional activators that influence gene expression [60]. Understanding of cherry promoter 

regions, combined with gene expression analysis can yield a robust model of a traits’ presence in 

a genetic background and set of environmental conditions. 

Fully-descriptive high-throughput phenotyping data is required to leverage the wealth of 

genomics resources in Rosaceae crops. In apple, recent efforts have begun to develop high-

throughput standardized phenotyping of complex apple sensory traits such as the flavor, aroma 

and metabolite profiles [61, 62], texture [63, 64], and even annual bearing [65, 66]. These efforts 

have extended to growth habit and architecture as well with genotype-phenotype correlation, 

though extensive high-throughput techniques are still in development [67, 68]. Similar 

approaches have been applied to cherry [69]. Recent research from Washington State University 

has begun broad phenotyping of sweet cherry PFRF from which genetic associations are being 

developed [70, 71]. These studies provide an excellent model for future research to follow in 

addressing the critical need for high-throughput descriptive phenotyping in cherry. Only through 

such complementary research will the breadth of genomics resources in cherry be utilized in 

accelerated crop improvement. 
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Sequencing, assembling and annotation of the ‘Stella’ sweet cherry genome 

Sweet cherry is a member of the Rosaceae family. Like other fruit species in the 

Rosaceae, it is thought to be native to central Asia. However, the modern cultivated sweet cherry 

displays unique characteristics compared to related species. It ripens according to a non-

climacteric pattern, in contrast to peach, which exhibits climacteric ripening within the Rosaceae 

family [47]. Ethylene appears to play an important role in fruit ripening regardless of the 

ripening regime, primarily by influencing and regulating gene expression and the cascading 

responses to the phytohormone and/or developmental stage signal (Figure 1). As is the case for 

many tree fruits in Rosaceae, genome duplication events among cherry species have led to 

functional diversification of gene families, such as in the allotetraploid tart cherry [72]. Sweet 

cherry is an outcrossing-dependent diploid with a genome of 2n = 16 estimated to be 200-250 

Mb [44, 73]. 

The ‘Stella’ sweet cherry cultivar was chosen as the sweet cherry genotype for genome 

sequencing primarily because ‘Stella’ is extensively used in sweet cherry breeding programs 

worldwide. This is because it is the original source of self-compatibility due to the presence of a 

mutated S4 allele (S4′). The four base deletion mutation in the S-allele originated from irradiated 

‘Napoleon’ pollen that was used to fertilize ‘Emperor Francis’ in the early 1950s [74, 75]. The 

use of ‘Stella’ in breeding programs to impart self-fertility reduces reliance on bees for 

pollination, eliminates the need for pollinizers and may even boost yield. The ‘Stella’ sweet 

cherry genome was sequenced through international collaboration using multiple sequencing 

platforms to generate the sequence data. The data were primarily generated via Illumina 

sequencing platform where 76× Illumina data were obtained from 2x100 standard Illumina 

HiSeq 2000 sequencing. Read files were obtained after initial sorting and filtering of the data via 
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Illumina’s standard data processing. Additional sequencing data were generated on the PacBio 

and 454 sequencing platforms accounting for 21.2 Mb and 1.18 Gb data respectively, Table 2.  

 Significant resources have been used to develop SNP markers in major tree fruits with 

many millions of SNPs identified in peach and apple cultivars in recent years that have been used 

to assess lineage and genotypes of individuals in established breeding populations and in novel 

germplasm for future breeding use [76-78]. This has resulted in significantly faster and cheaper 

SNP identification in tree fruits for use in downstream analysis [79]. Emergence of NGS 

technologies have enabled identification of polymorphisms in expressed genes. Recent release of 

the apple [80], Chinese white pear [81], European pear [82], strawberry [83], and peach [47] 

genomes have provided additional resources with which to address biological questions. 

Sweet cherry genome assembly 

De novo genome assembly is an unbiased alternative to reference based assembly. The 

algorithms for genome assembly begin with processed reads and rebuild the genome digitally 

while minimizing error introduction to the assembly. Errors are often introduced due to 

sequencing bias from the sequencing platform used. Second generation sequencing read lengths 

(50-150 bp) are generally shorter than those produced by Sanger sequencing (800-900 bp). 

However, short read lengths present a difficulty for assembly because repetitive regions in the 

genome create assembly difficulties that increasing the sequence depth may not be able to 

overcome [13]. If the repeat length in a genome is N, assembly will be greatly improved if at 

least some read lengths are longer than N. Any repeat regions in the genome longer than read 

length generate gaps in the putative de novo assembly. Combined with the short length of second 

generation sequences, this means that any genomes assembled from these sequences alone are 

highly fragmented and more prone to misassembled rearrangements. 
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A reference-based assembly of cherry genomic Illumina and 454 data was performed 

using CLC Genomics assembler v 7.0 with the peach genome v 2.0 as the reference and using 

the default parameters: length fraction = 0.5, Similarity fraction = 0.8. Additionally, a de novo 

based assembly was generated based on Illumina reads using CLC Genomics v 7.0 with the 

default Illumina assembly parameters: Minimum contig length = 200, mismatch cost = 2, 

Insertion cost = 3, Deletion cost = 3, Length fraction = 0.5, Similarity fraction = 0.8. This 

assembly generated 96,080 contiguous sequences with an N50 of 4,130 from a total of 

136,453,160 high quality reads, Table 3. 

Accessing draft Sweet Cherry Genome  

The raw read data were submitted to NCBI SRA (accession numbers: SAMN05414729, 

SAMN05414730). Prior to release of the draft genome via NCBI, data are available via the 

genomics lab portal at WSU (http://gmod.wsu.edu/portal/). 

Annotation strategies 

Genomics research aims to identify causal genetic locations, or DNA/RNA sequences 

which control the presence or absence of a phenotype. Extracting a functional role of these 

locations or sequences and their interactions is critical to understand the biology of complex 

quantitative traits. This step can be challenging given the hundreds of millions of base pairs 

produced in genomic or transcriptomic assemblies. 

With a genome assembly in place, a variety of ORF-finding and gene prediction tools can 

be employed. These established tools such as FGENESH [84] and/or AUGUSTUS [85], can 

define CDS, splicing and regulatory domains for genes to catalog functional proteins. However, 

these tools are often run in isolation and fail to utilize other a priori information from a given 

sequence query to build a robust and accurate prediction of functional role [86]. Further, the 
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predictive nature of the tools often leads to extensive, compounding errors. Inaccurate start 

codon identification, erroneous splicing models and additional mistakes can lie undiscovered in 

predicted gene sets. Targeting peptide and cis-acting element prediction in tree fruits is only 

beginning to be understood. Thus, regulatory prediction tools can also introduce spurious results 

into initial genome or transcriptome analyses. It is also important to consider the lack of 

representation of environmental influence which can result in alternative splicing of a given 

gene. 

Gene predicting programs find the single most likely coding sequence (CDS) of a gene 

and do not report untranslated regions (UTRs) or alternatively, spliced variants. Gene prediction 

is therefore a somewhat misleading term. On the other hand, gene annotations include UTRs and 

alternative splice isoforms by synthesizing all available evidence [86]. Gene annotation is thus a 

more complex task than gene prediction. Any pipeline for genome annotation must deal with 

heterogeneous data sources including expressed sequence tags (ESTs), RNAseq data, protein 

homologies and gene predictions [87]. Additionally, it must efficiently synthesize all of these 

data into coherent gene models and produce an output describing the results in sufficient detail 

for these outputs to be suitable inputs for various genome browsers and annotation databases. 

 Among other tools, perhaps the most popular functional annotation workflow is the 

Blast2GO (B2G) software suite [88]. Using B2G, a researcher can assign functional roles to 

protein coding and noncoding RNAs and can mine existing sequence for putative functionality 

using BLAST, InterPro Scan, Pfam, KEGG mapping, and additional tools [89]. Gene Ontology 

(GO) terms are assigned to sequences following these analyses to categorize queries into 

functional classes. This tool empowers researchers to extract meaningful data from genome and 

transcriptome-based data sets. 



 

 

28 

Future for genome sequencing 

The ultimate genome sequencing platform would incorporate single DNA or RNA 

molecules without any pre-amplification step or wet lab pre-processing such as fragmentation, 

without using secondary detection steps, have read lengths of Mb to Gb in size, not be affected 

by GC bias of the genome, high read accuracy and would be flexible enough to generate as many 

sequence reads as are necessary for requested coverage depth [9]. Additionally, it should be 

economical to both acquire and run, easy to operate, have short run times and simple or no 

library pre-preparation steps. This idealized sequencing platform does not exist currently, but 

progress is being made towards achieving this ideal. Constant innovation is happening in the 

chemistry and efficiency to existing approaches (Illumina MiSeq; Nanopore), as well as, to 

provide diverse options to the consumer to fit the widest variety of needs possible. Electronic 

BioSciences is developing a nanopore system with a very fast sequencing rate (~50kb/s). Genia 

(Roche) is involved in the nanopore sequencing market and has expertise in analog-to-digital 

sensors on integrated circuits. This distinctive approach could set them apart due to its increased 

sensitivity compared to the passive chips of other companies. Many of the recent startup 

companies are focusing on medical diagnostic markets where cheap, portable sequencing 

machines are most needed and effective. 

Conclusions and outlook 

 Sequencing of the non-climacteric sweet cherry ‘Stella’ genome has been performed 

using a combination of next-generation sequencing approaches to generate the highest quality 

assembly possible with the resources available. ‘Stella’ reads were both de novo assembled and 

mapped to the Rosaceae reference P. persica (Peach) genome v2.0. The data generated from the 
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genome assembly and annotation have been made available to the scientific community, NCBI 

accession number: SAMN05414730. 

 As the influx of genome sequence data increases, challenges in genomics research have 

shifted from data generation to analysis. No longer does it take years and hundreds of thousands 

to millions of dollars to generate a genome from a single genetic background of one organism. 

Instead, complete draft genome sequences from dozens if not hundreds of genetic backgrounds 

can be generated in weeks. Blast2GO, RAMPART and similar tools are capable of running on 

desktop computer environment. Alone, this represents a tremendous stride forward for genomics 

research capacity in sweet cherry. However, sequencing of additional genotypes is required to 

enable cross-cultivar and cross-species comparisons needed for future cherry improvement. As 

genome sequences of additional cultivars begin to emerge, the capacity for multi-genome 

comparison will also increase. 

 Although biologists are not able to sequence and assemble complex plant genomes with a 

single push of a button, it is possible and affordable to sequence and assemble a wide variety of 

interesting non-model plant genomes and obtain highly useful draft genome assemblies. This is 

only efficient if biologists remain aware of and up-to-date with the myriad of technology and 

algorithmic challenges involved [13]. The next frontier for plant genomics is likely the 

characterization of the diversity of genomic variations across large populations, accurately 

annotate their functional elements, and develop predictive quantitative models relating genotype 

to phenotype. Improved sequencing technology and advancement in assembly software are 

certain to play a large role in these studies, and we think a tight relationship between biology, 

technology and analytics are vital to enhance the field for many years to come [90].  
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Tables 

Table 1. Sequencing technologies and associated error types.  
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Table 2. ‘Stella’ sweet cherry genome sequencing data. The data has been provided by the sweet 

cherry International Consortium headed by Amit Dhingra (Washington State University, USA) 

and Herman Silva (Universidad de Chile, Chile).  

 

 
 See, http://gmod.wsu.edu/portal/ 
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Table 3. Sweet cherry ‘Stella’ genome assembly descriptive statistics. A) ‘Stella’ genome assembly that was mapped to the P. 

persica reference genome. B) ‘Stella’ de novo assembly using next-generation sequencing data. 

 
NCBI accession number: SAMN05414730 
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NCBI accession number: SAMN05414729  
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Figures 

 

Figure 1. Generalized schematic summary of the ripening regulation in climacteric and non-

climacteric fruits. Adapted from Fruit Ripening: Physiology, Signalling and Genomics, edited by 

Nath, Bouzayen, Mattoo, and Pech. 2014. page 7.
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Abstract 

Sweet cherry (Prunus avium L.) is an economically important non-climacteric tree fruit crop in 

the Rosaceae family. It has undergone an evolutionary bottleneck resulting in limited genetic 

diversity in the germplasm. Identification of genetic polymorphisms and subsequent 

development of molecular markers is important for marker assisted breeding for developing 

superior sweet cherry varieties. A gel-based molecular marker approach (TRAP), a 6k cherry 

SNParray, modified reduced representation sequencing (TRAPseq) and whole genome 

sequencing approaches were evaluated in the identification of genome-wide polymorphisms in 

sweet cherry cultivars. Genome-wide polymorphisms were detected among the genotypes using 

all platforms with variable efficiency.  

Overall, whole genome sequencing and gel-based approach successfully detected polymorphisms 

in two of the five genotypes where SNParray and reduced representation sequencing failed to 

detect genetic differences. A combination of several approaches is necessary for efficient 

polymorphism identification, especially between closely related cultivars of a species. The 

information generated in this study provides a valuable resource for future genetic and genomic 

studies in sweet cherry, and the approaches evaluated here can be utilized in other closely related 

species with limited genetic diversity in the germplasm.  

Key Words 

Polymorphisms, Prunus avium, Next-generation sequencing, Target Region Amplification 

Polymorphism (TRAP), genetic diversity, SNParray, Reduced Representation Sequencing, 

Whole genome sequencing 
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1. Introduction 

 Application of various molecular tools and access to plant genomes has facilitated 

identification of genome-wide polymorphisms and development of molecular markers. Efforts to 

establish an association with polymorphisms and desirable traits which are then expected to be 

used in efficient development of desirable genotypes are ongoing. Next-generation sequencing 

(see Chapter 1) now allows for development of genomic information even for non-model plant 

systems accelerating the development of molecular markers and genetics research [1]. 

Sweet cherry (Prunus avium L.) is a member of the Rosaceae family which includes 

many other important crop species including apple (Malus domestica, Borkh.), peach (Prunus 

persica), plum (Prunus domestica), almond (Prunus dulcis), strawberry (Fragaria spp.), 

raspberry (Rubus idaeus x R. strigosus) and rose (Rosa spp.). Sweet cherry has an estimated 

genome size of 225-330 Mb [2, 3], but it is lacking in genomic information when compared to 

other Rosaceae members including peach or apple. Linkage maps and molecular markers have 

been developed for peach and almond, two other members of the sub-family Prunoideae [4]. A 

comprehensive and advanced draft of the peach genome is also available which serves as the 

foundation for several comparative studies [5]. Recently, a draft genome of sweet cherry cultivar 

‘Stella’ was released as well [6]. In order to conduct diversity and genetics-related studies, 

efforts were made to evaluate the transferability of the molecular markers from peach to sweet 

cherry with mixed success [4]. 

Furthermore, domesticated sweet cherry genotypes exhibit a genetic bottleneck 

comprising only three chloroplast haplotypes despite a large number of wild land races [7, 8]. 

Given the genetic bottleneck, it can be difficult to differentiate between different varieties which 

are expected to be closely related. Previously, a study compared and evaluated the utility of 
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seven simple sequence repeat (SSR) molecular markers versus 40 single nucleotide 

polymorphism (SNP) molecular markers to determine the genetic diversity and relatedness in 99 

cultivated genotypes of sweet cherry [9]. SSRs were found to generate a higher average number 

of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic 

information content values, however, the SNPs allowed for finer resolution of a closely related 

genotype which was indistinguishable with SSRs. Both sets of markers produced a similar 

genetic relatedness for all the accessions tested [9]. 

In this study we evaluated the utility of different genotyping approaches to differentiate 

between five closely related genotypes. These included three well established varieties, 

‘Sweetheart’, ‘Bing’ and ‘Staccato’ and two new genotypes, ‘Glory’ and ‘Kimberly’. The latter 

were serendipitous selections made by farmers upon observing distinct flowering phenotypes. A 

gel-based, Targeted Region Amplified Polymorphism (TRAP) approach, a reduced 

representation TRAPseq approach, a SNParray and a whole genome sequencing approach were 

evaluated. All approaches resulted in the identification of polymorphic loci across the five 

genotypes. Comparison of ‘Glory’ and ‘Staccato’ yielded two polymorphic regions using the gel-

based TRAP approach and thirty-four putative polymorphic sequence regions with the TRAPseq 

approach. Interestingly, SNParray had limited success in the identification of polymorphic 

regions amongst the closely related genotypes while the whole genome sequencing analyses 

approaches produced varied results. Comparing high quality contigs across genotypes using 

Seqman Pro NGen software (DNASTAR, Inc., Madison, WI) generated approximately five 

hundred high quality putative SNPs for each pair-wise genotypic comparison (Figure 4). 

However, other approaches such as DiscoSNP and Stacks generated an average of 250,000 and 

500,000 predicted polymorphisms, respectively across all compared genotypes. 
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2. Methods  

2.1. Plant material source and preparation 

 The five sweet cherry genotypes used in this study, ‘Bing’, ‘Sweetheart’, ‘Staccato’, 

‘Glory’, and ‘Kimberly’, were obtained from VanWell Nursery, East Wenatchee, WA. Emerging 

leaf tissues were collected for each genotype and flash frozen in liquid nitrogen. All samples 

were pulverized under liquid nitrogen using SPEX SamplePrep® FreezerMill 6870 (Metuchen, 

NJ USA) and kept frozen at -80°C prior to processing. 

2.2. Genomic DNA extraction  

Total genomic DNA was extracted from young leaf tissue using cetyltrimethylammonium 

bromide (CTAB) phenol chloroform extraction method [10]. A total of 1 mL of CTAB buffer 

(0.8M guanidinium thiocyanate, 0.4 M ammonium thiocyanate, 0.1M sodium acetate pH 5.0, 5% 

w/v glycerol, and 38% v/v water saturated phenol) was added to approximately 100 mg frozen 

leaf tissue powder, shaken to evenly mix sample and incubated at room temperature for 5 min. 

Chloroform (200 μl) was added to the sample and shaken vigorously and incubated at room 

temperature, 3 min. Samples were centrifuged at 17,000 × g at 4°C for 15 min and the aqueous 

phase was collected and moved into to a clean 1.5 mL microcentrifuge tube to which 600 μL of 

isopropanol was added, and the tubes gently rocked 5-6 times and incubated at room temperature 

for 10 min. Samples were centrifuged 17,000 × g at 4°C for 10 minutes and the supernatant 

decanted, while retaining the pellet. The pellet was washed with 1mL of ethanol (75% v/v), 

vortexed for 10 seconds and centrifuged 9,500 × g at 4°C for 5 minutes. Extracted DNA pellets 

were air dried and suspended in 50 l of RNase free water and incubated at 37°C with RNase 

free DNaseI for 30 minutes. DNaseI was inactivated by incubating the tubes at 65°C for 10 
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minutes. Extracted genomic DNA (2 µl) was electrophoresed on a 1% agarose gel and compared 

to Lambda DNA dilution series (100, 80, 60, 40, 20, 10 ng) to estimate quality and quantity. 

2.3. TRAP – Target Region Amplified Polymorphism 

The TRAP assay is a PCR-based technique that uses one fixed primer targeting a 

conserved DNA sequence across the genome and one or two arbitrary primers with either an AT- 

or GC-rich core that anneals with an intron or exon, respectively [11]. The arbitrary primers are 

fluorescently labeled at the 5’-end to enable laser mediated detection of DNA fragments on the 

LI-COR 4300 DNA Analyzer during electrophoresis and subsequent analysis. PCR was 

conducted in a final reaction volume of 10 μL with the following components: 2 μL of the 30-50 

ng/μL DNA sample, 1.5 μL of 10× reaction buffer (Qiagen), 1.5 μL of 25 mM MgCl2, 1 μL of 5 

mM dNTPs, 3 pmol each of 700 and 800-IR dye-labeled arbitrary primers, 10 nmol of the fixed 

primer, and 1 U of DNA polymerase (Biolase). PCR was carried out by initially denaturing the 

template DNA at 94°C for 2 min. Five cycles of 94°C for 45 s, 40°C for 45 s, and 72°C for 1 min, 

followed by 35 cycles at 94°C for 45 s, 50°C for 45 s, and 72°C for 1 min were performed. The 

final extension step was at 72°C for 7 min. The product was then electrophoresed on a LI-COR 

4300 DNA Analyzer (LI-COR Biosciences, Lincoln, NE) for visualization. A 6.5% 

polyacrylamide gel (KB-PLUS, LI-COR) was cast, the reactions loaded, and run at 1500 V for 

2.5 hours and images were collected automatically in the computer file. The images were then 

analyzed using LI-COR 4300 DNA Analyzer image software to identify polymorphisms. 

2.4. TRAPseq 

 A modified reduced representation sequencing method was implemented for Glory and 

Staccato. This approach was derived from the TRAP molecular marker approach discussed 
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previously (2.3, TRAP). Genomic DNA (~1 μg) was isolated from ‘Glory’ and ‘Staccato’ young 

leaf tissue. This was followed by a TRAP PCR using fixed (MADS, PPR1 and PPR2) and 

arbitrary (ODD15 and GA5) primers (Table 4). The TRAP PCR parameters used were identical 

to the TRAP protocol, described above. Following TRAP amplification, the PCR product was 

purified using Qiagen PCR purification kit per protocol. The reduced representation sample 

library was prepared using a modified NEBNext® Fast DNA Library Prep Set. Libraries were 

sheared with NEB Next Fragmentase per standard protocol. After heat disabling the fragmentase, 

0.05 µL dATP (100mM), 0.2µL Taq polymerase (5U/µL), 0.65µL MgCl2 (50mM), and 2.1µL of 

10x Taq polymerase buffer were added to directly to each fragmented reaction. The mix was 

incubated at 72°C for 20 minutes for A-tailing. Complementary, custom adaptors were then 

annealed to the sheared DNA, the annealed product purified and extracted according the 

NEBNext FastDNA Library Prep protocol. The libraries were quantified, pooled, and sequenced 

using the Ion Torrent PGM (Thermo Fisher Scientific, Inc., Waltham, MA). The sequencing run 

included 850 flows on a 318C chip producing single reads of various lengths. 

2.5. SNParray 

The sweet cherry SNParray is a 6K Infinium II array designed with SNPs from both diploid 

sweet cherry (P. avium) and allotetraploid sour cherry (P. cerasus) [12]. The array contains 5696 

predicted SNPs, obtained through re-sequencing of sixteen sweet and eight sour cherry 

accessions. The array includes 4214 SNPs representing the sweet cherry genome and 1482 

representing the sour cherry genome. For this study, ‘Bing’, ‘Sweetheart’, ‘Glory’, ‘Kimberly’, 

‘Staccato’ and ‘Stella’ sweet cherry cultivars were analyzed. The output data were analyzed with 

GenomeStudio v. 1.0, Genotyping module (Illumina, Inc., San Diego, CA). The software 

determines cluster positions of the AA/AB/BB genotypes for each putative SNP which were 
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manually parsed, interpreted and categorized. Default quality metrics for GenomeStudio were 

used in the assay: GenTrain score ≥ 0.5, minor allelic frequency (MAF) ≥ 0.15 and call rate of > 

80%. 

The data show pair-wise comparisons between each cultivar for each specific SNP. These 

comparisons were used to identify potential SNPs between each genotypic set. Following the 

SNParray analysis, a subset of the predicted SNPs was evaluated in silico by using BLAST to 

compare twenty SNPs from NCBI with our de novo assembly from each genotype. All twenty 

SNPs tested were confirmed using this method (Table 7). 

2.6. Genome sequencing, assembly and SNP identification 

A combination of sequencing platforms was used to generate sequence data for the sweet 

cherry genotypes. For two genotypes, ‘Glory’ and ‘Staccato’, approximately 40× coverage of 

sequence was generated using PacBio RS II (v2 SMRT cell) (Pacific Biosciences, Menlo Park, 

CA) with a mean read length of eight kilobases per read. The reads were assembled into 

contiguous sequences using the SMRT (HGAPII) program from Pacific Biosciences [13]. For all 

of the genotypes, approximately 25× coverage sequence data represented by 2×100 paired end 

reads were generated with the Illumina Hi Seq 2000 sequencing platform. The reads were quality 

filtered; trimmed; merged; and individually mapped to the PacBio generated references of both 

‘Glory’ and ‘Staccato’ assemblies using CLC Genomics v7.0. In addition to the reference based 

assembly, each of the genotypes were independently assembled de novo using just Illumina 

paired end reads.  

SNP analysis was performed using SeqMan Pro software (DNASTAR, Inc., Madison, 

WI). Initially, four reads were used to call the consensus base at a given locus. Additional layers 

of analysis were performed with up to ten required consensus reads to reduce the potential for 
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false positive SNPs. Predicted SNPs from each parameter were passed through a series of 

bioinformatics filters to validate the polymorphic nature of the specific loci [29–31]. These 

bioinformatics filters included: 1) Removing contiguous sequences that were shorter than 201 

nucleotides to reduce putative SNPs that were too close to the 5’ or 3’ end of a given contig, 2) 

Removing contiguous sequences containing ambiguous bases for each selected threshold. As an 

example, if the minimum threshold number of reads is set at eleven, then any position along the 

called consensus having ten or fewer reads would be called N (ambiguous)), 3) Removing 

sequences containing more than four SNPs in the same contig. If SeqMan output contained 

multiple SNPs particularly in a sequence, the whole sequence was eliminated from further 

analysis due to the potential for of faulty alignment in the pairwise comparison of homologous 

contigs. 

2.7. Analysis of Illumina sequencing data using DISCOSNP 

DISCOSNP was used to identify SNPs and small indels from sweet cherry Illumina data 

[14]. The input files for DISCOSNP evaluation were Illumina read files and three independent 

modules were progressively run to generate high quality putative polymorphisms from raw read 

data. The first, kissnp2, detected SNPs by comparing the sample reads. Kissreads2 enhanced 

kissnp2 results by adding mean read coverage and average quality of the reads forming the 

polymorphism. Finally, a .vcf file was generated from the kissnp2/kissreads2 outputs. A primary 

script derived from the published DISCOSNP user guide was used to run the three modules 

(Supplemental File 5). The output of DISCOSNP consisted of a multi-fasta file sorted by ranking 

of putative SNPs in descending order of probability. Additional information concerning read 

coverage, average PHRED quality for each input dataset, lengths of unambiguous left and right 

extensions, and Phi coefficient for each SNP was also generated. 
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2.8 Comparative analysis of polymorphisms across samples using Stacks 

 Stacks [15] was used to identify SNPs from the sweet cherry short-read sequence 

genomic data. This was accomplished through building artificial loci from the raw data (‘stacks’ 

of reads). An internal module (Process_shortreads) was used to filter reads with uncalled 

bases, discard reads with low quality scores and remove any traces of remaining inline barcodes. 

Thereafter, the dataset was processed by running the denovo map wrapper, which includes 

ustacks, cstacks, sstacks, populations (Figure 7). Ustacks built stacks and formed loci and 

searched for SNPs. Cstacks merged the alleles. Sstacks formed a set of stacks that searched 

against catalog stacks (cstacks) [16]. Each stacks set generated individual loci and SNPs were 

detected at each locus using a maximum likelihood framework by iteratively comparing loci for 

each sweet cherry genotype in a pairwise comparison against other genotypes. 

3. Results and Discussion  

3.1. Pedigree information regarding the sweet cherry genotypes 

Given the lack of genetic diversity within sweet cherry, it is important to know the pedigree 

information regarding the five primary genotypes used in this study namely, ‘Bing’, 

‘Sweetheart’, ‘Staccato’, ‘Glory’ and ‘Kimberly’. ‘Sweetheart’ is the maternal parent of 

‘Staccato’ while the paternal parent is unknown as it was developed via open pollination. ‘Van’ 

and ‘Newstar’ (pollinator) are the parents of ‘Sweetheart’, but ‘Sweetheart’ and ‘Staccato’ have 

no known connection to the other four genotypes used in this study. Previously published SNP 

marker analysis has shown the paternal parent of ‘Bing’ to likely be ‘Napoleon’ [17]. ‘Napoleon’ 

is also the paternal grandparent of ‘Stella’ (Figure 1). Therefore, ‘Bing’ and the genomics 

reference ‘Stella’ share Napoleon in their pedigree as a paternal parent and grandparents 

respectively. ‘Kimberly’ and ‘Glory’ were serendipitous discoveries in orchards based on their 
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distinct flowering time phenotype and therefore have unknown lineage. Sweet cherry varieties 

are also categorized based on their S-allele genotype [18, 19]. The S-allele genotype of the five 

varieties used in this study is provided in Table 2. 

3.2. Evaluation of gel-based approach, TRAP 

 Target Region Amplification Polymorphism (TRAP) [11] was used to identify genetic 

differences by visualizing differential amplification patterns unique to ‘Glory’, ‘Staccato’. ‘Bing’ 

was included as a positive control. A fixed primer designed to amplify the MADS box gene 

family was implemented in this study because this diverse gene family is predicted to contain 

polymorphic regions even in closely-related plant cultivars. An additional cohort of sweet cherry 

specific fixed primers were designed from intronic regions of flowering locus genes to improve 

specificity for sweet cherry (Table 3) [20]. TRAP was used to identify polymorphic regions 

specifically between the ‘Glory’ and ‘Staccato’ cultivars due to the fact that although they are 

observed to have differing flowering dates, this flowering phenotype has not led to the evaluation 

of any molecular markers to date. This approach identified two putative polymorphic regions 

within the MADS gene family (Figure 2) out of a total of 45 amplified loci. 

3.3. TRAPseq – modified reduced representation sequencing to identify polymorphisms 

 A modified reduced representation sequencing approach was used to identify 

polymorphic regions, specifically between ‘Glory’ and ‘Staccato’ cultivars where no 

polymorphisms were detectable using SNParray. The reduced representation of the genome was 

achieved by performing TRAP PCR (Table 4), followed by generating NGS sequence data from 

the amplified products (Ion Torrent PGM, Thermo Fisher Scientific, Inc., Waltham, MA). This 

experiment generated 133 Mb sequence data for ‘Glory’ and ‘Staccato’ genotypes. These data 
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were separately assembled into 1,577 and 1,404 contigs for ‘Glory’ and ‘Staccato’, respectively, 

using CLC Genomics Workbench, v.7.5. 

 The sequence reads for both genotypes were reciprocally mapped to the ‘Glory’ and 

‘Staccato’ de novo assemblies which were derived from Illumina sequence data. Following read 

mapping, Fixed Ploidy Variant Detection (CLC Genomics Workbench v7.5) was used to identify 

predicted variants from the reference genome for each of the genotypes by comparing the variant 

tracks associated with each of the genotypes. From these analyses 19 single nucleotide variants 

(SNV), one multi-nucleotide variant (MNV), 13 deletions and 8 insertions for a total of 41 

predicted polymorphisms were detected (Table 5). 

3.4. Evaluation of cherry SNParray 

 The SNPs represented on the array are spread relatively evenly across each chromosome, 

but the finite number of the putative polymorphisms indicates that only a representative subset of 

potential SNPs can be examined from the sweet cherry genome. The SNParray has been used as 

a genotyping tool for sweet cherry population structure analysis [21] as well as to determine 

allelic identity of SSR fragments [22].  

 Polymorphisms were identified using the SNParray results from ‘Bing’, ‘Sweetheart’, 

‘Glory’, ‘Kimberly’, ‘Staccato’ and ‘Stella’. The data obtained from the SNParray was analyzed 

and genotype specific frequencies of SNPs for each genotype were calculated (Table 6). 

Interestingly, when ‘Glory’ and ‘Staccato’, were compared to ‘Bing’ and ‘Stella’, approximately 

600 SNPs were identified. However, only 70 SNPs were identifiable when the two genotypes 

were compared to ‘Sweetheart’ and ‘Kimberly’. The SNParray failed to detect any SNPs 

between ‘Glory’ and ‘Staccato’. 
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 The SNParray represents only a limited number of SNPs which are derived from the 

originally represented genotypes. Due to these inherent limitations, a SNParray may not be able 

to identify polymorphisms present in new and closely related genotypes. In such cases, a gel-

based or reduced representation or whole genome sequencing based approach becomes 

necessary. 

3.5. Whole genome sequencing to identify polymorphisms 

 A reference based assembly of the Illumina reads mapped against v2.0 of the peach 

genome was completed using CLC Genomics Workbench v7.5 to identify regions of 

conservation and divergence in the Prunus genus. A total of 79% of the combined Illumina reads 

mapped to the peach genome while 18% of the total Illumina reads were mapped to the peach 

chloroplast, and 3% did not map to either. The eight primary scaffolds of peach had a genome 

coverage between 37.8 and 61.8 × (Supplemental File 1 contains the coverage statistics for each 

scaffold and data set). These scaffolds were covered an average of 47.8× for the combined cherry 

data. These data demonstrated that our reads were of high quality and consistent with published 

Prunus data and can therefore be used in polymorphism analysis. 

Five sweet cherry genotypes were selected for whole genome sequencing. Each genotype 

generated 22.2× average coverage, or 4.6 - 5.5 Gb of sequence. Two sweet cherry genotypes 

(‘Glory’ and ‘Staccato’) were also sequenced using NGS technology (PacBio RS II, v2 SMRT 

cell). Paired-end Illumina reads from each sweet cherry genotype were mapped back to the 

PacBio assemblies of ‘Glory’ and ‘Staccato’. Due to the relatively high error rate of PacBio [13, 

23], only the high quality contigs were exported for further analysis. Long-read data for these 

genotypes provided a scaffold upon which the more accurate short read Illumina data was 

mapped. 
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3.5.1. Identification of polymorphisms using Seqman Pro  

 Following genome assembly, SNPs were identified between genotype pairs using 

Seqman Pro (DNASTAR, Madison, Wisconsin USA) based on identical contig alignment. 

Mapping Illumina reads to the long contig scaffolds from PacBio reads reduced the total number 

of contigs to be compared from more than 100,000 per genotype (from Illumina de novo 

assembly) to 18,833 and 19,163 for ‘Staccato’ and ‘Glory’, respectively. This approach allowed 

for a relatively quick and efficient comparison of individual contigs and resulted in high quality 

SNP identification between genotypes. 

 The sequence surrounding an identified SNP, 100 bp on each side of the SNP (201 

nucleotides), was used to query protein databases (NCBI) to determine the likelihood of the SNP 

is associated with a known gene. Local blast databases of sequences were made containing the 

SNP at the minimum threshold of twenty reads and queried with the SNP sequences of the other 

combinations to check the veracity of the high quality SNPs. 

 Over 2,000 putative SNPs were identified among the sweet cherry genotypes that were 

evaluated through stringent filtering steps. These SNPs can be considered as targets for the 

development of positive identification markers and genotyping assays. These data indicate that 

while highly similar over the majority of the genome, there are significant differences among the 

genotypes that can be exploited for genotyping purposes. 

The advantages to using this approach include the ability to efficiently compare all 

assembled sequences between two genotypes. With five genotypes to iteratively compare, all 

comparisons were performed in a reasonable time-frame. A drawback of this approach is the fact 

that the comparison is made with consensus assembly sequence. This means read variants 

depend on assembly parameter stringency.  
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3.5.2. Identification of polymorphisms using DISCOSNP  

 To avoid the bias associated with draft reference genomes [24-27], a reference-free 

approach was used as an alternative method to detect polymorphisms using the Illumina reads. 

DISCOSNP detects both heterozygous and homozygous isolated SNPs and indels from single or 

multiple read sets, with no reference genome required [14].  

 Illumina read data from all comparisons of the samples were analyzed using DISCOSNP 

and the total number of SNPs for each genotype was compared to ‘Stella’ (Figure 5). A total of 

1,239,949 polymorphisms were identified, with an average of 247,990 per genotype. ‘Bing’ had 

the highest percentage (50.3%) of high quality polymorphisms when compared head-to-head 

with each of the other genotypes, ‘Sweetheart’, ‘Staccato’, ‘Glory’, and ‘Kimberly’ (Figure 6). 

This suggests that of the five cultivars in question, ‘Bing’ is the most genetically divergent. At 

the same time ‘Glory’ and ‘Staccato’ generated 117,796 putative SNPs – the lowest number of 

all the genotypic comparisons using this method, providing further evidence that ‘Glory’ and 

‘Staccato’ are the most similar genotypes in this study. 

3.5.3. Identification of genome-wide polymorphisms using Stacks 

SNPs were identified using Stacks [15, 16] by generating loci from short read Illumina 

data. Polymorphisms were identified in genotype-specific loci. Overall, 575,008 putative 

polymorphisms were identified among the compared genotypes (Supplemental file 7). 

Following populations analysis using Stacks, the data were filtered to remove loci with 

missing values, resulting in 9,029 total loci (for each allele) that were used in STRUCTURE 

analysis. Five iterations were performed in STRUCTURE to analyze K values 1-5. From these 

analyses, two primary populations emerged. ‘Bing’ was characterized as being genetically 
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distinct from the other genotypes using this approach and within the non‘Bing’ population, 

‘Glory’ and ‘Staccato’ formed their own subpopulation. 

Pairwise SNP count data was used to generate a dendrogram using R “plot” and “hclust” 

functions (Figure 7). This dendrogram is analogous to that generated by NTSys and as with 

NTSys, the UPGMA method of hierarchical clustering was employed. These data confirmed 

previous STRUCTURE analysis, demonstrating that ‘Glory’ and ‘Staccato’ are a closely-related 

subpopulation within the non‘Bing’ population. 

4. Conclusion 

 In this work various polymorphism detection approaches were evaluated using five 

genotypes of sweet cherry. The TRAP method was used to generate a profile comparable to 

Amplified Fragment Length Polymorphism (AFLP). TRAP differs from AFLP in that it takes 

advantage of available sequence information, using the known sequence of a candidate gene as 

the fixed primer in addition to one or two arbitrary primers to amplify putative candidate gene 

regions [11]. Similar to other PCR-based approaches, problems with primer specificity leads to 

concerns about reproducibility for the TRAP approach. However, in contrast to other PCR 

methods, TRAP uses relatively long primers which support consistency and reproducibility of 

the approach [11]. 

 The cherry SNParray used in this study represented 4,214 putative SNPs derived from 

twenty-four accessions [12]. Since this is a hybridization based approach, only those SNPs that 

were originally represented on the array will be detectable. The array is unable to accurately 

identify polymorphisms in the context of genomic location in genotypes that were not 

represented originally on the array. 
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 The TRAPseq approach generated data that was used to identify 41 polymorphisms 

between ‘Glory’ and ‘Staccato’ using variant detection software. Therefore, TRAPseq is an 

effective method to generate quality data to identify polymorphisms. It is, however, limited as a 

reduced representation sequencing approach - it does not provide breadth across the genome and 

cannot therefore provide a complete profile of sequence-based differences among genotypes. 

 Whole genome sequencing approach is advantageous in that it provides genome wide 

coverage and can be easily implemented in species with little or no genetic information. Whole 

genome sequencing is limited by the depth of coverage and assembly methodology which may 

be difficult especially around polymorphic repeat regions of the genome. Often other methods 

can be combined with the short-read approach to arrive at a reasonable solution. 

The sweet cherry genotypes ‘Glory’ and ‘Staccato’ are very closely related genotypes. 

We have demonstrated that no SNPs were detected for these genotypes using 6k cherry 

SNParray which evaluates 4,214 sweet cherry SNPs. The TRAP assay positively identify a pair 

of SNPs between ‘Glory’ and ‘Staccato’ in a pairwise comparison (Figure 2). TRAPseq 

identified 41 putative SNPs between ‘Glory’ and ‘Staccato’. Additionally, whole genome 

sequencing approaches showed wide variation in identifying high quality polymorphisms using 

Seqman Pro, DISCOSNP, and Stacks software. 

When comparing all five sweet cherry genotypes from this study to the peach reference, 

310 regions with higher and lower rates of polymorphism were identified. Higher rates could 

result from genome duplications or from low conservation yielding more genetic divergence 

[28]. Similarly, regions with lower than average polymorphisms could be the result of either low 

divergence where few polymorphisms exist, or of very high rates of genetic differentiation, 

preventing the mapping of the sequencing reads to these locations. 
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Both gel-based and sequence based approaches were evaluated for their utility in 

identifying polymorphisms. These approaches used for discovery and cross-validation of SNPs 

included TRAP, SNParray, and long and short-read genome sequencing. These approaches each 

successfully identified polymorphisms. Taken as a whole they provided a robust dataset of 

predicted polymorphisms as the limitations and strengths of each approach are complementary. 

In this study, gel-based and DNA sequence-based approaches toward SNP identification 

combined to provide the most practical approach to identify these genetic differences. These 

SNPs are useful in expanding our knowledge of genetics and genomics in Rosaceae species 

through their use as molecular markers and gene-based interrogations. 
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Tables 

Table 1. Sweet cherry genome assembly statistics. De novo assembled using CLC Genomics Workbench v. 8.0. 

 Bing Sweetheart Staccato Glory Kimberly 

Total Clean Reads 55571037 57636693 64192322 56010744 51053859 

Total Clean Nucleotides 5150832924 5346338137 5972602461 5151578386 4728316659 

N percentage 1.8% 1.7% 2.2% 2.3% 2.6% 

GC percentage 36.6% 36.7% 36.4% 36.4% 36.2% 

Contig Number 72246 70143 66479 69452 71072 

Contig Total Length (nt) 163419540 165662299 169722627 163687825 162087977 

Contig Mean Length (nt) 1338 2362 2553 2356 2281 

Contig N50 3574 6699 7456 6466 6267 
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Table 2. Sweet cherry S-alleles. Incompatability genotypes of sweet cherry cultivars that were 

used in this study. Group SC indicates that these cultivars are Self Compatible (SC) and can 

pollinate flowers with the same S-alleles. Group III cultivars are incompatible with themselves 

and require cross-pollination with another group for optimal fruit set. 

 

 

Cultivar S-Allele Group

Bing S3S4 III

Sweetheart S3S4' SC

Staccato S3S4' SC

Glory S3S4' SC

Kimberly S3S4 III

Stella S3S4' SC
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Table 3. TRAP Primers. The name, sequence and type of primer used in the TRAP Assay.  
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Table 4. TRAPseq Primer details. Primer details including name, sequence and type of primer 

used in the TRAP PCR for TRAPseq polymorphism detection. A fixed primer was used in 

conjunction with both of the arbitrary primers for amplification of each of the genotypes 

examined. 
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Table 5. Polymorphisms derived from TRAPseq approach. Variants were identified using the 

Fixed Ploidy Variant Detection tool (CLC Genomics Workbench v7.5). This experiment 

compared ‘Glory’ reads to a ‘Staccato’ de novo assembly. Nineteen single nucleotide variants 

(SNV), a single multi-nucleotide variant (MNV), thirteen deletions and 8 insertions for a total of 

41 predicted polymorphisms were detected. 

 

  

Mapping Contig Name Ref. Position  Polymorphism Type Length Reference Allele Count Coverage Frequency Fwd/Rvs balance

Staccato_contig_7 262 SNV 1 C A 166 167 99.401 0.024

Staccato_contig_13 8 SNV 1 T G 11 12 91.667 0.273

Staccato_contig_13 14 SNV 1 C A 13 14 92.857 0.385

Staccato_contig_25 375 Deletion 1 A - 384 405 94.815 0.266

Staccato_contig_28 721 Deletion 1 A - 99 105 94.286 0.394

Staccato_contig_29 213 Deletion 1 A - 11 11 100.000 0.455

Staccato_contig_34 93 Insertion 1 - G 3875 4043 95.845 0.376

Staccato_contig_34 97 Deletion 1 T - 4166 4272 97.519 0.381

Staccato_contig_34 100 Insertion 1 - C 4187 4272 98.010 0.382

Staccato_contig_44 338 Deletion 1 C - 15 15 100.000 0.067

Staccato_contig_44 342 Deletion 1 G - 14 14 100.000 0.071

Staccato_contig_53 946 Deletion 1 C - 51 51 100.000 0.275

Staccato_contig_100 436 Insertion 1 - G 12 13 92.308 0.250

Staccato_contig_100 438 Insertion 3 - AAA 12 12 100.000 0.250

Staccato_contig_100 440 Insertion 2 - TA 12 12 100.000 0.250

Staccato_contig_164 530 Deletion 1 C - 42 42 100.000 0.167

Staccato_contig_164 540 Deletion 1 C - 38 40 95.000 0.158

Staccato_contig_166 26 Insertion 1 - G 77 77 100.000 0.403

Staccato_contig_166 27 SNV 1 T G 77 80 96.250 0.403

Staccato_contig_181 19 SNV 1 A C 12 13 92.308 0.417

Staccato_contig_181 22 SNV 1 C T 12 13 92.308 0.417

Staccato_contig_251 444 SNV 1 A C 13 13 100.000 0.308

Staccato_contig_438 323 Deletion 1 A - 11 12 91.667 0.364

Staccato_contig_438 363 Deletion 2 GC - 11 11 100.000 0.364

Staccato_contig_506 14 Deletion 1 T - 10 10 100.000 0.300

Staccato_contig_704 83 SNV 1 T C 11 11 100.000 0.455

Staccato_contig_746 113 SNV 1 C T 33 33 100.000 0.455

Staccato_contig_746 119 MNV 2 TG CA 25 26 96.154 0.440

Staccato_contig_746 125 SNV 1 G T 23 23 100.000 0.478

Staccato_contig_795 122 Deletion 1 A - 13 14 92.857 0.462

Staccato_contig_943 167 SNV 1 A T 17 17 100.000 0.294

Staccato_contig_1041 370 Insertion 1 - A 2120 2187 96.936 0.286

Staccato_contig_1061 136 Insertion 1 - T 42 42 100.000 0.333

Staccato_contig_1116 374 SNV 1 T A 32 35 91.429 0.438

Staccato_contig_1243 354 SNV 1 G A 57 57 100.000 0.386

Staccato_contig_1243 356 SNV 1 C T 57 57 100.000 0.386

Staccato_contig_1243 369 SNV 1 G A 108 115 93.913 0.463

Staccato_contig_1243 378 SNV 1 G T 121 124 97.581 0.479

Staccato_contig_1243 380 SNV 1 C T 121 124 97.581 0.479

Staccato_contig_1243 384 SNV 1 G A 135 141 95.745 0.444

Staccato_contig_1299 119 SNV 1 A T 19 20 95.000 0.421
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Table 6. The percentage and total number of unique SNPs on the sweet cherry SNParray. The bottom-left half of the table shows 

the percentages of SNPs held in common between two compared genotypes. The upper-right half of the table show the actual count of 

SNPs called between each genotypic comparison. Using SNParray there were found no unique polymorphisms between ‘Staccato’ and 

‘Glory’ cultivars as well as the ‘Kimberly’ and ‘Sweetheart’ cultivars, however, unique SNPs were found between all other 

comparisons. 

 

 

Bing Sweetheart Staccato Glory Kimberly Stella

Bing - 566 607 606 565 515

Sweetheart 9.9% - 68 67 0 504

Staccato 10.7% 1.2% - 0 68 539

Glory 10.6% 1.2% 0.0% - 67 537

Kimberly 9.9% 0.0% 1.2% 1.2% - 503

Stella 9.0% 8.8% 9.5% 9.4% 8.8% -

Percentage of unique SNPs in RosBreed cherry SNP Array

C
o
u

n
t 

o
f 

 u
n

iq
u

e 
S

N
P

S
 i

n
 

R
o
sB

re
ed

 c
h

er
ry

 S
N

P
 A

rr
a
y



 

 

7
1
 

Table 5. Verification of TRAPseq derived Polymorphisms. A subset of SNP sequences from the 6k cherry SNParray [12] were 

found on NCBI and blasted against the de novo assembly (Bing). Each SNP was visually identified in the BLAST results. The subset 

of SNPs was randomly selected from across 5 chromosomal locations and all 20 tested contained the predicted SNP. 

 

 

NCBI SS# Original Full Name in 6K SNP Array SNP Sequence (NCBI) Sequence (BLAST sequence, Bing) P
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ss490545369 RosBREED_snp_sweet_cherry_Pp1_00094685 TTCAGTAGAGCTCCCTGGGGCTTGC[A/C]AAGTTTGTCAAACTCAATCAACTTG TTCAGTAGAGCTCCCTGGGGCTTGCCAAGTTTGTCAAACTCAATCAACTTG C C 1 94685 0.21 0.00

ss490545372 RosBREED_snp_sweet_cherry_Pp1_00114487 AACAACTACCATAACAGACCTTCGA[C/T]GATAGTATACAACAAACGAAACCAC AACAACTACCATAACAGACCTTCGATGATAGTATACAACAAACGAAACCAC T T 1 114487 0.26 0.00

ss490545375 RosBREED_snp_sweet_cherry_Pp1_00154827 TTGCTTTGTAGACCTTGTCCATCTA[C/T]CTTGTAGTTTTCTTCTTTTCATTAA TTGCTTTGTAGACCTTGTCCATCTATCTTGTAGTTTTCTTCTTTTCATTAA T T 1 154827 0.35 0.00

ss490545378 RosBREED_snp_sweet_cherry_Pp1_00196391 TTTGGAATGTTCTTGCTCCAATTGA[G/T]CTTCTCAGCTTTGGCAGTAGTTCTC TTTGGAATGTTCTTGCTCCAATTGATCTTCTCAGCTTTGGCAGTAGTTCTC T T 1 196391 0.44 0.00

ss490548745 RosBREED_snp_sweet_cherry_Pp2_00911589 ACACCCATACCCAAGTTCTTCCGTC[A/G]GAAGATGATGATGGTGCTAAGAATA ACACCCATACCCAAGTTCTTCCGTCGGAAGATGATGATGGTGCTAAGAATA G G 2 911589 1.94 0.00

ss490548749 RosBREED_snp_sweet_cherry_Pp2_00979200 AAGACGGATAGCCAGGGTGAAAAAA[A/C]CTTGCCAAGTAACTAATTAATAGCA AAGACGGATAGCCAGGGTGAAAAAACCTTGCCAAGTAACTAATTAATAGCA C C 2 979200 2.08 0.00

ss490548753 RosBREED_snp_sweet_cherry_Pp2_01029506 GGTTTTGTAAGGATGGTATACCTTA[C/T]TGGGAAAAGCAATTCTGCACTTTGG GGTTTTGTAAGGATGGTATACCTTATTGGGAAAAGCAATTCTGCACTTTGG T T 2 1029506 2.19 0.00

ss490548757 RosBREED_snp_sweet_cherry_Pp2_01123211 TGTGTTTAACAACTTTGTCCTTGCA[A/C]AGTTTAACTGGGCAACAATATACTG TGTGTTTAACAACTTTGTCCTTGCACAGTTTAACTGGGCAACAATATACTG C C 2 1123211 2.39 0.00

ss490552278 RosBREED_snp_sweet_cherry_Pp4_00355217 TAACTTCTTGCATCTTGAGGAAAAC[A/G]GGTGGTGGTAACCTAATCTCGCTGC TAACTTCTTGCATCTTGAGGAAAACGGGTGGTGGTAACCTAATCTCGCTGC G G 4 355217 2.47 0.92

ss490552281 RosBREED_snp_sweet_cherry_Pp4_00394639 TTATTGCGCCAGAATCTGAGCTGAG[A/C]CGAGACGAGACTTGCCTATGGTTCA TTATTGCGCCAGAATCTGAGCTGAGCCGAGACGAGACTTGCCTATGGTTCA C C 4 394639 2.58 1.07

ss490552284 RosBREED_snp_sweet_cherry_Pp4_00430644 CTGCAAAAACAACCAGCTCCGTGAA[G/T]ACATAAACACGCAGCATCCAAATGC CTGCAAAAACAACCAGCTCCGTGAATACATAAACACGCAGCATCCAAATGC T T 4 430644 2.69 1.19

ss490552287 RosBREED_snp_sweet_cherry_Pp4_00473163 TCATCGGATTGGATTACCTCTCGTT[C/T]GAGTCTGAGGTGAAGGTTTATAGCC TCATCGGATTGGATTACCTCTCGTTTGAGTCTGAGGTGAAGGTTTATAGCC T T 4 473163 2.81 1.35

ss490555002 RosBREED_snp_sweet_cherry_Pp6_00940675 TTCTTTACTCAGTTCTTGGTCACTG[A/C]AAAGTTCATCCGACTCTTGGTGCAC TTCTTTACTCAGTTCTTGGTCACTGCAAAGTTCATCCGACTCTTGGTGCAC C C 6 940675 9.34 0.00

ss490555005 RosBREED_snp_sweet_cherry_Pp6_00981908 GATAAGTGCTGGTGAGGTTTTACAT[A/G]TCATAATATACCTGGTCTGTTTCGT GATAAGTGCTGGTGAGGTTTTACATGTCATAATATACCTGGTCTGTTTCGT G G 6 981908 9.40 0.00

ss490555008 RosBREED_snp_sweet_cherry_Pp6_01023194 GGTCTATTGATTCTGGAAATGCTGC[A/G]AATGGTCAGATCCAATCTGAGCGCT GGTCTATTGATTCTGGAAATGCTGCGAATGGTCAGATCCAATCTGAGCGCT G G 6 1023194 9.46 0.00

ss490555011 RosBREED_snp_sweet_cherry_Pp6_01062002 ATAGGCAACATTAAAAATATTTAAT[A/G]GGAGGCTGTTAATTCTTGCAATGCT ATAGGCAACATTAAAAATATTTAATGGGAGGCTGTTAATTCTTGCAATGCT G G 6 1062002 9.51 0.00

ss490558164 RosBREED_snp_sweet_cherry_Pp8_13263864 TCTGGAAGAACTTGAAGGAATTCAC[A/G]GGTTTCAAATCCAAGAGCGGGTTGA TCTGGAAGAACTTGAAGGAATTCACGGGTTTCAAATCCAAGAGCGGGTTGA G G 8 13263864 24.29 35.79

ss490558167 RosBREED_snp_sweet_cherry_Pp8_13297952 TACTAGTTTCTTCTTTTCTTTGGTC[A/G]GCATCTTCCTTGCATTCCTTATAGT TACTAGTTTCTTCTTTTCTTTGGTCGGCATCTTCCTTGCATTCCTTATAGT G G 8 13297952 24.33 35.95

ss490558170 RosBREED_snp_sweet_cherry_Pp8_13376142 ATCTTTGGTGCTTTCACCATTTGAC[A/G]TGGAGAGGCTCTCTTTCTCCTCCTT ATCTTTGGTGCTTTCACCATTTGACGTGGAGAGGCTCTCTTTCTCCTCCTT G G 8 13376142 24.43 36.31

ss490558173 RosBREED_snp_sweet_cherry_Pp8_13397168 TTGCAATCACTCTAATGCTTCTACT[A/C]TTTCTTGCAGATGGCCTGATCTGGA TTGCAATCACTCTAATGCTTCTACTCTTTCTTGCAGATGGCCTGATCTGGA C C 8 13397168 24.46 36.41
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Figures 

 
 

 

Figure 1– Pedigree relationships of six of the sweet cherry cultivars described in this study 

(bold). Pedigree of the sweet cherry cultivars used for SNP development. The maternal parent is 

marked by a red line and the parental parent by a blue line. 
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Figure 2. TRAP Assay of Bing, Glory and Staccato sweet cherry cultivars. Assays replicated 

in duplicate. Primer screen was performed using fixed primers BKP-383, 384 and arbitrary 

primers SA12, GA5. Primer sequences are available (Table 3). Red boxes are indicative of 

putative TRAP markers. The size of the BKP-383 and BKP-384 ‘Glory’ markers are 

approximately 336 and 330 bp, respectively. 
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Figure 3. Individual genotype comparisons of SNPs using SNParray. The title of each subfigure indicates the reference by which 

the listed genotypes were compared.
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Figure 4. NGen-Seqman putative SNP detection. These data are based on mapping Illumina reads to the Glory (A) and Staccato (B) 

PacBio de novo assemblies. The putative polymorphisms from ‘Bing’ sweet cherry were compared to each genotype to provide a 

baseline comparison from which all genotypes could be compared. The polymorphisms shown were stringently filtered to only retain 

those polymorphisms with a minimum threshold of twenty reads called for a given polymorphism. 

A B 
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Figure 5. Total predicted polymorphisms using DISCOSNP. Each of the genotypes was compared against the ‘Stella’ sweet cherry 

genome. The total number of polymorphisms corroborate similar trends using the other polymorphism detection methods used in this 

study.
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Figure 6. Percentage of high quality polymorphisms for each genotype using DISCOSNP. High quality polymorphisms were 

determined by keeping predicted polymorphisms with the score of 1.0, indicating that each read analyzed contained the 

polymorphism. 
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Figure 7. Stacks cluster dendrogram of genotypic relationships. Two primary populations 

were identified between ‘Bing’ and the other four genotypes. Within these populations, 

‘Staccato’ and ‘Glory’ are a distinct subpopulation. 
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Chapter 2 - Supplemental Files 

Supplemental File 1a. ‘Stella’ mapped to peach genome (.fasta) 

Supplemental File 1b. ‘Bing’ mapped to peach genome (.fasta) 

Supplemental File 1c. ‘Sweetheart’ mapped to peach genome (.fasta) 

Supplemental File 1d. ‘Staccato’ mapped to peach genome (.fasta) 

Supplemental File 1e. ‘Glory’ mapped to peach genome (.fasta) 

Supplemental File 1f. ‘Kimberly’ mapped to peach genome (.fasta) 

Supplemental File 2a. ‘Stella’ de novo genome assembly (.fasta) 

Supplemental File 2b. ‘Bing’ de novo genome assembly (.fasta) 

Supplemental File 2c. ‘Sweetheart’ de novo genome assembly (.fasta) 

Supplemental File 2d. ‘Staccato’ de novo genome assembly (.fasta) 

Supplemental File 2e. ‘Glory’ de novo genome assembly (.fasta) 

Supplemental File 2f. ‘Kimberly’ de novo genome assembly (.fasta) 

Supplemental File 3a. ‘Bing’ mapped to PacBio assembly, ‘Glory’ (.fasta) 

Supplemental File 3b. ‘Sweetheart’ mapped to PacBio assembly, ‘Glory’ (.fasta) 

Supplemental File 3c. ‘Staccato’ mapped to PacBio assembly, ‘Glory’ (.fasta) 

Supplemental File 3d. ‘Glory’ mapped to PacBio assembly, ‘Glory’ (.fasta) 

Supplemental File 3e. ‘Kimberly’ mapped to PacBio assembly, ‘Glory’ (.fasta) 

Supplemental File 4. SNParray data (.xlsx) 
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Supplemental File 5. DiscoSNP User Guide (.pdf) 

Supplemental File 6. NGen-Seqman SNPs (.xlsx) 

Supplemental File 7. Stacks SNPs output (.xlsx) 
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Abstract 

Background: As a non-climacteric fruit, sweet cherry does not produce the defining ethylene 

burst characteristic of climacteric species. However, previous work has shown that exogenous 

ethylene treatment of the tree, when the fruit has attained 80% maturity prior to harvest, elicits an 

abscission response at pedicel-fruit junction in a genotype-dependent manner. The genetic 

mechanism underlying this novel ethylene response in sweet cherry remains to be unraveled.  

Results: A developmental time-course transcriptome analysis was performed on the fruit-pedicel 

abscission zone following an exogenous ethylene treatment. Three genotypes, ‘Chelan’, ‘Bing’ 

and ‘Skeena’ representing the range of observed phenotypic responses were used in this study. 

Phenotypic data and abscission zone samples were excised and collected prior to ethylene 

(Ethephon) application (240 ppm), 6 hours post treatment, 7 days post-treatment, and 14 days 

post-treatment. Transcript data were assembled into a representative transcriptome and relative 

expression values were calculated. Various transcription factors, abscission-related genes and 

transcripts of unknown function exhibited differential expression in a genotype dependent 

manner over the developmental time-course. Differential expression was confirmed using 

quantitative reverse transcription PCR. Gene ontology and pathway information also identified 

gene-network components involved in the abscission process.  

Conclusions: This work has identified some of the genetic regulation components that are 

induced by ethylene in the formation of the pedicel fruit abscission zone in a non-climacteric 

plant species where ethylene is not indicated to participate in the fruit ripening process. The 

information gleaned from this work may offer insight into the molecular mechanisms underlying 

abscission in non-climacteric systems. These data are expected to be used for identification of 
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allelic variation in the abscission-related genes which can be utilized in marker-assisted breeding 

of novel varieties that align with new and developing fruit harvest technologies. 

 

Key Words 

Ethephon, ethylene, RNA-seq, transcriptome, Prunus avium, abscission, non-climacteric, qRT-

PCR, gene expression, Rosaceae  

 

Background 

Organ abscission and senescence in Angiosperms are coordinated by a complex network 

of endogenous and exogenous signaling pathways. Fruit ripening, a subset of senescence 

processes, manifests as biochemical and physiological changes affecting appearance, texture, 

flavor and aroma of the fruit [1]. Developmental changes accomplish organ disintegration 

primarily for seed dissemination purposes. Abscission is the targeted senescence of specific cell 

layers leading to fruit separation from the main plant body [2]. Determinate plant structures such 

as leaves, flowers, corollas, and fruit often abscise following their functional lifespans [3, 4]. 

Organ separation from the plant results from adhesion loss between cells caused by middle 

lamella dissolution. This occurs through the action of hydrolytic enzymes such as 

polygalacturonase and cellulose [5]. The plant hormones auxin and ethylene are primary 

regulators of abscission processes. These two plant hormones generate a precisely balanced 

regulatory mechanism, controlling the development of cell size and shape in the separation layer 

[6] which sets up abscission zones through progressive structural changes. Minute shifts to 

internal hormonal balance initiate molecular signals resulting in morphological changes. If the 

ratio of auxin to ethylene is disturbed in favor of auxin, ethylene biosynthesis tends to be 
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suppressed, effectively reducing all ethylene dependent responses. If the ratio is reversed, 

ethylene is upregulated in a feed-forward manner. In the context of abscission, ethylene binds to 

specific receptors in AZ cells, initiating a signal transduction pathway leading to cell death, 

reduction in cell wall adhesion, and eventually, organ abscission [4].  

As the first gaseous phytohormone identified, ethylene (C2H4) regulates numerous 

developmental processes such as climacteric fruit ripening, senescence, abscission, and even 

volatile (aroma) production [7, 8]. Ethylene has been shown to be instrumental in other phases of 

plant development as well, from germination to flowering. The pathway for ethylene 

transduction has upstream components common to many ethylene signaling responses [9]; 

therefore, the superficially simple nature of the plant ethylene signaling pathway (see chapter 1, 

Figure 1) does not adequately explain the diverse ethylene responses. The different responses to 

ethylene are regulated by ethylene response factor (ERF) transcription factors. These genes are 

encoded by a large plant transcription factor family, and therefore optimally confer a large 

diversity and specificity of ethylene responses. This includes, presumably, the abscission zone 

formation response. Understanding control mechanisms that underlie ethylene action specificity 

requires revealing the myriad components that mediate ethylene function that is specific to a 

variety of developmental processes. For example, identifying ripening-associated transcriptional 

regulators through gene expression correlation has enhanced our understanding of mechanisms 

that control ripening in fruits [10, 11]. 

While evidence directly linking ethylene production and leaf abscission remains elusive 

[13], ethylene has been shown to accelerate corolla and flower abscission [14]. For many 

species, not only is endogenous ethylene concentration important, but ethylene sensitivity of 

tissue determines the hormone’s effect [12, 14]. Although there are many biochemical 
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similarities among leaf, flower and fruit abscission, regulatory pathways differ dramatically and 

are determined by such diverse factors as the species, the organ and the physical location of the 

AZ [13, 15]. For instance, fruitlet abscission in citrus, mango, apple and cherry has been a 

valuable resource in abscission research, demonstrating the connection between a change in 

ethylene concentration in various fruit tissue and whole fruit abscission [16-19]. Ethylene has 

been demonstrated to induce the formation of an abscission zone in Prunus cerasus (sour cherry) 

at the pedicel-stem junction, loosening the fruit and allowing for efficient mechanical harvesting 

[20]. 

Enzymes including pectinase, cellulase and polygalacturonase have been shown to be 

regulated by ethylene and correlated with plant abscission [21]. Others such as peroxidases, 

chitinases, uronic acid oxidase, and β-1,3-glucanase are associated with abscission processes but 

are not induced by ethylene, suggesting that although ethylene may regulate a subset of genes, an 

alternate mechanism may control other abscission-related genes [2]. 

Sweet cherry (Prunus avium L.), a member of the Rosaceae family has been classified as 

a non-climacteric fruit. There is some evidence, however, that the characteristic respiratory burst 

may occur earlier in development than when humans harvest the fruit [22]. This leads to the 

hypothesis that sweet cherry could be considered climacteric with a divergent climacteric 

response timeline. Further studies evaluating this hypothesis in sweet cherry could have 

profound implications in the understanding of angiosperm development and fruit ripening.  

In this study, we begin with the assumption of non-climacteric ripening for sweet cherry 

and there are underlying genetic reasons for the different ripening responses. A recent report 

investigating sweet cherry polymorphisms identified several missense mutations in ACS and 

ACO genes (involved in ethylene biosynthesis) implying the possibility of underlying causality 
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for non-climacteric ripening pattern [23]. In sweet cherry, a genotype-specific reduction in 

pedicel-fruit retention force (PFRF) in response to ethephon application prior to ripening has 

been demonstrated [24]. Ethephon (2-Chloroethylephosphonic acid) is a commercially available 

plant growth regulator that is rapidly metabolized to ethylene upon foliar application. For sweet 

cherry cv. ‘Bing’, ethephon application approximately ten days before harvest has been shown to 

be the minimal temporal threshold required for subsequent mechanical harvest [25]. Under the 

same regime, cv. ‘Chelan’ PFRF remained higher than the level required for mechanical harvest 

(400 g of pedicel pull force). ‘Skeena’ PFRF naturally declines below the threshold for 

mechanical harvest regardless of ethephon application. A sweet cherry phenotyping study has 

shown no significant correlation between PFRF and fruit quality across a wide variety of 

commercial sweet cherry cultivars and F1 seedlings [25]. PFRF responses remained consistent 

across multiple years, indicating a significant genetic effect on the phenotype and suggesting that 

the phenotype is genetically stable and can perhaps manipulated at the genetic level. 

In this work, PFRF data and pedicel-fruit abscission zone transcriptome data from the 

three above-mentioned sweet cherry cultivars were used to decipher molecular mechanisms of 

ethylene inducible pedicel-fruit abscission zone formation. Gene expression patterns of ethylene-

responsive genetic elements in abscission zone inducible genotype ‘Bing’ were identified and 

validated using qRT-PCR.  

Results and Discussion 

Phenotyping of pedicel-fruit abscission zone (PFAZ) 

Pedicel-fruit retention force has been used as an indirect measurement of the viability of 

the PFAZ (pedicel-fruit abscission zone) [24, 25]. As average PFRF values decrease below 400 g 

the fruit are predicted to be able to be mechanically harvested with minimal loss. Although force 
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is typically measured in Newtons [N = kg m/s2], in our experiment N are not used as the defining 

measurement of force because distance and time are not included in the digital measuring device. 

Although a measurement of mass, grams are appropriate for indirectly measuring sweet cherry 

PFAZ. Quantitative observations of a basically binary phenotype such as PFAZ (at harvest the 

AZ is present or not present) allow the researcher to estimate the state of the AZ and correlate 

specific gene expression in the mechanically excised AZ with the physiological state of genotype 

dependent AZ development. However, because the individual biological samples were pooled, in 

this experiment it was not possible to determine a direct correlation between individual gene 

expression over the developmental time course and the specific AZ state of an individual sweet 

cherry fruit. The pooling of the samples, however, beyond providing the physical experimental 

advantage of adequate biological material, provided a baseline of gene expression for each 

genotype over an optimal sample size.  

Phenotypic data (diameter, color, and PFRF) were measured for each genotype at each 

time point during the 2010, 2013 and 2014 sweet cherry seasons (Supplemental File 1a-c). A 

summary of PFRF data (calculated mean, standard deviation and 95% confidence interval) are 

presented in Table 1. For each of the three seasonal replications of the experiment, there was no 

statistically significant correlation between row and color, row and PFRF, or color and PFRF in 

any intra-genotypic comparison of treatment and control. This observation is justified 

biologically because at each time point the fruits were at very similar developmental stages and 

randomly sampled from the trees.  Any discrepancies or fluctuations in color and row do not 

correlate with PFRF values, possibly because other environmental factors such as water 

availability and temperature fluctuations are more important for phenotypic variation at the time 

of harvest.  



 

 

90 

For 2010 and 2013 sampling, ethephon was applied 14 days before the predicted harvest 

date for each of the genotypes. The reason for this approach was because previous data suggested 

ethephon applications for ‘Bing’ should be made 14 days before harvest at 1.2 L ha-1 (1 pt A-1) 

concentration. This regime was shown to efficiently remove fruit and minimize potential 

deleterious effects on fruit quality [24]. However, a need was felt to normalize the treatment and 

sampling time to represent equivalent developmental stage in each genotype because each 

genotype has a different maturation timeline for the fruit after bloom and response to exogenous 

ethylene may vary at the genetic level across the three genotypes used in this study. A 

representative developmental timeline was established for each genotype based on flowering and 

harvesting dates in the literature. Ethephon was applied at 80% completion of that timeline for 

each of the genotypes. This percentage coincided with 14 d before harvest for ‘Bing’, 12 d before 

harvest for ‘Chelan’ and 16 d before harvest for ‘Skeena’. 

The modification to ethephon application period was implemented for the 2014 season 

experiment. Although ‘Chelan’ showed statistically significant PFRF response to ethephon 

application at the time of harvest for the 2010 and 2013 seasons, Table 2, average PFRF was not 

reduced to the threshold required for efficient mechanical harvest, Figure 1a. These physiological 

data support anecdotal observations that ‘Chelan’ forms neither a developmental nor ethylene-

induced PFAZ. Gene expression data comparisons with ‘Chelan’ to ‘Bing’ and ‘Skeena’ may 

indicate a genotype-specific difference in key ethylene-responsive regulatory genes. 

With no alterations in the timing for ethephon application for the 2014 season, ‘Bing’ 

predictably showed no significant PFAZ variation in ethylene treated samples PFRF following 

the schedule modification, Figure 1b. The higher average PFRF observed in the 2010 treatment 
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data may be the result of weather discrepancies or errors in predicting the optimal harvest 

window for treatment and data collection.  

With the change in ethephon application in 2014 sample collection, the PFRF data for 

‘Skeena’ shifted significantly in that the expected phenotype of both Treatment and Control 

PFRF values were below the 400 g threshold recommended for mechanical harvest, Figure 1c. 

This shift could be due to a more congruent alignment of developmental ethylene responses 

among genotypes and a positive result of the 80% application, or it could be simply from other 

uncontrolled variables including serendipitously optimal weather conditions around the harvest 

time point.  

Developmental time course transcriptome analysis 

General steps in the construction of P. avium abscission zone transcriptomes are outlined 

in a workflow illustrated in Figure 2. Briefly, raw reads were processed through a quality check 

protocol and all low quality and contaminating reads were removed from each sample. A master 

transcriptome dataset (PaRef) was generated from the combined read data from ‘Bing’, ‘Chelan’, 

and ‘Skeena’ genotypes at each time point (Table 3). To evaluate pedicel-fruit abscission in 

sweet cherry, eight transcriptome libraries for each of the three sweet cherry genotypes (control 

and ethephon-treated samples for each of the four time points) were generated by mapping 

individual sample reads back to the PaRef assembly, Supplemental File 3a-x. Differential 

expression was then calculated between control and ethephon treated samples at the four distinct 

time points using a RNAseq module in CLC Genomics Workbench as described in the 

corresponding methods section. 
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Transcriptome Assembly and Annotation 

Assembled contigs passed the filter criteria of greater than 200 base length combined 

with five or greater average read coverage. Read quality trimming reduced the total number of 

assembled contigs and increased individual base resolution and average read length. In summary, 

84,260 contigs were assembled from 1,075,449,571 total trimmed reads with an N50 of 1,102 

bases for the PaRef assembly (Table 3). This represents transcripts present in four developmental 

time points (0 h, 6 h, 7 d and 14 d post-treatment) and two experimental conditions (ethephon 

treatment and water control). The overall contig number found in this experiment may diverge 

from other reported plant transcriptomes due to greater base calling resolution between SNP 

alleles, orthologous and/or paralogous gene copies in the three distinct genotypes under 

consideration [26]. The de novo approach to transcriptome assembly is effective, but stringent 

read trimming and filtering parameters may lead to RNA copy loss in extracted RNA pools from 

minute but widespread errors attributed to enzymatic and mechanical processes used in the 

production of the final in silico read sequence. The errors introduced through amplification 

processes lower the total number of authentic RNA read occurrences thereby reducing statistical 

power provided by the high number and high quality reads produced by Illumina sequencing 

technology. Mapping each individual Illumina read dataset (from each genotype, each time 

point, and each treatment) to the assembled reference transcriptome sequence was performed to 

correct for bias introduced by stringent trimming and assembly regime. Mapping the reads back 

to the assembled reference with less stringent parameters better approximates the number of 

transcripts represented in the overall transcriptome. Sequencing errors introduced through this 

workflow will include reads that pass the homology tests, but any polymorphisms from this will 

not be incorporated into the reference assembly. These individually mapped files are used to 
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generate normalized read expression values for each of the assembled contigs. The reference is 

used for mapping (here the reference is the de novo transcriptome of all three genotypes) to 

correlate contigs by name and easily compare expression values across genotypes for given time 

points.  

 The assembled sweet cherry unique contigs were first annotated through homologous 

search against different protein databases. A total of 38,874 (46.6%), unique contigs had 

significant hits (E-value 1e-5) in the GenBank non-redundant (nr) database. Consistent with 

previous reports, the percentage of annotated genes was positively correlated with gene length 

(Figure 3). Sweet cherry unique contigs were further annotated by assigning them with gene 

ontology (GO) terms. A total of 28,002 unique contigs (72.0%) were assigned with at least one 

GO term, among which 18,883 (67.4%), 22,684 (81.0%), 19,368 (69.2%) were assigned in the 

biological process, molecular function, and cellular component category, respectively. The 

unique contigs were further classified into different functional categories. The top twenty-five 

groups in the biological process and molecular function categories are shown in Figure 4. 

Annotated RNAseq datasets with five-fold differentially expressed genes from time point two 

(six hours following ethephon application) were analyzed for GO term enrichment using Fisher’s 

Exact Test, Blast2GO [27]. Interestingly, ‘Bing’ and ‘Skeena’ had a similar profile of GO terms 

being enriched in the dataset, but ‘Chelan’ had almost no GO terms enriched, indicating the 

possibility that similar gene profiles were being activated or repressed in the former genotypes, 

but ‘Chelan’ has a unique gene expression response to ethephon application. 

Transcriptomics comparison, differentially expressed genes (DEGs) 

RNAseq projects have several challenges in analysis to overcome, specifically in the 

detection of differential expression. The first challenge comes from bias inherent in the 
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sequencing technology itself; the second is laboratory or experimental errors (common to many 

new technologies) inducing technical variation across samples. The third and most important 

challenge is that the current costs associated with RNAseq prohibit generation of optimal 

biological replicates, retarding consistent statistical analysis. Experiments with small sample size 

and biological replication often lead to high false discovery rates (FDR) for differential gene 

expression [28]. The expression quantification of short reads using RNAseq data depends on the 

length of the feature; longer features tend to have an increased number of reads associated with 

them. The expression values must be normalized to mitigate bias associated with unbalanced 

sampling (preference for longer reads). This normalization can be performed in a number of 

different ways including as described by Mortazavi et al, resulting in the expression value known 

as Reads Per Kilobase per Million reads (RPKM) [29]. This normalization factor was used to 

eliminate read length bias and more closely approximate relative gene expression. A closely 

related normalization factor, Transcripts Per Million (TPM) has been shown to reduce transcript 

variability among samples within a given experiment [30]. Overall, TPM correlates with RPKM 

for each of the candidate genes evaluated, and the amplitude between time points, while variable, 

show clear differences between samples and time points, specifically for ethylene related 

(Supplemental File 5c).  

Due to inherent limitations of the de novo transcriptome assembly, gene expression 

analysis was restricted to the contig consensus sequence annotation. It is difficult to differentiate 

between variant alleles or gene family members of highly similar sequence, without the use of 

subsequent molecular techniques [31]. However, each sample (genotype, treatment, time point) 

was mapped back to the ‘Stella’ reference genome (de novo assembly) (Supplemental Files 4a-

x).  
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Mapping the ‘Skeena’ reads from time point three, or seven days after ethephon 

application, to PaRef resulted in unresolvable low quality contigs generated. This was most 

likely the result of initial library construction errors prior to Illumina sequencing because the 

total read count that passed initial quality assessment for ‘Skeena’ Control sample from the time 

point in question had a dramatically reduced total read count which leads to highly skewed 

normalized values (Figure 6).  

Global differential gene expression 

 A transcriptome-wide picture of the gene expression differences between each genotype 

at each time point, the average RPKM value for each time point was calculated and the ratio of 

ethephon treatment to control shows a significant response in the ethylene responsive genotype, 

‘Bing’ (Figure 4). The fact that the mean transcript expression levels of ‘Bing’ alone increases 

directly following ethylene application arises from one of two general options. One option is a 

small but broad increase in gene expression generally across the transcriptome or, alternatively, a 

few key genes dramatically shifting transcript abundance in ‘Bing’. An overall change in 

transcript ratio in ‘Bing’ supports the observed phenotypic changes in response to ethylene. 

Additionally, this observation does not rule out the possibility that ‘Chelan’ and ‘Skeena’ 

genotypes may have a more directed or specific ethylene response rather than a generalized one 

in the PFAZ. 

 In order to detect differentially expressed genes (DEGs), CLC Genomics Workbench 

(v8.5) was used to statistically evaluate control and treated samples. Differential expression 

testing of RNAseq data generally requires multiple replicates per sample, allowing for 

calculations of means and variance. Statistically significant differences in gene expression 

between samples were identified through CLC Genomics RNAseq Analysis workflow.  
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Transcription factors are important upstream regulatory proteins and play critical roles in 

various plant developmental processes and plant responses to abiotic and biotic stresses. In the 

present study, from the sweet cherry unique contigs, we identified a total of 1,296 transcription 

factors that were classified into 66 different families. The largest group of transcription factors 

was the AP2/ERF-ERF family (88, 6.8%) followed by C2H2 (82, 6.3%), NAC (81, 6.3%), 

bHLH (78, 6.0%), MYP-related (74, 5.7%), MYB (70, 5.4%), C3H (61, 4.7%), and WRKY (58, 

4.5%) families. These eight families represented approximately half (46%) of the transcription 

factors identified in the unique sweet cherry transcripts. Specifically, ethylene responsive 

transcription factors (ERTF) were shown to be highly expressed in ‘Bing’ samples in response to 

ethylene treatment six hours following application. For the same time point, both ‘Chelan’ and 

‘Skeena’ ERTF genes were not significantly differentially expressed. This result implies that the 

transcription factor family is altered in its expression by some unknown mechanism in ‘Bing’ 

which is missing in ‘Chelan’ and ‘Skeena’. The sequences representing each of these genes in 

silico exhibited no obvious polymorphisms between the three sweet cherry genotypes. ERTF-1, 

showing highest differential expression, was PCR amplified from genomic DNA for each 

genotype, cloned, and sequenced. Comparative sequence analysis consistently showed that the 

genetic sequence was identical between species. This does not obviate the possibility that the 

upstream regulatory regions of this gene may be polymorphic across the three genotypes. It is 

possible that undetected regulating microRNAs [32] or epigenetic differences contribute to the 

observed expression response.  

 Additionally, well-studied gene families in the ethylene biosynthesis pathway such as 1-

aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate 

oxidase (ACO) showed no statistically significant differential expression in response to ethylene 
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application in any of the genotypes examined (Table 7). Although previous work has shown non-

sense SNPs within several members of each of these gene families [23], it did not translate in our 

work as a differential gene expression response. This could be for multiple reasons, including a 

failure to capture gene expression at the optimal developmental period for ethylene response or 

perhaps a related, but undetected gene family member is responsible for the response. 

Validation of RNAseq derived differential gene expression via qRT-PCR 

Differentially expressed transcripts between ethylene treated and control conditions were 

confirmed by quantitative real-time PCR (qRT-PCR). qRT-PCR is a valuable tool to validate 

digital differential expression studies supported by sequencing-based transcriptome profiling 

approaches because, while impractical for high-throughput screening, it remains the gold 

standard for individual gene expression studies. qRT-PCR validation was performed with 

samples collected in 2014. As described above, the timing of ethylene application in the 

experimental design was modified in 2014 to approximate the ‘Bing’ developmental time course 

response. However, the genotypes, number of time points, sampling methods and the 

concentration and volume of the experimental application remained consistent with experiments 

from earlier seasons. In this study, twenty-one relevant candidate genes were selected for 

subsequent analysis with qRT-PCR (Supplemental File 4). The selection of these genes was 

determined by a literature-based understood connection with ethylene combined with the results 

of the RNAseq differential expression studies. qRT-PCR fold-change analysis shows close 

correlation with gene expression trends of RNAseq transcriptome analysis (Figure 6).   

An ethylene receptor gene increased twofold six hours after ethylene application in both 

‘Bing’ and ‘Chelan’ and did not significantly change in ‘Skeena’. However, the same gene had 

the twofold expression ratio at harvest for ‘Bing’ but was no longer detected in ‘Chelan’ (Table 
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7). ‘Skeena’ showed no change in expression of the ethylene receptor throughout the time 

course.  

Polygalacturonase, which has a major role in cell wall degradation and fruit softening, 

was not detectable at the time of ethylene treatment (14 d prior to Harvest) but in ‘Bing’ and 

‘Chelan’ it increases dramatically with the application of ethylene: twenty-fold in ‘Bing’ and 

greater than 200-fold in ‘Chelan’. This result means that exogenous ethylene changes the 

transcript abundance in ‘Chelan’ even if it does not correlate with the formation of an abscission 

zone. This implies some separation in the pathways that lead to the two distinct, but often linked 

processes of abscission and overall fruit ripening.  

As described above, the gene families most often associated with ethylene biosynthesis, 

ACS and ACO, did not appear to be significantly altered by the application of ethylene at each of 

the three time points measured (Table 7). This indicates that there may be an alternative 

mechanism responding to the exogenous ethylene and altering physiology at the pedicel-fruit 

abscission zone.  

Conclusions 

In the current study, sweet cherry PFAZ transcript induction response to ethephon 

application in a genotype-specific manner is evidenced. However, variable expression patterns 

observed in this study demonstrate the regulatory and physiological complexity underlying sweet 

cherry PFAZ development and suggest that greater mechanistic understanding of sweet cherry 

PFAZ has yet to be achieved. While several of the findings support prior work in sweet cherry 

and other non-climacteric fruits, others are novel and present new regulatory candidates for 

investigation of putative roles in PFAZ development.  
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In this study, a potential molecular mechanism for pedicel fruit abscission zone 

development was uncovered. Up-regulation of ethylene response transcription factors may be 

responsible for stimulating abscission zone formation. ERTF expression was greater in ‘Bing’ 

isolated abscission zones six hours post ethylene application compared to Chelan and Skeena of 

the same transcript. ERTF responds to the exogenous ethylene by increasing transcript 

abundance. ERTF and associated genes may be molecular keys to initiate the cascade of signals 

and enzymatic reactions that eventually lead to the physiological development of an abscission 

zone. ‘Skeena’ forms the abscission zone without the requirement of exogenous ethylene; either 

ERTF is not required in the development of the ‘Skeena’ PFAZ, or it is regulated and expressed 

in an alternative timeline than can be observed in the experimental design of this project, i.e. 

expressed between 0-6 hours post ethephon application or after the six-hour time point, but prior 

to seven days post ethephon. ‘Chelan’ may have a similar story, albeit with a different outcome 

in that it does not result in the PFAZ development. Identification of PFAZ regulating genes leads 

to development of a molecular approach to assay and predict the abscission zone development of 

any sweet cherry genotype. Moreover, our transcriptome data provides a useful resource for gene 

mining of ethylene responsive and abscission related processes in sweet cherry. 

Transcriptome data do not take post-transcriptional regulation and modifications into 

account. However, there is evidence for post-transcriptional regulation playing an important role 

in tomato, Arabidopsis and citrus abscission [33-35]. This is an area of acute interest for future 

work in cherry because common, yet diverse modifications have the potential to reveal much 

about the biological regulation of the abscission zone development. 
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Methods 

Plant material – ethephon treatment, phenotypic measurements and sample collection  

All sweet cherry trees were located at Washington State University’s Roza Farm, about 

10 km north of Prosser, Washington, USA (46.2°N, 119.7°). All trees were irrigated weekly from 

bloom to leaf senescence with low-volume under-tree microsprinklers and grown using standard 

orchard management practices. Each trial was arranged with four single-tree replications per 

treatment. The trees had an in-row spacing of 2.44 m (8 ft) and between row spacing of 4.27 m 

(14 ft). Rows were planted in a north-south orientation and trained to a Y-trellis architecture. 

Abscission zones and PFRF data were collected during three separate seasons (2010, 

2013, and 2014). Each replication was performed in the same orchard block, but in distinct trees 

within the cherry block depending on availability with other projects. 

Two treatments were used (Ethephon and H2O) for each replication. The treatments were 

applied via hand spray directly on foliage and developing fruit directly following data and 

sample collection to be used as control. This was done early in the morning (between 0600 and 

0800 hours) to reduce the effects of ethylene evolution from warm temperatures and wind as 

previously described [24]. Ethephon, 240 ppm, was dissolved in tap water immediately prior to 

being sprayed on the foliage and fruit of four trees (designated Treatment trees) and control 

(H2O) sprayed in the same manner on four different trees (designated Control trees for the 

duration of the experiment). 

Data were collected for four time points, the same trees at each time point. (1) 12 days 

before expected harvest for ‘Chelan’, 14 days before expected harvest date for ‘Bing’, and 16 

days before expected harvest for ‘Skeena’; (2) 6 hours after the application of ethephon and H2O; 

(3): 7 days before expected harvest date, and (4) on the expected harvest date. Samples were 
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collected at approximately 1200 hrs (time points 2, 3, 4) to avoid diurnal effect variability on 

gene expression data. Additionally, the data were collected as quickly as possible to minimize 

environmental and genetic effects distinct from treatment differences. Temperature and local 

weather condition also has a significant effect on PFRF. Generally, cool, wet weather tends to 

increase the average pedicel-fruit retention force for each cherry genotype regardless of 

developmental stage.  

Ten cherry fruits were randomly selected from each of four trees per genotype per 

treatment for a total of 40 samples. Size (row) and color data were collected using commonly 

available methods such as a color palate chart and a pass-through row calculation device. 

Pedicel-fruit retention force (PFRF) were measured using a modified digital force gauge 

(Imaga). This was accomplished by holding the stem of each fruit to be measured and placing the 

fruit in the modified adaptor of the digital force gauge. The stem was then pulled by hand with a 

quick, steady tug to remove it from the fruit. The digital force gauge displays the highest force 

achieved for each event. A single user measured PFRF for each time point to minimize user- 

derived variability in the data.  

The average of the color and row measurements were used to gather ten randomly 

spatially distributed fruits that were similar to the same color and row as the average of 

previously collected fruits. These ten fruits were then sliced with six quick motions using a 

standard single-edge razor blade. The first cut was below the stem approximately 0.5 cm. This 

cut was between the stem and the internal stone. This left the pedicel and a thin disc of fruit/skin 

attached. Next, two sets of parallel cuts were made downward on the cherry fruit disc on either 

side of the stem, effectively making a cube piece of fruit 3mm x 3mm x 3mm attached to the 

pedicel. Finally, the pedicel was cut off directly above the fruit and the cube of fruit tissue 
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consisting of the abscission zone and some pedicel tissue was placed in a 15ml falcon tube and 

kept frozen throughout processing. 

Total RNA extraction 

Sweet cherry abscission zone tissue was ground via SPEX SamplePrep® FreezerMill 

6870 (Metuchen, NJ USA). It was kept frozen in liquid nitrogen throughout processing. The 

freezer mill pulverized and homogenized the excised tissue derived from forty fruits from four 

trees for each time point into a single sample. The pulverized samples were stored at -80°C.  

Total RNA was extracted using an acid guanidinium thiocyanate phenol chloroform 

extraction method similar to that described by Chomczynski (1987). 1mL of 0.8M guanidinium 

thiocyanate, 0.4M ammonium thiocyanate, 0.1M sodium acetate pH 5.0, 5% w/v glycerol, and 

38% v/v water saturated phenol were added to approximately 100 mg powdered tissue, shaken to 

evenly mix sample and incubated at room temperature (RT) for 5 minutes. 200μL chloroform 

was added and shaken vigorously until the entire sample became homogenously cloudy and then 

was incubated at RT, 3 minutes. Samples were then centrifuged at 17,000 x g at 4°C for 15 

minutes and the aqueous upper phase was transferred to a clean 1.5mL microcentrifuge tube. To 

this, 600μl 2-propanol was added, inverted 5-6 times and incubated at RT for 10 minutes. 

Samples were centrifuged 17,000 x g at 4°C for 10 minutes and the supernatant decanted. 1 mL 

75% DEPC ethanol was added to the pellet, vortexed for 10 seconds and centrifuged 9,500 x g at 

4°C for 5 minutes. Pellets were then suspended in RNase free water and incubated at 37°C with 

RNase free DNaseI for 30 minutes and DNaseI inactivated at 65°C for 10 minutes.  
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RNA quality check 

Extracted RNA was quality checked with the Bio-Rad (Hercules, CA) Experion system 

using the Experion RNA High Sensitivity Analysis kit or the Agilent (Santa Clara, CA) 2100 

Bioanalyzer system using the RNA NanoChip and Plant RNA Nano Assay Class. 

Illumina Sequencing 

RNA samples that passed the quality threshold of RIN 8.0 were sent to Michigan State 

University for library preparation and Illumina sequencing. At the end of each sequencing cycle, 

there was a single-base extension. The cycle was then repeated 50 to 100 times, making the read-

lengths 50 to 100 bp. It is possible to get longer reads, but it is more likely to get higher error 

rates due to substitution errors [36]. 

cDNA library preparation and transcriptome sequencing 

The Illumina Hi Seq 2000 sequencing platform (San Diego, CA.) was used to sequence 

2x100 PE reads from the cDNA libraries generated from the above RNA extractions at Michigan 

State University’s Research Technology Support Facility. cDNA and final sequencing library 

molecules were generated with Illumina’s TruSeq RNA Sample Preparation v2 kit (San Diego, 

CA.) and instructions with minor modifications. Modifications to the published protocol include 

a decrease in the mRNA fragmentation incubation time from 8 minutes to 30 seconds to create 

the final library proper molecule size range. Additionally, Aline Biosciences’ (Woburn, MA) 

DNA SizeSelector-I bead-based size selection system was utilized to target final library 

molecules for a mean size of 450 base pairs. All libraries were then quantified on a Life 

Technologies (Carlsbad, CA) Qubit Fluorometer and qualified on an Agilent (Santa Clara, CA) 

2100 Bioanalyzer (Dr. Jeff Landgraf, personal communication). 
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RNAseq read datasets were processed with the CLC Create Sequencing QC Report tool 

to assess read quality. The CLC Trim Sequence process was used to trim the first thirteen bases 

due to GC ratio variability and for a Phred score of 30. All read datasets were trimmed of 

ambiguous bases. Illumina reads were then processed through the CLC Merge Overlapping Pairs 

tool and all reads were de novo assembled to produce contiguous sequences (contigs). Trimmed 

reads used for the assembly were mapped back to the assembled contigs, mapped reads were 

used to update the contigs, and contigs with no mapped reads were ignored. Consensus contig 

sequences were extracted as a multi-fasta file. The individual genotype specific read datasets, 

original non-trimmed reads, were mapped back to the assembled contigs to generate individual 

time course and water or ethephon treated sample reads per contig and then normalized for 

sequencing depth and gene length with Reads Per Kilobase per Million reads (RPKM) method 

[29]. Additionally, the reads were normalized using Transcripts Per kilobase Million (TPM) 

method. 

Differential expression 

 Differential expression between genes was identified using the CLC Genomics RNA-Seq 

Analysis tool. RPKM and TPM data were both tested using Kal et al.’s test [37] which compares 

samples (time points for the current study) and considers proportions rather than raw read counts. 

This provides the user with expression fold-change data between sample combinations of interest 

as well as a two-tailed p-value for the statistical test. Additionally, the test includes an FDR 

correction for the p-value which is important for sorting results efficiently. By filtering the p-

values and fold-change in the dynamic spreadsheet one can make the experiment more stringent 

and obtain more biologically relevant genes. In this study, FDR corrected p-value of (p < 0.001) 

and fold-change of greater than five was used.  
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Quantitative real-time PCR Overview 

Quantitative real-time PCR (qRT-PCR) was used to validate the RNAseq derived 

expression patterns of selected RNA transcripts in different sweet cherry varieties. Genomic 

DNA contamination was removed by treatment with TURBO DNA-free (DNAse I) according to 

manufacturer's methods (Life technologies, Carlsbad, CA USA). RNA quality was verified using 

a denaturing gel and BioAnalyzer 2100 (Agilent, CA USA). For each sample, 500 ng of total 

RNA were used to generate 1st strand cDNA using the Invitrogen VILO kit (Life Technologies, 

Carlsbad, CA USA). cDNA preparations were then diluted to uniform concentration of 50 ng/μl. 

Initial qRT-PCR technical replicate reactions were prepared for each of the 25 genes using the 

iTaq Universal SYBR Green Supermix (BioRad, Hercules, CA). Reactions were prepared 

according to manufacturer's protocols with 100ng template cDNA and optimized thermal cycle 

conditions (Supplemental file 2). 

RNA quality and integrity 

RNA quality was initially determined by a visual inspection of the ribosomal subunits in 

a 1% agarose gel. This quick check eliminated poor quality RNA from passing on to cDNA 

library preparation. 

Reverse-transcription  

VILO cDNA synthesis kits were used to generate three technical replicates of cDNA for 

each RNA isolation. The cDNA from the three technical replicates were pooled into a single 

sample (50 ng/ul) which was used to perform qRT-PCR. 
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qRT-PCR primer design 

To confirm the differential expression of candidate transcripts identified from the 

RNAseq method, the candidate genes were first screened based on potential functions. Because 

global gene expression changes typically result from expression changes in transcription factors, 

transcripts with homology to known transcription factors were selected. Primers were designed 

based on the near full length transcript sequences to amplify an approximately 100-150 bp region 

in the 3’ region of the transcript. For several candidates, the transcripts aligned to several regions 

of individual genomic contigs allowing the primer design to span an intron to enable detection of 

gDNA contamination. 

Three independent extractions of RNA from each sample of the ground tissue using the 

general CTAB RNA extraction protocol were performed. First, ground tissue was suspended in 

600 µl RNA extraction buffer (CTAB, 2% final concentration; NaCl, 1.4M; 0.5 M EDTA, pH 

8.0 20 mM; 1M TRIS, pH 8.0 100 mM; Polyvinylpyrolidone (PVP40), 2% final concentration; 

Water to final volume) including 2-mercaptoethanol (1%) and vigorously vortexed. Thereafter, 

600 µl chloroform was added and samples mixed thoroughly. Each sample was centrifuged at 

14,000rpm for 2 minutes and the supernatant transferred to a new tube. A second chloroform 

extraction (600µl) was performed and supernatant was transferred to a new tube. Then an equal 

volume of isopropanol was added and the samples were thoroughly mixed, and centrifuged at 

14,000rpm for 15 mins. The supernatant was carefully decanted from the tube and 600 µl 70% 

ethanol was added to the pellet. The tube was flicked vigorously to wash the pellet and then it 

was centrifuged for 2 min at 14,000rpm. The supernatant was again carefully decanted and the 

pellet allowed to air dry for 10 mins. The pellet was suspended in 90 µl DEPC-treated H2O. The 

tubes were incubated at 65°C for 15 mins (dry heating dock) and then spun down for 2 mins to 
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remove impurities. The supernatant was transferred to new tubes and then 30 µl LiCl was added 

to precipitate the RNA and the tubes were placed at -20°C for 30-60 mins. Following this, the 

tubes were centrifuged at 20,000rpm, 4°C, for 30 mins. The supernatant was decanted and 100 µl 

70% ethanol added to the tube to wash the pellet The pellet was air dried and 35 µl DEPC water 

was added to the pellet and the tubes were incubated at 65°C for 15 mins. The tubes were then 

centrifuged at 14,000 rpm for 5 mins and the supernatant transferred to a clean tube.  

RNA quality was checked by loading 1 µl RNA in 0.8% agarose gel and visualizing 

ribosomal RNA bands. A total of 30ul of the RNA was treated with DNase using the DNA-

free™ kit (Ambion) according to the manufacturer’s protocol. Following DNase treatment, 1 µl 

RNA was electrophoresed on a 0.8% agarose gel to verify quality (distinct rRNA bands). 

Following visual quality confirmation, 9 µl RNA and 5 µl Luciferase RNA (10 pgμl-1) were 

included in first strand cDNA synthesis via the VILO kit (Invitrogen) according to 

manufacturer’s protocol. 

Reference genes 

In this study, rbcL was found to be consistently expressed across all time points and 

genotypes (within 0.5 standard deviations) so it was used as a reference gene to compare the 

tested genes. In addition to this reference gene, the bacterial derived luciferase gene was used as 

a “spiked” reference, 50 ng/reaction (Figure 7). 

qRT-PCR  

Following positive control gene amplification, and individual sample quantification, the 

cDNA was diluted according to the VILO kit instructions. qRT-PCR reactions were performed 

using iTAQ with ROX and SYBR (BioRad) and 20μL reactions were prepared as per the 

recommendations outlined by BioRad. A total of 2μL of cDNA diluted to 50ng/μL RNA 
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equivalents was used per reaction with 5μL H2O, 2μL of each primer (10μM), and 10μL of iTAQ 

SYBR® Green Supermix with ROX. The qRT-PCR reactions were performed on a Stratagene 

MX3005 using the following parameters: 95°C 5min; 50 cycles of 95°C 30sec, 57°C 30 sec, 

72°C 30sec; 72°C 5 min. Fluorescence readings were taken at the end of each elongation step. A 

melting step was performed at the conclusion of the cycles at 95°C for 30 seconds, 54°C for 30 

seconds and ramp up to 95°C to produce a dissociation curve.  

PCR efficiency 

In order to capture PCR efficiency in the data, Cq values and efficiencies were calculated 

for each reaction using the LinRegPCR tool [38, 39]. Cq values resulting from efficiencies below 

1.80 or 2.20 were judged unacceptable and were treated as unsuccessful or undetected 

amplifications. Cq values with efficiency values that were within expected parameters, but 

exceeded (or equaled) 40.00 were also deemed unacceptable and disregarded in downstream 

analysis. In the same manner, Cq values between (35.00-39.99) were determined to be of low 

confidence and were marked for special consideration in downstream analysis. 

Fold-change expression was determined from Cq values of all gene targets (among all 

replicates of all samples) among the ‘Bing’, ‘Chelan’ and ‘Skeena’ genotypes using the Pfaffl 

method [40]. Expression values were determined in reference to rbcL and the luciferase “spiked” 

gene.  
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Tables 

Table 1. Mean PFRF values. The mean Pedicel fruit retention force (PFRF) values and standard deviation for each genotype and 

treatment over three separate seasons (2010, 2013, 2014). 

 

 

Time Point: 0 0.25 7 14 0 0.25 7 14 0 0.25 7 14

Average PFRF (kg) 1.101 1.103 0.926 0.532 1.295 1.128 0.717 0.427 1.603 1.509 0.432 0.832

StdDev 0.239 0.261 0.278 0.141 0.286 0.266 0.134 0.187 0.302 0.167 0.211 0.199

95% Confidence Interval 0.074 0.081 0.086 0.044 0.089 0.082 0.041 0.058 0.094 0.052 0.065 0.062

Average PFRF (kg) 1.048 1.089 1.036 0.652 1.335 1.282 0.845 0.469 1.658 1.518 0.580 1.037

StdDev 0.257 0.272 0.265 0.164 0.347 0.318 0.202 0.144 0.404 0.260 0.199 0.213

95% Confidence Interval 0.080 0.084 0.082 0.051 0.108 0.098 0.063 0.045 0.125 0.081 0.062 0.066

Average PFRF (kg) 1.148 1.056 0.696 0.480 1.595 1.467 0.519 0.254 1.606 0.748 0.462 0.215

StdDev 0.221 0.253 0.176 0.129 0.346 0.285 0.290 0.105 0.316 0.379 0.251 0.153

95% Confidence Interval 0.069 0.078 0.055 0.040 0.107 0.088 0.090 0.032 0.098 0.117 0.078 0.047

Average PFRF (kg) 1.156 1.064 0.856 0.669 1.564 1.458 0.602 0.521 1.575 0.799 0.619 0.418

StdDev 0.246 0.258 0.148 0.172 0.391 0.267 0.234 0.211 0.307 0.379 0.253 0.194

95% Confidence Interval 0.076 0.080 0.046 0.053 0.121 0.083 0.072 0.065 0.095 0.118 0.078 0.060

Average PFRF (kg) 1.317 1.232 0.562 0.320 0.661 0.660 0.496 0.315 1.196 1.070 0.255 0.156

StdDev 0.304 0.265 0.132 0.123 0.275 0.261 0.154 0.096 0.261 0.270 0.142 0.081

95% Confidence Interval 0.094 0.082 0.041 0.038 0.085 0.081 0.048 0.030 0.081 0.084 0.044 0.025

Average PFRF (kg) 1.319 1.263 0.996 0.680 0.701 0.634 0.823 0.652 1.184 0.962 0.333 0.290

StdDev 0.332 0.294 0.293 0.126 0.342 0.280 0.239 0.204 0.334 0.301 0.139 0.130

95% Confidence Interval 0.103 0.091 0.091 0.039 0.106 0.087 0.074 0.063 0.104 0.093 0.043 0.040

2010 2013 2014

Chelan Treatment

Chelan Control

Bing Treatment

Bing Control

Skeena Treatment

Skeena Control
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Table 2. T-test of PFRF for Chelan, Bing, and Skeena. T-test showing significant 

responses between ethylene treatment and control PFRF values for three genotypes and 

three seasonal replications at harvest time point (~14 d after treatment). ‘Bing’ and 

‘Skeena’ showed statistically significant responses every year. While Chelan also showed 

a statistically significant response to the ethylene treatment for 2010 and 2014, in both 

instances mean PFRF was not reduced to mechanically harvestable values indicative of 

PFAZ formation. In 2013, Chelan did not significantly respond to the ethylene treatment. 

  

2010 2013 2014

Bing 3.62E-07 3.68E-10 1.56E-06

Chelan 2.09E-03 2.65E-01 2.85E-05

Skeena 5.87E-21 1.62E-14 1.14E-06
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Table 3. Summary of Bing, Chelan, Skeena de novo transcriptome assembly. Illumina reads used in assembly generation. This 

assembly was used as the reference for mapping individual genotype, time point, and treatment read files to generate subsequent 

differential gene expression data. 

Contig Measurements Length (including scaffold regions) Length (excluding scaffold regions) 

N75 505 477 

N50 1268 1102 

N25 2401 2162 

Minimum 131 114 

Maximum 16838 15998 

Average 754 708 

Count 84260 89547 

Total 63535148 63387120 

 

Summary Statistics Count Average length Total Bases 

Reads 1075449571 83.27 89552327949 

Matched 984093648 83.07 81747855601 

Not matched 91355923 85.43 7804472348 

Contigs 84260 754 63535148 

Reads in pairs 685702776 253.1 NA 

Broken paired reads 163462695 253.1 NA 
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Table 4a. Summary of Bing de novo transcriptome assembly. This assembly was performed using 100 bp paired end data on the 

Illumina sequencing platform. 

 

Contig Measurements Length (including scaffold regions) Length (excluding scaffold regions) 

N75 593 542 

N50 1512 1326 

N25 2542 2335 

Minimum 144 115 

Maximum 15305 15305 

Average 835 777 

Count 59760 64129 

Total 49902045 49796872 

 

Summary Statistics Count Average length Total Bases 

Reads 377364374 82.72 31217168329 

Matched 353700448 82.64 29229305064 

Not matched 23663926 84 1987863265 

Contigs 59760 835 49902045 

Reads in pairs 25661724 257.79 NA 

Broken paired reads 52820437 75.68 NA 
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Table 4b. Summary of Chelan de novo assembly.  

 

Contig Measurements Length (including scaffold regions) Length (excluding scaffold regions) 

N75 577 535 

N50 1471 1295 

N25 2515 2308 

Minimum 131 100 

Maximum 16784 16784 

Average 824 769 

Count 63646 68070 

Total 52424808 52316885 

 

Summary Statistics Count Average length Total Bases 

Reads 390084738 84.22 32854433281 

Matched 359208487 84.05 30192611090 

Not matched 30876251 86.21 2661822191 

Contigs 63646 823 52424808 

Reads in pairs 262690278 257.2 NA 

Broken paired reads 47527268 76.53 NA 
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Table 4c. Summary of Skeena de novo assembly. 

 

Contig Measurements Length (including scaffold regions) Length (excluding scaffold regions) 

N75 616 563 

N50 1558 1681 

N25 2580 2384 

Minimum 111 24 

Maximum 15862 15862 

Average 853 796 

Count 55638 59518 

Total 47453854 47372520 

 

Summary Statistics Count Average length Total Bases 

Reads 311083226 84.23 26203909702 

Matched 287466860 84.06 24163685236 

Not matched 23616366 86.39 2040224466 

Contigs 55638 852 47453854 

Reads in pairs 203556052 244.78 NA 

Broken paired reads 38793291 75.98 NA 
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Table 5. Gene expression of ethylene responsive sequences. Data were collected in ‘Bing’, ‘Chelan’, and ‘Skeena’ before ethylene 

application, 6 hours after ethephon application and at harvest (100% development) for each of the three genotypes. Fold change values 

were calculated between treatment and control for each gene at a given time point. 

Gene Name 
Bing Chelan Skeena 

0 h 6h Harvest 0 h 6h Harvest 0 h 6h Harvest 

Ethylene Responsive TF -1.20 3.51 -1.39 1.13 3.10 1.27 -1.47 3.66 1.21 

Cell Wall Invertase 1.06 2.13 -2.28 -2.22 -4.99 -6.92 -2.06 -4.23 -3.76 

WRKY TF 5 -1.78 2.73 3.73 -1.14 1.20 1.27 -1.88 1.99 2.60 

Class I chitinase 7.73 1.01 1.93 2.69 -2.73 -4.23 -1.18 -1.80 -2.30 

unknown 14.93 6.73 8.51 -1.47 2.50 6.92 1.58 1.01 -1.01 

Patatin group a-3-like n.d. -4.08 13.09 13.27 -9.32 -8.94 -3.94 n.d. n.d. 

Spermine synthase n.d. n.d. 3.53 -8.34 -4.72 15.45 -3.23 -2.43 -1.54 

unknown 1.18 -2.01 3.20 1.03 -1.01 -1.79 -1.62 -2.58 n.d. 

Ethylene receptor n.d. 2.30 2.66 1.28 2.38 n.d. -1.15 -1.45 -1.06 

Methylthioribose kinase 1.49 10.42 n.d. n.d. n.d. -1.79 -1.06 1.46 n.d 

Expansin 1.55 1.75 -2.97 1.46 -9.00 -2.11 1.01 1.20 -1.52 

Polygalacturonase n.d. 1.00 20.97 n.d. -4.44 221.32 -2.28 -2.14 -1.30 

Expansin (a1) n.d. 4.89 1.13 -1.23 2.22 1.88 1.05 1.26 -1.26 

Ap2 erf TF 1.27 -4.79 -1.51 -1.15 -2.30 -2.62 -1.87 1.06 8.11 

Kda class IV HSP 1.55 n.d. 1.13 1.01 -1.40 -1.39 1.05 1.26 -3.32 

Polyneuridine-aldehyde esterase 2.53 5.17 2.17 1.12 -1.16 16.11 -1.95 3.71 2.77 

Ap2 erf TF-2 1.72 -1.02 -1.67 -2.04 -2.60 -2.36 -1.68 1.89 3.94 

Endochitinase pr4 1.41 1.29 -1.61 -1.52 -2.77 1.01 -2.33 1.04 2.79 

SAM-dependent methyltransferase 1.71 3.48 -2.91 -3.27 -2.68 -1.39 -4.53 -1.13 n.d. 

ACS 1.12 1.48 1.01 -1.55 -1.93 -2.83 -2.69 1.03 -1.26 

ACO 1.09 -1.56 -3.53 1.78 -3.16 -1.67 -3.18 1.33 -2.06 

n.d. – not detected 
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Figures 

 

Figure 1a. Pedicel-fruit retention force (PFRF) at harvest for Chelan. This shows all three 

seasons (2010, 2013, 2014) that data was collected. Error bars represent 95% CI values 

(Supplemental File 1). The dotted line indicates the threshold PFRF value required for 

mechanical harvest. 
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Figure 1b. Pedicel-fruit retention force (PFRF) at harvest for Bing. This shows all three 

seasons (2010, 2013, 2014) that data was collected. Error bars represent 95% CI values, see 

Supplemental File 1. The dotted line represents the threshold PFRF for mechanical harvest. 
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Figure 1c. Pedicel-fruit retention force (PFRF) at harvest for Skeena. This shows all three 

seasons (2010, 2013, 2014) that data was collected. Error bars represent 95% CI values, see 

Supplemental File 1. The dotted line represents the threshold PFRF required for mechanical 

harvest. 
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Figure 2. de novo Transcriptome development workflow. Total RNA from four developmental time points in three P. avium 

genotypes was sequenced on the HiSeq2000 platform. Read sequences were assembled with CLC Bio’s Genomic Workbench and 

annotated with the NCBI nr database version 2.2.29+. Differentially expressed genes were analyzed regarding biological significance. 
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Figure 3. Length distribution of sweet cherry unique contigs. The percentage of annotated contigs increased with contig length.
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Figure 4. Functional classification of unique contigs in sweet cherry. The number of unique sweet cherry contigs associated with 

the GO terms for biological process in order of decreasing magnitude. 
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Figure 5. Mean gene expression across all transcriptomes. RPKM ratio of the treatment value 

was divided by the control expression value for every contig. Yellow represents ‘Chelan’, Blue 

represents ‘Bing’, and Green represents ‘Skeena’ genotypes. Data demonstrates a significant 

increase in the gene expression ratio 6 hours after ethylene treatment, indicating that ‘Bing’ is 

uniquely responding at the transcript level to the treatment.  
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Figure 6. Number of RNAseq reads for ‘Skeena’ (2010). Total number of reads generated for 

‘Skeena’ shows that there was a problem with ‘Skeena’, Control, Time point 3 (S-C3) sample. 

Failure in initial library construction is the most likely source for the error in this sample.  
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Figure 7. Total number of differentially expressed genes generated through the RNAseq 

workflow (CLC Genomics Workbench). These were generated by five-fold difference between 

ethephon treatment and control as well as Kal’s test (0.95).  
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Figure 8. Luciferase gene sequence. This gene was used as the reference gene that was spiked 

into all the cDNA samples used in the qRT-PCR experiment.  
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Chapter 3 - Supplemental Files 

Supplemental File 1a. 2010 PFAZ phenotypic data, including row, color, and PFRF raw data. 

Supplemental File 1b. 2013 PFAZ phenotypic data, including row, color, and PFRF raw data. 

Supplemental File 1c. 2014 PFAZ phenotypic data, including row, color, and PFRF raw data. 

Supplemental File 2a. Read mapping table; Chelan reads mapped to PaRef assembly. 

Supplemental File 2b. Read mapping table; Bing reads mapped to PaRef assembly. 

Supplemental File 2c. Read mapping table; Skeena reads mapped to PaRef assembly. 

Supplemental File 3a. Sequence file of Bing, Control, Time point 1 mapped to PaRef assembly. 

Supplemental File 3b. Sequence file of Bing, Control, Time point 2 mapped to PaRef assembly. 

Supplemental File 3c. Sequence file of Bing, Control, Time point 3 mapped to PaRef assembly. 

Supplemental File 3d. Sequence file of Bing, Control, Time point 4 mapped to PaRef assembly. 

Supplemental File 3e. Sequence file of Bing, Treatment, Time point 1 mapped to PaRef 

assembly. 

Supplemental File 3f. Sequence file of Bing, Treatment, Time point 2 mapped to PaRef 

assembly. 

Supplemental File 3g. Sequence file of Bing, Treatment, Time point 3 mapped to PaRef 

assembly. 

Supplemental File 3h Sequence file of Bing, Treatment, Time point 4 mapped to PaRef 

assembly. 
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Supplemental File 3i. Sequence file of Chelan, Control, Time point 1 mapped to PaRef 

assembly. 

Supplemental File 3j. Sequence file of Chelan, Control, Time point 2 mapped to PaRef 

assembly. 

Supplemental File 3k. Sequence file of Chelan, Control, Time point 3 mapped to PaRef 

assembly. 

Supplemental File 3l. Sequence file of Chelan, Control, Time point 4 mapped to PaRef 

assembly. 

Supplemental File 3m. Sequence file of Chelan, Treatment, Time point 1 mapped to PaRef 

assembly. 

Supplemental File 3n. Sequence file of Chelan, Treatment, Time point 2 mapped to PaRef 

assembly. 

Supplemental File 3o. Sequence file of Chelan, Treatment, Time point 3 mapped to PaRef 

assembly. 

Supplemental File 3p. Sequence file of Chelan, Treatment, Time point 4 mapped to PaRef 

assembly. 

Supplemental File 3q. Sequence file of Skeena, Control, Time point 1 mapped to PaRef 

assembly. 

Supplemental File 3r. Sequence file of Skeena, Control, Time point 2 mapped to PaRef 

assembly. 
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Supplemental File 3s. Sequence file of Skeena, Control, Time point 3 mapped to PaRef 

assembly. 

Supplemental File 3t. Sequence file of Skeena, Control, Time point 4 mapped to PaRef 

assembly. 

Supplemental File 3u. Sequence file of Skeena, Treatment, Time point 1 mapped to PaRef 

assembly. 

Supplemental File 3v. Sequence file of Skeena, Treatment, Time point 2 mapped to PaRef 

assembly. 

Supplemental File 3w. Sequence file of Skeena, Treatment, Time point 3 mapped to PaRef 

assembly. 

Supplemental File 3x. Sequence file of Skeena, Treatment, Time point 4 mapped to PaRef 

assembly. 

Supplemental File 4. Quantitative RT-PCR primer names, sequences and sequenced amplicons. 

Supplemental File 5a. RNAseq data – RPKM values 

Supplemental File 5b. RNAseq data – TPM values 

Supplemental File 6a. Quantitative RT-PCR reaction conditions and thermal profile. 

Supplemental File 6b. LinRegPCR input as fluorescence readings from qRT-PCR instrument 

and PCR cycle, with resulting efficiency and Cq output with regression statistics. 
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