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Abstract 
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Washington State University 
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Chair: Jean-Sabin McEwen 
 

This dissertation deals with the problem of computationally determining the structure and 

catalytically active phase of cobalt-based Fischer-Tropsch (FT) catalysts driven toward 

oxygenates. Cobalt-copper based catalysts are examined first using density functional theory 

calculations. The interactions of carbon monoxide (CO) with cobalt-copper nanoparticle surfaces 

are analyzed for CO’s possible role in restructuring these nanoparticles and subsequent creation 

of the catalytically active phase. It is shown that cobalt-copper catalysts preferentially form 

Co@Cu core-shell nanoparticles, and that CO can induce up to half of step edge and one quarter 

of terrace copper atoms to be substituted with cobalt atoms from the core. Cobalt enrichment is 

limited due to the formation of cobalt subcarbonyl complexes. These complexes are shown to be 

capable of rupturing and diffusing across the surface, providing the ingredients needed for 

nanoisland formation and facet reconstruction. This work points to new models that are likely 

important to cobalt-copper catalyzed FT.  
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New lattice gas (LG) cluster expansion (CE) tools are also developed in this dissertation 

via the development of the ab initio Mean-field Augmented Lattice Gas Modeling (AMALGM) 

code. A new theoretical reformulation of the CE formalism, which is more appropriate for the 

LG paradigm, is detailed. AMALGM is designed to use a newly developed convergent version 

of the leave-multiple-out cross-validation (LMO-CV) score as the objective function for 

optimization of LG CEs. A new method for quantifying the errors of the effective cluster 

interactions of CEs is also developed. This error quantification is shown to capture the 

uncertainty in CEs due to geometric relaxations in DFT data. AMALGM and these new methods 

are then utilized to investigate the differences in CO adsorption energetics on the face centered 

cubic (fcc) and hexagonal close packed (hcp) phases of cobalt relevant to FT. It is shown that the 

first nearest neighbor (1NN) dominates and is very repulsive in both but significantly more 

repulsive for fcc cobalt. At high chemical potentials, 1NN CO pairings may be allowed on hcp 

cobalt where they are still energetically prohibited on fcc cobalt, suggesting a potential source 

for the reduced activity observed on hcp cobalt catalysts.    

  



x 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENT ................................................................................................................ iii 

ABSTRACT ................................................................................................................................. viii 

LIST OF TABLES ........................................................................................................................ xii 

LIST OF FIGURES ..................................................................................................................... xiii 

LIST OF ACRONYMS .............................................................................................................. xvii 

CHAPTERS 

CHAPTER ONE: INTRODUCTION ..................................................................................1 

Background and Motivation ..........................................................................................1 

The Cobalt-Copper Oxygenate-Driven Fischer-Tropsch Catalyst ................................2 

Lattice Gas Cluster Expansions .....................................................................................5 

CHAPTER TWO: METHODOLOGY ..............................................................................10 

General Theory ............................................................................................................10 

Statistical Mechanical Treatment of Decoupled Contributions ...................................13 

Density Functional Theory ..........................................................................................36 

CHAPTER THREE: CO-INDUCED INVERSION OF THE LAYER SEQUENCE OF   
A MODEL CoCu CATALYST .........................................................................................51 
 
CHAPTER FOUR: THE ROLE OF CARBON MONOXIDE IN CATALYST 
RECONSTRUCTION FOR CO HYDROGENATION: FIRST-PRINCIPLES STUDY 
OF THE COMPOSITION, STRUCTURE, AND STABILITY OF Cu/Co(101$2) AS A 
FUNCTION OF CO PRESSURE ......................................................................................83 
 
CHAPTER FIVE: DISSOLUTION OF CoCu CATALYST STEP DEFECTS BY Co 
SUBCARBONYL FORMATION ...................................................................................120 
 
 



xi 

CHAPTER SIX: FORMULATION OF MULTICOMPONENT LATTICE GAS   
MODEL CLUSTER EXPANSIONS PARAMETERIZED ON AB INITIO DATA:      
AN INTRODUCTION TO THE AB INITIO MEAN-FIELD AUMGENTED    
LATTICE GAS MODELING (AMALGM) CODE ........................................................143 
 
CHAPTER SEVEN: QUANTIFYING ERRORS IN THE EFFECTIVE CLUSTER 
INTERACTIONS OF LATTICE GAS CLUSTER EXPANSIONS ...............................194 
 
CHAPTER EIGHT: EFFECT OF CRYSTOLLOGRAPHIC MORPHOLOGY ON       
CO ADSORPTION OVER COBALT CATALYSTS .....................................................227 
 
CHAPTER NINE: CONCLUSIONS ...............................................................................247 

APPENDICES 

APPENDIX A ..................................................................................................................250 

APPENDIX B ..................................................................................................................268 

APPENDIX C ..................................................................................................................282 

APPENDIX D ..................................................................................................................287 

APPENDIX E ..................................................................................................................290 

 

 

  



xii 

LIST OF TABLES 

Page 

Table 3.1: Comparison of DFT Calculated CO Adsorption Energies on Cu/Co(0001) ................57 

Table 3.2: Calculated d-band Centers and Work Functions of Co and Cu in Co(0001),      
Cu(111), and Cu/Co(0001) ............................................................................................................66 
 
Table 6.1: Cluster Labels Identified for the O/Fe(100) System Using AMALGM .....................176 

Table 6.2: Effective Cluster Interactions for the First Stable Cluster Expansion in Figure 6.8 
Fitted to 138 vs 204 Structures  ...................................................................................................186 
 
Table A1: Self Consistent Field Tolerance Convergence Tests for CO/Cu/Co(0001) ................257 

Table B1: Calculated Lattice Constants for fcc and hcp cobalt ...................................................271 

Table B2: Calculated Energetics of Structures in Figure 5.1 using PBE and vdW-DF      
Exchange Correlation Functionals ...............................................................................................275 
 
Table B3: Calculated Normal Modes of Co(CO)x (x=2, 3, 4) Species in Cu/Co(755) ...............279 

  



xiii 

LIST OF FIGURES 

Page 

Figure 2.1: Illustration of 1-Dimenstional Periodic Molecular Systems .......................................44 

Figure 2.2: Illustration of the Projector Augmented Wave Method ..............................................48 

Figure 3.1: Cu 2p and Co 2p XPS Spectra .....................................................................................62 

Figure 3.2: Segregation and Surface Energies of Clean Cu/Co(0001) ..........................................64 

Figure 3.3: Projected Density of States for Co(0001), Cu(111), and Cu.Co(0001) ......................65 

Figure 3.4: Differential Charge Density of CO Adsorbed on Cu sites in Cu(111) and 
Cu/Co(0001) ..................................................................................................................................68 
 
Figure 3.5: Differential Charge Density of CO Adsorbed on Co sites in Co(0001) and 
Cu/Co(0001) ..................................................................................................................................70 
 
Figure 3.6: Differential Charge Density of Co atom in Co(0001) and Cu/Co(0001) ....................72 

Figure 3.7: Segregation and Surface Energies of Cu/Co(0001) as a Function of CO Coverage ...75 

Figure 3.8: Co Surface Enrichment of Cu/Co(0001) as a Function of CO Coverage ...................77 

Figure 4.1: Segregation and Surface Energies of clean Cu/Co(101$2) as a Function of Co 
Enrichment .....................................................................................................................................95 
 
Figure 4.2: Segregation and Surface Energies of Cu/Co(101$2) with 0.25 ML CO Adsorbed      
as a Function of Co Enrichment .....................................................................................................97 
 
Figure 4.3: Segregation and Surface Energies of Cu/Co(101$2) with 0.50 ML CO Adsorbed      
as a Function of Co Enrichment .....................................................................................................98 
 
Figure 4.4: Segregation and Surface Energies of Cu/Co(101$2) with 0.75 ML CO Adsorbed      
as a Function of Co Enrichment ...................................................................................................100 
 
Figure 4.5: Segregation and Surface Energies of Cu/Co(101$2) with 1.00 ML CO Adsorbed      
as a Function of Co Enrichment ...................................................................................................102 
 
Figure 4.6: Summary of Minimum Surface Energies of Cu/Co(101$2) as a Function of CO 
Coverage and Co Enrichment ......................................................................................................104 
 
Figure 4.7: CO/Cu/Co(101$2) Phase Diagram at 513 K and 653 K ............................................107 



xiv 

Figure 4.8: Surface Chemical Potential Change of Cu/Co(101$2) due to CO adsorption ...........109 

Figure 4.9: Comparison of CO/Cu/Co(101$2) Phase Diagrams with and without Accounting    
for Surface Phonon Modes in Free Energy Calculations .............................................................111 
 
Figure 5.1: CO Adsorption Energies on Cu/Co(755) for Three High-Coverage Systems ..........124 

Figure 5.2: Energies of Co(CO)x (x=2, 3, 4) Rupturing Processes ..............................................128 

Figure 5.3: Surface Phase Diagram of Co(CO)x (x=2, 3, 4) in Ruptured and Unruptured 
Configurations ..............................................................................................................................130 
 
Figure 5.4: Energies of Co Tricarbonyl Dimerization .................................................................132 

Figure 5.5: CO Adsorption Energies as a Function of CO Distance From Step Edge of 
Cu/Co(755) ..................................................................................................................................133 
 
Figure 5.6: Minimum Energy Pathway for Co Tricarbonyl Diffusion on Central Terrace of 
Cu/Co(755) ..................................................................................................................................135 
 
Figure 5.7: Proposed Scheme for Step Dissolution of CoCu Catalysts .......................................137 

Figure 6.1: Illustration of How Lattice Gas k-body Cluster Labels are Defined .........................156 

Figure 6.2: Illustrated Algorithm for Finding All Unique Clusters in a System .........................161 

Figure 6.3: Flow Diagram of the Leave-Multiple-Out Cross-Validation Algorithm ..................167 

Figure 6.4: Flow Diagram of Steepest Descent Algorithm used to Find Optimum Cluster 
Expansion .....................................................................................................................................170 
 
Figure 6.5: Overall Flow Diagram of Lattice Gas Cluster Expansion Development  .................171 

Figure 6.6: Cluster in Final Lattice Gas Cluster Expansion of O/Fe(100)  .................................179 

Figure 6.7: Parity Plot of DFT vs Lattice Gas Predicted Surface Energies of O/Fe(100)  ..........180 

Figure 6.8: Simulated Progression of Lattice Gas Cluster Expansion Development using      
either Leave-One-Out or Leave-Multiple-Out Cross-Validation Scores .....................................182 
 
Figure 7.1: Illustration of Information Extracted During Calculation of the Leave-Multiple-    
Out Cross-Validation Score to Calculate Effective Cluster Interaction Errors  ..........................199 
 
Figure 7.2: Demonstration of Bias Buildup and Removal During Calculation of the Leave-
Multiple-Out Cross-Validation Score  .........................................................................................203 



xv 

 
Figure 7.3: Visualization of Intermediate Quantities Calculated During Calculation of the   
Leave-Multiple-Out Cross-Validation Score and Effective Cluster Interaction Errors  ..............204 
 
Figure 7.4: DFT-Calculated and Lattice Gas Predicted Adsorption Energies for the        
O/Fe(100) and H/Fe(100) Systems  .............................................................................................206 
 
Figure 7.5: Clusters in the Lattice Gas Cluster Expansions of O/Fe(100) Systems  ...................207 

Figure 7.6: Illustration of How Weighted ECI Deviations Distribute About Zero in Effective 
Cluster Interaction Error Calculation ...........................................................................................209 
 
Figure 7.7: Comparison of Lattice Gas CEs for O/Fe(100) Developed for Relaxed vs. Fixed    
and RPBE vs optB88-vdW Exchange Correlation Functions ......................................................211 
 
Figure 7.8: Lattice Gas Cluster Expansion of H/Fe(100) with Associated Effective Cluster 
Interaction Errors .........................................................................................................................215 
 
Figure 7.9: Comparison of Effective Cluster Interaction Errors vs. 95% Confidence Intervals     
in the O/Fe(100) System ..............................................................................................................217 
 
Figure 7.10: Average Number of Training Set Cuts Required to Converge the Leave-     
Multiple-Out Cross Validation Score to a Specified Tolerance ..................................................220 
 
Figure 7.11: Average Effective Cluster Interaction Errors as a Function of Leave-Multiple-     
Out Cross Validation Score Tolerance ........................................................................................222 
 
Figure 8.1: Comparison of Surface Lattice Constants of Co(111) and Co(0001) .......................230 

Figure 8.2: Lattice Gas Cluster Expansion of Unrestricted CO/Co(111) vs CO/Co(0001) .........235 

Figure 8.3: Lattice Gas Cluster Expansion of Effective Cluster Interaction Error Filtered 
CO/Co(111) vs CO/Co(0001) ......................................................................................................237 
 
Figure 8.4: Illustration of Clusters in Lattice Gas Cluster Expansions shown in Figures 8.2      
and 8.3 ..........................................................................................................................................239 
 
Figure A1: Demonstration of How Co Loses its Tendency to Patch in the Presence of CO .......258 

Figure A2: CO Adsorption Energies on Cu/Co(101$2) as a Function of Exchange Correlation 
Functional  ...................................................................................................................................259 
 
Figure A3: CO/Cu/Co(0001) Phase Diagram  .............................................................................260 

Figure A4: Cu/Co(0001) Surface Chemical Potential Change ....................................................262 



xvi 

Figure A5: Comparison of CO/Cu/Co(0001) Phase Diagrams with and without Accounting      
for Surface Phonon Modes in Free Energy Calculations .............................................................263 
 
Figure A6: Vibrational Density of States for CO/Cu/Co(101$2) .................................................264 

Figure A7: Vibrational Density of States for CO/Cu/Co(0001) ..................................................265 

Figure B1: K-point Mesh Convergence for CO/Cu/Co(755) ......................................................270 

Figure B2: Model of Cu/Co(755) ................................................................................................273 

Figure B3: Co(CO)x (x=2, 3, 4) Rupturing Energies Using the vdW-DF Exchange       
Correlation Functional .................................................................................................................274 
 
Figure B4: CO Adsorption Energies on Cu/Co(755) at Three Low Coverages ..........................276 

Figure B5: CO Adsorption Energies on Cu/Co(755) at Three High Coverages ..........................277 

Figure B6: Summary of Data in Figures B4-B5 ..........................................................................278 

Figure C1: Algorithm for the Leave-One-Out Cross Validation Score .......................................282 

Figure C2: All Potential Clusters Found for O/Fe(100) (Clusters 1-37)  ....................................283 

Figure C3: All Potential Clusters Found for O/Fe(100) (Clusters 38-77)  ..................................284 

Figure C4: Sample AMALGM Output for “P2” in Figure 6.4 ....................................................285 

Figure C5: Simulated Progression of the Lattice Gas Cluster Expansion Development for 
O/Fe(100) Where Cluster Expansion is Not Allowed to Change After 155 Structures  .............286 
 
Figure D1: Top and Side Views of Fixed-O/Fe(100) ..................................................................288 

Figure D2: Illustration of How Unweighted ECI Deviations Distribute About Zero in      
Effective Cluster Interaction Error Calculation ...........................................................................289 
 
 
  



xvii 

LIST OF ACRONYMS 

 

1NN: 1st Nearest Neighbor 

1TT: 1st Nearest Neighbor “Triangular Trio” 

AMALGM: Ab initio Mean-field Augmented Lattice Gas Modeling (code) 

ANOVA: Analysis of Variance  

APT: Atom Probe Tomography 

ATAT: Alloy Theoretic Automated Toolkit 

BO: Born-Oppenheimer 

CE: Cluster Expansion 

CESS: Cluster Expansion Similarity Score 

CI: Confidence Interval 

CS: Construction Set 

CV: Cross Validation 

DFT: Density Functional Theory 

DOS: Density of States 

ECI: Effective Cluster Interaction 

EXAFS: Extended X-ray Absorption Fine Structure 

FBZ: First Brillouin Zone 

fcc: face centered cubic 

FIM: Field Ion Microscopy 

FS: Final State 

FT: Fischer-Tropsch 

GGA: Generalized Gradient Approximation 

hcp: hexagonal close packed 

HF: Hartree-Fock 

IFP: Institut Francais du Petrol 



xviii 

IR: Infrared (spectroscopy) 

IS: Initial State 

KPPRA: K-Points Per Reciprocal Atom 

KS: Kohn-Sham 

LEED: Low Energy Electron Diffraction 

LG: Lattice Gas 

LMO-CV: Leave-Multiple-Out Cross-Validation (score) 

LOO-CV: Leave-One-Out Cross-Validation (score) 

MEP: Minimum Energy Pathway 

MF: Mean Field 

ML: Monolayer 

NN: Neural Network (chapter 6) or Nearest Neighbor (chapter 7 and 8) 

PAW: Projector Augmented Wave 

PBE: Perdew-Burke-Enzerhof 

pDOS: Projected Density of States 

PES: Potential Energy Surface 

RME: Root Mean Error 

RMSR: Root Mean Squared Residual 

SCF: Self Consistent Field 

STM: Scanning Tunneling Microscopy 

TEM: Transmission Electron Microscopy 

TS: Transition State 

UNCLE: UNiversal CLuster Expansion (code) 

VASP: Vienna Ab initio Simulation Package 

VS: Validation Set 

XPS: X-ray Photoelectron Spectroscopy 

 
 



xix 

 

 

 

Dedication 

 

To my mother, Diana, and 

my grandparents, Clifford and Karyl. 

For raising me, trusting me, and  

unconditionally loving me. 

 



 

 1 

CHAPTER ONE:  

INTRODUCTION 

1.1 Background and Motivation 

The research presented in this dissertation is motivated by the need for a rational strategy 

in the design of cobalt-based Fischer-Tropsch (FT) catalysts tuned toward the synthesis of so-

called “oxygenates”—long-chain hydrocarbons with terminal oxygen functionality, e.g. alcohols 

and aldehydes. Oxygenates are incredibly desirable chemical products that can be used in the 

production of pharmaceuticals, detergents, plastics, etc., with industry typically synthesizing 

them in the mega-process of homogeneous hydroformylation. There are a number of reasons to 

work toward synthesizing these oxygenates in a heterogeneous process like FT and we detail 

these summarily here. Firstly, hydroformylation is incredibly energy intensive due to its 

homogeneous nature, where the reactants, products, and catalyst all coexist in the same phase 

and must therefore be separated from each other after reaction: FT does not suffer nearly as 

severely in this regard due to its reactants, products, and catalysts largely existing in different 

phases (gas, gas and/or liquid, and solid, respectively).  Secondly, typical hydroformylation 

catalysts are made from rare and expensive noble metals (e.g. rhodium): FT cobalt-based 

catalysts are considerably less rare and expensive. Lastly, hydroformylation requires that 

sophisticated olefin feed stocks be maintained, which are typically produced via petroleum 

cracking, making hydroformylation inextricably reliant on the extraction and refinement of crude 

oil: FT, on the other hand, uses synthesis gas, or “syngas”, which can be produced from any 

number of renewable or fossil resources. Despite these drawbacks, hydroformylation remains an 

industry standard due to its superior activity and selectivity, which are simply much too great to 

be offset by the major drawbacks summarized above. This therefore motivates the design of 
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oxygenate-driven FT catalysts that are active and selective enough to compete with 

hydroformylation; and in order to do this in a rational way (i.e. beyond the typical guess-and-

check methodology), we must determine what factors lead to increased selectivity and activity in 

oxygenate-driven FT catalysts.   

This dissertation concerns itself primarily with perhaps the first and arguably most 

important factor in the performance of catalysts: its structure/environment. By this we mean the 

configuration of the catalyst’s components along with that of the reactants and intermediates in 

the catalytically active phase. This information must be known before any reactions can be 

elucidated from a fundamental perspective because exploration of the potential reaction network 

of FT will not yield meaningful results if the structure of the catalyst is merely “guessed at”. 

Indeed, the absolute and relative rates of elementary reaction steps within the reaction network—

which manifest as activity and selectivity, respectively—are determined in major part by the 

composition and configuration of the catalytically active phase. Briefly, since the discovery of 

the FT reaction in 1926 by the eponymous Fischer and Tropsch[1], the reaction mechanism of 

the FT reaction has been in continual debate. Whether the typical mechanisms are at play in 

oxygenate-driven FT is not explored within this dissertation, but we argue that this question 

cannot be addressed without knowing what exactly these catalysts look like at an atomistic level 

in the first place. 

 

1.2 The Cobalt-Copper Oxygenate-Driven Fischer-Tropsch Catalyst 

While oxygenate synthesis was observed as a minority product in the original reactions 

performed by Fischer and Tropsch[1], it was not until the Institut Francais du Petrol (IFP) 

developed a CoCu-based FT catalyst that they were specifically targeted for synthesis[2, 3]. The 
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rationale for mixing cobalt with copper was the assumption that one could combine the chain-

lengthening properties of cobalt with the alcohol synthesis properties of copper. Despite 

appearing naïve in its conception, the IFP CoCu catalyst was reportedly successful in producing 

long-chain terminal alcohols; at least up to C6. In terms of its success, the IFP asserted that 

intimate contact between Co and Cu was achieved in their preparation and essential to the 

performance of their catalyst. However, thermodynamic phase diagrams show that Co and Cu 

are immiscible (with a maximum of ~6% mixing being achievable)[4], making this assertion 

quite curious. However, regardless of why the IFP catalyst works, their process was 

unfortunately not good enough to replace hydroformylation as the primary method for oxygenate 

synthesis. This failure was due at least in part to the inability of the IFP CoCu-based catalyst to 

synthesize past C6. It was therefore rather encouraging when, more recently, the Kruse group 

was able to demonstrate oxygenate synthesis past C6 and to arbitrary chain length (depending on 

choice of pressure and temperature) using a new formulation of CoCu-based catalysts[5-9].  

Despite the encouraging results of the Kruse group, we still do not know why Cu 

increases selectivity to oxygenates in any of these CoCu-based catalysts. To determine this, we 

need to know what the surfaces of CoCu-based catalysts look like under reaction conditions. 

That is, we need to know what the composition and configuration of the catalytically active 

phase is. This is especially important for CoCu catalysts since experimental investigations have 

shown significant restructuring upon exposure to CO and/or syngas[10-14]. Based on simple 

surface energy arguments (based on Cu having a lower surface energy), and atom probe 

tomography of CoCuMn catalysts[5], we know that CoCu catalysts will have a tendency to form 

Co@Cu core-shell nanoparticles. In particular, as-prepared Cu@Co core-shell nanoparticles (i.e. 

the inverse of its preferred morphology) have been shown to experience significant, and largely 
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irreversible Cu enrichment upon exposure to O2[10, 11].Exposure to similar CoCu catalysts results 

in Co enrichment at the surface of these nanoparticles[12, 13], and perhaps even more 

interesting, it has been shown that exposure to syngas ultimately depletes CoCu catalysts entirely 

of Co, leaving behind a Cu framework[14]. This is not observed with exposure to only CO or H2. 

Combined with the fact that NiCu catalysts suffer similar Ni depletion (“valorization”) due to 

gaseous Ni tetracarbonyl, Ni(CO)4, formation[15, 16], it can be posited that this Co depletion 

could be due to the formation of cobalt’s analogous gaseous carbonyl complex: cobalt 

tetracarbonyl hydride, Co(CO)4H. Co(CO)4 is not a stable gas phase complex making 

valorization unlikely with exposure to CO alone. Such results demonstrate that CoCu is highly 

susceptible to reconstruction upon exposure to an FT environment. This means that if one wishes 

to explore reaction pathways on CoCu, accurately modeling the catalytically active phase is of 

paramount importance since it is liable to change upon exposure to reactants. In chapters three 

through five of this dissertation, the structure of CoCu is explicitly explored as a function of CO 

coverage and pressure. We find that CO induces a significant reversal of the segregation 

tendency on both flat and stepped surfaces, but that at experimentally relevant temperature and 

pressures, the Co surface concentration is more limited than would have been expected. This 

limitation is due to the formation of cobalt subcarbonyls, or Co(CO)x species. We also 

demonstrate that these Co(CO)x species are capable of forming at and rupturing from step sites, 

diffusing across the surface, and dimerizing on CoCu terraces: the precise ingredients needed to 

explain large-scale morphological reconstruction of CoCu catalysts.  
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1.3 Lattice Gas Cluster Expansions 

Chapters six through eight of this dissertation are concerned with the reformulation and 

implementation of multi-component lattice gas (LG) cluster expansions (CEs)[17-21]. The 

primary motivation here is to create a systematic capability to quantitatively compare systems of 

interest to FT. Typical models of the cobalt catalyst surface often assume the environment in 

which the FT elementary reaction steps take place based on varying degrees of information 

available from experiment. At one end is the assumption that the reactions take place at metallic 

sites in the absence of spectators (i.e. at the “low coverage” limit), an assumption completely at 

odds with experiments that routinely show evidence for a “crowded” surface[22-24]. At the other 

end, some computational work incorporates coverage effects, but usually in a limited manner—

for instance, including self-coverage dependence of CO and H binding energies, but for no other 

species nor dependent on other species[25]. Regardless of incorporation of binding energy 

coverage dependence, to our knowledge transition states are always obtained at the low coverage 

limit. This is in large part due to the computational cost of obtaining transition state energies and 

the difficulty in identifying what kinds of environments would be relevant enough to warrant 

such an expense. This is unfortunate, because the presence or participation of other reaction 

intermediates can be expected to alter the stability of one or all of the initial states, final states, 

and/or transition states. As a result, there is a significant need to identify relevant configurations 

of reactants and intermediates in a methodologically consistent manner.  

LG CEs have the potential to provide a means of describing lateral interaction between 

arbitrarily complex configurations of adspecies. From these LG CEs, Monte Carlo simulations 

can be performed to identify stable phases potentially relevant enough to warrant new, altered 

transitions state calculations. The issue here is that all software available for this endeavor force 
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the user into using the Ising variable paradigm[26-29]. In chapter six of this dissertation, a 

reformulation of the existing multi-component CE formalism[17-21] is established and a 

thorough review of the CE formulation available in the literature is provided. With significant 

geometric relaxations away from ideal lattice positions present in surface-adsorbate systems and 

large data sets using varying supercell sizes and shapes, errors can be expected that may affect 

the convergence and reliability of CEs[20, 21, 30]. A method for quantifying these errors is 

presented in chapter seven. Creation of LG CEs which incorporate this new formalism and error 

estimation technique is finally presented in chapter eight and used to compare the CO/Co(0001) 

and CO/Co(111) systems. These systems are important to the FT reaction because below ~20 

nm, cobalt nanoparticles experience a phase change from its native hexagonal close packed (hcp) 

to face centered cubic (fcc)[31-36], and this change is associated with reduced activity[37-39]. 

Our work shows that this may be due in part to surface strain induced by the smaller lattice 

constant of the fcc crystal. This strain is shown to be associated with significantly larger short-

range lateral interactions, which may be responsible for disrupting important surface phases of 

CO in FT.   
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CHAPTER TWO:  

METHODOLOGY 

 In this section, the methods used in this dissertation are enumerated. First, the general 

underlying theory that underpins the majority of the research, quantum mechanics, is curated so 

that only the details most pertinent to the work are presented. Next, a detailed overview of the 

statistical mechanical treatment applied to the calculations is provided. Each contribution is 

treated separately and explained in detail. Finally, the workhorse theory of this dissertation, 

density functional theory, is explained in detail along with its implementation in the specific 

software used to perform the research herein.   

 

2.1 General Theory 

The central tool used in the theoretical calculations presented in this dissertation is 

quantum mechanics, the foundation of which is the Schrödinger Equation. The most generalized 

version of the Schrödinger Equation is time-dependent, but since we are not interested in 

describing the transient behavior of chemical systems at the level of quantum mechanics, we 

immediately turn to the time-independent Schrödinger Equation, which is shown in Equation 2.1 

below: 

H(ψ* = E*ψ*	 (2.1) 

where 𝐻( is the Hamiltonian operator, ψ/ is the wavefunction in its nth excitation state, and 𝐸/ is 

the energy of that excitation state. In its most generalized version, the Hamiltonian operator can 

be written as the sum of the kinetic energy operator, 𝑇2 , and potential energy operator 𝑉2 . The 

kinetic energy operator is established from quantum mechanics, but the potential energy operator 
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varies depending on the specific interparticle interactions present within the system being 

modeled. Explicitly, this is written as 

4−
ℏ7

2 	89
1
m;
∇;7=	

>

;

+ V(({𝐫})	Dψ*({𝐫}) = E*ψ*({𝐫})	 (2.2) 

where ℏ is the reduced Planck constant, m; is the mass of the iFG particle in the system, ∇;7 is the 

Laplacian of the iFG particle, and {𝐫}	is the set of all vector positions for each of the N particles in 

the system (3N total spatial components and N total spin components). Note that we have also 

made explicit the functional dependence of the wavefunction on particle positions. The 

Schrödinger Equation is an eigenvalue problem. Given a description of the potential energy for 

any arrangement of the N particles and set of boundary conditions, a corresponding set of 

ψ*({𝐫}) and E* can be found—albeit rarely as an exact analytical solution, but numerical 

solutions can often be found to good approximation.  

The basic assumption of all the quantum chemical calculations performed in this 

dissertation is that the wavefunction describing the state of any chemical system can be 

decoupled and partitioned into some combination of nuclear, electronic, vibrational, rotational, 

and/or translational contributions. The majority of this decoupling is made possible by invoking 

the well-known and widely-accepted Born-Oppenheimer (BO) approximation which states that 

each nucleus in a system can be viewed as fixed within the reference frame of the system’s 

electrons. As nuclei are significantly more massive than electrons (by at least three orders of 

magnitude), their motion can be shown to be essentially decoupled mathematically. Physically, 

this means that if the nuclei of a chemical system are at some position 𝐑𝟎 and the electrons are at 

their simultaneous minimum energy states around them, for any small displacement of the 

nuclei, d𝐑, the electrons will never “lag behind,”— that is, they will always be capable of 
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moving to their new minimum energy states around the nuclei at the new position 𝐑𝟎 + d𝐑. 

Because of the BO approximation, the nuclei can be viewed as independent of the electrons and 

the nuclear wavefunction thus decoupled from any remaining contributions. The electronic 

wavefunction and energy can then be found for any arrangement of nuclei, including 

arrangements that trace out the path of the nuclei as they translate (i.e. move through space), 

vibrate, or rotate. In this case, the electronic wavefunction is usually described as parameterized 

by nuclei positions, and its energy solution then plays the role of the potential in the (adiabatic) 

BO time-independent Schrödinger equation: 

L−
ℏ7

2 	8 M
1
mN
∇N7O	

>PQR

N

+ ESTSU({𝐑})	VψFWF({𝐑}) = EFWFψFWF({𝐑})	 (2.3) 

where mN is the mass of the jFG nucleus, N*YU is the number of nuclei in the system, ESTSU({𝐑}) is 

the electronic energy found, in principle, from the solution of Equation 2.2 wherein the nuclei 

positions, {𝐑}, are held constant (which eliminates the kinetic energy terms for the nuclei), {𝐫} is 

the set of electron positions, ψFWF({𝐑}) is the total BO time-independent wavefunction (only a 

function of nuclei positions now), and EFWF is its total energy. ESTSU({𝐑})	defines a potential 

energy surface (PES) of 3N*YU degrees of freedom. We note for thoroughness’ sake that 

ψFWF({𝐑}) implicitly contains the quantum nuclear state wavefunction. 

 Strictly speaking, the BO approximation does not justify the decoupling of translations, 

vibrations, and rotations of nuclear motion; however, assuming these contributions to be 

mutually decoupled is a common and reasonable approximation at the level of theory employed 

in this dissertation. In this case, the subsets of 3N*YU degrees of freedom corresponding to 

translations, vibrations, and rotations can all be assigned a separate PES (solutions of 

ESTSU({𝐑})). If the nuclei are in a local minimum on these PES, the electronic energy of this state 
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can be separated as well, and the remaining degrees of freedom described either explicitly or 

implicitly. These considerations result in a total, time-independent wavefunction, ψFWF[T, and 

total energy, EFWF[T, of 

ψFWF[T = 	ψ*YUψSTSUψF\[*]ψ^;_ψ\WF (2.4.1) 

EFWF[T = 	E*YU + ESTSU + EF\[*] + E^;_ + E\WF (2.4.2) 

where ψ*YU/E*YU, ψSTSU/ESTSU, ψF\[*]/EF\[*], ψ^;_/E^;_, and ψ\WF/E\WF are the quantum nuclear 

state, electronic, translational, vibrational, and rotational time-independent 

wavefunctions/energies, respectively. The wavefunctions in Equation 2.4.1 are acted on only by 

operators of the subset of 3N*YU coordinates associated with its degree of freedom (i.e. 

translations, vibrations, rotations). All wavefunctions can be found explicitly via solution of their 

own version of Equation 2.3 and thereby we make determining their energetic contributions 

much easier to accomplish.  

  

2.2 Statistical Mechanical Treatment of Decoupled Contributions 

In the absence of added energy (e.g. electromagnetic radiation or heat), the 

wavefunctions in Equation 2.4.1 that describe a system will remain in their mutual ground states. 

However, at finite temperatures, their excitation states can become occupied and their energetic 

contributions relevant to the total energy of the system. The number and distribution of occupied 

ground and excited states is actually the source of a system’s entropy and is thus critically 

important to the determination of thermodynamic quantities. 

 Statistical mechanics allows for one to determine meso- and macroscopic thermodynamic 

and kinetic quantities from the atomistic information derived from Equations 2.2 – 2.3. This is 

the main goal of many of the calculations and simulations presented in this dissertation as these 
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quantities determine the stability of reactants, reaction intermediates, and products; as well as the 

reaction rates connecting them. Thankfully, due to our assumption that the contributions 

described in Equations 2.4 are decoupled, we can treat each contribution separately with the 

statistical mechanical tools most appropriate for that contribution and then subsequently combine 

them to produce the final thermodynamic quantities of interest. Note that in the work done in this 

dissertation, only equilibrium statistical mechanics is used. 

The central quantity of equilibrium statistical mechanics that must be found for all 

contributions is the partition function. There are many statistical mechanical “ensembles” to 

choose from with, in principle, any particular choice being a matter of convenience. However, in 

order to discuss the most important details and assumptions made, here we will stick to the 

canonical ensemble, which treats the number of particles, temperature, and spatial extent as 

constant. The canonical partition function, Q, is given by 

Q(N,𝒳, T) =8eefgh(>,𝒳)

N

 (2.5) 

where β is the “thermodynamic beta” equivalent to j
klm

, kois the Boltzmann constant, T is the 

absolute temperature, EN(N,𝒳) is the energy of quantum state j, and the sum runs over all 

possible and allowed quantum states for the system. Each term in the summation is proportional 

to the probability that the system will be in quantum state j; the partition function therefore 

contains all the probabilistic information of the entire system. Since the work presented in this 

dissertation is for surfaces, it is also important to note that the spatial extend, 𝒳, is often 

represented by nanoparticle surface area, 𝒜, or equivalently the number of surface unit cells, 

NY.U., where we define 𝒜 = aY.U.NY.U., with aY.U. the surface area of a single surface unit cell. This 

relationship is often stated in terms of the number of adsorption sites, N] (see Clark [1]), and is 
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equivalent provided there is one adsorption site per surface unit cell; we choose a more general 

form by defining the relationship Ns,; = ns,;NY.U., where Ns,; is the number of sites of type i and  

ns,; is the number of sites of type i per surface unit cell. For gas phase species, 𝒳 is the more 

commonly used volume, 𝒱, which is the typical canonical variable used in the literature. 

However, here we will leave the canonical partition function in the more general form to avoid 

confusion when moving between systems of different spatial dimensions (such as gas phase vs. 

surface adsorbed phase).It is also important to note that the energy of each quantum state of the 

system is extensive, dependent on the number of particles, N, and the spatial extent, 𝒳, of the 

system. While this has little consequence when evaluating most molecular partition functions, 

this is highly relevant when having to consider two or more separate systems or when switching 

to the grand canonical ensemble.  

 Without some simplification and assumptions, evaluating the partition function in 

Equation 2.5 is nearly impossible (or incredibly onerous). In many cases, the first assumption is 

that the Hamiltonian of the system is not only separable into energy contributions from its 

various degrees of freedom but also energy of each particle or quasi-particle in the system. This 

means that the energy of quantum state j can be expressed as a sum of particle energies over all 

particles, each with its own separate set of quantum states to be summed over. This produces the 

following rearrangement of Equation 2.5: 

Q =888⋯8eefwghx(>,𝒳)yghz(>,𝒳)ygh{(>,𝒳)y⋯ygh|(>,𝒳)}

N|N{NzNx

	

= 8eef~ghx(>,𝒳)�

Nx

8eef[gz(>,𝒳)]

Nz

8eef~gh{(>,𝒳)�

N{

⋯8eefwgh|(>,𝒳)}

N|

	

= qjq7q� …q> (2.6) 
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where a unique index, jj through j> is assigned to each particle (molecule) in the system and 

lowercase q represent the molecular partition functions which are not necessarily identical for 

every particle of the same type. This is because, even amongst systems of like particles, the 

summations above must still be restricted to allowable states (fermions, for instance, cannot 

simultaneously occupy the same quantum state). Further, if the particles are indistinguishable, 

the permutation of any set of jj –  j> states does not produce a new state and thus only one 

unique combinations of states should be allowed. Thankfully, due to the presence of either 

configurational or translations degrees of freedom in systems of distinguishable and 

indistinguishable particles, respectively, we can safely assume all the particles in our systems 

obey Boltzmann statistics. This assumption says that when the number of quantum molecular 

states is much, much greater than the number of particles, we can safely ignore restrictions on the 

summation over allowed states in Equation 2.6 due to their overwhelming scarcity compared to 

other states. For indistinguishable particles, it is then rather straightforward to account for the 

overcounting of permuted states since there are N! of them for each type of particle. The 

unrestricted summations in Equation 2.6 now produce identical molecular partition functions for 

all particles of the same type (e.g. CO molecules and H2 molecules) and these can be combined 

as [2] 

Q =
[q[]>�[q_]>� … [q�]>�

N[! N_!…N�!
	(all	particles	indistinguishable) (2.7) 

Q = [q[]>�[q_]>� … [q�]>�	(all	particles	distinguishable) (2.8) 

where subscripts denote the type of particle. While not explicitly shown, each partition function 

still depends on temperature, number of particles, and spatial extent. It should also be noted that 

while Equations 2.7 and 2.8 denote systems where particles are either all indistinguishable or all 
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distinguishable, they can be combined according to the distinguishability of each particle type as 

needed. Thus, Equations 2.7 and 2.8 can be generalized as 

Q = Q[Q_ …Q�	 (2.9) 

where each total molecular partition function, Q;, is 

Q; =
[q;]>�
N;!

	or		Q; = [q;]>�	 (2.10) 

depending on whether the  iFG particle type is indistinguishable or distinguishable, respectively. 

With all of the above assumptions clarified, we can now turn to the equations which 

define the connection between the partition function and thermodynamic state functions that are 

used in this dissertation, which are true regardless of assumptions made above. Without fanfare, 

these are: 

F = −koT	lnQ (2.11) 

U = koT7
∂(lnQ)
∂T

 (2.12) 

S =
U − F
𝑇 = koT

∂(lnQ)
∂T

+ kolnQ (2.13) 

µ[ =
∂F
∂Na

= −koT
∂(lnQ)
∂Na

 (2.14) 

 

where F is the Helmholtz free energy, U is the internal energy, S is the entropy, and µ� is the 

chemical potential of particle type “a”. Transformations to Gibbs free energy, G, and enthalpy, 

H, can be made via thermodynamic relationships or, as is done in this dissertation, via evaluation 

of the isothermal-isobaric ensemble partition function, ∆: 
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∆	= 8Q(N, 𝒱;, T)eef�𝒱
�

𝒱� 

≈ ¢ Q(N, 𝒱, T)eef�𝒱Cd𝒱
�

 
 

(2.15) 

G = −koT	ln	∆ (2.16) 

H = koT7
∂(ln	∆)
∂T

 
(2.17) 

where p is the total pressure, 𝒱 is the volume and C is a proportionality constant with units of 

inverse volume needed to make the partition function dimensionless. In Equation 2.15, an 

integral replaces the summation since volume, 𝒱, is not actually countable; the proportionality 

constant C must be inserted to counter the introduction of dimensionality when moving to the 

integral formulation. We follow the work of Sack [3] and set this to the constant C = βp, which 

is chosen for mathematical convenience and is otherwise inconsequential in the thermodynamic 

limit. 

 In Equations 2.11 – 2.17, the partition function is always found within a logarithm. As a 

result, when the total partition function Q in Equations 2.7 and 2.8 is substituted into any of these 

equations, the molecular partition function of each particle type can be easily partitioned into 

sums of thermodynamic contributions. To demonstrate this, we substitute Equation 2.7 into 

Equation 2.11 to get 

F = −koT ln[Q[Q_ …Q�	]	

= (−koT ln[Q[]) + (−koT ln[Q_]) + ⋯+ (−koT ln[Q�])	

= 𝐹� + 𝐹¥ +⋯+ 𝐹¦ 

(2.18) 

where we can see that the total Helmholtz free energy, F, can be written as a sum over the 

Helmholtz free energies of each particle type—again, typically a molecular species. This result 

allows us to consider the molecular partition function for each particle type separately, determine 
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its thermodynamic contribution(s), and then perform the summation at the end according to 

stoichiometry or other reaction-specific considerations, which is incredibly useful. 

Because of the first assumption we have made concerning the separability of degrees of 

freedom, each molecular partition function, q, in Equation 2.8 can be found by evaluating the 

partition functions of each of its constituent degrees of freedom as  

q = q*YUqSTSUq^;_q\WFqF\[*]	 (2.19) 

which can be substituted into Equation 2.10 to give the total partition function of the iFG particle 

type as 

Q; =
~q;,*YUq;,STSUq;,^;_q;,\WFq;,F\[*]�

>�

N;!
	(indistinguishable	particle)	 (2.20.1) 

or 

Q; = ~q;,*YUq;,STSUq;,^;_q;,\WFq;,F\[*]�
>�	(distinguishable	particle)	 (2.20.2) 

 To be explicit about how the preceding equations are used, we note that, in this 

dissertation, the only “particle types” that are distinguishable are the adsorbates in lattice gases. 

In this case, the particles are considered fixed at lattice points and thus have no translational 

degrees of freedom. However, the adsorbates gain configurational degrees of freedom, which 

play a similar role. We thus have two separate total partition functions for the iFG particle type as 

Q; = ~q;,*YU	�
>�~q;,STSU�

>�~q;,^;_�
>�~q;,\WF�

>� ~q;,F\[*]�
>�

N;!
			

= 	Q;,*YUQ;,STSUQ;,^;_Q;,\WFQ;,F\[*] (2.21) 

Q;,T§ = ~q;,*YU	�
>�~q;,STSU�

>�~q;,^;_�
>�~q;,\WF�

>�q;,UW*¨;§	
(2.22) 
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= Q;,*YUQ;,STSUQ;,^;_Q;,\WFQ;,UW*¨;§	 

where Q;,T§ is the lattice gas (distinguishable particles) total partition function for its iFG 

component. Note that we have also made explicit (1) the important association of the 

permutation-correcting N;! with the translational molecular partition function in Equation 2.21, 

and (2) the fact that the configurational partition function is typically assessed for all N; particles 

at once in Equation 2.22. 

We now turn our attention to how each contribution is treated in this dissertation. 

 

 

2.2.1 The Nuclear Contribution 

While the quantum nuclear state wavefunction can be very complicated (and firmly in the 

purview of particle physics) its energetic contribution is typically unimportant to chemical 

systems. This is because we are only interested in energy differences in chemical systems. That 

is, while ESTSU, EF\[*], E^;_, and E\WF  may (and likely will) change over the course of a chemical 

transformation, E*YU will not. This means E*YU will always cancel out in any subsequent 

calculations, and we can safely ignore the nuclear terms in all the preceding partition function 

equations.  

 

2.2.2 The Electronic Contribution 

 It is not an exaggeration to say that the electronic wavefunction and energy define the 

vast majority of research efforts in computational chemistry. This is certainly the case in this 

dissertation where most computational resources have been used to obtain the electronic energy 
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in Equation 2.4. There is no simple method for creating a closed form partition function for 

electronic energies either, meaning that the summation over electronic states in Equation 2.6 

must, in principle, be performed manually. Mercifully, electronic excitation states tend to be high 

in energy (with respect to the lowest electronic state) and are thus negligible at the temperatures 

considered in this dissertation. Therefore, we can make a very good approximation of the 

electronic partition function as a “sum” over a single state, i.e. its ground state: 

q;,STSU = 	8eefg�,©
 

N� 

= eefg�,© (2.23) 

Q;,STSU = ~eefg�,©�>� (2.24) 

Equation 2.23 can be plugged into the thermodynamic Equations 2.11 – 2.17 to produce very 

simple expressions for the electronic contribution to them: 

F;,STSU = −koT ln~eefg�,©�
>� 

⇒ F;,STSU = N;E;,  
(2.25) 

U;,STSU = koT7
∂ «ln~eefg�,©�>�¬

∂T
 

⇒ U;,STSU = N;E;,  

(2.26) 

S;,STSU =
U − F
T = 0 (2.27) 

µ;,STSU =
∂F;,STSU
∂Ni

= −koT
∂(lnQ)
∂Ni

 

⇒ µ;,STSU = E;,  

(2.28) 

∆;,STSU	= ¢ ~eefg�,©�>�eef�𝒱βpd𝒱 = ~eefg�,©�>�
�

 
 (2.29) 
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𝐺;,STSU = −koT ln~eefg�,©�
>� 

⇒ 𝐺;,STSU = N;E;,  
(2.30) 

𝐻;,STSU = koT7
∂ «ln	~eefg�,©�>�¬

∂T
 

⇒ 𝐻;,STSU = N;E;,  

(2.31) 

where we see that in the absence of any volume dependence in Q;,STSU, the Gibbs free energy and 

enthalpy are in fact equivalent to the Helmholtz free energy and internal energy, respectively. 

This is a general result that will be replicated for any contribution without a volume dependence.  

 The ground state electronic energy in all the calculations performed in this dissertation 

were computed using density functional theory (DFT) as implemented in the Vienna ab initio 

Simulation Package (VASP).[4-6] Due to the central role it plays in this dissertation, DFT will 

be discussed in its own section. An electronic ground state energy can be calculated, in principle, 

for any set of nuclei positions with all energies for each possible set of nuclei positions (a 3N-

dimensional space) making up the systems potential energy surface (PES). However, when 

specific “structures” made up of the same N nuclei are considered, we are referring specifically 

to one of the local energy minima in that 3N-dimensional PES. We find (and thus define) these 

structures by providing an initial guess for the nuclei positions and then running a variety of 

well-known force minimization procedures included in the VASP software. All structures shown 

in the figures included in this dissertation are the final result of this process unless otherwise 

stated. We will denote the nuclei positions of each structure as 𝐑𝟎 in the following sections. 
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2.2.3 The Translational Contribution 

 The translational contribution to the total energy is the simplest contribution to determine 

so long as ideal gas (either 3D or 2D) assumptions hold, and one of the most difficult 

contributions to determine otherwise. In this dissertation, all gas phase molecules are assumed to 

remain in ideal gas conditions and adsorbate translations are treated as either free translators 

(ideal two-dimensional gas) or as vibrations due to confinement to a potential energy well. We 

deal with the ideal gas translational contributions in this subsection.   

 In principle, one can determine the energy states of a system of non-interacting freely-

translating particles from direct solution of Equation 2.2 or 2.3 and application of Equation 2.5. 

While this is often instructive, in this dissertation, the high-T limit is always imposed on the 

translational partition function (where it is unequivocally the most justified due to vanishingly 

small translational energy spacings). It is thus much more relevant to start from the classical 

partition function which is equivalent to Equation 2.5 in the high-T limit. The classical partition 

function is an integral over all “phase space” which is defined by all possible momenta and 

positions of particles in a system as 

Q =
1
hs ¢ … ¢ ¢ …

[TT	]�[US

¢ eefℋ(𝒑,𝒒)d𝑝j,j … d𝑝>,s
[TT	]�[US

d𝑞j,j … d𝑞>,s

�

e�

�

e�

 (2.32) 

where 𝒑 and 𝒒 are the vectors of, respectively, single-dimension momenta and positions (in 

Cartesian coordinates) of the N particles in the system of S spatial dimensions, and ℋ(𝐩, 𝐪) is 

the classical Hamiltonian. Each of the 2SN integrals run over either all of momentum or real 

space. While the extent of momentum space is easily defined outright (−∞ to ∞), real space is 

defined by the problem under consideration. The factor of j
G¶

 converts the classical partition 

function from classical phase space to quantum phase space [2] and is needed here to make 
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results using Equation 2.32 correspond to those using Equation 2.5 in the high-T limit. From 

here, we will assume three dimensions and use x, y, and z to specify them. Our assumption that 

the Hamiltonian can be described by a summation over individual particle contributions has the 

same effect on Equation 2.32 that it had on Equation 2.5 to yield Equation 2.6. Thus, we can 

write the molecular classical partition function as 

q =
1
h� ¢ ¢ ¢ · eefℋ¸¹º,¹»,¹¼,½,¾,¿Àd𝑝Ád𝑝Âd𝑝Ãdxdydz

[TT	]�[US

�

e�

�

e�

�

e�

 (2.33) 

where integration over “all space” is a conceptual shorthand for integration over real-space 

coordinates up to whatever length(s) or volume is relevant to the problem at hand. 

To apply Equation 2.33 to the translational contribution, we must define the Hamiltonian 

and the limits of integration over all space. For non-interacting particles freely moving through 

space, no potential energy is gained or lost by each particle and only kinetic energy remains: 

ℋ¸𝑝Á, 𝑝Â, 𝑝Ã, x, y, zÀ =
𝑝Á7

2m;
+
𝑝Â7

2m;
+
𝑝Ã7

2m;
 (2.34) 

where m; is the (total) mass of the iFG particle or molecule. Because Equation 2.34 does not 

depend on particle positions, the integration over “all space” will now simply integrate up to the 

volume of the system, 𝒱. Combining this and Equation 2.34, Equation 2.33 becomes 

qF\[*] =
1
h� ¢ ¢ ¢ e

efM ¹º
z

7��
y
¹»z
7��

y ¹¼z
7��

O
d𝑝Ád𝑝Âd𝑝Ã·dxdydz

𝒱

�

e�

�

e�

�

e�

 

= Ç
2πm;koT

h7 É
�
7
𝒱 

(2.35) 
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For distinguishable particles this is the final result. However, free translation implies that the 

particles are ultimately indistinguishable, and we must account for the factorial associated with 

the translational partition function shown in Equation 2.21. Specifically, this is 

Q;,F\[*] =
[qF\[*]]>�

N;!
=

1
N;!

ÊÇ
2πm;koT

h7 É
�
7
𝒱Ë

>�

 (2.36) 

For values of N of even modestly large size, the Sterling approximation is incredibly accurate 

and can be used here without reservation. This yields 

Q;,F\[*] = Ç
𝑒
N;
É
>�
ÊÇ
2πm;koT

h7 É
�
7
𝒱Ë

>�

 

= ÊÇ
2πm;koT

h7 É
�
7 𝒱
N;
𝑒Ë

>�

 

(2.37) 

It is tempting (and common) to replace 𝒱
>

 in Equation 2.37 with the ideal gas equivalent klm
Í

. 

However, this inevitably leads one to call the resultant free energy the Gibbs free energy instead 

of the Helmholtz free energy due to the seeming dependence on pressure. This is an incorrect 

equivalence, and in this dissertation, we opt for a more rigorous treatment of the two quantities 

that avoids this potential pitfall.  

 Inserting Equation 2.37 into Equations 2.11 through 2.17 produce the translational 

contribution to the thermodynamic state functions of the system of interest: 

F;,F\[*] = −koT ln ÊÇ
2πm;koT

h7 É
�
7 𝒱
N;
𝑒Ë

>�

 (2.38) 
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⇒ F;,F\[*] = −koTN; ln ÊÇ
2πm;koT

h7 É
�
7 𝒱
N;
𝑒Ë 

U;,F\[*] = koT7
∂Lln Î«2πm;koT

h7 ¬
�
7 𝒱
N;
𝑒Ï

>�

V

∂T
 

⇒ U;,F\[*] =
3
2N;koT 

(2.39) 

S;,F\[*] =
U − F
T  (2.40) 

µ;,F\[*] =
∂F;,STSU
∂Ni

 

⇒ µ;,F\[*] = −koT ln ÊÇ
2πm;koT

h7 É
�
7 𝒱
N;
𝑒Ë 

(2.41) 

The evaluation of the isothermal-isobaric partitions function deserves special attention here since 

it depends on volume and must be dealt with within the integral over volume.  

∆;,F\[*]	= ¢ ÊÇ
2πm;koT

h7 É
�
7 𝒱
N;
𝑒Ë

>�

eef�𝒱βpd𝒱
�

 
 

= ÊÇ
2πm;koT

h7 É
�
7
Ë

>�
βp
N;!

Ð¢ 𝒱>�eef�𝒱d𝒱
�

 
Ñ 

= ÊÇ
2πm;koT

h7 É
�
7
Ë

>�
βp
N;!

ÐN;! 9
1
βp=

>�yj

Ñ 

= ÊÇ
2πm;koT

h7 É
�
7
Ë

>�

9
1
βp=

>�
 

(2.42) 
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= ÊÇ
2πm;koT

h7 É
�
7 ko𝑇
p Ë

>�

 

𝐺;,F\[*] = −koT ln ÊÇ
2πm;koT

h7 É
�
7 ko𝑇
p Ë

>�

 

⇒ 𝐺;,F\[*] = koTN; ln ÊÇ
2πm;koT

h7 É
�
7 ko𝑇
p Ë 

(2.43) 

𝐻;,F\[*] = koT7
∂
∂T
Òln	 ÊÇ

2πm;koT
h7 É

�
7 ko𝑇
p Ë

>�

Ó 

⇒ 𝐻;,F\[*] =
5
2N;koT 

(2.44) 

where now it can be seen that there is indeed a difference between the Helmholtz free energy and 

the Gibbs free energy, albeit not drastically. 

   

2.2.4 The Vibrational Contribution 

 Unlike the translational contribution, the vibrational contribution has significant quantum 

effects that should not be ignored. We thus use Equation 2.3 and find the total energy of the 

vibrational contribution in Equation 2.4.2 by assuming that the electronic energy, ESTSU({𝐑}), is 

harmonic. Explicitly, we assume, at least locally, that the PES of a structure made up of M nuclei 

can be described by a multidimensional Taylor series centered at some local energetic minimum 

𝐑𝟎 and truncated after the 2nd order term: 

ESTSU({𝐑}) ≈ ESTSU(𝐑𝟎) + 𝛁Ö(𝐑 − 𝐑𝟎) + (𝐑 − 𝐑𝟎)mH(𝐑 − 𝐑𝟎) (2.45) 
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where 𝐑 is the nuclei position vector of 3M (usually Cartesian) components, ESTSU(𝐑𝟎) is the 

energy of the structure at 𝐑𝟎, which we set to zero since this value is already associated with the 

electronic contribution; 𝛁 is the gradient vector, which is zero since the structure is at an energy 

minima; H is the Hessian matrix, and 𝐑 − 𝐑𝟎 = ∆𝐑 is the displacement vector. With the first 

two terms in Equation 2.32 set to zero, the harmonic PES becomes 

ESTSU({𝐑}) ≈ (∆𝐑)mH(∆𝐑) (2.46) 

After insertion into the BO time-independent Schrödinger equation (Equation 2.3) and 

diagonalization of the resultant “mass-weighted” Hessian matrix, Equation 2.46 becomes a 

system of 3M 1-dimensional harmonic oscillators and the wavefunction and energy associated 

with each 3M-component eigenvector (the so-called normal mode) can be found analytically. 

The energy for each normal mode is then the same as for a 1-dimensional quantum harmonic 

oscillator: 

E^;_,k,* = hνk Çn +
1
2É , n ∈ ℕ (2.47) 

where E^;_,k,* is the energy of the kFG normal mode in its nFG excitation state, νk is the frequency 

of the kFG normal mode, and n is a natural number corresponding to the nFG excitation state of the 

normal mode. The total energy associated with all vibrations is then a simple summation over all 

normal modes: 

E^;_,*� = 8hνk Çnk +
1
2É

�Ú

k�j

 (2.48) 

where the normal mode index is added to the natural number to reflect that the excitation states 

of each normal mode are independent. 
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 Equation 2.48 can now be inserted into the partition function with the summation running 

over all possible excitation states: 

q;,^;_ = 	8eefw∑ GÜÝ«*Ýy
j
7¬

{|
ÝÞx }

�

*� 

 

=	ßeefw
j
7GÜÝ}8¸eef[GÜÝ]À

*Ý
�

*� 

	
�Ú

k�j

 

(2.49) 

where a few rearrangements reveal a geometric series with constant multiple eef[GÜÝ]. This series 

has a closed form expression that can be inserted into Equation 2.49 to give 

q;,^;_ = 	ßeefw
j
7GÜÝ} Ç

1
1 − eef[GÜÝ]

É
�>

k�j

 (2.50) 

which is a product of 3M 1-dimensional harmonic oscillator partition functions. In principle, 

only 3M-5, 3M-6, or 3M-3 degrees of freedom actually correspond to proper vibrational degrees 

of freedom for linear, non-linear, and periodic systems. However, in practice, all 3M degrees of 

freedom are assessed, and one must manually sift out the erroneous “extra” modes corresponding 

to rotations and translations. Equation 2.50 can be inserted into Equation 2.21 to give the total 

vibrational partition function for particle type i as 

Q;,^;_ = ÊßL
eefw

j
7GÜÝ}

1 − eef[GÜÝ]
V

�Ú

k�j

Ë

>�

 (2.51) 

and thermodynamic quantities: 

F;,^;_ = −koT ln ÊßL
eefw

j
7GÜÝ}

1 − eef[GÜÝ]
V

�Ú

k�j

Ë

>�

 (2.52) 
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⇒ F;,^;_ = N;89
1
2hνk − koT	ln Ç

1
1 − eef[GÜÝ]

É=
�Ú

k�j

 

U;,^;_ = koT7
∂
∂T
ln ÊßL

eefw
j
7GÜÝ}

1 − eef[GÜÝ]
V

�Ú

k�j

Ë

>�

 

⇒ U;,^;_ = N;89
1
2hνk +

hνk
ef[GÜÝ] − 1

=
�Ú

k�j

 

(2.53) 

S;,^;_ =
U − F
𝑇  (2.54) 

µ;,^;_ = 89
1
2hνk − koT	ln Ç

1
1 − eef[GÜÝ]

É=
�Ú

k�j

 (2.56) 

G;,^;_ = F;,^;_ (2.57) 

H;,^;_ = U;,^;_ (2.58) 

where we’ve taken advantage of the result found previously that the Gibbs free energy and 

enthalpy are equivalent to the Helmholtz free energy and internal energy, respectively, when 

there is no volume dependence on the partition function. 

 

2.2.5 The Rotational Contribution 

 Like the translational contribution, the (eigen)energy states of a system undergoing 

rotation can be determined from solution of the time independent Schrödinger Equation using 

Equation 2.2. However, as was the case there, it is unnecessary to do so here since we 

consistently operate in the “high-T” limit of every system studied.  It is thus advantageous (and, 
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it turns out, much more straightforward) to use the classical partition function when considering 

the general case of a 3-dimensional polyatomic molecule.  

While it is possible to determine the rotational partition function from Equation 2.32 in 

the classical coordinates of phase space, a conceptually simpler approach is to simply realize that 

for a rotating body of particles in some fixed configuration, the integral in Equation 2.32 can 

better be represented by an integration over all angular momenta (𝐿Á, 𝐿Â, 𝐿Ã) and over all 

rotational invariant configurations of the molecule. Thus, we can replace the differentials with 

the molecule’s three angular momenta—whose principle moments of inertia (𝐼Á, 𝐼Â, 𝐼Ã) we 

assume have been identified—and three Euler angles: pitch (𝜃), yaw (𝜙), and/or roll (𝜒)). Every 

configuration is energetically degenerate (i.e. the Hamiltonian is independent of these angles) 

and therefore the Hamiltonian for the iFG rotating body is given as 

ℋ;¸𝐿Á, 𝐿Â, 𝐿Ã, 𝜃, 𝜙, 𝜒À = Ð
L½7

2𝐼Á
+
LÂ7

2𝐼Â
+
LÃ7

2𝐼Ã
Ñ
æ
 (2.59) 

As before, we assume that the Hamiltonian for a collection of bodies can be expressed as a sum 

over each body’s energetic contribution allowing for the partition function to be separated into a 

product of single-body molecular partition functions. With this consideration, combining 

Equation 2.59 with integration over all rotationally accessed configurations converts Equation 

2.32 to 

Q\WF = q\WF> = Ê
1
h� ¢ ¢ ¢ ¢ ¢ ¢e

efM çè
z

7éº
y
ç»z
7é»

yç¼
z

7é¼
O
d𝐿Ád𝐿Âd𝐿Ãsinθdθdϕdχ

í

 

7í

 

7í

 

�

e�

�

e�

�

e�

Ë

>

 (2.60) 

where sinθdθdϕdχ is the integration element for Euler angles. Equation 2.60 is analogous to 

that found for the translational partition function with the moment of inertia taking the place of 

mass. We thus make use of that result to arrive at   
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qrot = Ð
2π𝐼𝑥kBT
h2

Ñ

1
2
Ð
2π𝐼𝑦kBT
h2

Ñ

1
2
Ð
2π𝐼𝑧kBT
h2

Ñ

1
2
¢ ¢ ¢sinθdθdϕdχ

𝜋

0

2𝜋

0

2𝜋

0

 

= Ç
2π𝐼ÁkoT
h7 É

j
7
Ð
2π𝐼ÂkoT

h7 Ñ

j
7
Ç
2π𝐼ÃkoT
h7 É

j
7 8π7

𝜎 						(nonlinear	molecules) 

(2.61) 

Where 𝜎 is the symmetry number used to remove symmetrically equivalent rotations. This is the 

result for nonlinear molecules. 

In the case of linear molecules, there will only be two (identical) principle moments of 

inertia (𝐼Á = 𝐼Â = 𝐼), which correspond to, say, pitch and yaw. However, rotations involving the 

Euler angle corresponding to roll produce no new configurations. As a result, we lose one of the 

integrations over angular momentum as well as the integration over the Euler angle 

corresponding to roll (χ here). 

qrot = Ð
2π𝐼kBT
h2

Ñ
4π
𝜎 				(linear	molecules) (2.62) 

where we have combined the two terms corresponding to two identical moments of inertia and 

have lost a factor of 2π corresponding to the integration over roll (χ). All molecules with 

rotational degrees of freedom can be assessed according to either Equation 2.61 or 2.62 

(symmetric tops for instance, simply have 𝐼Á = 𝐼Â ≠ 𝐼Ã). 

 We use the result for linear molecules here to assess thermodynamic functions for 

convenience: 

F;,\WF = −koT ln 9Ç
2π𝐼koT
h7 É

4π
𝜎 =

>�
 

⇒ F;,\WF = N;koT ln 9Ç
2π𝐼koT
h7 É

4π
𝜎 = 

(2.63) 
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U;,\WF = koT7
∂
∂T
ln 9Ç

2π𝐼koT
h7 É

4π
𝜎 =

>�
 

⇒ U;,\WF = N;koT 

(2.64) 

S;,\WF =
U − F
𝑇  (2.65) 

µ;,\WF = koT ln 9Ç
2π𝐼koT
h7 É

4π
𝜎 = 

(2.66) 

G;,\WF = F;,\WF (2.67) 

H;,\WF = U;,\WF (2.68) 

 Note that for a nonlinear molecule, U;,\WF =
�
7
N;koT in accordance with equipartition of 

energy. 

 

2.2.6 The Configurational Contribution 

 The configurational contribution needed for distinguishable systems is not used directly 

in this dissertation but is included for completeness since lattice gas models are a main 

constituent herein. The configurational contribution is also important as it plays a similar role in 

systems of interacting distinguishable particles like lattice gases as the translational contribution 

does in systems of indistinguishable particles, and it is helpful to make explicit that they are in 

fact mutually exclusive. That is, a system’s configurational degrees of freedom are sampled via 

translations should they be present and are thus not needed in those cases while the presence of 

configurational degrees of freedom suggests a lack of translations. 

 We note that a closed form expression for the configurational contribution to the 

thermodynamics of a system is only possible for either ideal lattice gasses or otherwise heavily 
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simplified systems. It is beyond the work of this dissertation, but we note that Monte Carlo, or 

stochastic, methods are typically employed to effectively sample the partition function of more 

complicated/real systems (i.e. those with significant lateral interactions leading to nonideal gas 

behavior). We thus concern ourselves here only with ideal (or otherwise, mean-field) systems 

and the ideal lattice gas in particular. 

 In an ideal lattice gas, particles do not interact beyond simple site-exclusion (i.e. no more 

than one particle can occupy a lattice point at a time). Due to this, all configurations of the same 

N distinguishable particles are energetically degenerate, so the system energy is fixed. In this 

case, we could actually operate in the microcanonical ensemble, which is the prototypical 

isolated system: the number of particles, N, the volume, 𝒱, and the energy, 𝐸, are constant. 

However, particle adsorption releases energy, which we denote as V , and for a lattice gas, we 

assume that each adsorbate is trapped in a harmonic energy well which provides vibrational 

degrees of freedom whose energy levels are accessed as a function of temperature. The fact that 

we will eventually wish to include a vibrational component to the total thermodynamic 

description of this means that it is prudent to remain in the canonical ensemble. To help identify 

the configurational contribution, we rewrite the lattice gas partition function as 

QT.§.(N,𝒜, T) = 8Ωef~>ø©y>gP,ù���
�

*� 

 (2.69) 

where 𝒜 is the total area of the surface (a spatial extent); NV  is the total electronic energy of the 

system; NE*,^;_ is the total vibrational energy of the system in its nFG vibrational excitation state, 

and Ω is the degeneracy of the NV  + NE*,^;_ energy state and essentially corresponds to the total 

number of configurations the N adsorbates can take. As before, the vibrational energy 
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contribution here is separable. The vibrational energy term can be collected with the summation 

as in section 2.2.4, and the (electronic) adsorption energy is constant. This gives 

QT.§.(N,𝒜, T) = Ω	QSTSUQ^;_ (2.70) 

By inspection, Equation 2.70, the configurational contribution to the canonical partition function 

is  Ω. Even though Ω is technically a microcanonical partition function, for convenience and 

clarity, it is useful to insert it into Equation 2.70 as a configurational contribution to the 

canonical partition function (i.e. QUW*¨;§(N,𝒜, T) = Ω) despite the lack of a temperature 

dependence. We now need only to determine Ω. 

 If each adsorbate occupies one site only (ns = 1), the total number of configurations that 

N total particles on that surface can take becomes a simple counting problem given by  

QUW*¨;§(N, Ns, T) = Ω = «NsN ¬ =
Ns!

N! (Ns − N)!
 (2.71) 

where we’ve made the equivalence between area, 𝒜, and surface sites, Ns, explicit. A more 

useful form of Equation 2.71 is found by invocation of Sterling’s approximation and defining a 

coverage, θ= >
>¶

. After some slightly tedious algebra, we find that  

QUW*¨;§(N, Ns, T) = 9
1

θú(1 − θ)(jeú)
=
>¶

 (2.72) 

This gives the final result for the total ideal lattice gas partition function as  

QT.§.(N,𝒜, T) = 9
1

θú(1 − θ)(jeú)
=
>¶
	QSTSUQ^;_ (2.73) 

It is important to note that Equation 2.72 is the result for the entire surface and not just a single 

particle. In this way, the configuration contribution is quite different from the other contribution 

where molecular partition functions were found and then raised to a power of N; to form its total 



 

 36 

contribution to the total partition function. In practice, this seeming dependence on system size is 

avoided via some normalization of the thermodynamic quantity of interest to a “per site” or “per 

adsorbate” basis.  

The resultant thermodynamic quantities are  

F;,UW*¨;§ = −koT ln Ð9
1

θú(1 − θ)(jeú)
=
>¶
Ñ 

⇒ F;,UW*¨;§ = koTNs ln~θú(1 − θ)(jeú)� 

(2.74) 

U;,UW*¨;§ = koT7
∂
∂T
ln Ð9

1
θú(1 − θ)(jeú)

=
>¶
Ñ 

⇒ U;,UW*¨;§ = 0 

(2.75) 

S;,UW*¨;§ =
U − F
𝑇 = −koTNs ln~θú(1 − θ)(jeú)� (2.76) 

µ;,UW*¨;§ = koT ln 9
θ

1 − θ= 
(2.77) 

G;,UW*¨;§ = F;,UW*¨;§ (2.78) 

H;,UW*¨;§ = U;,UW*¨;§ (2.79) 

 

2.3 Density Functional Theory 

 We turn now to detailing the underlying principles of density functional theory (DFT). As 

mentioned in the electronic contribution subsection above, DFT is used in this dissertation to 

find the (approximate) ground state electronic energy of all systems studied. With few 

exceptions, the electronic contribution makes up the vast majority of the total free or internal 

energies. It is thus imperative that these energies be computed as accurately as possible given the 
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complexity of the systems we are interested in. However, while the time independent 

Schrödinger equation (Equation 2.2) can be solved for each of the other relevant contributions 

mentioned (though we opted to skip this step for most of the contributions), attempting to do so 

for our systems of interest, which have 100s of nuclei and potentially thousands of electrons, 

creates a wholly intractable problem.  

 

2.3.1 Hartree-Fock as Prelude to DFT 

To provide context for the remaining discussion on DFT, we consider the ideally full 

quantum mechanical treatment of a system with N* nuclei and NS electrons. In these systems, 

Coulomb’s law is used to define the potential energy due to electrostatic attractions and 

repulsions between both nuclei and electrons, and Equation 2.2 becomes 

L−
ℏ7

2
	89

1
mû

∇û7= 	−
ℏ7

2mS
	8~∇;7�	
>ü

;

>P

û

+ V(** + V(*S + V(SSVψk({𝐫}) = Ekψk({𝐫})	 (2.80.1) 

where mý is the mass of the AFG nucleus, mS is the mass of an electron, and  

V(** =
1

4πϵ 
88

ZýZo𝑒7

‖𝐑ý − 𝐑o‖

>P

o#ý

>P

ý

 (2.80.2) 

V(*S = −
1

4πϵ 
88

Zý𝑒7

‖𝐑ý − 𝐫;‖

>ü

;

>P

ý

 (2.80.3) 

V(SS =
1

4πϵ 
88

Zý𝑒7

$𝐫; − 𝐫N$

>ü

N#;

>ü

;

 (2.80.4) 

where 𝜖  is the vacuum permittivity constant; Zý and 𝐑ý	are the atomic number and (vector) 

position of the AFG nucleus, respectively, 𝐫; is the (vector) position of the iFG electron; 𝑒 is the 

fundamental charge of an electron (which, when multiplied by Zý gives the charge of the AFG 
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nucleus); and the excitation states of the wavefunction are now indexed by k in Equation 2.80. 

The Born-Oppenheimer (BO) approximation allows some simplification of Equation 2.80 which 

removes the need to assess the kinetic energy of the nuclei directly thus turning Equation 2.80 

into an electronic wavefunction. BO also allows Equation 2.80.2 to be determined exactly for 

any combination of nuclei positions, which is then added to the final electronic energy once it is 

determined. However, the 𝐑ý nuclei positions in Equation 2.80.3 cannot be removed likewise. 

This means that the remaining electronic portion of the Hamiltonian and wavefunction are 

parameterized by the nuclei positions. The BO approximation gives the following form of 

Equation 2.80: 

¸	T(S + V(** + V(*S + V(SSÀψSTSU(𝐫; 𝑹) = ESTSUψSTSU(𝐫; 𝑹)	 (2.81) 

where we have made the wavefunction’s parametric dependence on nuclei positions, 𝑹, explicit. 

Also, while the potential energy operator corresponding to nuclear-nuclear repulsions (V(**) is 

not technically “electronic”, it always integrates to a constant for a given set of 𝑹 that we will 

consistently add to the electronic energy in Equation 2.81. Constantly setting this term aside as 

part of the “nuclear energy contribution” is overly pedantic for this author.  

Despite the simplifications allowed by the BO approximation, the presence of more than 

two “bodies” in Equation 2.81 precludes its exact solution. In general, the number of terms that 

need to be solved increases on the order of NS7, though in practice the computational effort increases 

with a far greater exponent. Clearly approximations must be made. 

 The Hartree-Fock (HF) model is the starting point for most wavefunction-based models 

that attempt to approximate Equation 2.81. More importantly here, the HF model reveals the 

important terms and phenomena that must be considered when discussing the approximations 

made in DFT.  The basic approach in the HF model is to approximate the total wavefunction as a 
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product of 1-electron wavefunctions. This product is called a “Hartree product.”  However, to 

account for spin (at least phenomenologically) and the antisymmetry of the total electronic 

wavefunction (as electrons are fermions), “spin functions” are appended onto the 1-electron 

spatial wavefunctions to create “spin-orbitals” which are then combined in linear combinations 

of Hartree products via the construction of a so-called Slater determinant. The Variational 

Principle can then be used to minimize the expectation value of the energy of the system, which 

is an approximation to the true eigenenergy in Equation 2.2. While the details of this process are 

beyond the needs of this section, the results form the basis upon which DFT is ultimately 

developed. Specifically, the HF equations give energies in the form of 

ESTSU =8h;

>ü

;

+
1
288¸J;N − K;NÀ

>ü

N

>ü

;

+ V** (2.82.1) 

where  

h; = *ϕ;(i)+−
ℏ7
2mS

	∇;7 −
1

4πϵ 
∑ Zýe7

‖𝐑ý − 𝐫;‖
>P
ý +ϕ;(i), (2.82.2) 

J;N = -ϕ;(i)ϕN(j).
1

4πϵ 
Zýe7

$𝐫; − 𝐫N$
.ϕ;(i)ϕN(j)/ 

(2.82.3) 

K;N = -ϕ;(i)ϕN(j).
1

4πϵ 
Zýe7

$𝐫; − 𝐫N$
.ϕN(i)ϕ;(j)/ 

(2.82.4) 

where bra-ket notation is used to symbolize the integration over the so-called “Hilbert Space” 

spanned by the wavefunctions. |ϕ;(i)⟩ is a “ket” representing the iFG spin orbital occupied by the 

iFG electron which will be operated on by its preceding operator. ⟨ϕ;(i)| is a “bra” symbolizing 

the complex conjugate and/or “left multiplication” of that spin orbital. Combining a bra with a 

ket implies subsequent integration after any preceding operations. Equation 2.82.2 is the single 

electron integral, equivalent to the energy of a non-interacting electron moving through the mean 
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potential field generated by all the nuclei in the system. Equation 2.82.3 is the “Coulomb 

integral” and provides the energetic effect of interacting classically with the other electrons, 

while Equation 2.82.4 is the “Exchange integral,” which is similar except that the subscripts 

designating spin orbitals has been exchanged in its ket. This integral is an important contribution 

to the total energy as it has no classical analogue. It provides an energy penalty to electrons of 

the same spin, which is often referred to as “Pauli repulsion.” Regardless of one’s choice of 

interpretation, it is clear that an “exchange energy”, i.e. “exact exchange”, must be included in 

any system with more than one electron in it.  

Another energetic contribution is missing from the HF approximated energy in Equation 

2.82 that is a well-known deficiency: electron correlation. Because the HF model treats each 

electron as if it is moving through a mean-field, any correlations between electrons cannot be 

represented. For instance, as an electron approaches another electron, the trajectory or spin state 

of that electron should be affected in a dynamic way, i.e. their states and thus energetics should 

be correlated. Attempts to account for this are important and go well beyond the HF model. 

However, such methods were not used in this dissertation and will therefore not be discussed. 

For our purposes here, we have the ingredients needed to represent the energy of a molecular 

system in DFT. We know that the electronic energy of a system must ideally take the form 

ESTSU = TS + V*S + JSS + KSS + VUW\\ + V** (2.83) 

or otherwise account for the electron kinetic energy (TS), Coulombic attraction between the 

electrons and nuclei (V*S), Coulombic repulsion between electrons (JSS), correlation between 

electrons (VUW\\), and the (easily assessed) Coulombic repulsion between nuclei (V**). 

 

2.3.2 Basics of Density Functional Theory 
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 DFT as it was originally designed, is completely free from the considerations of quantum 

mechanics and the wavefunctions it depends on. The first models sought to simply describe the 

energetics of atoms using the much simpler electron density, a function of three spatial variables 

alone. These early models could determine expressions (which implicitly include correlation) in 

terms of the electron density for V*S and JSS for any system and expressions for TS and KSS for a 

uniform electron gas. These are[7, 8] 

V*S[𝜌] = −
𝑒7

4πϵ 
8 ¢

Zý𝜌(𝐫)
‖𝐑ý − 𝐫‖

[TT	]�[US

d𝐫
>P

ý

 (2.84) 

JSS[𝜌] = −
𝑒7

4πϵ 
4

1
2
𝜌(𝐫)𝜌(𝐫′)
‖𝐫 − 𝐫′‖ d𝐫d𝐫′

[TT	]�[US

 (2.85) 

TS[𝜌] =
3
10
(3𝜋7)

7
� ¢ [𝜌(𝐫)]

6
�d𝐫

[TT	]�[US

 (2.86) 

KSS[𝜌] = −
3
4 Ç
3
𝜋É

j
�

¢ [𝜌(𝐫)]
7
�d𝐫

[TT	]�[US

 (2.87) 

where we follow the convention of Jensen[8] that square brackets after a term (as in V*S[𝜌]) 

represent a functional dependence while parentheses give a function (as in 𝜌(𝐫)). Equations 2.84 

– 2.87 provide a means of determining a unique ground state energy for any electron density 

which is a guarantee proven by Hohenberg and Kohn.[9]  The most promising feature of these 

equations is that the number of variables (three spatial coordinates) does not increase with 

increasing system size. Unfortunately, these equations provide little accuracy and attempts to 

systematically improve this “orbital-free” DFT failed early on due to divergence in the Taylor 

expansions of Equations 2.86 and 2.87. The majority of the error can be traced back to the 

kinetic energy term, which is poorly described by Equation 2.86 in most systems.  
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Modern DFT stems from the work of Kohn and Sham[10] who addressed the inaccuracy 

of the previous equations by reintroducing orbitals, which are now called Kohn-Sham (KS) 

orbitals. They suggested that the system could be described by a system of 1-electron orbitals 

that provide the same electron density as the real system. Conceptually, this is very similar to the 

HF model, and so shares many of the same qualities, including the lack of correlation. The 

Kohn-Sham equation is very similar to the Fock equation of HF 

L
ℏ7

2mS
	8∇;7	
>ü

;

+ Vne[𝜌] + Jee[𝜌] + VXC[𝜌]VΨKS = EKSΨKS (2.88) 

where the kinetic energy term is replaced with the true kinetic energy operator, the largely exact 

expressions in Equations 2.84 and 2.85 for V*S[𝜌] and JSS[𝜌] , respectively, are retained in their 

density functional form, and Ψ:s is a Slater determinant of 1-electron spin orbitals or “KS 

orbitals”, which we will call 𝜒i. The exchange term is not used for the reasons mentioned 

previously, and instead, the exchange term and the missing correlation are rolled into one term,  

V;<[𝜌], typically called the exchange correlation functional. The electron-electron Coulombic 

interaction term, JSS[𝜌], includes the so-called self-interaction error just as it does in the 

Coulomb integral in Equation 2.82.3, J;N. However, unlike in the HF model, where this error is 

canceled out explicitly by K;N, the self-interaction error must be accounted for in V;<[𝜌] in 

Equation 2.88, as well. As a result, V;<[𝜌], if its form were known, would make Equation 2.88 in 

principle exact. In reality, however, the form of V;<[𝜌] is unknown, making exchange correlation 

functional development an important and active area of research. Exchange correlation 

functionals are developed based on certain theoretical considerations (typically starting from the 

known, exact form of V;<[𝜌] for a uniform electron gas[10-12]) and/or pragmatical 

considerations like reproducing experimental data for relevant systems[13-15]. It is this latter 
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practice that earns DFT the ire of those who take issue with it being considered an “ab initio” 

method.  

 Equation 2.88 is solved iteratively, in a self-consistent field manner. The usual, 

(over)simplified process is to provide a guess for the electron density for the system, use this 

density to define the density functional terms in Equation 2.88, and then variationally determine 

the KS wavefunctions, Ψ:s, and KS energy, E:s, that results. A new electron density can then be 

found from 

𝜌(𝐫) =8𝜒;∗(𝐫)𝜒;(𝐫)
>ü

;

		 (2.89) 

which, along with the new Ψ>?, can be inserted back into Equation 2.88. This iterative process is 

then repeated until the energy converges to within some tolerance.  

 

2.3.3 DFT in Periodic Systems 

To variationally solve the KS equation in Equation 2.88, a suitable basis set must be 

chosen to represent the KS orbitals. In molecular, isolated systems, the considerations involved 

are the same as with pure wavefunction based methods. However, in periodic systems like those 

studied in this dissertation, the periodicity of the potential energy imposes constraints on the 

wavefunction. This constraint is embodied in Bloch’s theorem[9]   

ψ𝐤(𝐫) = eæ𝐤∙𝐫𝑢(𝐫)		 (2.90) 

where ψ𝐤(𝐫) is a “Bloch wave” (i.e. the orbital of any periodic system), 𝐤 is a wave vector, 𝐫 is 

the position vector, and 𝑢(𝐫) is a wavefunction with the same periodicity as the crystal (i.e. 

𝑢(𝐫 + A𝐦) = 𝑢(𝐫) for any (𝐦) integer translations of the (A) unit cell lattice vectors). The wave 
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vector, 𝐤, spans the “first Brillouin zone” (FBZ) of the systems reciprocal, or “k”, space, and 

each value of 𝐤 indexes an electronic state of the system.  

 

Figure 2.1 Illustration of 1-dimensional periodic molecular systems (above) and their corresponding molecular orbital diagrams 
(below). Reproduced with permission from John Wiley and Sons. 

For finite periodic systems (think of benzene as a small 1-dimesional example), these 

electronic states are finite with discrete values of 𝐤 corresponding to discrete molecular orbitals 

(see Figure 2.1 for an example from Hoffmann[16]). However, as systems become very large 

and the number of molecules (or unit cells) approach infinity (like in nanoparticles),  𝐤 varies 

continuously within the FBZ and what would be an infinite number of molecular orbitals 

becomes a continuous band structure bounded by the maximally bonding and maximally 

antibonding molecular orbitals (again, see Figure 2.1). Describing this band accurately is 

necessary if the energies of the system are to be found, but this would necessitate solving the KS 

equations for an infinite number of values of  𝐤. This is of course impossible so, in practice, 

these equations are only solved for a discrete set of 𝐤 within the FBZ, more commonly known as 
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“k-points”. Increasing the number of k-points naturally provides a better estimate of the band 

structure but also increases the associated computational cost. It is thus common practice to 

choose the minimum number of k-points that provides suitable convergence of the electronic 

energy. 

Since 1-electron KS orbitals will ultimately be used, each can be constructed from 

Equation 2.90 to ensure each one complies with the constraints imposed by the periodicity of the 

potential energy. Each of these will form its own band structure, and so they are given a “band 

index,” 𝑛, as 

ψ𝐤
(/)(𝐫) = eæ𝐤∙𝐫𝜙𝐤

(/)(𝐫)		 (2.91) 

where ψ𝐤
(/)(𝐫) is now the 𝑛FG 1-electron KS orbital and 𝜙𝐤

(/)(𝐫) is its cell-periodic wavefunction 

which in reality carries all the chemical information of the system. 𝜙𝐤
(/)(𝐫) is ultimately what 

must be described via choice of an appropriate basis set. Any basis set can be chosen but if its 

basis functions are not periodic (such as in atom centered basis sets), they must be made so, 

which typically makes 𝜙𝐤
(/)(𝐫) a slightly more complex function of 𝐤.  

Atom centered basis sets are computationally expensive and even more so within the 

framework of Bloch’s theorem. The simplest way to avoid this problem is to choose a basis set 

comprised of basis functions that are naturally periodic, such as a plane waves, which can be 

easily made to have the same periodicity as the underlying lattice. While 𝜙𝐤
(/)(𝐫) could in 

principle be independent of the wavevector, 𝐤, it is common (and potentially important) to 

introduce it as an index for plane wave coefficients. Explicitly, this is 

𝜙𝐤
(/)(𝐫) = 8 C𝐆,𝐤

(/)eæ𝐆∙𝐫
𝐆F�è

𝐆

		 (2.92) 
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where 𝐆 is an integer multiple of the reciprocal lattice vector and essentially determines the 

harmonic frequency of the plane wave which is cut off at some 𝐆�[½; and  C𝐆,𝐤
(/) is a plane wave 

expansion coefficient specific to the plane wave with frequency 𝐆, the electronic energy state 

specified by the value of 𝐤, and the band index, 𝑛. Inserting Equation 2.92 into 2.91 produces 

ψ𝐤
(/)(𝐫) = 8 C𝐆,𝐤

(/)eæ(𝐆y𝐤)∙𝐫
𝐆F�è

𝐆

		 (2.93) 

whose form makes solution of the KS equation much simplified since the kinetic and potential 

energy parts are both algebraically tractable, precluding the need for storage and manipulation of 

large matrices.  

  The work in this dissertation solves the KS equation using a (Bloch-modified) plane 

wave basis set. The only downside is that very large numbers of plane waves must be used to get 

chemical fidelity. Like k-points, we choose the minimum number of plane waves needed to 

provide suitable energy convergence. Hundreds of thousands of plane waves are often needed. 

Nonetheless, plane waves are computationally so cheap that this is generally a non-issue.  

  

2.3.4 A Short Digression into the Interpretability of KS Orbitals 

 In principle, the KS orbitals in Equation 2.88 and 2.89 are fictitious and non-physical; 

they were conceived of as a means to an end. This is certainly echoed in the choice of using a 

plane wave basis set, which is essentially as chemically nonsense as a basis set can get.  

However, the KS wavefunction can in fact be projected onto auxiliary basis sets of chemical 

significance with considerable success. This suggests, at least to this author, that the KS 

wavefunction is more physical in nature than given credit even when described with plane 
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waves.  In the context of this dissertation, though, this property is only utilized to reveal the s- p- 

and d-like bands to construct projected density of states (pDOS).  

 

2.3.5 Core Electron Treatment in DFT 

 Many of the systems studied in this dissertation are made of elements with a very large 

number of electrons. Even with the assumptions made to arrive at the KS equation, its 

complexity still increases as the number of electrons increase in the system. Beyond requiring 

more KS orbitals and thus more variational equations to be solved, these added orbitals have the 

effect of increasing the number of radial nodes in the true wavefunctions of the valence 

electrons. Nodes introduce a constraint on the types of plane waves that can be used in the basis 

set (they all must have nodes at the location of the true wavefunction’s nodes), and as a result of 

this, the amount of plane waves needed to approximate the wavefunction skyrockets to 

computationally prohibitive numbers. The number of nodes tends to increase nearer to the 

nucleus of an atom, and since chemical transformations rarely involve the core, or non-valence, 

electrons, one way to mitigate this is to assume that the core electrons are frozen. The potential 

energy of the remaining valence electrons near the nucleus can then be modified so as to produce 

a “true” wavefunction with fewer nodes, which means the size of the plane wave basis set can be 

brought down to reasonable values. This modified potential is called a “pseudopotential” and its 

associated true wavefunction a “pseudo-wavefunction.”  
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Figure 2.2. Illustration of the Projector Augmented Wave (PAW) approach used in this dissertation. 

 Pseudopotentials are developed by specifying a radial cutoff inside which the potential 

energy is modified to produce a smooth, nodeless wavefunction and outside which it matches the 

true potential. The pseudo-wavefunction is made to match up to the second derivative at the 

cutoff point. There are a number of approaches for dealing with the core region itself including 

simply not solving the wavefunction inside those regions (the so-called “scattering” approach) or 

designing the pseudopotential to replicate the charge distribution within the core (the “norm-

conserving approach”) so that then entire system can be treated. The approach taken for the DFT 

calculations within in this dissertation is the projector-augmented wave approach, which is 

illustrated in Figure 2.2 and, put simply, takes the pseudo-wavefunction, subtracts off the core 

region part, and then inserts the true wave function of that region in its place. An added benefit 

of using pseudopotentials is that the core electrons can be treated with exceptionally high 

accuracy, even including relativistic effects since these need only be done once (during 

pseudopotential development) and then the results tabulated for use in all subsequent 

calculations.  

 As stated previously, all DFT calculations in this dissertation were performed using the 

Vienna ab initio Simulation Package (VASP)[2-4] which implements periodic DFT using a plane 

wave basis set as described here. Chapters 3-8 all include a thorough methods subsection where 
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further details of the individual calculations performed in those chapters are specified in addition 

to any theory not mentioned in this chapter.   
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Abstract 

Experimental X-ray photoelectron spectroscopy (XPS) and theoretical density functional 

theory (DFT) calculations reveal the electronic and structural properties of CoCu catalysts before 

and after CO adsorption. DFT calculations show that, prior to CO adsorption, CoCu has a high 

tendency to self-assemble into a Co@Cu core-shell structure, which is in accordance with 

previous atom probe tomography (APT) results for CoCu based systems and the known mutually 

low miscibility of Co and Cu. We demonstrate that Co and Cu are electronically immiscible 

using a density of states (DOS) analysis wherein neither metal’s electronic structure is greatly 

perturbed by the other in “mixed” CoCu. However, CO adsorption on Co is in fact weakened in 

CoCu compared to CO adsorption on pure Co despite being electronically unchanged in the 

alloy. Differential charge density analysis suggests that this is likely due to a lower electron 

density made available to Co by Cu. CO adsorption at coverages up to 1.00 ML are then 
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investigated on a Cu/Co(0001) model slab to demonstrate CO-induced segregation effects in 

CoCu. Accordingly, a large driving force for a Co surface enrichment is found. At high 

coverages, CO can completely invert the layer sequence of Co and Cu. This result is echoed by 

XPS evidence, which shows that the surface Co/Cu ratio of CoCu is much larger in the presence 

of CO than in H2.  

 

3.1. Introduction 

Industrial research with syngas (CO/H2) at the Institut Français du Pétrole (IFP) in the 

1970’s [1-3] resulted in the formation of short-chain alcohols (up to C6). A number of catalyst 

formulations were developed on the basis of CoCu and others. The incentive for choosing these 

two materials was to design a modified methanol catalyst based on Cu by taking advantage of the 

chain lengthening properties of Co metal. The authors claimed that the homogeneity of catalyst 

precursors during the preparation is essential for the final catalyst performance. A modification 

of the metallic cobalt by alloying was also envisaged even though both metals show low 

solubility with respect to each other (9% at the most according to the thermodynamic phase 

diagrams [4]). 

Recent studies in our group demonstrated ternary CoCuMn catalysts, prepared by oxalate 

coprecipitation, to exhibit core@shell structured nanoparticles [5]. In studies with Atom Probe 

Tomography (APT) Co atoms were shown to form the core in these nanoparticles while all three 

elements were present in an otherwise Cu dominated shell. Assuming a similar Co@Cu core-

shell structure applies to binary CoCu catalysts, pronounced reconstruction was observed in 

combined TEM/XPS studies (Transmission Electron Microscopy/X-ray Photoelectron 

Spectroscopy). The surface composition of such catalyst was found to be strongly dependent on 
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the activation procedure and the composition of the activating gas [6]. From a theoretical point of 

view, Ruban et al. and later Nilekar et al. produced density functional theory (DFT) evidence that 

Cu atom impurities in a cobalt host have a moderate-to-high segregation energy potential [7, 8]. 

This finding is in agreement with thermodynamic predictions; so Cu atoms would be expected to 

segregate away from Co in a CoCu catalyst. 

 The oxalate route to mixed-metal catalysts allows core@shell structured CoCu particles 

to self-assemble by stripping CO2 molecules off the common oxalate framework [5, 6]. On the 

other hand, inverse Cu@Co structured particles can be produced on purpose using suitable 

experimental techniques [9, 10]. The Somorjai group has recently studied such catalysts in detail 

[9, 10]. While XPS data under vacuum conditions clearly indicated a Cu@Co core-shell 

structure, treatment under oxygen made Cu to segregate to the surface. This oxygen-induced 

segregation was shown to be irreversible: upon reexposure to H2, the Cu remained on the surface 

rather than returning subsurface. The Somorjai group argued based on relative oxide formation 

energies that since CuO is less favorably formed over that of CoO then the driving force to create 

an oxide in the presence of O2 could not account for the driving force to segregate Cu to the 

surface. Instead, they posited that kinetics or strain effects would have to be responsible for Cu 

segregation and that the permanency of its segregation is due to Cu’s lower surface free energy, 

which itself stems from a lower bulk cohesive energy as compared to Co.  Most recent work by 

the Somorjai group showed some Cu resegregation was in fact possible upon reexposure to H2, 

but more Cu remained at the surface than was initially present in as-prepared inverse Cu@Co [9, 

10]. 

Co/Cu based catalysts have also recently received attention from the experimental groups 

of Spivey and Salmeron [11-13]. The structure of on-purpose Cu@Co3O4 catalysts was 
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elaborated upon by Subramanian et al. who, similar to the Somorjai group, showed that the 

Cu:Co surface ratio increased 5 times after high temperature oxidation [12]. Carenco et al. later 

showed that syngas exposure – but not H2 or CO by themselves – actually depletes Cu@Co core-

shell nanoparticles of Co, leading to hollow Cu-rich nanoparticles [13]. Both of these studies 

illustrate that the Cu@Co core-shell structure is very sensitive to adsorbates and thermal 

pretreatment, but why this is the case and the degree to which this can be expected is still 

unknown, and theoretical insights are necessary to further our understanding of CoCu-based 

catalysts. 

Theoretical studies on bimetallic CoCu beyond the single atom Cu impurity work in a 

Co(0001) host [7, 8] are sparse. Most recent investigations of CoCu [14] assumed a CoCu 

structure with no justification for how the cobalt came to be on the surface, or, equivalently, how 

it came to be subsurface. To remedy this state of affairs, the present paper uses both experimental 

techniques and theoretical DFT calculations to elucidate the CoCu segregation behavior by 

examining the adsorption of a monolayer of Cu on a Co(0001) surface. We show that Cu has a 

large thermodynamic tendency to segregate to the surface of Cu/Co(0001) leading to Cu surface 

termination. We then provide experimental XPS evidence of Co segregation to the surface upon 

CO adsorption, and this is followed by theoretical electronic analyses suggesting how the surface 

termination of Cu/Co(0001) ultimately alters the adsorption strength of CO. We follow this with 

a clear, theoretically explored demonstration of the reversal of Cu/Co(0001) surface termination 

by CO adsorption via DFT calculations.  This CO-induced reversal ultimately results in the 

inversion of the layer sequence of the CoCu bimetallic system. We conclude with a discussion of 

the implications of these results with regard to CO hydrogenation using bimetallic CoCu-based 

catalysts and an outlook to future work. 
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3.2. Methodology 

3.2.1 Experimental 

CoCu samples were prepared using the oxalate route of co-precipitation. Details of the 

preparation method were provided earlier [5]. Catalysts with a Co/Cu ratio of 2/1 and 3/1 were 

selected for characterization by X-ray Photoelectron Spectroscopy (XPS). CoCu mixed oxalate 

samples were activated by heating in situ to 400°C under atmospheric pressure in a flow of 30 

mL min-1 of either hydrogen or carbon monoxide in a high-pressure reactor (base pressure 2x10-

10 mbar) attached to the analytical XPS chamber via a fast sample transfer system. Samples were 

conditioned as pellets and heated resistively while exposing them to hydrogen and carbon 

monoxide. Samples were transferred into the analysis chamber (residual pressure 5 x 10–11 mbar) 

after cooling to room temperature and pumping off the gases. Details of the set-up were 

communicated earlier [15]. The X-ray source was operated with an acceleration voltage of 13 kV 

and an emission current of 10 mA. Non-monochromatized Mg Kα and Al Kα radiation were 

used for the analyses. High resolution scans were made for Co 2p, Cu 2p, C 1s, O 1s and Cu 

LMM employing a pass energy of 50 eV with a dwell time of 0.1 seconds and a step size of 0.05 

eV. After subtraction of the Shirley-type background, the core-level spectra were decomposed 

into components with mixed Gaussian–Lorentzian (G/L) lines using a non-linear least-squares 

curve-fitting procedure. The C 1s peak at 284.4 eV was used as reference energy for charge 

correction.  
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3.2.2 Theoretical  

3.2.2.1 Computational Details 

Ab-initio Density Functional Theory (DFT) calculations with periodic boundary 

conditions were performed using the Vienna Ab-initio Simulation Package (VASP) [16]. To 

accurately account for magnetic contributions, any systems containing Co were spin polarized, 

leaving Cu(111) the only system left in the closed shell approximation. The Perdew-Burke-

Enzerhof (PBE) Generalized Gradient Approximation (GGA) [17] was used to describe the 

electron exchange and correlation functionals with core electrons accounted for by using 

Projector Augmented Wave (PAW) pseudopotentials [18] to solve the Kohn-Sham Equations 

[19]. The Brillouin Zone was sampled using a 5 × 5 × 1 Monkhorst-Pack k-point mesh, and 

plane waves were expanded to an energy cutoff of 400 eV. We used an electronic energy 

difference of 1.0 × 10-4 eV/atom and force tolerance of 3.0 × 10-2 eV/Å to establish self 

consistent field (SCF) and geometric optimization convergence criteria.  

With the one exception of pure Cu, all systems in this study were hcp(0001) facets 

modeled using a four layer p(2 × 2) supercell with a ~15 Å vacuum layer. If the model catalyst 

was pure Cu, then a four layer p(2 × 2)  fcc(111) facet with a ~15 Å vacuum layer was used 

instead. In all models, the bottom two layers were fixed in their bulk positions (with an 

optimized lattice constant of 2.498 Å) while the top two layers and any adsorbates, if present, 

were allowed to relax in all directions.  

We calculated the adsorption energy according to: 

𝐸�GH =
𝐸�GHIJ¥�KLHyHMJN�OL − 𝐸HMJN�OL − 𝐸�GHIJ¥�KL

𝑁QR
 (3.1) 
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for CO on Cu(111) and Co(0001) and compared the results with those where the Brillouin Zone 

was sampled using a 6 × 6 × 1 Monkhorst-Pack k-point mesh and the energy cutoff was 

increased to 450 eV.  As can be seen from Table 3.1, the adsorption energies varied by only 0.05 

eV at most.   

Table 3.1. Comparison of DFT calculated adsorption energies with those reported in the literature. The 
Gajdoš et al. [20] DFT reference energies were calculated in VASP – as are those calculated here – and 
the Wellendorff et al. [21] DFT reference energies were calculated in Quantum ESPRESSO. For future 
reference in this paper, the CO adsorption energies on Cu and Co in perfectly segregated Cu/Co(0001) 
and 0.25 ML surface Co enriched Cu/Co(0001), respectively, are also shown. 

Site System/Set-up PW-91 PBE Ref. (PW-91) a Ref. (PBE) b 

top CO/Co(0001) 
400 eV, (5×5×1) -1.73 eV -1.68 eV 

-1.65 eV -1.53 eV 
top CO/Co(0001) 

450 eV, (6×6×1) -1.70 eV -1.65 eV 

fcc CO/Cu(111) 
400 eV, (5×5×1) -0.88 eV -0.87 eV 

-0.75 eV 
(top site) 

-0.76 eV 
(top site) 

fcc CO/Cu(111) 
450 eV, (6×6×1) -0.92 eV -0.91 eV 

top CO/Cu(111) 
400 eV, (5×5×1) -0.73 eV -0.72 eV 

top CO/Cu(111) 
450 eV, (6×6×1) -0.78 eV -0.76 eV 

Cu-fcc 
CO/Cu/Co(0001) 
Fully Segregated 
400 eV, (5×5×1) 

-0.87 eV -0.84 eV - - 

Co-top 
CO/Cu/Co(0001) 

0.25 ML Surface Co 
400 eV, (5×5×1) 

-1.31 eV -1.26 eV - - 

a Gajdoš et al. [20] 
b Wellendorff et al. [21] 

 

Several previous studies have examined the adsorption of CO on Cu(111) and Co(0001) 

and as can be seen from Table 3.1, we get an agreement to within 0.05 eV when comparing our 

values with those obtained when using a similar computational setup to that of Gajdoš et al [20].  

Recently, the adsorption energies for these systems were also provided by Wellendorff et al. [21] 

which show that DFT functionals provide calculated adsorption energies that are in error when 
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compared against experimental values. Some of these errors are significant, but the PBE 

functional used in this study is one of the most accurate functionals. As a point of reference, our 

DFT calculated CO adsorption energies on pure Cu(111) and Co(0001) are also compared in 

Table 3.1 to the DFT calculated adsorption energies used in the Wellendorf et al. PBE 

calculations. 

For the Cu/Co(0001) systems in Table 3.1, the adsorption energy was calculated 

according to: 

𝐸�GH =
𝐸KIK�S(𝑥, 𝑦) − 𝐸KIK�S(𝑥 = 0,0) − 𝑁QR𝐸QR

𝑁QR
 (3.2) 

where 𝐸KIK�S(𝑥, 𝑦) is the total DFT energy per supercell of a surface that has 𝑥	 ML equivalents 

of Co terminating the surface (henceforth, “x ML Co enrichment”)  and 𝑦 ML CO coverage. 

Further, 𝑁QR is the number of CO molecules per unit cell and 𝐸QR is the total DFT energy of a 

gas phase CO molecule.  

To model Cu/Co(0001) systems, 4 of the top 8 atoms that make up the top two layers of a 

pure Co(0001) system were replaced with Cu. During permutations of the surface atoms, the Cu 

atoms were constrained to these top two layers; preliminary calculations showed no significant 

change in energy if Cu were placed in the third layer as opposed to the second. We note here that 

since the bottom two layers are meant to electronically represent the semi-infinite Co bulk, the 

resulting Cu/Co ratio of 1/3 is not reflective of any particular Cu/Co ratio used in experiments.  

Cu/Co(0001) atoms were permuted in every way possible so as to guarantee that all unique 

configurations of Cu and Co in the top two layers of the p(2 × 2) supercell were included in our 

calculations. This method ensured that the reported energy configurations correspond to minima.  
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3.2.2.2 Segregation Energy 

Segregation energies (𝐸HLT(𝑥, 𝑦)) were defined similarly to Ma and Balbuena, [22] but 

always in reference to the total energy of the completely segregated Cu/Co(0001) surface having 

the same adsorbate (CO in this paper) coverage as the (anti)segregated surface. This can be 

written as: 

 

𝐸HLT(𝑥, 𝑦) =
𝐸KIK�S(𝑥, 𝑦) − 𝐸KIK�S(𝑥 = 0, 𝑦)

𝑁QI
 (3.3) 

 

Where 𝐸KIK�S(𝑥, 𝑦) is the same as defined previously, and 𝑁QI is the number of Co atoms per 

supercell brought to the surface layer, which is equivalent to the number of Co-Cu “swaps” made 

per supercell. A negative 𝐸HLT implies that anti-segregating Cu (or equivalently, creating a 

surface alloy) is energetically favorable, while a positive 𝐸HLT implies that Cu segregation is 

more favorable. By comparing each system to an adsorbate coverage-equivalent surface (𝑦) the 

energy lowering effect of adsorption is removed from the value and only segregation effects are 

left. As such, we interpret these segregation energies as effective driving forces for 

(anti)segregation.  

 

3.2.2.3 Surface Energy Change 

We calculate the surface energy for the case of CO on CoCu as: 

 

𝛾(𝑥, 𝑦) =
𝐸KIK�S(𝑥, 𝑦) − 𝑁QM𝐸¥MSVQM + 𝑁QI𝐸¥MSVQI − 𝑁QR𝐸QR

2𝐴QM/QI(   j)
 (3.4) 
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where 𝐸KIK�S(𝑥, 𝑦) is as defined above , 𝐸¥MSVQM  and 𝐸¥MSVQI  are the total energy of the pure bulk Cu 

and Co, respectively, and 𝐸QR is again the gas-phase energy of a single CO.  𝑁QM, 𝑁QI, and 𝑁QR 

are the number of Cu atoms, Co atoms, and CO molecules present per supercell, respectively, 

while  𝐴QM/QI(   j) is the surface area of a single exposed surface in the supercell – there are two 

per supercell, hence the multiplication by 2.  

We concern ourselves here only with the change in surface energy per CO as compared 

to the clean, perfectly segregated Cu/Co(0001) system and effectively subtract off the bulk 

terms: 

 

Δ𝛾(𝑥, 𝑦) =
𝛾(𝑥, 𝑦) − 𝛾(0,0)

𝑁QR
=
𝐸ÂÁ − 𝐸 	  − 𝑁QR𝐸QR

2𝐴𝑁QR
 (3.5) 

 

Division by 𝑁QR in Eq. (5) ensures that systems with different surface coverages can be fairly 

compared. 𝑁QR is omitted if no CO is present.  We also change to a shorthand notation for 

surface and total energies of systems with x ML Co enrichment and y ML CO coverage. A 

negative value of Δ𝛾 is associated with a lowering of surface energy and thus an increase in 

thermodynamic stability.  

 

3.3.3. Results 

3.3.1 XPS Surface Analysis 

We start by determining the relative Co/Cu surface amounts of samples prepared by 

oxalate co-precipitation. The considerations will be limited to samples with 2/1 and 3/1 nominal 
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Co/Cu ratios. The XPS analysis was performed after in-situ decomposition of the oxalate 

precursors under hydrogen (H2) or carbon monoxide (CO) at 400 ºC. Since we aim at 

determining the relative Co/Cu surface amounts we shall focus on an analysis of the Cu 2p and 

Co 2p spectra. According to Figure 3.1, the Cu 2p profiles for samples heated in either H2 or CO 

are dominated by the metallic Cu0 state (only minor amounts of Cu2+ appear on the high binding 

energy side). More specifically, the spectra are characterized by a doublet spin split of 19.8 ± 0.1 

eV typical of metallic copper. Note that the main peak (932.3 ± 0.06 eV) is assigned to either 

Cu0 or Cu+. This is because both states have statistically similar binding energies and, therefore, 

the Auger LMM spectra of copper have been used in a qualitative manner to differentiate 

between the two. As shown elsewhere [6], these Auger spectra demonstrate all samples to 

contain Cu in the metallic state, except the one treated in the presence of CO. As to Co2Cu1[CO], 

a negative binding energy shift is observed for Cu+, with Cu 2p3/2 and Cu 2p1/2 binding energies 

located at 930.7eV and 950.6 eV, respectively. This anomalous negative binding energy shift has 

been attributed to tetrahedral Cu+ species in cubic spinel oxides [23].   
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Figure 3.1. Cu 2p and Co 2p XPS spectra of Co2Cu1 and Co3Cu1 catalysts activated in-situ in H2 and CO 
gas, respectively.   
 

The presence of both Co2+ and Co3+ in the corresponding Co 2p spectra confirms the 

possible presence of a spinel phase. All of the Co 2p spectra contain Co0, Co2+ and Co3+, 

however, the relative intensities are varying. It is clear that the deconvolution of the Co 2p1/2, 

2p3/2 excitations is rather involved due to the occurrence of satellite structures. While Co0 

dominates the surface of Co2Cu1[H2], it is the Co2+ species which dominates both CO-treated 

samples. As discussed elsewhere (by including an analysis of the C1s and O1s spectra) [6], Co-

carbide formation in the CO-treated samples may be responsible for the occurrence of higher 

oxidation states of Co (and Cu) metal.  
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An important observation in relation with our XPS studies addresses the relative surface 

ratio of Co to Cu. The Co/Cu surface ratios (0.86 and 0.68 for Co2Cu1 and Co3Cu1) are clearly 

much lower than the bulk nominal ratios for the two samples. Similar Co/Cu surface ratios were 

also found for the samples activated under He. This is in qualitative accordance with the 

occurrence of a Co@Cu core-shell structure. Indeed, it has been shown that a Co rich core phase 

is encompassed by a Cu rich shell phase once the CoCu mixed oxalate has decomposed [5, 6]. 

While the Co/Cu ratio is lowest for activation in H2 (or He) it increases to values of 1.7 and 4.7, 

respectively, for the CO treated samples, Thus, considerable Co segregation takes place under 

the influence of a CO gas phase. This chemical pumping is intensified because Cu enriched 

surface phases as present in Co@Cu core shell structures bind CO relatively weakly. Once the 

restructuring is consolidated, Co-rich surface phases can decompose adsorbed CO and possibly 

accumulate surface carbon.  

 

3.3.2 Clean Surface CoCu Segregation 

Previous atom probe tomography (APT) results have shown that a CoCu-based catalyst 

self-assembles into a core-shell structure wherein Cu predominates in the shell and Co 

predominates in the core [5]. To test the hypothesis that this is the result of a large 

thermodynamic segregation tendency for Cu in Co, the atoms of the top two layers of the model 

Cu/Co(0001) system were permuted and then segregation energies and surface energy changes 

were calculated. As can be seen in Figure 3.2, enriching the surface with Co causes the 

segregation energy to increase. This indicates that a mixed surface alloy has a very large driving 

force to segregate completely into a core-shell structure (movement from right to left in Figure 

3.2(a)). This driving force is largest at 0.50 ML surface Co enrichment but is also large and 
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positive for all surface Co concentrations. Figure 3.2(b) shows the corresponding values of Δγ 

for the clean surface as the surface is enriched with Co. As can be seen, Δγ steadily increases as 

more Co is brought to the surface (and likewise, Cu is pushed sub-surface). Thus, any degree of 

CoCu alloying would always favor perfect segregation. This phenomenon provides a convincing 

account of the CoCu core-shell structure found in our experimental APT results. 

 

Figure 3.2. (a) Segregation energies, and (b) surface energy changes for Cu/Co(0001) in the absence of 
CO. Data points correspond to the different configurations that can be achieved through permutation of the 
Co and Cu in the top two layers of the surface. The solid lines connect the minimum energy configurations, 
for which top and side views are shown inset. The orange spheres are Cu atoms and the blue spheres are 
Co atoms.   

 
3.3.3 Electronic Properties of CoCu and CO Adsorption 

The CoCu core-shell structure was further studied through calculations of the projected 

density of states (pDOS) for Co and Cu in the top and second layers of Co(0001), Cu(111), 

0.00 ML CO on Cu/Co(0001) 

(a) 

(b) 
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perfectly segregated Cu/Co(0001), and Cu/Co(0001) at 0.25 ML surface Co enrichment 

(henceforth “Cu0.75Co0.25/Co(0001)”). The results can be seen in Figure 3.3 where the unique 

energetic behavior of each metal is represented. As usual, the features are dominated by the d-

band since the sp-band is too diffuse. To place all systems on equal energetic footing, each 

system is referenced to its vacuum energy. Fermi levels are indicated with vertical lines.  

 

Figure 3.3. Projected density of states (pDOS) for Co(0001), Cu(111), perfectly segregated Cu/Co(0001), 
and 0.25 ML surface Co enriched Cu/Co(0001). The energies are referenced with respect to the vacuum 
energy. Solid black lines correspond to the pure metals, green dotted lines correspond to the perfectly 
segregated surface, and red dashed lines correspond to the 0.25 ML surface Co enriched Cu/Co(0001). 
Vertical solid and dashed lines indicate the Fermi levels for pure Co(0001) or Cu(111), and both alloyed 
CoCu systems, respectively. Fermi level shifts were too small to visually distinguish between the 
perfectly segregated and 0.25 ML surface Co enriched systems and therefore are represented by a single 
vertical dashed line. 

 

Comparing the pDOS between the pure metals and the two configurations of the CoCu 

alloy, the most striking feature of the plots in Figure 3.3 is the overall lack of change as Co and 
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Cu systems are “alloyed”. There is some noticeable change in the shape of each band, indicating 

rehybridization occurs, but the energetic placement of most of the Cu and Co d-states is the same 

before and after alloying. The d-states of Co change the least, while the Cu d-states show a 

moderate shift in energy; the surface Cu d-band center moves toward the Fermi level by ~0.6 eV. 

Table 3.2. Calculated d-band centers (in reference to the metal Fermi level) and work functions, εd-εF and 
ϕ, respectively, for Co and Cu in Co(0001), Cu(111), Cu/Co(0001) at perfect segregation (0.00 ML 
surface Co), and Cu/Co(0001) at 0.25 ML surface Co concentration. The table is set up to allow easy 
comparison between the pure metals and the Cu/Co(0001) surfaces, where deviations from the pure metal 
values can be viewed as deviation from electronic properties of the pure metal. εd

surf denotes the d-band 
center of the d-band projected onto a surface atom, while εd

subsurf is d-band center projected similarly for 
those atoms in the subsurface (the second layer). The values in this table correspond to the pDOS shown 
in Figure 3.3. 

 Φ 𝜀G
HMJN − 𝜀N 𝜀G

HM¥HMJN − 𝜀N 
Cu in 

Cu(111) 4.66 eV -3.11 eV -3.60 eV 

Cu in 0.00 ML 
surface Co Enriched 

Cu/Co(0001) 
4.90 eV -2.50 eV no subsurface Cu 

Cu in 0.25 ML 
surface Co Enriched 

Cu/Co(0001) 
4.99 eV -2.49 eV -3.05 eV 

Co in 
Co(0001) 4.95 eV -1.99 eV -1.99 eV 

Co in 0.00 ML 
surface Co Enriched 

Cu/Co(0001) 
4.90 eV no surface Co -2.07 eV 

Co in 0.25 ML 
surface Co Enriched 

Cu/Co(0001) 
4.99 eV -1.98 eV -2.17 eV 

 

In likewise fashion, the Fermi levels of both metals barely move at all in relation to the 

vacuum energy. The Fermi level of Co moves insignificantly (the shift is ±0.04 eV), while that 

of the Cu shifts down by ~0.3 eV. From these shifts we can infer that Co is practically unaffected 

by the presence of Cu, while Cu is slightly activated by Co. However, in no case does the d-band 

of Cu become partially vacant; the Fermi level is always above the top edge of the d-band. The 
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implication here is that these changes in the electronic structure of Cu are not enough to change 

Cu’s nobility. 

These aforementioned energetic changes are represented by d-band centers, εd-εF, and 

work functions, ϕ, and are shown in Table 3.2. Based on the previous qualitative analysis and the 

results presented in this table, we conclude that the Cu and Co in Cu/Co(0001) are electronically 

unaffected by their respective alloying. 

To examine the effect of Cu on Co further, we compare the adsorption energies for CO 

on a Cu(111) surface, a Co(0001) surface, a Cu/Co(0001) surface, and a Cu0.75Co0.25/Co(0001) 

surface, which is given in Table 3.1. CO adsorption on Cu in the fully segregated Cu/Co(0001) is 

very similar to CO adsorption in a fcc hollow site of pure Cu(111) (-0.84 eV vs. -0.87 eV), which 

reflects Cu’s persistent nobility even when in contact with Co. In contrast to CO adsorption on 

Cu, CO adsorption on Co in Cu0.75Co0.25/Co(0001) is markedly different than on Co in Co(0001) 

(-1.26 eV vs. -1.68 eV). Even though Co in Cu0.75Co0.25/Co(0001) is electronically very similar 

to Co in pure Co(0001), CO adsorbs on the surface Co in Cu0.75Co0.25/Co(0001) much more 

weakly. In the forgoing analysis, we make the tacit assumption that no surface rearrangement is 

occurring beyond that explicitly invoked in the model. 
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Figure 3.4. Top and side views of the differential charge density of CO adsorption on Cu’s in (a) Cu(111) 
and (b) the fully segregated Cu/Co(0001). Blue shading indicates charge loss while yellow shading 
corresponds to charge gain. The lack of any significant change in the differential charge density between 
the two systems is posited to be responsible for the similarity of CO adsorption strength between the two 
systems. The color legend for the spheres is the same as Figure 3.1, except the red spheres are the oxygen 
atoms and the brown spheres are the carbon atoms. The isosurface level is set at 0.003 electrons/Bohr3. 

These results are correlated to the surrounding environment of the Co within the first 

layer: the surface Co in Cu0.75Co0.25/Co(0001) is surrounded by Cu, while in pure Co(0001), it is 

surrounded by Co. In particular, the electron density in the surface Cu of Cu/Co(0001) shows 

less change than the electron density of the surface Co of pure Co(0001). We see this in Figure 

3.4, the differential charge density of CO adsorption in the fcc hollow sites of Cu in Cu(111) and 

the fully segregated Cu/Co(0001); and Figure 3.5, the differential charge density of CO 

adsorption on the top sites of Co in Co(0001) and Cu0.75Co0.25/Co(0001).  In Figure 3.4, the 

atoms that surround the three Cu atoms involved in CO adsorption show equivalent change in 

(a) (b) 
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charge density whether the surface is pure Cu(111) (Figure 3.4(a)) or fully segregated 

Cu/Co(0001) (Figure 3.4(b)). The differential charge elsewhere is practically equivalent, as well. 

This reflects very well the minor change in CO adsorption energy seen in Table 3.1. Conversely, 

the differential charge density for CO adsorption on Co(0001) seen in Figure 3.5 shows a distinct 

loss around the surrounding Co atoms (Figure 3.5(b)), which is not present around the 

surrounding Cu atoms in the Cu0.75Co0.25/Co(0001) system (Figure 3.5(a)). The only region of 

charge density gain is around the CO adsorption site for the partially segregated 

Cu0.75Co0.25/Co(0001) system. We therefore posit that the Cu in Cu0.75Co0.25/Co(0001) cannot 

similarly contribute to the chemisorption of CO and that this might account for the lowering of 

the CO adsorption energy seen in Table 3.1.  
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Figure 3.5. Top and side views of the differential charge density for CO adsorption on Co in (a) the fully 
segregated Cu/Co(0001), in which the surface Co adsorbent atom is surrounded by Cu, and (b) the pure 
Co(0001) system, where the adsorbent atom is surrounded by Co in the first layer. The charge density loss 
evident on the surrounding Co in the pure Co(0001) system that is not present in the Cu/Co(0001) system 
is posited to be the source of the higher adsorption energy of CO on Co in pure Co(0001) over that on Co 
in Cu/Co(0001). The isosurface level is set at 0.003 electrons/Bohr3. 

 

To examine this further, we also examined the differential charge density of the clean 

metal surfaces of Co(0001) and Cu0.75Co0.25/Co(0001), in which each surface Co is completely 

surrounded at the surface by either Co or Cu as shown in Figure 3.6. The metal atoms in Figure 

3.6 are kept in the same position as those of the CO adsorption systems in Figure 3.5 and then 

the surface Co atom – which is eventually the Co adsorbent atom – is removed to create a 

vacancy in the surface. The charge densities of these defective systems ¸𝜌HMJN�OL	[æK\	]�O�/OÂÀ 

(a) (b) 
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and that of the lone Co atom (𝜌QI	�KI¦) that is removed are then calculated and compared to the 

charge densities of the metals without the vacancy ¸𝜌NMSS	HMJN�OLÀ, which are the systems in 

Figure 3.4 in which the CO has been removed. The forgoing explanation can be written in 

equation form as: 

Δ𝜌 = 𝜌NMSS	HMJN�OL − 𝜌HMJN�OL	[æK\	]�O�/OÂ − 𝜌QI	�KI¦ 

This differential charge density qualitatively shows the amount of charge that is being shared 

with the surface Co atom by the surrounding atoms. Thus, in effect, Figure 3.6 shows the extent 

to which the metal atoms surrounding the surface Co atom are able to provide/remove charge 

to/from the surface Co atom. 
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Figure 3.6. Top and side views of the differential charge density of Co adsorbent atoms in (a) the pure 
Co(0001) system and (b) the 25% surface Co enriched Cu/Co(0001) system. The blue and yellow shaded 
regions represent charge loss and charge gain, respectively. There is clearly more charge transfer between 
surface metal atoms in the Co(0001) system than in the Cu/Co(0001) system. This is posited to contribute 
to the ~0.4 eV discrepancy in CO adsorption energy between the two systems. The Co atoms in the top 
layer are blue spheres, the Co atoms in the second layer are purple spheres, and the Cu atoms are orange 
spheres. The isosurface level is set at 0.007 electrons/Bohr3. 

 

What we see in Figure 3.6 is a much smaller amount of charge transfer between the 

surface Co atom and its surrounding surface Cu atoms (Figure 3.6(b)) than between the surface 

Co atom and its surrounding surface Co atoms  (Figure 3.6(a)). This shows that Cu makes its 

electrons much less available to the surface Co atom than does other Co. This is further 

highlighted when looking at the interactions between the first and the second layer in the 

 

  

(a) (b) 
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Cu0.75Co0.25/Co(0001) system shown in Figure 3.6(b): there is larger amount of charge transfer 

between the Co atom in the first layer and the Co atoms in the second layer as compared to the 

corresponding charge transfer between the Co atom in the first layer and the surrounding Cu 

atoms in the first layer. Therefore, even before CO adsorbs onto these systems there is already a 

discrepancy between the amount of charge made available by pure Co(0001) and the amount of 

charge made available by Cu0.75Co0.25/Co(0001). Such observations help explain the 0.42 eV 

drop in adsorption energy when the adsorbent Co is surrounded by Cu instead of other Co. 

Therefore, we speculate that the adsorption energy would be further lowered by the presence of 

even more adjacent Cu and would expect to see a similar dependence on systems containing 

noble metals due to their propensity to remain close shelled. 

 

3.3.4 CO-Induced Co Antisegregation 

X-ray photoelectron spectroscopy (XPS) experiments with CoCu catalysts have 

demonstrated a CO-induced increase in their surface Co/Cu ratios. This is strongly indicative of 

a surface restructuring during which Co is chemically “pumped” to the surface. To further 

support this experimental evidence the Cu/Co(0001) model surface was again subjected to 

surface permutations, but this time at various CO coverages. The p(2×2) supercell allows for 

four CO coverages: 0.25 ML, 0.50 ML, 0.75 ML, and 1.00 ML. With each degree of coverage 

present, the surface was permuted once more, similarly to those performed for the clean catalyst. 

However, with CO adsorbed on the surface, much of the degeneracy present for a clean catalyst 

is removed, and many more Cu/Co(0001) configurations exist. The segregation and surface 

energies for each configuration were calculated and the results are presented in Figure 3.7. 

Minimum energy configurations are shown as insets for each CO coverage. 
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An evident feature of these graphs concerns the segregation energies. A precipitous drop 

in segregation energy is associated with the first increase in surface Co concentration. This 

means that any amount of adsorbed CO strongly induces Co pumping where adsorbing CO 

provides a large driving force to reverse the segregation tendency of the clean CoCu surface.  

As can be seen in Figure 3.7(a), at 0.25 ML CO coverage this initial drop (-0.42 eV/Co), which 

is associated with 0.25 ML surface Co enrichment, is the only negative value of segregation 

energy; increasing surface Co concentration beyond this would require an input of energy. Δγ 

mirrors this result, and in this case the value of Δγ increases steadily as surface Co is enriched 

beyond 0.25 ML. At low CO coverages, only low surface Co concentrations are 

thermodynamically favorable.  
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Figure 3.7. Segregation energies and surface energy changes for CO adsorbed on Cu/Co(0001) at (a) 0.25 
ML CO, (b) 0.50 ML CO, (c) 0.75 ML CO, and (d) 1 ML monolayer of CO.  For each CO coverage and 
Co enrichment, there are many possible configurations, which are represented by data points in each plot. 
Lines connect the minimum energy configurations for each CO coverage/Co enrichment system and their 
corresponding structures are shown as insets. Each abscissa range is set so as to best show the effect of 
enriching the surface with Co for that coverage and as such does not give a direct impression of the 
differences between coverages. These graphs are combined in Figure 3.4 to provide a full comparison of 
Co enrichment at each degree of CO coverage. The color legend for the spheres is the same as Figure 3.3.   
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At 0.50 ML CO coverage – Figure 3.7(b) – there is a similar large drop (-1.15 eV/Co) in 

segregation energy upon surface Co enrichment to 0.25 ML, but further enriching the surface 

with Co does not result in positive segregation energies like in the 0.25 ML CO coverage case. 

However, although Co concentrations past 0.25 ML have negative segregation energies, the 

values of Δγ reveal that 0.25 ML and 0.50 ML surface Co enrichment is overall more 

thermodynamically favorable than higher surface Co concentrations. Therefore, we conclude that 

once again only low surface Co concentrations are attainable. 

A 0.75 ML CO coverage results in a similar segregation energy behavior as the 0.50 ML 

CO coverage, but the behavior of Δγ is quite different as surface Co enrichment is increased. We 

again have a large decrease (-1.40 eV/Co) in segregation energy at 0.25 ML surface Co 

enrichment, which is followed by much smaller, yet negative, segregation energies. Conversely, 

the plot of Δγ shows a local minimum at 0.25 ML Co enrichment, but an absolute minimum at 

1.00 ML Co enrichment. Thus, the presence of a 0.75 ML CO coverage on Cu/Co(0001) will 

ultimately result in a complete inversion of the CoCu layer sequence; the topmost layer of the 

catalyst can become 1.00 ML enriched with surface Co.  

The largest driving force (-1.82 eV/Co) for 0.25 ML Co enrichment in the surface is 

obtained at 1.00 ML CO coverage. However, by looking at the value of Δγ for this system, we 

can see that this is mostly due to the fact that a monolayer of adsorbed CO on a completely 

segregated Cu/Co(0001) surface is unstable (positive Δγ of +1.16 eV/nm2/CO), and not due to 

any particularly high stability of the resulting Cu0.75Co0.25/Co(0001) system, which actually has a 

positive Δγ value of 0.11 eV/nm2/CO. Even still, this full monolayer of CO does become more 

and more stable as Co is brought to the surface, and this progression results in a minimum energy 

configuration at 1.00 ML Co enrichment. This is something of a moot point, however, since 0.75 
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ML CO coverage is enough to induce the inversion of Cu and Co layers and since the values of 

Δγ at 1.00 ML CO coverage are never lower than the values of Δγ at 0.75 ML CO coverage 

regardless of the surface enrichment of Co, as can be seen by examining Figure 3.8. 

 

Figure 3.8. Summary plots of the energetic effects of each CO coverage on the surface Co enrichment of 
Cu/Co(0001). The data points and lines used are consistent with those presented in Figure 3.2 and Figure 
3.7. It should be noted that for the clean surface, Δγ has units of eV/nm2 and not eV/nm2/CO. 

 

By plotting all the segregation energies and Δγ data presented so far in Figure 3.8, we can 

see that segregation energies are highest for the clean surface and lowest for the 1.00 ML CO 

coverage system with a monotonic change as the CO coverage increases or decreases (movement 

up and down the plot instead of left and right). That is, with increasing CO coverage, the driving 
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force for segregation of Co and Cu is gradually altered from favoring a Cu terminated surface to 

a Co terminated one.  

Conversely, there is no monotonicity in the plot of Δγ as the CO coverage is increased up 

to 1.00 ML. In order to fully understand the implications of this plot, we must break down the 

trends for each CO coverage, and in this vain, we make the following observations:  

• The lowest value of Δγ, and thus the most favorable configuration overall, is achieved 

at a 0.25 ML surface Co enrichment and a CO coverage of 0.25 ML. Thus, at even 

low CO coverages Co enrichment at the surface is thermodynamically favorable. 

• The lowest overall values of Δγ at the remaining degrees of Co enrichment (0.50 ML 

-1.00 ML) are all achieved at a CO coverage of 0.50 ML. However, the highest 

concentrations of surface Co do not correspond to the absolute minimum energy 

configuration of 0.50 ML CO, which is achieved at 0.50 ML Co enrichment, and 

which is very closely followed in favorability by a 0.25 ML Co enrichment – a mere 

0.02 eV/nm2/CO higher than the value of Δγ at 0.50 ML enrichment, which is well 

within the error of DFT. The 0.50 ML CO coverage results in a slight increase in 

likelihood of pumping Co to 0.50 ML surface enrichment. It is also worth noting that 

the 0.75 ML and 1.00 ML surface Co enriched configurations are a mere 0.18 

eV/nm2/CO and 0.26 eV/nm2/CO higher than the 0.50 ML Co enriched configuration. 

• The next most favorable configuration at the two highest surface cobalt enrichments 

is achieved by 0.75 ML of CO, and for this coverage, complete surface Co 

enrichment is the absolute minimum energy configuration.  

• Figure 3.8 also confirms what was noted previously, that 1.00 ML CO coverage is 

always unfavorable compared to lower coverages no matter what amount of Co is 
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pumped to the surface. This is due in part to the large nearest neighbor lateral 

interaction between the CO molecules, which may play a fundamental role in the 

underlying Fischer-Tropsch reaction mechanism on such catalysts [24].  

 

3.4. Conclusion 

We have shown here that Co and Cu have a very strong tendency to segregate into a Cu 

shell atop a Co core and that CO adsorption on this fully segregated surface is essentially very 

similar to that on pure Cu (provided that no surface rearrangement occurs). On the other hand, 

CO adsorption on Co in Co0.25Cu0.75/Co(0001)is markedly weaker than that on pure Co even 

though Co appears to be electronically unaffected by the presence of Cu according to our density 

of states analysis.   

Whilst CoCu appears to exist as a Co@Cu core-shell structure we show that CO 

adsorption can induce an anti-segregation of Cu and Co in CoCu whereby Co is chemically 

“pumped” to the surface and is effectively exchanged for surface Cu. We illustrate this using an 

experimental XPS analysis, which shows a significant increase in the Co/Cu surface ratio upon 

interaction with CO gas, and using further DFT calculations on the various permutations of the 

Cu/Co(0001) surface. The DFT calculations show that the CO covered anti-segregated surface is 

thermodynamically favored over that of a CO covered fully segregated surface. If CO is present 

at high coverages, the surface can become 1.00 ML enriched in Co; the layer sequence of CoCu 

can become completely inverted.  

To put the results of this paper into a more general context, we retain that our combined 

theoretical-experimental approach clearly demonstrates that major restructuring occurs with 

segregated Co@Cu core-shell catalyst particles as used for the CO hydrogenation to higher 
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terminal alcohols. The next step will be to include CO dissociation because we anticipate that 

surface carbon and oxygen formed during this step are essential in the construction of the 

catalytically active phase [25].  Based on our density of states results on Co and Cu in 

Cu/Co(0001) and on the comparison of CO adsorption on pure Co(0001) and on Cu/Co(0001), 

we suspect CO dissociation to be site selective. With this in mind, Ge and Neurock have 

previously established that the activation energies for CO dissociation on pure Co flat surfaces 

are prohibitively high, and that CO dissociation is only feasible on stepped and kinked Co 

surfaces [26]. We would therefore not expect to see CO dissociation occurring on flat 

Cu/Co(0001), though  facets with this orientation may well play a role in establishing stable 

particle morphologies. With this, we further conclude that future work into CO dissociation on 

CoCu will include stepped and kinked surfaces. 
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Abstract 

 CoCu-based catalysts are promising candidates for the large-scale application of CO 

hydrogenation to higher alcohols with varying hydrocarbon chain length. To mimic the Co@Cu 

core-shell structure of nanosized CoCu particles we choose a Cu/Co(101$2) oriented slab and 

find, in agreement with chemical imaging results, that the slab surface is always Cu-terminated – 

with Co underneath. Using DFT calculations we observe major surface atom exchange in the 

presence of adsorbed CO, with up to 50% of the Cu atoms being replaced by Co in the straight-

chain steps of the slab surface. Co atom exchange beyond 50% is not observed. More 

specifically, this work is accomplished by scanning the configurational space of adsorbed CO, 

surface Co, and surface Cu, then identifying minimum energy surface configurations. Phase 
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diagrams are also constructed to determine the thermodynamic driving force imposed in the 

presence of adsorbed CO. The inclusion of surface phonon modes is shown to ensure the 

correctness of the calculations. Our results reveal that geminal di- and tricarbonyl Co are formed 

in steps at temperatures and CO pressures relevant to catalytic CO hydrogenation. Such 

subcarbonyl surface structures are reminiscent of Co-carbonyl complexes encountered in 

coordination chemistry.  

 

4.1. Introduction 

 Alloying one metal into another usually gives rise to charge redistributions and 

alterations in the chemical reactivity. These electronic effects are thought to be relevant in many 

reactions of heterogeneous catalysis ever since the foundational work of Schwab, Eley and 

Dowden in the early 1950’s[1-3]. One of the most illustrative examples of how alloying 

influences the catalytic reactivity was provided in the classical work of Sinfelt et al.[4]. Using 

Ni-Cu catalysts, the authors compared a structure sensitive with a structure-insensitive reaction 

(ethane hydrogenolysis vs. cyclohexane dehydrogenation) and found that despite Ni being the 

active metal in both reactions, their rates varied in a remarkably distinct manner when increasing 

the relative Cu amounts in the alloy. It soon became clear that geometrical (“ensemble”) and 

surface enrichment effects have to be considered to understand the results[5-7]. From a present-

day point of view it is clear that the surface composition of alloys can deviate substantially from 

the behavior implied by their bulk thermodynamics. Furthermore, not only can the surface 

composition (and configuration) of alloys deviate from that in the bulk, the surface can deviate 

from such behavior even further in the presence of adsorbates.  
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 NiCu alloy catalysts still enjoy interest in the catalysis community and were more 

recently also studied in the CO hydrogenation to methanol[3, 8]. However, this alloy may be 

anticipated to suffer a strong CO-induced Ni enrichment in the surface, with the possibility of 

gaseous Ni(CO)4 formation[9, 10]. Such catalysts are therefore deemed unstable under the 

conditions of high-pressure CO hydrogenation. Quite differently, CoCu bimetallics, despite 

showing rather limited miscibility as compared to NiCu, may be considered highly relevant to 

the Fischer-Tropsch (FT) synthesis, if the goal is oxygen functionalization of hydrocarbons to 

form higher alcohols and other oxygenates. Indeed, way back to the 1970’s and 1980’s[11, 12], 

the Institut Francais du Petrol (IFP) patented such catalysts for this purpose, but up to present 

times it is unclear how exactly CoCu induces hydrocarbon functionalization during CO 

hydrogenation.  

 While CO hydrogenation to alcohols has received fairly recent theoretical attention (e.g. 

the work of Medford et al.[13]) and an excellent review on bimetallic FT catalysts was recently 

published[14], theoretical CO hydrogenation work specific to CoCu appears to be somewhat 

sparse. Early theoretical studies on CoCu bimetallics were largely unrelated to the material’s 

relevance to CO hydrogenation, and were instead focused on the electronic and magnetic 

modification of the two metals[15-21]. Some early work by Pedersen et al.[22] also investigated 

the phenomenon of Co island formation on Cu(111), showing that at very low temperatures and 

away from equilibrium Co trilayer islands can form imbedded within a Cu matrix. Congruent 

with our more recent findings[23], Cu was shown to have a tendency to engulf surface Co, 

though they show this process to be slow – on the order of 1 hr at room temperature[22]. A few 

groups provided theoretically calculated segregation energy databases for metal impurities in 

metal hosts, including Cu in Co (and vise versa)[24-26], but beyond this, full scale treatment of 
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CoCu and it’s properties in the presence of adsorbates is lacking – a notable exception being 

recent theoretical work by Yin and Ge who investigated the role of Cu in CoCu/γ-Al2O3 as it 

relates to CO2 activation and subsequent hydrogenation to alcohols[27]. Recent experimental 

work on CO hydrogenation over CoCu has suggested that Cu affects the selectivity to alcohols 

by controlling the “Co ensemble size,” but relies on the tacit assumption of a carbide mechanism 

to inform this hypothesis[28] (A related DFT study[29] makes similar claims based on the same 

assumption, as well). The group of Spivey has also fairly recently shown in combined 

experimental/DFT studies that higher Cu concentration in CoCu catalysts increase selectivity to 

ethanol[30], but that overall alcohol yields are tied to higher surface Co concentration[31]. 

Furthermore, very recent scanning tunneling microscopy work done in the Sykes group on 

Co/Cu(111) has shown the tendency of adsorbed CO and H to segregate on the Co surface as 

well as the overall preference of CO adsorption over H adsorption − excess CO forces H to 

spillover onto the surrounding Cu[32, 33]. 

 We have reported on CO adsorption onto CoCu previously[23] using Cu/Co(0001) as a 

model CoCu system, which we’ve shown also displays a core@shell structure even in the 

presence of Mn as a third metal[34]. In that work, the presence of CO dramatically changes the 

segregation behavior at the surface. Our low coverage results there echo recent work showing 

CO-induced Cu enrichment in PtCu[35], though the rationale for the enrichment is very 

different. At high enough coverages, our work showed that CO can induce a complete inversion 

of the Co/Cu layer sequence. However, our findings are at odds with the models used by Xu et 

al.[29], which assume Co surface patches exist in the presence of CO. We do not find any 

evidence of Co clustering in the presence of CO in this or our previous study[23]. While Co 

clustering is favorable for a clean surface, which was also shown to be favorable by Pedersen et 
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al.[22], it is considerably more energetically favorable for the Co to remain dispersed in the 

presence of CO (see Figure A1 for our explicit calculation). 

 In order to probe the thermodynamic driving forces of a catalytically relevant system, the 

inclusion of temperature and pressure effects is required. The most thorough and accessible way 

to analyze these effects is through the construction of a phase diagram. As a relevant example of 

this, the group of Saeys has recently constructed theoretically sound arguments for the source of 

observed nano-island formation and CO surface coverage phase transitions by calculating phase 

diagrams[36, 37]. In general, surface phase diagrams are constructed through the calculation of 

the Gibbs free energy, and due to its explicit incorporation of entropy corrections from the 

vibration, translational, and rotational degrees of freedom (where applicable), the Gibbs free 

energy provides insights into the relative stability of ordered structures that would otherwise be 

only partially elucidated by electronic DFT calculations alone. However, the common practice is 

to assume that the surface metal phonon spectra are unchanged during reactions and that 

presumably entropy corrections are dominated only by the loss (or gain) of translational, 

rotational, and vibrational degrees of freedom from the gas phase and/or from the reacting 

adspecies adsorbed on the surface. The work of Scheffler and Schneider provide early examples 

of this assumption[38, 39]. As will be seen, this assumption is not valid for the work done here.  

 This paper concerns itself with Cu/Co(101$2) where a monolayer equivalent of Cu is 

adsorbed onto a Co slab of the same orientation containing single rows of steps along the [1$21$0] 

direction separated by two-atom terraces in square arrangement. This surface was chosen based 

on two considerations: (1) the work of Neurock and Ge[40] showed that, amongst the Co surface 

facets they tested, direct CO dissociation was favorable both kinetically and thermodynamically 

only on Co(101$2), likely making CO adsorption on Cu/Co(101$2) catalytically relevant; and (2) 
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the work of Prior et al.[41] showed that Co(101$2) was stable through the hcp ↔ fcc transition. 

We present changes to segregation and surface/adsorption energy as the surface layer of Cu/Co 

(101$2) is enriched with Co in the presence and absence of variable CO coverages between 0.00 

ML and 1.00 ML. In all instances, configuration space is sampled via the permutation of the 

atoms in the top layers such that permutation is consistent with the concentration of surface Co 

and CO coverage in question. Minimum energy configurations are noted and we discuss their 

coincidence with the formation of multiple bonding of several CO molecules to the same Co 

atom, similar to geminal di- and tricarbonyls observed in Ni and Ru in our previous surface 

science research[10, 42]. We go beyond our previous work in another significant way by, for the 

first time, generating phase diagrams for CO adsorption on a bimetallic surface. We do this for 

both the previously studied basal (0001) – shown in Appendix A – and the stepped (101$2) 

surface taking the minimum DFT energy configurations and calculating the surface free energy 

across a range of pressures and temperatures. 

 

4.2 Methodology  

4.2.1 Computational Details  

The Vienna Ab-initio Simulation Package (VASP)[43] was used to calculate total 

energies of all studied systems using the Perdew-Burke-Enzerhof (PBE) Generalized Gradient 

Approximation (GGA) functional[44]. All of the systems contain Co and are therefore spin 

polarized to account for the presence of a non-zero magnetic moment. Projector Augmented 

Wave (PAW) pseudopotentials[45] are implemented as part of VASP to solve the Kohn-Sham 

Equations[46]. A 4 × 5 × 1 Monkhorst-Pack k-point mesh was used to sample the Brillouin zone 

of the p(1×2) supercell. VASP employs a plane wave basis set, which was expanded to an energy 
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cutoff of 400 eV. Self-consistent field (SCF) and geometric optimization criteria were set at 1.0 

× 10-4 eV and 3.0 × 10-2 eV/Å, respectively, while vibrational calculations were performed using 

SCF optimization criteria of 1.0 ×10-8 eV and a central finite difference with atomic displacement 

of ±0.01 Å. For further details, we direct the reader to the SI.  

 The Cu/Co(101$2) surface was modeled using a p(1×2) supercell cut from a Co hcp 

crystal. The system is modeled as a slab containing 6 layers of atoms, 5 layers of Co and 1 layer 

of Cu. The bottom 4 layers are always Co, the bottom two of which are fixed in their bulk 

positions, and the top two layers are both Co and Cu and are used for permutation of the Co and 

Cu atoms during the study. The Cu atoms are placed in the top layer at positions (prior to 

relaxation) equivalent to the original Co. We utilize notation, as we’ve done previously, in the 

form of Cu1-xCox /Co(101$2) to denote a surface enriched with Co to x ML. Since the total 

concentration of Co and Cu is kept constant in the top two atomic layers, our notation does not 

include the concentration of Co and Cu in the second, or subsurface, layer – for Cu1-xCox in the 

top layer, the second layer will always be CuxCo1-x. To eliminate z-direction interaction between 

slabs, a ~15 Å vacuum layer is imposed. 

 

4.2.2 Adsorption, Segregation, and Surface Energy 

 Adsorption and segregation energies are defined as previously described[23]. The surface 

energy is more rigorously defined as the surface normalized difference in Gibbs free energy: 
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γ(N, T, p) =
Δ𝐺
𝐴

=
1
𝐴
(𝐺(𝑁 = 1	𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙, 𝑇, 𝑝) − 𝑁QR𝜇QR(𝑇, 𝑝) − 𝑁QI𝜇QI(𝑇, 𝑝)

− 𝑁QM𝜇QM(𝑇, 𝑝)) 	

=
1
𝐴 Ê~𝐸HM¹LJOLSS

deÖ + 𝜇HM¹LJOLSS]æ¥ (𝑇)�

− 𝑁QR 4𝐸QRdeÖ + 𝜇QR
]æ¥,JIK,KJ�/H(𝑇, 𝑝 ) + 𝑘g𝑇𝑙𝑛 Ç

𝑝QR
𝑝  ÉD

− 𝑁QI¸𝐸QIdeÖ + 𝜇QI]æ¥(𝑇)À − 𝑁QM¸𝐸QMdeÖ + 𝜇QM]æ¥(𝑇))ÀË 

 

(4.1) 

where A is the surface area of the supercell used; 𝐺(𝑁 = 1	𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙, 𝑇, 𝑝)	is the total Gibbs 

free energy of the supercell at some temperature, T, and pressure, 𝑝; 𝜇QR(𝑇, 𝑝), 𝜇QI(𝑇, 𝑝), and 

𝜇QM(𝑇, 𝑝) represent the total chemical potentials (at the same T and 𝑝) of gas phase CO, the Co, 

and the Cu, respectively; 𝑁QR, 𝑁QI, and 𝑁QM are the total number of molecules/atoms in the 

supercell of gas phase CO, the Co, and the Cu, respectively; 𝐸HM¹LJOLSSdeÖ , 𝐸QRdeÖ, 𝐸QIdeÖ, and 𝐸QMdeÖ 

represent the DFT energies at 0 K of the total supercell, gas phase CO, single atom Co in the 

bulk, and single atom Cu in the bulk, respectively; 𝜇HM¹LJOLSS]æ¥ , 𝜇QR
]æ¥,JIK,KJ�/H(𝑇, 𝑝 ), 𝜇QI]æ¥(𝑇), and 

𝜇QM]æ¥(𝑇) are the vibrational contribution to the chemical potential of the total supercell, the 

vibrational, rotational, and translational contributions to the chemical potential of gas phase CO, 

the vibrational contribution to the chemical potential of the Co, and the vibrational contribution 

to the chemical potential of  the Cu, respectively; and 𝑝  is the standard state pressure of 1 bar. 
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We point out here that the dependences on temperature and/or pressure are assigned where 

appropriate, e.g. 𝜇QI]æ¥(𝑇) depends on temperature alone while 𝜇QR
]æ¥,JIK,KJ�/H(𝑇, 𝑝 ) depends on 

both temperature and the chosen value of 𝑝 . A full derivation of the Δ𝐺’s used here can be 

found in Appendix A along with a detailed breakdown of our calculations. 

 As was illustrated by Getman et al.[39], by simultaneously adding and subtracting energy 

terms for the clean slab (corresponding to the minimum energy surface configuration of the clean 

surface), we can separate (1) into two terms: 𝛾QM/QI(j jh7), corresponding to the formation of the 

Cu/Co(101$2) surface from bulk materials; and Δγijk,ljm, corresponding to the additional change 

associated with adsorption of some configuration, 𝑌QR, of CO and some surface configuration, 

𝑋QI, of Co: 

γijk,ljm(T, 𝑝QR) = 𝛾QM/QI(j jh7)(𝑇) + Δγijk,ljm(𝑇, 𝑝QR) (4.2) 

where  

𝛾QM/QI(j jh7)(𝑇) =
1
𝐴 «~𝐸OSL�/

deÖ + 𝜇OSL�/]æ¥ (𝑇)� − 𝑁QI¸𝐸QIdeÖ + 𝐸QI]æ¥(𝑇)À − 𝑁QM¸𝐸QMdeÖ + 𝜇QM]æ¥(𝑇)À¬ 

and  

Δγijk,ljm(𝑇, 𝑝) 	

=
1
𝐴 Ð~𝐸ijk,ljm

deÖ + 𝜇ijk,ljm
]æ¥ (𝑇)�

− 𝑁QR 4𝐸QRdeÖ + 𝜇QR
]æ¥,JIK,KJ�/H(𝑇, 𝑝 ) + 𝑘𝑇𝑙𝑛 Ç

𝑝QR
𝑝  ÉD − ~𝐸OSL�/

deÖ + 𝜇OSL�/]æ¥ (𝑇)�Ñ 

Since the supercell and composition of the slab are kept constant in this study, 𝛾QM/QI(j jh7) will 

remain constant and will not be evaluated; Δγijk,ljm is the only thermodynamically relevant 
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term here. Δγijk,ljm is further broken down and rearranged into its DFT energy contribution 

(which itself contains the DFT adsorption energy) and it’s thermal and pressure corrections: 

Δ𝛾ijk,ljm(𝑇, 𝑝) = 𝛥𝛾ijk,ljm
deÖ + 𝛥𝛾ijk,ljm

OIJJ (𝑇, 𝑝 ) − 𝑁QR𝑘g𝑇𝑙𝑛 Ç
𝑝QR
𝑝  É (4.3) 

where 

𝛥𝛾ijk,ljm
deÖ =

1
𝐴 ¸𝐸ijk,ljm

deÖ − 𝐸OSL�/deÖ − 𝑁QR𝐸QRdeÖÀ

= Ç
𝑁H
𝐴 É Ç

𝑁QR
𝑁H

É Ð
𝐸ijk,ljm
deÖ − 𝐸OSL�/deÖ − 𝑁QR𝐸QRdeÖ

𝑁QR
Ñ

= 	𝜎HæKLH𝜃QR𝐸�GH,ijk,ljm
deÖ  

(4.4) 

and 

𝛥𝛾ijk,ljm
OIJJ (𝑇, 𝑝 ) =

1
𝐴 «𝜇ijk,ljm

]æ¥ (𝑇) − 𝜇OSL�/]æ¥ (𝑇) − 𝑁QR𝜇QR
]æ¥,JIK,KJ�/H(𝑇, 𝑝 )¬ (4.5) 

 

where 𝑁H is the total number of adsorption sites, 𝜎HæKLH is the surface density of adsorption sites, 

defined by qr
û

, 𝜃QR is the CO surface coverage defined by qjk
qr

, and 𝐸�GH,ijk,ljm
deÖ  is the DFT 

adsorption energy as defined previously [23]. The remaining terms are as defined above.  

Briefly, the CO coverage of stepped surfaces is often split into terrace and step coverages, but we 

refrain from directly doing this here because the terrace size is rather small for the chosen 

(101 ̅2) surface geometry. In fact, due to the small terrace size the work done here is more 

indicative of a generalized step. To allow for the evaluation of a large number of configurations, 

only (4) is initially calculated, but we present 𝐸�GH,ijk,ljm
deÖ  here since this is a more commonly 

reported value as opposed to 𝛥𝛾ijk,ljm
deÖ  when CO is present. However, phase diagrams are 

evaluated fully using (3). Free energy terms are determined from full frequency calculations as 
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implemented in VASP and statistical mechanical techniques. We note here that we evaluate all 

free energy terms in (5) for calculation of (3) by fully calculating the vibrational modes of all 

surface atoms that were allowed to relax during geometric optimization, and that we have 

quadrupled the supercell size in these calculations to ensure that all relevant phonon modes were 

captured. More details can be found in the SI. To aid the reader, we comment that in this paper, 

we call Δ𝛾(𝑇, 𝑝) “surface free energy” and 𝛥𝛾deÖ “DFT surface energy.” 

 

4.2.3 CO Adsorption Sites and Coverage 

 Prior to providing CO adsorption and surface reconfiguration results, we note here that 

the p(1×2) Cu/Co(101$2) supercell surface consists of 6 exposed surface metal atoms with 

variable coordination. In the absence of lateral interactions, this surface will accommodate 6 CO 

per supercell: one CO adsorbed on each exposed surface metal atom as on the (0001) surface. 

However, any attempt to optimize such a structure results in desorption of all but four CO. 

Similar results are obtained if five CO molecules per supercell are adsorbed. As such, the lateral 

interactions between the adspecies limits the number of CO molecules to four CO per supercell, 

which corresponds to a 𝜎HæKLH of ~13.5 adsorption sites per nm2 of stepped (101$2) surface. This 

value is in contrast to the calculated ~18.5 adsorption sites per nm2 for a flat (0001) surface. 

 As a direct result of the above considerations, we have a surface that can be 

antisegregated one of six surface metal atoms at a time (increments of 1/6 ML), but which can 

only accommodate CO adsorption on one of four possible sites at a time (increments of 1/4 ML 

if we define the saturation coverage to be 1 ML). 
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4.3. Results 

4.3.1 Segregation of clean Cu/Co(101$2)  

 Similar to our previous finding for flat Cu/Co(0001)[24, 25], the stepped Cu/Co(101$2) 

surface is energetically most stable when the surface layer only contains Cu atoms. This is in 

agreement with experimental reports according to which Cu atoms dominate the surface region 

of Co@Cu core-shell structured CoCu-based catalysts[34]. The precise relationship between 

surface enrichment of Co and the surface’s segregation energy as well as its change of surface 

energy relative to the fully Cu segregated surface can be seen in Figure 4.1. The segregation 

energy is always positive. In addition, the change of the surface energy is always positive and 

monotonically increasing as the surface is enriched in Co. Similarly to the flat surface, 

Cu/Co(101$2) reaches its maximum segregation energy (0.43 eV/Co) at 0.50 ML surface 

enrichment of Co – indicating that mixing Co and Cu at the surface in equal concentration is 

energetically most expensive per Co exchange – although it does not decrease substantially from 

there. We note here that as the surface is enriched with Co, the surface step sites only swap Cu 

with Co at 0.84 ML and 1.00 ML Co enrichment. Thus the low coordination Cu step sites are 

energetically the most reluctant to exchange for Co.  
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Figure 4.1. Segregation energy (top graph) and DFT surface energy (bottom graph) as a function of surface 
enrichment of Co in Cu/Co(𝟏𝟎𝟏h𝟐). The data points correspond to energies associated with different 
configurations of Co and Cu. The line in each graph connects the minimum energy configurations, which 
are themselves indicated as (a)-(g) in the panels in the bottom of Figure 4.1. A top view of each minimum 
energy configuration is shown below the graphs. Orange spheres are Cu at terrace sites, dark orange spheres 
are Cu at step sites, dark-blue spheres are Co at terrace sites and light-blue spheres are Co at step sites. The 
perpendicular direction along which the steps run is shown inset (a). 
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4.3.3 CO-Induced Co surface enrichment of Cu/Co(101$2) 

 Various coverages of CO were examined in 0.25 ML increments to the stepped 

Cu/Co(101$2) surface prior to surface enrichment in Co and permutation of the top two layers, 

and here, segregation energies and CO adsorption energies were calculated.  

At a CO coverage of 0.25 ML, as the surface is initially enriched in Co (to 0.16 ML, i.e. 1 

Co-Cu swap out of 6 total swaps possible), the Cu/Co(101$2) surface becomes more stable. 

Specifically, the adsorption energy changes from -1.14 eV/CO for the perfectly segregated 

Cu/Co(101$2) to -1.35 eV/CO for the slightly enriched Cu0.84Co0.16/Co(101$2) surface, and the 

segregation energy becomes negative (-0.21 eV/Co). The driving force for antisegregation, i.e. 

Co surface enrichment, can be seen in Figure 4.2. However, any further Co enrichment results in 

positive segregation energies and increasing adsorption energy. Thus, with 0.25 ML CO, the 

stepped Cu/Co(101$2) surface can become only slightly Co-enriched, which is similar to what 

was seen for flat Cu/Co(0001) in our previous work [23]. As in that work, CO preferentially 

binds to the top of the newly exposed Co. Since the surface atoms of Cu/Co(101$2) are non-

equivalent, it is also important to note that the newly exposed Co atoms actually prefer the upper 

terrace sites of the facet rather than the step. We will return to this point later on. 
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Figure 4.2. Segregation energy (top graph) and CO adsorption energy (bottom graph) as a function of 
surface enrichment of Co for the Cu/Co(𝟏𝟎𝟏h𝟐) surface in the presence of 0.25 ML CO coverage. Data 
points and lines have the same meaning as in Figure 4.1. Sphere color scheme is identical to that used in 
Figure 4.1, as well. Additionally, black spheres are C and red spheres are O atoms in adsorbed CO. 
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Figure 4.3. Segregation energy (top graph) and CO adsorption energy (bottom graph) as a function of 
surface enrichment of Co in the presence of 0.50 ML of CO. Data points and lines have the same meaning 
as in Figure 4.1. The sphere color scheme is identical to that used in Figure 4.1 and Figure 4.2, as well. 
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At 0.50 ML CO coverage, similar to that at 0.25 ML CO coverage, the surface 

enrichment in Co from Cu/Co(101$2) to Cu0.84Co0.16/Co(101$2) initially results in surface 

stabilization (adsorption energy changes from -0.97 eV/CO to -1.51 eV/CO), and segregation 

energies are correspondingly negative (-1.07 eV/Co). While segregation energies remain 

negative until the surface is enriched to Cu0.33Co0.67/Co(101$2), the CO adsorption energy 

decreases in magnitude as the surface is further enriched in Co. Thus, the surface enrichment in 

Co to 0.67 ML is accompanied by a lowering of the total energy when compared strictly to the 

fully segregated Cu/Co(101$2) surface, but the overall minimum energy configuration 

corresponds to a 0.16 ML surface enrichment in Co. It is interesting to note that the dramatic 

increase in the magnitude of the CO adsorption energy from 0.0 ML to 0.16 ML of Co 

enrichment is associated with binding modes in which two CO molecules share the newly 

exposed Co atom at the step site. This can be seen in Figure 4.3(b), and we will return to this 

point shortly, as well. 
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Figure 4.4. Segregation energy (top graph) and CO adsorption energy (bottom graph) as a function of 
surface enrichment of Co in the presence of 0.75 ML of CO. Data points and lines have the same meaning 
as in Figure 4.1. Sphere color scheme is identical to those used in Figure 4.1 and Figure 4.2, as well. 
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The 0.75 ML CO coverage scenario does little to change the antisegregation tendencies 

already seen for lower CO coverages. Again, as the surface is enriched in Co to 

Cu0.84Co0.16/Co(101$2), the magnitude of the CO adsorption energy increases (-0.69 eV/CO to -

1.28 eV/CO). This is similar to the lower coverage case. However, it is practically thermo-

neutral (-1.28 eV/CO to -1.30 eV/CO) to further enrich the surface in Co to 

Cu0.67Co0.33/Co(101$2). All segregation energies are negative as Co is enriched, indicating that all 

levels of Co enrichment are energy lowering compared to the perfectly segregated Cu/Co(101$2). 

However, any further enrichment in Co past 0.33 ML decreases the magnitude of the CO 

adsorption energy, and so leaves higher levels of enrichment energetically unlikely. The two 

minima in the adsorption energy are not reflected in the segregation energy because the 

segregation energy is expressed as energy change per surface Co, which increases as the surface 

is enriched with Co, lowering the value correspondingly. The two minimum energy 

configurations are associated with the formation of a surface layer with either three CO 

molecules sharing single Co step atoms as seen in Figure 4.4(b) or two CO molecules sharing 

such Co step atoms along with a third CO bridging two adjacent Co at the lower terrace site as 

seen in Figure 4.4(c).  
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Figure 4.5. Segregation energy (top graph) and CO adsorption energy (bottom graph) as a function of 
surface enrichment of Co in the presence of 1.00 ML of CO. Data points and lines have the same meaning 
as in Figure 4.1. Sphere color scheme is identical to that used in Figure 4.1 and Figure 4.2, as well. 
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Finally, when proceeding to saturated surface layers with 1.00 ML of CO, see Figure 4.5, 

we find, much like for the 0.75 ML case, that the segregation energies are all negative showing 

that any amount of Co in the surface layer is energy lowering compared to no Co in the surface 

layer. The overall largest magnitude segregation energy (-2.30 eV/Co) amongst all CO coverages 

is achieved at 1.00 ML CO coverage for a surface 0.16 ML enriched with Co. However, the 

overall minimum energy configuration is reached on the Cu0.67Co0.33/Co(101$2) surface, 

corresponding to an adsorption energy increase (in magnitude) from -0.37 eV/CO on 

Cu/Co(101$2) to -0.94 eV/CO on Cu0.84Co0.16/Co(101$2) and then to -1.09 eV/CO on 

Cu0.67Co0.33/Co(101$2). This means that only 0.33 ML of the surface layer is favorably enriched 

with Co; a complete inversion of the layer sequence from Cu-only, as originally present in 

CuCo(101$2), to Co-only does not occur for whatever CO coverage is chosen. As for lower CO 

coverages, the minimum energy configuration for the 1 ML case, which can be seen in Figure 

4.5(c), is associated with multiple CO sharing single Co atoms along the step ridge. In particular, 

three CO molecules per Co step atom are observed along with single CO on top of Co at the 

lower terrace site.  
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Figure 4.6. Summary of DFT surface energies as a function of Co surface enrichment for all four CO 
coverages investigated in this study. Dot-dash scheme is as indicated in the inset legend. Minimum energy 
configurations for each CO coverage are shown underneath the graph, and the global minimum energy 
configuration is indicated with a red border. Color scheme for the spheres is identical to that used in Figures 
4.1-4.5. 

  

In order to compare the (zero Kelvin) thermodynamic stability of the various CO 

coverages and surface configurations, the DFT surface energies of the minimum energy surface 

configurations are presented in Figure 4.6. The minimum energy configuration for each CO 
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coverage is shown below the graph. The overall minimum surface energy is achieved with a full 

monolayer of CO adsorbed on Cu0.67Co0.33/Co(101$2), as shown in Figure 4.5(c) and described 

above. Different from the behavior of flat Cu/Co(0001), high coverages of CO do not result in 

the complete enrichment with Co on the stepped Cu/Co(101$2) surface. Instead, most of the 

surface Cu atoms resist an exchange despite the high concentration of CO adsorbates. Even half 

of the step sites remain Cu, which appears to be critical to the formation of multiple bonded CO 

configurations in which two or even three CO molecules bind to a single Co step atom. Fully 

swapping the Cu at step sites with Co results in zigzag-type adsorption of CO at the steps and a 

corresponding weakening of adsorption. This can be seen in Figure 4.3(e)-(g), Figure 4.4(d)-(g), 

and Figure 4.5(d)-(g). It should be noted that multiple bonded CO is reminiscent of Co-carbonyls 

as encountered in coordination chemistry and, more specifically, of the observation of geminal 

di- and tri- Co-carbonyls in atom-probe studies with pure Co nanosized particles conditioned as 

tips[47]. In these studies, field pulse desorption along with time-of-flight mass spectrometry 

were applied to rupture such subcarbonyl species as ions from the stepped surface of a Co tip 

during its interaction with CO or mixtures of CO and H2. Since the ionic desorption of 

subcarbonyls involves Co step sites, a mechanism for the surface restructuring of the overall 

particle surface could be suggested in this work.  

 

4.3.3.1 Surface Sites and Configurations of Cu/Co(101$2) 

 As the forgoing section indicated, the step sites of the clean Cu/Co(101$2) surface have a 

large preference to remain Cu. The addition of a small coverage of CO does not seem to change 

this finding. A single CO molecule coordinated to a Co at the step site is insufficient to stabilize 

it. A larger amount of electron density is needed to offset the loss Co experiences when placed at 
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the lower coordinated step sites. However, once enough CO is available to form geminal 

carbonyls (0.50 ML CO coverage here), the Co is stabilized at the step site, and in fact 

corresponds to the strongest adsorption energy found here (-1.51 eV/CO). To confirm that 

geminal dicarbonyl formation is not favorably influenced by the choice of GGA functional, we 

have recalculated the adsorption energy of CO along with coverage-equivalent structures that are 

energetically competitive using revPBE with and without vdW-DF (inclusion of which was 

recently shown to give CO adsorption energies closer in agreement to experiment by the Saeys 

group[36, 37]), see Figure A2 in Appendix A.  For all functionals, the geminal dicarbonyl is still 

predicted to be favored over these other configurations.  

 

4.3.4 Phase Diagrams of Cu/Co(101$2) and Cu/Co(0001)  

 To provide an explicit connection to experiment, we now construct phase diagrams for 

the minimum DFT surface energy configuration of each coverage as well as those configurations 

that are only marginally less favorable (at zero Kelvin). This is done by full utilization of 

Equation 4.3, and the results can be seen in Figure 4.7. We have chosen to show the phase 

diagrams as a function of pressure and at two selected temperatures: 513 K, corresponding to a 

typical reaction temperature for CO hydrogenation studies; and 653 K, corresponding to the 

temperature when transforming suitable catalyst precursors – in our previous studies mixed 

CoCu-oxalates[34, 48, 49] - into Co@Cu core-shell structures.  
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Figure 4.7. CO/Cu/Co (101$2) phase diagram of minimal DFT energy configurations for each CO 
coverage tested here at 513 K and 653 K. The vertical dotted line is placed at its marked pressure to 
delineate a phase transition. It should be noted that the green line corresponding to (c) is hidden behind 
the purple line corresponding to (d) in the bottommost graph.  
 
 As can be seen in Figure 4.7, at 513 K, the clean Cu-terminated surface represents the 

least favorable thermodynamic situation under all pressure conditions (except of course for very 

low pressures where the case of a surface fully covered with CO is the least stable). On the other 

hand, the geminal dicarbonyl configuration on the reconstructed surface for which every other 
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Cu atom along the step ridge is replaced by Co (Fig. 4.7(b)) is thermodynamically most 

favorable well beyond pressures where our assumption of ideal gas behavior breaks down (this 

occurs for these temperatures around CO’s critical pressure of 35 bar). Therefore, no phase 

transformation is expected at 513 K – the geminal dicarbonyl Co at steps will persist. At 653 K, 

the clean surface is again not stable at pressures above 1 mbar. At all pressures examined at this 

temperature, the geminal dicarbonyl (7(b)) covered surface with 0.16 ML Co is the most stable 

up to 10 bar. At this pressure, a surface phase transition to the trigeminal carbonyl structure with 

a favorable surface enrichment of Co up to both 0.16 (7(c)) and 0.33 ML (7(d)) is observed – 

with the 0.16 ML Co surface being slightly more favorable than the 0.33 ML Co surface. These 

results imply that even in the presence of a small partial pressure of CO, the Cu-terminated 

surface will reconstruct and replace Cu for Co mainly along the step edges. The formation of 

geminal di-and tricarbonyls with a step coverage of 50% is the most characteristic structural 

feature, and the lower 0.25 ML monocarbonyl coordinated Co surface is never favorable, 

regardless of pressure.   
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4.3.5 The Importance of Surface Phonon Modes 

  

Figure. 4.8. The Cu/Co(101$2) surface chemical potential change (given in eV per p(1×2) supercell) for 
the minimum DFT energy Co/CO configurations studied here as a function of temperature. A common 
practice is to assume this value is zero or at least negligibly close to zero. The black dashed line shows the 
root mean error (RME), or root mean deviation from a value of zero, for all configurations. This error is 
as great as ~0.6 eV/p(1×2) supercell and as low as ~0.03 eV/p(1×2) supercell depending on the 
temperature and does not appear to be bounded.  
 
 We now justify our decision to include the surface phonon modes in our free energy 

calculations. It is common practice to assume that the surface phonon modes are unperturbed by 

adsorbates, which for our system would be essentially assuming that 𝜇ijk,ljm
]æ¥ (𝑇) − 𝜇OSL�/]æ¥ (𝑇) =

𝛥𝜇HMJN�OL in eq. (5) is zero, and thus all entropy change is due to the loss of gas phase CO 

degrees of freedom. We have therefore calculated this difference explicitly for the minimum 

DFT energy Cu/Co(101$2) surface configurations across a wide range of temperatures and 

plotted these values in Figure 4.8. As can be seen, there are some very significant deviations 

from zero, especially at higher CO coverages and low temperatures. By calculating a root mean 
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difference (or root mean error, RME) for all the configurations, we also find that the mean 

deviation from zero is considerable across all temperatures, with a minimum of ~0.03 eV/p(1x2) 

supercell around 550 K. We report this value on a “per p(1x2) supercell” basis (~0.30 nm2) 

because computational work often uses cells of this size (a Cu/Co(0001) p(2x2) supercell is 

~0.22 nm2) and is thus intended to be more intuitively understood than normalization on a per 

unit area basis would be. Disconcerting as well, the RME does not appear to be bounded, 

monotonically increasing as the temperature increases. We have plotted this same value for the 

flat CO/Cu/Co(0001) system as well and the deviation from zero is even more marked (see 

Figure A4). These deviations thus lead to considerable error in the assumption that the surface 

phonon modes are negligible, and further, could possibly call into question their summary 

neglect in other systems as well. For now, we can only speculate that these profound deviations 

in 𝛥𝜇HMJN�OL from zero are due to the complexity of our CO adsorbed systems (e.g. geminal di- 

and tri- carbonyl Co formation) and/or the CO-induced reconfiguration of the surface (i.e. Co 

chemical “pumping”).  

 We direct the reader to section X of Appendix A for discussion concerning DFT error in 

these vibrational mode calculations, which has preliminarily been shown to result in Gibbs free 

energy errors that are within normal DFT error. Also, for reference, we provide our VASP-

calculated vibrational modes in the form of a vibrational density of states (aka “spectral density 

function”) in Appendix A (Figures A6 and A7) where the aforementioned deviations in the 

modes themselves can be clearly seen. Determining the source of these deviations is a point we 

will explicitly investigate in future work. 
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Figure 4.9. Comparison of phase diagrams constructed for the Cu/Co(101$2) surface that have had 
surface phonon modes accounted for vs. unaccounted for. To highlight the largest differences, the low 
energy surface phase (bold lettering in parenthesis) is shown in each region delineated by the vertical 
dashed lines. The legend corresponds to the configurations shown in Figure 4.7.  
  

We illustrate the propagation of the aforementioned errors by constructing a phase 

diagram of the Cu/Co(101$2) surface wherein surface phonons have been neglected, and show 

this side-by-side with the phase diagram from Figure 4.7, which was constructed with their 

inclusion. This is presented in Figure 4.9. At 653 K, the relevant parts of the phase diagrams are 

by coincidence very similar and are not included here. However, comparing the phase diagrams 

at 513 K illustrates the potential risks in neglecting surface phonon modes rather well. We have 

placed within the phase regions, delineated by the vertical dashed lines, the minimum energy 

surface phase. At low pressure, both methods predict that configuration (b), the geminal 

dicarbonyl at the step site is the most favorable. However, the pressures at which the phase 

transitions occur are remarkably different (0.5 bar vs. 10 bar). Not only this, but different 

configurations are predicted after this transition: with phonon modes accounted for, the geminal 

tricarbonyl is more stable than the CO coverage equivalent with 0.50 ML surface Co, but if these 

modes are not included, the opposite is predicted, albeit within a fairly small margin (< 0.3 eV). 
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Further, the surface free energy values themselves are also impacted, reflecting the neglect of 

Δμsurface in the calculation of the phase diagram. A similar comparison for the CO/Cu/Co(0001) 

surface can be found in Figure A5, where the juxtaposition is even more stark. As a result, 

neglecting the surface phonon modes in our free energy calculations would result in 

unacceptable errors. 

 

4.4. Perspectives  

 Our theoretical calculations of the CO adsorption on the stepped Cu/Co(101$2) have 

brought forth conclusive results in line with experimental data for CoCu mixed metal catalysts as 

used in the CO hydrogenation to higher alcohols[30, 31, 34, 48, 49]. The (101$2) crystallography 

of our slab model was chosen since early studies showed that pure Co(101$2) is a stable surface 

when repeatedly cycled through the hcp ↔ fcc phase transition[41] – it may therefore be 

regarded as an excellent model for a stepped plane at the surface of Co nanoparticles 

encountered in real Co-based catalysts. It is very interesting that the stepped slab Cu/Co model 

used in our study clearly favors a Cu terminated surface with the Co underneath just as our 

previously studied flat slab model did[23]. This is in agreement with the experimental finding 

that Co-Cu mixed metal oxalates – the preferred catalyst precursor in our laboratory - decompose 

thermally by self-assembling into active Co@Cu core-shell catalysts. The present theoretical 

study also shows that the Cu-terminated surface is not stable when CO gas adsorption occurs. 

Instead, Co atoms are swapped with Cu until one out of two step atoms are replaced by Co. CO 

molecules are adsorbed up to 0.50 ML at these Co atoms. Cu, on the other hand, acts as a non-

adsorbing metal spacer enabling the formation of geminal Co carbonyls. It might be suspected 

that such geminal carbonyls lead to Co atom disruption similar to what time-dependent atom-



 

 113 

probe studies with a pure Co nanoparticle surface suggested[47]. Our theoretical calculations for 

the stepped Cu/Co(101$2) surface with straight-chain step atoms indicate that such disruption is 

non-facile. This is not too surprising since step atoms along [1$21$0] are sevenfold coordinated. It 

would be most interesting to check the thermodynamic feasibility of this process for a stepped 

surface with kink-step arrangements (coordination number of six) since the disruption is 

anticipated to be favored by decreasing both the steric constraints and the number of next-nearest 

Me-Me bonds to be broken. Clearly, Me-Me disruption with kink site liberation and diffusion of 

adsorbed Co(CO)2,3 moieties would be a key step of a reconstruction process towards signature 

structures capable of dissociating the CO molecule as observed experimentally[48]. In this 

context, we should note that we have not been able to identify any direct CO dissociation on 

Cu/Co(101$2) so far. While CO dissociation must not necessarily lead to Fischer-Tropsch active 

surface carbon, it is believed that its occurrence helps form and stabilize the catalytically active 

surface phase enabling CO hydrogenation to hydrocarbons and oxygenates. Our future research 

efforts will focus on model studies with surface structures capable of breaking the C-O bond and 

providing energetically favorable pathways for the CO hydrogenation.  

 

4.5. Summary 

 We have presented in this paper the effect that CO has on a stepped Cu/Co(101$2) surface 

configuration. We also present a case for the inclusion of surface phonon modes in free energy 

calculations. The major findings can be delineated as follows: 

• Clean Cu/Co(101$2), much like the clean Cu/Co(0001) surface, is energetically driven to 

segregate completely into a Cu shell atop a Co slab (mimicking the observed Co@Cu 

core-shell structure in experiment, and congruent with the known thermodynamic 
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miscibility of Cu in Co). Also, leaving Cu in the lower coordinated step sites is more 

energy conservative than placing Co in those same step sites.  

• The Cu/Co(101$2) surface is enriched with Co to at most 0.33 ML as a result of CO 

adsorption. CO-induced chemical “pumping” preferentially places Co at the step sites 

with up to 50% of the straight-chain step Cu atoms replaced by Co atoms. In the most 

favorable configurations, the Cu persists at the terrace sites adjacent to the step sites of 

the Cu/Co(101$2) surface.  

• Analysis of phase diagrams at 513 K and 653 K shows that the Cu/Co(101$2) surface will 

at most temperatures be dominated by geminal carbonyl Co at the steps, coincident with a 

Co surface concentration of 0.16 ML and 50% of the available steps sites, specifically. At 

higher pressures, we see the formation of a trigeminal carbonyl Co at the steps but Co 

enrichment is by and large stalled at 0.16 ML – with the available steps still enriched to 

only 50%. Enrichment of the step sites past 50% appears to be highly unfavorable.  

• Surface phonon modes after adsorption are shown to be greatly perturbed in our system, 

and have thus been included in our free energy calculations. We show the range of the 

error in assuming these modes are negligible and also find that this error is unbounded. 

We further show how such errors impact our calculated phase diagrams.  
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Abstract 

In CoCu-based Fischer-Tropsch catalysis, the as-prepared nanoparticles, if allowed to 

self-assemble, exhibit a Co@Cu core-shell morphology that would render the catalyst inactive 

for CO hydrogenation. Therefore, a chemical reconstruction has to occur to create the 

catalytically active phase. While some of the thermodynamically-imposed driving forces for 

reconstruction have been identified and kinetic mechanisms experimentally probed, a thorough 

theoretical understanding on the molecular events has yet to be developed. Here, we employ a 

first-principles statistical mechanics approach to show that the reconstruction of CoCu in CO 

atmospheres is likely accomplished via subcarbonyl (multiple bonded CO) formation at the step 

and kink sites of CoCu catalysts. We find that the CO-induced antisegregation of subsurface Co 
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atoms to step sites and the subsequent rupturing of Co subcarbonyls from these sites is 

thermodynamically feasible under experimentally-relevant CO pressures and temperatures. The 

results suggest that Co tricarbonyl formation along with its rupturing and diffusion onto the 

terraces is responsible for reconstruction. These Co tricarbonyls are shown to favorably dimerize, 

suggesting a potential route for nanoisland formation and morphological changes. Our results 

illustrate a strong correlation to surface carbonyl and inorganic complex chemistry of Co metal. 

 

5.1. Introduction 

Surface reconstruction is a reaction phenomenon known to alter the activity and 

selectivity of catalyst particles. Seminally, Leidheiser and Gwathmey[1] and later L. D. Schmidt 

and coworkers[2-4] were among the first authors showing that metal surfaces may either suffer 

chemically-induced (chemical) or thermally-induced (mechanical) reconstruction. A heavily 

studied example that demonstrates the differences between the two cases is the "(1×2) missing 

row reconstruction" of a clean Pt(110) single-crystal surface[5, 6] in which every second row of 

atoms along the [11$0] direction is missing. Exposing a (1x2) Pt(110) crystal surface to CO 

inverts the reconstruction process and reestablishes the bulk-truncated (1x1) form through a 

homogeneous nucleation process in which atoms move over a few lattice sites[7-9]. Chemical 

processes were thereafter shown to play a large role in the reconstruction of many single-crystal 

systems and typically employed STM (Scanning Tunneling Microscopy) and LEED (Low 

Energy Electron Diffraction) methods to observe these phenomena[10-18]. In terms of 

nanoparticles, FIM (Field Ion Microscopy) was shown to be a viable methodological approach 

since the field emitter samples used in FIM largely resemble a single, hemispherically-shaped, 

nano-sized catalyst particle. Local reconstructions of small-size facets were observed using FIM 
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and proved the validity of the approach[19, 20]. Importantly, a CO-induced morphological 

reconstruction of transition metal particles toward a cubo-octahedral shape was imaged with 

atomic resolution[21-23]. In the case of Ni and Rh field emitters, the morphological reshaping 

was correlated with the formation of Ni(CO)x[24] and Rh(CO)x (x=1-3)[23, 25], respectively, 

using atom-probe mass spectroscopy. IR (Infrared) and/or Extended X-ray Absorption Fine 

Structure (EXAFS) measurements with supported Ni[26] and Rh[27-30] nano-sized particles 

provided additional information on the mobility of high-index subcarbonyl species. Due to their 

mobility, they may ultimately cause the dissolution of the nanoparticles. In other cases, including 

Fischer-Tropsch active Ru and Co metals, no such dissolution occurred despite subcarbonyls 

being detectable in considerable amounts[31, 32]. STM and atom probe mass spectrometry with 

either low-index Co single crystal surfaces[33] or Co field emitters[32], respectively, posited 

subcarbonyl species to be the source of surface reconstruction. Theoretically, however, these 

mechanistic propositions have yet to be directly supported and detailed to provide a sound 

picture of the reconstruction processes. 

CO-induced nanoparticle reconstruction is a well-studied phenomenon in other metal systems 

with some notable recent reports on nanoparticle formation on Cu(111)[34] and Pt dimer 

stabilization on Pt/Fe3O4(001)[35] upon exposure to CO. We also note that the relevance of such 

reconstructions on bimetallic systems has been demonstrated both experimentally[36] and 

computationally[37]. 

We have been interested in Co and CoCu-based Fischer-Tropsch (FT) catalysts for some 

time. These metals have been experimentally shown to result in reconstruction and/or 

reconfiguration upon exposure to CO and H2 under CO hydrogenation conditions[33, 38-42]. 

While some of the thermodynamic driving forces for these phenomena have been explored for 
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both Co[43] and CoCu[39, 44], the processes responsible for reconstruction have yet to be 

theoretically elucidated. Based on the wealth of evidence presented in the aforementioned studies 

and the prediction of geminal di- and tri-carbonyls on CoCu surfaces[39, 44], we hypothesize 

that the formation of diffusive (or "mobile") Co subcarbonyls is the means by which 

reconstruction occurs on CoCu nanoparticles. The formation of subcarbonyls has been 

demonstrated, but the experimental evidence cannot always distinguish between immobile 

(highly metal-bound) and mobile (minimally metal-bound) metal subcarbonyls. This study aims 

at identifying, using density functional theory (DFT) calculations and statistical mechanical 

methods, the parameter space under which carbonyl formation and therefore reconstruction is 

possible on CoCu catalysts. Carbonyl formation has long been assumed to involve kink sites 

under high coverages of CO since metal-metal bonds can be repetitively ruptured in such sites 

and therefore lead to a reconstruction of the surface. However, this does not exclude step sites 

(layer edges), which can also bind multiple CO molecules. We therefore begin our study with a 

stepped CoCu surface: Cu/Co(755). This surface has a long 6-atom (111) terrace and a 1 atom 

high (100) step and is ideal for testing the feasibility of geminal Co di-, tri-, and tetracarbonyl 

rupturing from CoCu step sites. We provide our DFT parameters and methods in the 

Supplemental Information (SI) along with model justification. 
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5.2. Results 

5.2.1 Adsorption Trends with CO Coverage 

 

Figure 5.1. CO adsorption energy of the three highest coverage systems tested:  A, 0.25 ML, B, 0.67 ML, 
and C, 1.00 ML. The associated terrace and step coverages are shown below each structure. Panel D 
provides the calculated CO adsorption energy (in eV/CO) for each system, with bar graph colors 
corresponding to the color of each structure's border. In the associated top-down structures, the blue 
spheres are Co, the orange sphere are terrace Cu, the brown/olive colored spheres are step Cu, the black 
spheres are C, and the red spheres are O. See Figure B2 and B3 for all systems tested. 
 

The maximum stoichiometry of CO adsorption on terrace sites is presumed to be one CO 

per site while the maximum stoichiometry on step sites is four CO per site. Here, we separate 

step coverage (θ]F) from terrace coverage (θF) and relate these to the total coverage (θ) through 
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their (nominal) relative proportions (j
6
θ]F +

7
6
θF = 	θ). With this in mind, we compute CO 

adsorption energies on Cu/Co(755) at various coverages and configurations wherein we keep 

total coverage constant and vary the step coverage from 0.00 ML to its associated maximum step 

coverage. We also consider converting a step Co monocarbonyl to step Co dicarbonyl where 

possible. Figure B2 and B3 show all six total coverages tested, which range from 0.050 ML to 

0.400 ML (the maximum allowable for a final 2.00 ML step coverage with 0.00 ML terrace 

coverage). In all cases, we calculate the CO adsorption energy with CO in the gas phase and the 

clean, Cu-terminated Cu/Co(755) surface as reference. We note also that we treat the presence of 

CO at step sites as inducing Co/Cu antisegregation: nearby subsurface Co is swapped with the 

step site Cu of interest. No additional Co or Cu are added or removed in these systems, 

eliminating the need for a Co or Cu atom reference. This mimics experimental conditions where 

the Co and Cu nanoparticle concentrations are fixed after synthesis.  

Remarkably, the energetic trends at each coverage are shown to be identical over all total 

coverages up to and including 0.200 ML (Figures B4, 5.1A, and 5.1B): as CO molecules are 

moved from the terrace to the step and then converted to dicarbonyls, the adsorption energy is 

steadily increased. In fact, Co dicarbonyl formation is shown to be significantly more favorable 

than dispersing an equivalent amount of CO over the steps as Co monocarbonyls, which can be 

seen in Figures 5.1A and 5.1B. At a step coverage of 2.00 ML (Figure 5.1C), forming a higher 

concentration of dicarbonyls (one dicarbonyl on each step site) is no longer most favorable. 

Instead, a configuration wherein a dicarbonyl forms at every other step site with excess CO 

spilling over to the terrace sites is calculated to be the most favorable (Figure 5.1-C(ii)). The CO 

adsorption energy for each dicarbonyl is also shown to be identical (-1.43 ± 0.02 eV) up to 0.200 

ML (Figures B4, 5.1A, and 5.1B) indicating that lateral interactions between dicarbonyls are 
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negligible up to this point. As such, if one assumes entropy contributions from the adsorbed CO 

are roughly equivalent, this result implies that a CO step coverage of at least 1.00 ML will be 

thermodynamically most favorable with a dicarbonyl configuration as shown in Figure 5.1B(iv). 

All results considered, this also shows that dicarbonyl formation saturates at a step coverage of 

1.00 ML. However, because we wish to investigate the possibility of rupturing higher index 

subcarbonyls, which are predicted to exist at high CO partial pressures[44], we move forward 

with a system that nominally represents a 0.67 ML step coverage of CO (see Figure 5.1A(iv) as 

reference). This is an ideal model because the associated p(1×3) supercell is relatively small 

(computationally less burdensome) but still large enough to provide enough terrace space to 

more thoroughly test subcarbonyl formation at the step sites. We further note that because the 

energetics don’t change as the supercell is deceased in its size along the direction parallel to the 

step edge until the supercell is only 2 atoms long in that direction (Figure 5.1C), we do not 

expect that increasing the supercell size in this direction will change the results of this study. 

 

5.2.2 Direct Rupturing Processes 

Direct rupturing processes can be seen in Figure 5.2A-5.2C. The left structures depict the 

optimized initial states (IS) and the right structures the optimized final states (FS). Their DFT-

based energy differences (ΔE) are summarized as the green solid line in Figure 5.2G. As can be 

seen in Figure 5.2G, direct metal-metal bond rupturing due to di- and tricarbonyl formation is 

very unfavorable (+1.72 eV and +1.34 eV for the processes considered in Figure 5.2A and 5.2B, 

respectively). Direct rupturing of the tetracarbonyl (Figure 5.2C) is still found to be unfavorable 

(+0.47 eV) but is remarkably more favorable than the tricarbonyl rupturing process. This 

unfavorability, across all direct rupturing processes, is explained by further inspection of the FS 



 

 127 

of the direct rupturing processes (Figures 5.2A-5.2C): the process of rupturing creates an 

exposed Co atom, which we know is very unfavorable[39]. It is reasonable to assume this atom 

must be stabilized once exposed and this can be accomplished by re-formation of another 

geminal Co carbonyl which we will denote as the "kink-IS" (see the structures at the step edge of 

Figures 5.2D-5.2F). At this point, the kink-IS would be primed for another rupturing event. It is 

envisioned that kink site rupturing would be much more facile than the initial step site rupturing 

due to the lower number of metal bonds that must be broken to do so. Thus, step site geminal Co 

carbonyl rupturing would trigger a chain reaction of fast kink site rupturing events. This chain 

reaction of kink site rupturing events would continue until either the chemical potential of the 

subcarbonyls' ultimate FS reached that of the kink-IS, until another process like CO dissociate 

halted the process, or until newly-formed kink sites were exhausted. This latter possibility 

describes the effective dissolution of an entire step edge, which is necessary to explain the 

formation of cubo-octahedral particle shapes from spherical ones as observed earlier[21, 23]. 

The dissolution of step and kink sites hinges on the favorability of reforming a new 

geminal Co carbonyl at the kink site in conjunction with the rupturing of the step Co. These 

kink-IS's can be seen in Figure 5.2D-5.2F, where only the necessary number of CO molecules 

that are needed to create the kink-IS are added to each system. Their ΔE's are represented in 

Figure 5.2G as the dashed blue line. The geminal Co dicarbonyl (Figure 5.2D) rupturing with the 

formation of the kink-IS is 0.74 eV lower in energy than the same system without the formation 

of the kink-IS, but it is still endothermic overall suggesting that this particular process is still 

unlikely. However, the geminal Co tricarbonyl (Figure 5.2E) rupturing and kink-IS formation is 

essentially thermo-neutral (-0.08 eV) and the Co tetracarbonyl (Figure 5.2F) is energetically well 

below the typical threshold for deeming a process favorable (-0.74 eV). It's important to note that 
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this system seems sensitive to the choice of DFT functional. As can be seen in Figure B3, the 

energy cost of rupturing appears to systematically raise if we switch to, for example, the vdW-

DF functional. However, Table S2 shows that the vdW-DF functional increases the adsorption 

strength of CO on Cu/Co(755) despite the vdW-DF functional propensity to decrease it for 

Co(0001)[45, 46] and Cu(111) (we calculate Eads with vdW-DF ~ -0.50 eV compared to Eads with 

PBE ~ -0.80 eV ). As such, the PBE functional was chosen in the present study because of the 

lower computed adsorption energy values on the Cu/Co(755) surface as compared to the 

corresponding vdW-DF functional values. For further information the reader is directed to the SI. 

 

Figure 5.2. (A-F) The six rupturing processes tested: direct rupturing of (A) a geminal Co dicarbonyl, (B) 
a geminal tricarbonyl, and (C) a geminal Co tetracarbonyl; rupturing and reformation of (D) a geminal Co 
dicarbonyl, (E) a geminal tricarbonyl, and (F) a geminal Co tetracarbonyl. The graph (G) shows the 
energy change for each of the (A – F) processes. The color scheme used here is identical to that of Figure 
5.1. 
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5.2.3 Thermodynamic Stability of Ruptured and Unruptured Co(CO)x 

Interestingly, the IS and FS structures corresponding to the highly exothermic Co 

tetracarbonyl rupturing process (Figure 5.2F: the brown lines in Figure 5.3) are some of the least 

favorable structures when temperature and pressure are accounted for. This highlights the need 

for caution and diligence when evaluating the favorability of chemical processes based solely on 

DFT energies alone—the energy lowering effect observed can easily be an artifact of a highly 

unfavorable IS. 

  The lowest free energy structures at sub-ambient and ambient pressures in Figure 5.3 are 

the step site geminal Co dicarbonyl (solid blue line) and step site geminal Co tricarbonyl (solid 

green line), both without nearby adsorbed CO. At the high pressures relevant to CO 

hydrogenation, Co tricarbonyl rupturing, represented by the red dashed line, becomes favorable 

only when the kink-IS is formed (Figure 5.2F: the FS). 

By utilizing Equation B1, we calculate the equilibrium constant between the initial 

geminal Co tricarbonyl and the final ruptured Co tricarbonyl (with the kink-IS formed) to be 

between ~6,000 and ~50 in the 0.1−3.0 bar pressure ranges. This means that even given the 

errors inherent in the calculation of the exact free energies and thus propagated to the 

equilibrium constants (at 573 K, this error is roughly ±6Ke, or within a magnitude, given an 

approximate 0.2 eV free energy error), we can still expect there to be a non-negligible number of 

rupturing events at ambient pressures. Initial step-site rupturing events are expected to be the rate 

limiting step of the entire dissolution process as kink-IS's more easily rupture, and in this way 

facile restructuring of the CoCu catalyst would still be possible even at ambient pressures. It 

should be further noted that such subsequent kink site rupturing events implies that the vacancy 



 

 130 

left after Co tricarbonyl rupturing from the step will be quite short lived and thus unlikely 

relevant to the reactivity of the catalyst. For the interested experimentalist, relevant vibrational 

frequencies for the species listed in Figure 5.2 have been extracted and summarized in Table B3. 

 

 

Figure 5.3. Surface phase diagram of all structures shown in Figure 5.2A-5.2F. The vertical dashed lines 
denote a "phase change" and the corresponding pressure of the change is shown above them. Shaded 
regions help denote the lowest free energy structures: (from left to right) the Co dicarbonyl IS without 
nearby adsorbed CO (Figure 5.2A: the left structure), the Co tricarbonyl IS without nearby adsorbed CO 
(Figure 5.2B: the left structure), and the Co tricarbonyl FS with the kink-IS formed (Figure 5.2E: the right 
structure).  
 
 

5.2.4 Dimerization of Co(CO)3: First Steps in Nanoisland Formation 

We further investigate the possibility of Co tricarbonyl dimerization once ruptured Co 

tricarbonyls are formed. This process is depicted in Figure 5.4 where DFT energies relative to 

that of the initial state (Figure 5.4A) are shown in the accompanying graph. Two stable states 

(Figure 5.4A and 5.4B) are found as a newly ruptured Co tricarbonyl diffuses toward a 

previously ruptured Co tricarbonyl. This process is found to be essentially thermoneutral (ΔErxn 

~ 0.00 eV). From here, three possible final dimerized states were tested: dicobalt subcarbonyl 



 

 131 

complexes with 5, 6, and 7 CO adsorbed; corresponding to the dicobalt penta-, hexa-, and 

heptacarbonyls seen in Figures 5.4C, 5.4D, and 5.4E, respectively. The dicobalt penta- and 

hexacarbonyl formations are uphill in energy by only 0.17 eV and 0.18 eV, respectively; while 

the dicobalt heptacarbonyl formation is uphill by 0.50 eV. Since dimerization will be 

accompanied by a translational/configurational entropy loss, it is not expected that the dicobalt 

hexacarbonyl will readily form. However, because a CO is kicked off when the dicobalt 

pentacarbonyl is formed, it is likely that there is an entropy gain as gas phase CO degrees of 

freedom are recovered. In fact, adding the DFT energy cost of CO desorption (~0.9 eV) to this 

process and accounting for the Gibbs free energy gain associated with gas-phase CO degrees of 

freedom from only rotations and translations (about -1.2 eV at 1 bar and 573 K), this process 

comes out to be roughly -0.1 eV exergonic. Being even more uphill in energy and having the 

exact opposite entropy argument as that of the dicobalt pentacarbonyl, the formation of the 

dicobalt heptacarbonyl is far too endergonic (roughly +0.8 eV) to be feasible.  
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Figure 5.4. Structures (A-E) and relative DFT energy differences (lower right graph) of Co tricarbonyl 
dimerization reaction steps. All energy values are relative to structure (A). Two stable states, (A) and (B), 
are found as two Co tricarbonyl diffuse toward each other. Three possible final states are found depending 
on the number of CO adsorbed to the dicobalt complex: (C) pentacarbonyl, (D) hexacarbonyl, and (E) 
heptacarbonyl. The color scheme is identical to that used in Figure 5.1 and 5.2 except one Co has been 
colored green to aid the eye.  
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5.2.5 CO Adsorption Scan of the Cu/Co(755) Terrace 

To examine how our choice to use a 6-atom long terrace in the (755) facet to approximate 

a (111) terrace might affect our results, we perform a scan of the CO adsorption energy across 

the terrace as a function of distance from the step edge and present the results in Figure 5.5. The 

central terrace sites of the Cu/Co(755) surface are shown to converge quite well to the 

approximate CO adsorption energy on Cu/Co(0001).[39] Also, we see that other than the step 

itself, CO adsorption at all other locations on the terrace is weaker than on the CuCo basal plane. 

Thus, we can assert that our results are at worst an underestimate of the thermodynamic stability 

of the ruptured adsorbates and increasing the length of the terrace would at best increase stability 

of adsorbed Co subcarbonyls and associated dimers, trimers, etc.   

 

Figure 5.5. CO adsorption energy on Cu/Co(755) as a function of CO distance from the step edge of the 
cell. These calculations were performed in the p(1´3) supercell. An approximate average CO adsorption 
energy on the Cu/Co(0001) surface is shown in the graph as a dashed line, illustrating where the 
electronics of the Cu/Co(755) terrace converge approximately to the fcc-equivalent Cu/Co(0001) 
surface[39]. Above the graph, the corresponding CO adsorption sites are shown. The color scheme used is 
identical to that in Figure 5.2. 
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As can be seen in Figure 5.5, at roughly 4 Å from the edge (site 3), until roughly 9 Å 

from the edge (site 7), CO adsorption is essentially equivalent to adsorption on Cu/Co(0001). 

Terrace sites 1, 2, 8, and 9 are actually higher in energy (i.e. weaker adsorption energy) than 

these (0001)-equivalent sites. Sites 10 and 11 are formally step sites. In this study, all molecules 

adsorbed on the terrace have been kept as closely as possible to the (0001)-equivalent sites. 

However, because of the size of the Co subcarbonyls it is possible that these higher energy 

terrace sites could affect the results by destabilizing the subcarbonyls. In this way, the results are 

at worst an underestimate of these species stability and thus would be even more likely to exist in 

real CoCu catalysts. We note also that these results compare interestingly to similar lattice gas 

modeling and temperature programmed desorption work done by Payne and Kreuzer who 

implicitly assumed that all terrace sites of stepped surfaces, like the (755) surface, would be 

equivalent[47]. The results in Figure 5.5 show that this is clearly not always the case. 

  

5.2.6 Diffusion of Co(CO)3 

To explicitly show that diffusion on this surface is indeed facile, we present the minimum 

energy pathway (MEP) for diffusion from (hcp) hollow site to adjacent (fcc) hollow site on the 

terrace in Figure 5.6. The calculation was carried out on a p(1×6) supercell model where a 

Co(CO)3 is ruptured and its corresponding kink-IS (geminal Co(CO)3) reformed. The relevant 

diffusion pathway is set such that the initial state (IS in Figure 5.6) and final state (FS in Figure 

5.6) stay as close as possible to the Cu/Co(0001)-equivalent terrace sites. As can be seen, the 

diffusion MEP is incredibly shallow and a very low energy transition state (TS in Figure 5.6) 

with an activation barrier of ~0.018 eV is found. The somewhat endothermic reaction energy 

(~0.015 eV) is due to either the fcc hollow site being less stable by this amount or due to the fcc 
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hollow site interacting with the weaker (with respect to CO adsorption) terrace sites that are 

closer to the step edge. Since activation energy tends to lower with lowering reaction energy, we 

can say that this is likely an over-estimated activation barrier, as well. Not only does this 

demonstrate facile diffusion of these species, but it further justifies the use of a 2-D free 

translator partition function for translational motion. We note that an intermediate bridge site (Br 

in Figure 5.6) is found to be stable to within the force tolerances used (0.01 eV/Å) as well. 

 

Figure 5.6. Minimum energy pathway for Co tricarbonyl diffusion across the central terrace of the 
Cu/Co(755) system; the corresponding structures for the labeled images are shown below the graph where 
“IS,” “Br,” “TS,” and “FS” signify the initial state (an hcp hollow site), an intermediate bridge site, the 
transition state, and the final state (an fcc hollow site), respectively. The color scheme used here is 
identical to that used in Figure 5.2 except two Cu atoms have been colored green to help aid the eye along 
the diffusion pathway.  
 

3. Summary and Conclusions 

With all this information in hand, we can propose a scheme for step and kink site 

dissolution, as shown in Figure 5.7. In this snapshot, we can see that a rupturing event occurred 

originally at point A and subsequently induced the dissolution process that is still ongoing at 

point B, where the most recently ruptured kink-IS can be seen at point C. The dissolution process 
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creates mobile Co subcarbonyls, as shown at point D (amongst others). Some of these Co 

subcarbonyls can dimerize, as seen at point E, or, as we envision it, even trimerize as posited at 

point F, and begin forming Co nanoislands with the liberation and subsequent entropy gain of 

additional gas phase CO driving each Co tricarbonyl addition. In the meantime, another geminal 

Co tricarbonyl could independently form at another location on the same step as at point G or on 

the new step as at point H, where a new geminal Co tricarbonyl ruptures and starts another 

dissolution process. While the exact order and structure of the catalyst shown here is speculative, 

we assert that the individual details that lead to this picture are well grounded in the results that 

were presented. In the aforementioned way, we have gained deep insights into the reconstruction 

mechanism experienced by a CoCu catalyst during the transient build-up of the catalytically 

active surface during CO hydrogenation reactions.  

In conclusion, we have shown here that the formation of geminal Co tricarbonyls at step 

sites, predicted to occur at pressures and temperatures relevant to CO hydrogenation over CoCu 

catalysts, will induce the dissolution of the associated step edge. The formation of stable Co 

tricarbonyls is predicted to be the driving force for this process. Dicobalt subcarbonyl complex 

formation was shown to be feasible and suggest a route toward Co nanoisland formation: 

structures studied extensively in recent work[48-50]. While the ultimate fate of the Co 

subcarbonyls are not precisely known, the reconstruction of the catalyst is an unavoidable 

consequence of the process presented here as the diffusive Co tricarbonyls have opportunity to 

find a stable final configuration. Such changes in aggregate would result in morphological 

changes of nano-sized metal particles. While the exact details involved will differ for other 

systems, we regard this result as a proof-of-concept for a general atomistic picture of the 

underlying reaction mechanism for well-known chemically-induced nanoparticle reconstruction: 
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through low-coordinated metal site dissolution brought about by formation and diffusion of 

ligand-stabilized metal complexes. Given the experimental observation of similar carbonyl 

complexes on Ni, Ru, Rh and Co field emitter tips,[23, 24, 31, 32] and similar thiol complexes 

on Au surfaces,[51-53]  the type of process reported here may turn out to be universal across 

systems. 

 

Figure 5.7. A proposed scheme of the step dissolution process based on the results presented. The inset 
letters, A-H, are to guide the reader through the explanation of this picture in the main text. The color 
scheme used is identical to that used in Figure 5.1 and 5.2. 
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Abstract 

A formalism is presented for the construction of multi-component lattice gas models 

parameterized with ab initio (typically density functional theory) data. The Leave-Multiple-Out 

(LMO) and the Leave-One-Out (LOO) Cross Validation (CV) Score are showcased and practical 

algorithms are developed and implemented in a new code called the Ab initio Mean-field 

Augmented Lattice Gas Modelling (AMALGM) code. The functionality of these algorithms are 

demonstrated with a fully worked out example using the O/Fe(100) system.  AMALGM and the 
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formalism on which it is based is envisioned as a surface-oriented lattice gas alternative to other 

cluster expansion codes that are typically geared toward bulk systems whose lateral interactions 

between components are parameterized using an Ising model. While the formalism is created 

within the context of surfaces, it is equally applicable to bulk materials.  

 

6.1. Introduction 

The parameterization of ab initio electronic energies has become a serious and urgent 

goal for computational chemists and physicists alike over the last few decades due to the inherent 

limitations of quantum chemical calculations on modern computing infrastructure. Density 

functional theory (DFT) cannot be expected to handle systems comprised of more than a few 

103–104 atoms while more accurate wavefunction-based ab initio theories feasibly handle an 

even smaller number than that. Even with the rapid increase in computing power, moving to 

systems of sizes that are statistically relevant (i.e. where ensemble average thermodynamic and 

kinetic properties of meso- and macroscale systems can be statistically assessed) within the 

framework of computational chemistry algorithms is likely out of reach for the considerable 

future. The challenge, therefore, is to retain the accuracy and chemical nuance of these ab initio 

calculations while avoiding their computational burden when system sizes are increased to 

statistical significance. 

The issue with the solution of large-scale system energetics and properties via ab initio 

techniques is ultimately the time needed to numerically assess the Schrödinger (for 

wavefunction-based methods) or Kohn-Sham[1] (for DFT) equations. This is because the 

solution of these equations requires the evaluation of a remarkable number of real- or Fourier- 

space integrals followed by a series of iterative matrix diagonalizations. The most promising 
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strategy for overcoming this issue is to design some explicitly evaluable mathematical function 

that takes in the same inputs (system geometry) and yields the same outputs (system energetics 

or other properties) in a fraction of the time needed for the same ab initio calculation. Since such 

a function is unlikely to be based on the same quantum physics as the Schrödinger equation, it 

can in principle be of any convenient form. However, in order to ensure the function chosen 

replicates ab initio data, it is necessary to parameterize this function via fitting to 

representative/example ab initio data. Clearly, to have utility, the function must be finite and 

convergent such that any extension in system size does not necessitate further ab initio 

calculations. Thankfully, interactions affecting the chemical behavior of an atom or molecule fall 

off as a function of distance and we can be assured a finite, convergent function can be found 

(i.e. new terms won’t be needed to account for larger system sizes). With such a function 

defined, statistical sampling can be performed using stochastic methods like Monte Carlo 

simulations. Choosing a mathematical form for this function is a matter of providing parameter 

flexibility and desired chemical interpretability, often with any particular choice being a tradeoff 

between the two. 

In terms of flexibility, a neural network (NN) is an attractive choice for the 

parameterization of the ab initio data. This parameterization method relies on a purely 

mathematical, black-box fit of energies using geometries and chemical identities as input. Use of 

NNs has shown to be a powerful method of extending ab initio DFT calculations to large-scale 

homogeneous[2-8] and heterogeneous[9-13] systems, as well as nanoparticles[14-18]. Due to 

their basically infinite flexibility, NNs essentially eschew any underlying physics and chemistry 

in favor of accurately reproducing DFT energies, which is an excellent tradeoff for applications 

such as materials screening.  
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When knowledge of the underlying physics or chemistry resulting in observed meso- and 

macroscopic properties is desired (i.e. where chemical interpretability is of interest), NNs are 

clearly not suitable and parameterization onto cluster expansions (CEs) in either the Ising or 

lattice gas (LG) paradigms is more appropriate. This is because CEs have a well-defined 

mathematical form based on the principle of cluster interactions, which are both physically 

motivated and, as formalized by Sanchez,[19-22] shown to form a complete orthonormal basis 

set capable of perfectly representing a system property. For a given system, its total electronic 

energy (or other ab initio output) is viewed as the sum of the various 1-, 2-, 3-,…, and higher- 

body interactions that exist between its constituent atoms and/or molecules. The amount of 

energy contributed by each interaction term is then termed its effective cluster interaction (ECI). 

Thus, when a system is calculated to have a certain energy and we wish to know why, we can 

point to the fact that it had X number of particular 2-body (pairwise) ECIs, Y number of a certain 

3-body interactions, Z number 4-body interactions, and so on. The physical or chemical 

characteristics of these interactions can be assessed, and from there it can then be posited how 

changing the number, strength, or nature (attractive vs. repulsive) of these interactions might 

affect the system at large. Small (yet often very mathematically sophisticated) CEs and 

specifically the Ising model have been very thoroughly tested in this manner by the solid state 

physics and alloy communities, where ECIs have been fundamentally linked via Monte Carlo 

simulations to order-disorder phase transitions and critical temperatures (the Curie Temperature 

in ferromagnetic materials, for example).[23, 24] However, these early CE models tended to be 

either defined for academic purposes (i.e. for determining how changes in ECIs manifest as 

changes in critical temperatures and other phase phenomena) or derived from fitting to 
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experimental data such as temperature programmed desorption spectra and/or thermodynamic 

phase diagrams, a practice of clear utility which by no means has been discontinued.[25-31]  

Fitting CEs to ab initio data started in 1983 with the seminal work of Connolly and 

Williams[32] but is still a relatively new endeavor in the surface science community. In 1999, 

Stampfl et al.[33] advocated the use of LG CEs (rather than Ising-type CEs) specifically for 

surfaces. Stampfl et al. fitted their DFT data on the O/Ru(0001) system to 7 pre-supposed LG 

ECIs, which ultimately showed modest agreement with experiment when the underlying LG 

model is used to simulate the corresponding phase diagram.[34] Similar to Connolly and 

Williams only the number of ordered structure DFT-based energies needed to solve for these 

ECIs were calculated. With so few terms, parameter estimation is highly uncertain with no 

guarantee that the energetics of new structures would be accurately predicted. Thus, while these 

seminal studies represented a critical first step in the application of CEs, their application method 

is obviously not ideal. The more data that is available, the more accurately the ab initio data can 

be fit (via a least-squares or similar minimization procedure). This, of course, assumes that the 

quantum chemical theory employed is an accurate depiction of the system, as a CE can only 

describe a system’s energetics as well as the fundamental physics upon which it is built.  

Importantly, at the time, there did not exist any computational tools for the parsing and 

deconvolution of a system’s configuration into its constituent CE interactions and the counting of 

these interactions had to be done entirely by hand. Nonetheless, Connolly-Williams, using the 

Ising paradigm, and Stampfl et al., using the LG paradigm, pioneered the most widely utilized 

versions of the CE formalism to date.  

The dichotomy of CE paradigms has continued since 1999, where alloy and materials 

science researchers typically follow the Connolly-William approach and use the Ising CE model 
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and surface science and heterogenous catalysis researchers typically follow the Stampfl et al. 

approach and utilize LG CE models. We are interested in CEs for surfaces here, and since the 

original work of Stampfl et al. in 1999, efforts to fit CEs to DFT data for surfaces have continued 

steadily with a large number of groups fitting their ab initio data on surface systems to LG (or in 

some cases, Ising) CEs.[35-63] Very recently, a general review of the CE method has been 

published[64] which well encapsulates the progress of the discipline in general, showcasing the 

utility and enthusiasm for the CE formalism.  

However, we would be remiss to not note the seeming issues raised by various 

groups[65-67] and Sanchez himself,[21, 22, 68] who have alluded to/concluded that the usual CE 

models used are fundamentally flawed due to their lack of concentration-dependent ECIs. 

Indeed, the mathematical derivation of the CE method explicitly results in ECIs that should 

indirectly depend on the concentration of constituent species. The use of concentration-

independent ECIs has therefore been stated to be a lower-order approximation.[22] 

Concentration-dependent ECIs stem from primarily the ECI’s dependence on the unit cell 

volume and lattice parameters, which are typically relaxed during optimization in alloy and 

materials research. The variation in unit cell volume, at minimum, correlates to variation in bulk 

concentration due to differing sizes of atomic radii, and thus concentration-dependent ECIs 

should indirectly capture this effect. Luckily, unit cell volume and lattice parameters are fixed 

from their optimized bulk values in surface science and heterogeneous catalysis models, and 

thus, the use of concentration-independent ECIs are more easily justified. Internal relaxations are 

typically much greater, admittedly, but we see no reason to assume these relaxations correlate 

consistently with the concentration or coverage of a surface. Indeed, coverage-dependent LG 
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ECIs would require a complete and, we think, unnecessary shift in the current LG ECI 

interpretation. 

Constructing CEs requires that all cluster interaction terms be defined and counted for 

every system making up the ab initio data. Constructing CEs by hand is cumbersome and 

introduces the possibility of human error; and some degree of automation is highly beneficial. 

Alloy and materials science researchers have been the beneficiaries of remarkably useful 

computational tools for automating the development of Ising CE models for nearly 20 years, 

mainly using the Alloy Theoretic Automated Toolkit (ATAT)[69-72] and the UNiversal CLuster 

Expansion (UNCLE)[73] codes. Prior to this, all CE fitting was (seemingly) done by hand or 

with in-house codes and the simplicity of the models reflect this. The application of ATAT to 

surface science and heterogeneous catalysis research has been relatively recent[59, 63, 74-79] 

and largely ad hoc as ATAT has gradually added surface-specific features (e.g. the latest 

versions include a tag to restrict structure creation to two dimensions, but it is clear this was 

added as an afterthought since the surface orientation is often flipped in certain structures; and 

this two dimensional restriction has yet to be applied to k-point generation). UNCLE has been 

comparatively less utilized for surfaces,[80, 81] but appears to allow for a treatment of surfaces 

based on the idea of correcting against the bulk values of a system. Nonetheless, we should note 

that both ATAT and UNCLE are indeed capable of handling surfaces—this in and of itself is not 

a deficiency of these codes. In fact, while more mathematically complex in origin and in terms of 

surfaces, UNCLE’s strategy may prove to be essential as researchers move toward modeling full 

nanoparticles.  

In terms of determining which clusters to include in their respective CEs, ATAT utilizes 

a Leave-One-Out Cross Validation (LOO CV) score, which is an objective function criticized by 
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a number of statisticians;[82-84] while UNCLE utilizes a Leave-Multiple-Out Cross Validation 

(LMO CV) score,[84] which is an asymptotically consistent improvement over LOO CV. It is 

worthwhile to note that the criticisms leveled on LOO CV are valid only for parametric models. 

The CE problem could be considered non-parametric since, in principle, there could be an 

infinite number of terms in the CE. However, the CE formalism developed by Sanchez[19-22] is 

just as valid for a finite number of sites as it is for an infinite number of sites. Since real surfaces 

are finite, we can restrict ourselves to this viewpoint, which leads to finite possible clusters in the 

CE and thus a parametric model. Even for an infinite number of sites, the correlation spheres of 

surface sites will be finite leading again to a finite number of possible clusters and a parametric 

problem—the LOO CV is thus less desirable as described by the aforementioned statisticians[82-

84]. We therefore choose to use LMO CV in our work here, and importantly, we directly test the 

validity of the two objective functions side-by-side on the O/Fe(100) system in Section 6.5. 

Nonetheless, regardless of their choice of cross validation objective functions, both codes still 

necessitate using the Ising-type variable paradigm and no software has been published 

specifically for LG models.  

The primary difficulty that arises in the Ising paradigm occurs when multibody 

interactions are present between the adspecies, where the transformation between the LG 

paradigm and the Ising paradigm is not straightforward. Indeed, pairwise lateral interactions in 

the Ising paradigm, when translated in the LG paradigm, will depend on the multibody 

interactions within the LG CE, as was explicitly shown by Binder and Landau for a relatively 

simple LG CE model.[23] Also, from a practical standpoint, Monte Carlo simulations can be 

performed equally well within either the LG or Ising paradigms (as is done within the ATAT 

code) and sticking to the Ising paradigm would be fine if we simply wanted to get the 
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equilibrium distribution of the particles on the surface at a given temperature and applied 

magnetic field. While there is a relationship between the magnetic field and the chemical 

potential, it is not intuitive and will depend on the aforementioned lateral interactions between 

adspecies[23]. This is important since when one simulates, for example, temperature 

programmed desorption spectra using the method of Widom[85, 86] one needs to calculate the 

chemical potential at every temperature increment. Doing this in the Ising language is simply not 

practical. 

It is important to note that the difference between the Ising and LG paradigms is formally 

only mathematical, with the Ising model using site occupation (or “spin flip”) variables (𝜎) that 

can take on values of +1 and -1 for binary systems, and the LG model using site occupation 

variables (𝑛) that can take on values of 1 and 0 for binary systems. Mathematically, this is simply 

a change of variables (𝜎 = 2𝑛 − 1) and so the validity and strength of the CE formalism 

established by Sanchez, which is formulated within this Ising variable paradigm, remains 

unchanged. However, the extension of the CE formalism to multicomponent systems[19] leads to 

wholly confusing site variable definitions and chemically awkward ECIs in the LG paradigm. In 

Sanchez’s formulation each of the m component in a multicomponent system is assigned a site 

variable of ±m, ±(m-1), …, ±1, (and 0 for odd numbers of components). However, if we perform 

the substitution of variables to get the equivalent LG site variables, a 3-component system has 

half-integer values. The physical meaning of a half-integer occupation is not easily interpreted in 

a LG model. To date, we do not know of any groups that have attempted to use such definitions, 

and as a result, we are not aware of any multicomponent CE modeling that doesn’t stick to the 

Ising-type variable definitions. The work here establishes a solution to this problem in a 

physically intuitive way. 
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To allow for the creation of generalized multicomponent LG models parameterized from 

ab initio data and provide surface, materials, and heterogeneous catalysis researchers the tools 

necessary to create them without resorting to the Ising-type paradigm, we present here the 

theoretical underpinning of the Ab-Initio Mean-Field Augmented Lattice Gas Modeling 

(AMALGM) code. A formulation of the multicomponent LG site variables is proposed based on 

the principles established—in the Ising convention—for coupled cluster expansions[87, 88] 

along with the ideas hinted at by, respectively, the original Stampfl et al. 1999 paper then 

explicitly by McEwen et al. in 2003[38] for “multi-site” LG models. These are combined with 

sublattice concepts to construct generalized site variables recast as the more intuitive terms, “site 

numbers” and “site types,” whose flexibility and comprehensibility allow for the swift 

conceptualization and implementation of the LG model corresponding to the system of interest. 

We further present the algorithms used to construct these models from first-principles data and 

note what is required from the user. AMALGM processes ab initio data to create an optimized 

LG model using LMO CV[84] and is designed to utilize an external CV score to ultimately 

validate the models produced. While not currently implemented, a final software package 

containing AMALGM is envisioned to provide the tools necessary to automatically generate 

structures and directly interface with ab initio codes, such as the Vienna Ab Initio Simulation 

Package (VASP).[89-92] At present, AMALGM is capable of processing VASP outputs to create 

all necessary AMALGM inputs, but how this data is generated is currently up to the user. Future 

versions of AMALGM may also include the capability of processing outputs from other ab initio 

codes. Finally, we are actively working on simulation software to interface with AMALGM as 

part of this software package, but this is beyond the scope of the current work outlined here. 
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AMALGM will be released in C++ to take advantage of parallelization schemes applicable to 

AMALGM’s algorithms and to facilitate code maintenance. 

   

6.2. Theoretical Reformulation of the Multicomponent LG Model 

As stated above, due to its intuitive nature in the context of surface science, we utilize 

here the CE formalism within the LG paradigm. Since we are interested specifically in 

parameterizations of surfaces and 2-D interfaces, we restrict ourselves to that perspective, though 

the formulation herein is equally generalized to 3-D systems if truly desired. We should note that 

the basic mathematical tools needed here have already been established for multicomponent CEs, 

as for example in the UNCLE code[73] where the underlying lattice is extended via a 

transformation from ℕ� to ℕ7 to express Ising spin states. Our goal here therefore is to 

reformulate the underlying mathematics in a way that is more intuitive from within the LG 

paradigm and the perspective of surfaces and interfaces. In its simplest form, the LG CE gives 

the electronic energy, 𝐸(𝒏), of a surface as 

𝐸(𝒏) = 8 𝑉æ𝑛æ +
je¥IGÂ

æ

8 𝑉æv𝑛æ𝑛v +
7e¥IGÂ

æwv

8 𝑉ævV𝑛æ𝑛v𝑛V +
�e¥IGÂ

æwvwV

…  (6.1) 

where 𝑛æ, 𝑛v, 𝑛V, are “occupation variables” that take on a value of “1” when its associated site is 

occupied and a value of “0” when its associated site is unoccupied. In this way, 𝒏 =

{𝑛j,𝑛7,𝑛�, … ,𝑛q¶}, a microstate of occupation variables, uniquely describing any configuration 

of species on or in a surface with 𝑁s adsorption sites. 𝑉æ is the electronic energy associated with 

the occupation of each isolated site (e.g. the adsorption energy when this site is that of an 

adsorbed species); and the 𝑉æv and 𝑉ævV are “effective cluster interactions” (ECIs) corresponding 

to 2-body and 3-body clusters of species, respectively. We should note that, here, the indices of 
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the occupation variables do not contain information about what type of site is occupied and 𝑉æ 

can in principle be unique to every site. The effect of multiplying occupation variables in 

Equation 6.1, as in “𝑛æ𝑛v”, is to contribute one corresponding ECI to the total energy only when 

all of the constituent sites are occupied. Thus, each “∏𝑛æ” term is an effective occupation 

variable for its associated cluster.  

The symmetries (i.e. rotation, mirror) of crystalline surfaces means there will be a 

number of sites and clusters that are of the same type (thus having the same 𝑉æ and ECI) and this 

means that combined with these effective cluster occupation variables, the summations in 

Equation 6.1 essentially “count” the number of symmetrically distinct occupied sites and clusters 

present in a given microstate, 𝒏.  This motivates defining unique “site types” and a recasting of 

Equation 6.1. 

We introduce the concept of “site types,” which we will label with Greek lowercase 

letters (𝛼,𝛽, 𝛾, … ), that can uniquely describe any situation of site occupation: defining equally a 

single species at symmetrically distinct sites and different species at a symmetrically equivalent 

site, for instance. A purposely complex example is shown in Figure 6.1 for oxygen and hydrogen 

adsorption on a gold-doped Cu(111) surface.  

As can be seen in Figure 6.1A, “site numbers” are merely a sequential labeling of the 

chemically and/or spatially unique sites within the host lattice unit cell. Any location within the 

unit cell can be potentially deemed a site.  In this example, it is only our a priori knowledge of 

the typical stable adsorption sites of an FCC(111) surface that allows us to limit it to the 6 sites 

shown in Figure 6.1A. In any system, this information is indeed needed a priori as these define 

the problem in the first place. After assigning site numbers, site types can be assigned based on 

symmetry and chemical identity, which is again illustrated in Figure 6.1A and worked out 
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completely in the table shown in Figure 6.1B. With any k-body cluster, like the 3-body cluster 

shown in Figure 6.1C, it is relatively then straightforward to identify which site types are 

involved. This is step number one in terms of defining these clusters. 

Since each k-body cluster is uniquely defined by the «𝑘2¬ combination of pairwise 

distances between occupied sites, we can label each unique ECI by its particular combination of 

site types, identified as above, and its pairwise distances. This will be denoted by “𝑋V”. These 

are defined as  

 

𝑋j ≡ "𝛼" 

𝑋7 ≡ "𝛼,𝛽	|	𝑅~�" 

𝑋� ≡ α,β,γ | Rαβ,Rαγ,Rβγ 

𝑋7 ≡ α,β,γ,δ | Rαβ,Rαγ,Rβγ,Rαδ,Rβδ,Rγδ	

𝑒𝑡𝑐… 

 

(6.2) 

and so on for higher k-body clusters. Each pairwise distance, 𝑅~�, specifies which site type pair 

is involved via its subscript, 𝛼𝛽, and by keeping the ordering of site types and pairwise distances 

constant, the label is unambiguous. We note here that while only 2𝑘 − 3 pairwise distances are 

technically needed to define a cluster of 𝑘 > 1, it is computationally expedient to use all «𝑘2¬ 

distances as above because the set of 2𝑘 − 3 distances is not unique for 𝑘 > 3 while the set of 

«𝑘2¬ distances is.  
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Figure 6.1. How lattice gas k-body cluster labels,	𝑋V, are defined for the example system 
O/H/Au/Cu(111). In this example, the Cu(111) surface is the “empty” lattice, and occupied oxygen or 
hydrogen sites are additions to the Cu lattice while Au occupied sites represent replacement of the Cu 
atoms. (A) Each site within the Cu(111) unit cell (delineated with a black outline) is assigned a unique 
value (its “site number”); the symmetrically equivalent sites are represented with a different color: purple 
(“top site”), blue (“bridge site”), and brown (“hollow site”) which determine each site number’s “site 
type.” Note that the hollow sites are treated as symmetrically equivalent and thus energetically equivalent 
here. (B) Completed table of site numbers, their shift vectors, 𝒖(𝜎), and site types, 𝜏(𝜎), for this system. 
(C) Example O-H-Au 3-body cluster where, for purposes of subscripting, body #1 is O, body #2 is H and 
body #3 is Au. The underlying lattice is shown in grey to illustrate how translation vectors, 𝑻, are 
identified. The final cluster label, 𝑋�, for this cluster is shown below the lattice. (D) All information 
collected from the table and analysis of the cluster in order to determine the cluster label, 𝑋�. 
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Since there are discrete sets of 𝑋V labels, which uniquely defines each possible k-body 

cluster, we can rewrite Equation 6.1 as 

𝐸(𝒎) =8𝑉lx𝑚lx +
�

lx

8𝑉lz𝑚lz +
�

lz

8𝑉l{𝑚l{ +
�

l{

…  (6.3) 

where 𝑉lx, 𝑉lz, 𝑉l{ are each a unique k-body ECI labeled by its particular 𝑋V.  𝑚lx,𝑚lz,𝑚l{ are 

the corresponding number of each unique k-body cluster present in a given configuration now 

defined by the vector of these values, 𝒎. There is an implied relationship between occupation 

variables, 𝑛æ, and this vector of “counts,” 𝒎. This can be made explicit and in so doing show that 

there is a general method for defining occupation sites in a way that incorporates all relevant 

details needed to define the labels in Equation 6.2 and subsequently the LG CE in Equation 6.3. 

First, we recognize (as has been recognized before) that each site, regardless of its 

uniqueness, must conform to the translational symmetry of the underlying lattice. That is, site 

number 1 in Figure 6.1A will be repeated in each surface lattice unit cell. Thus, all sites at any 

point on the entire surface can be defined by the location of its surface lattice unit cell relative to 

some arbitrary original (as in “being at the origin”) unit cell, plus some vector defining where 

exactly that site is within the original unit cell. Due to rotational and mirror symmetry, some of 

these sites might be energetically equivalent, but each site must retain a unique identity in order 

to conform to the lattice’s translational symmetry. Therefore, the term “site number” will 

generally be used to delineate the location of each possible site within and relative to the original 

surface unit cell, and a translation vector, 𝑻, will incorporate the information needed to find 

which integer-valued translations of the unit cell are needed to locate a specific site on the 

surface. Each site number can then be assigned its “site type” for the purposes of defining k-body 
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clusters as in Equation 6.2. It is therefore required that these site numbers and site types be 

defined before any k-body cluster definitions can be made. We reiterate that site types are used in 

the labels of Equation 6.2 instead of site numbers because they are specifically defined to be 

chemically unique while site numbers can have chemical degeneracy, which will be discussed 

more shortly. Thus, we will now rewrite the occupation vector as a four-dimensional “occupation 

matrix,” 𝚽, as 

𝚽 = 𝚽(𝑇j, 𝑇7, 𝑇�, 𝜎) = 𝚽(𝑻	, 𝜎) (6.4) 

where 𝑻 = {𝑇j, 𝑇7, 𝑇�} is the aforementioned translation vector of integer values that identifies in 

which repeated unit cell of the surface lattice one will find a site, which is then finally specified 

completely by its integer coordinate 𝜎 (i.e. site number). As before, the occupation matrix entry 

specified by 𝚽 takes on a value of “0” or “1” depending on whether that specific surface site is 

occupied or unoccupied. Thus, in this formulation, the occupation matrix remains an array of 

Boolean type entries each requiring merely 1 bit of allocated memory. 

Each site type,	𝜏, is a function of which site number is chosen: 

𝜏 = 𝜏(𝜎) (6.5) 

where the degeneracy of site types is determined ahead of time after analysis of the underlying 

lattice symmetry. That is, after assigning all sites a site number, if for example sites numbers “2”, 

“3”, and “4” are all site type “2,” (e.g. oxygen adatoms at bridge sites in Figure 6.1A) that 

information is encoded in Equation 6.5 as 𝜏(2) = 𝜏(3) = 𝜏(4) = 2. This can be seen completely 

worked out for our example in Figure 6.1B. 

In addition to site types, we also need Cartesian distances to uniquely specify a label in 

Equation 6.2. To remain consistent with the formalism so far employed, we want to find these 

distances by using the same information utilized by the occupation matrix, namely the 4-D 
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vector, {𝑻, 𝜎}. To do this, we first define a “shift vector,” which must be specified for each site 

number, 𝜎, (again, a priori) that defines the real-space position of the site relative to the unit cell, 

i.e. in “fractional” or “direct” coordinates, as 

𝒖(𝜎) = {𝑢j,𝑢7,𝑢�} (6.6) 

This shift vector can then be added to the translation vector, 𝑻, to find the fractional coordinate 

of a site anywhere on the underlying lattice:  

𝒓(𝑇j, 𝑇7, 𝑇�, 𝜎) = 𝒓(𝑻, 𝜎) = 𝑻+ 𝒖(𝜎) = {𝑟j, 𝑟7, 𝑟�} (6.7) 

Since the unit cell of a surface is specified by three lattice (column) vectors, 𝒂𝟏,𝒂𝟐,𝒂𝟑, forming 

a matrix, 𝐴 = [𝒂𝟏		𝒂𝟐		𝒂𝟑], we can find the pairwise Cartesian distances, Ri, between occupied 

sites by finding all vector differences between their individual 𝒓 vectors (defined by Equation 

6.7), and calculating those differences’ vector norms. The Cartesian coordinate of a site is given 

simply as the matrix multiplication of 𝐴 and 𝒓: 

𝒄 = 𝒄(𝑻, 𝜎,𝐴) = 𝐴𝒓(𝑻, 𝜎) = Ð
𝑥
𝑦
𝑧
Ñ (6.8) 

and the pairwise distance between two sites at 𝒓𝒊(𝑻𝒊, 𝜎æ) and 𝒓𝒋¸𝑻𝒋, 𝜎vÀ, is then 

𝑅�(��)�¸��À «𝒓𝒊(𝑻𝒊, 𝜎æ), 𝒓𝒋¸𝑻𝒋, 𝜎vÀ¬ = $𝒄𝒊 − 𝒄𝒋$ = �~𝒓𝒊 − 𝒓𝒋�
Ö(𝐴Ö𝐴)~𝒓𝒊 − 𝒓𝒋� (6.9) 

where superscript “𝑇” indicates the matrix or vector transpose. “𝑅�(��)�¸��À” in Equation 6.9 is 

simply the functional representation of “𝑅~�” in Equation 6.2. 

Since these distances (Equation 6.9) and occupation variable site types (Equation 6.5) are 

represented uniquely in the label, 𝑋V (Equation 6.2), the functional relationship between 

occupation variables, 𝑛æ, and the number of unique k-body clusters, 𝑚l�, is established. The 
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pertinent data that needs to be collected/determined within this formalism for our 

O/H/Au/Cu(111) example is shown in Figure 6.1D.  

The practical implementation of this formalism within AMALGM is as follows:  
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Figure 6.2. Illustrated algorithm used to find all unique clusters in a system with inputted unit cell, 𝐴, and 
site definitions (matrix 𝑭, above) 
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1. Determine all possible k-body clusters by finding all unique labels,  𝑋V. This is illustrated 

in Figure 6.5.2.  

a. This is done by first specifying the surface unit cell, 𝐴, then the site definitions 

(matrix 𝑭	in Figure 6.2) containing each site number’s shift vector, 𝒖(𝜎), and site 

type, 𝜏(𝜎), of each site number in the unit cell of the surface of interest (step 1 in 

Figure 6.2)  

b. The user must also specify a k-body cutoff and a radial cutoff, Rcut, for each k-

body cluster—or in principle for each subset of site types. There are an infinite 

number of distances and clusters, so this is required to make the process finite. It 

is important to input Rcut in the same units as used to define surface unit cell, 𝐴. 

As will be seen in Section 6.4, we advocate factoring out the lattice constant (or 

site-to-site distance) from 𝐴. Thus, our Rcut is defined in units of lattice constants. 

c. Populate the surface with all possible translations of the sites defined by the shift 

vectors of the specified site numbers (Step 2 in Figure 6.2). 

i. Loop over each site number, 𝜎, specified. These are all assumed to be 

associated with translation vector {0,0,0}. 

ii. Loop over both the 𝑇j (aka “x”) and 𝑇7 (aka “y”) components of all 

potentially relevant translation vectors, 𝑻, starting from {−𝑛, −𝑚, 0} and 

ending at {𝑛 + 1,𝑚 + 1,0}where𝑛 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 «�[½(�UYF)‖𝒂𝟏‖Hæ/�
¬, 𝑚 =

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 «�[½(�UYF)‖𝒂𝟐‖Hæ/�
¬, and 𝜃 is the angle made by 𝒂𝟏 and 𝒂𝟐 (0º <	𝜃 < 180º).  

Since we assume that a surface is of interest, we do not need to loop over 

the 𝑇� component: the assumed direction perpendicular to the surface.  In 
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other words, it is the z-direction and its translations are irrelevant to the 

surface as that is the direction a vacuum is imposed. Populate a matrix of 

vectors 𝑺 = {𝒓(𝑻, 𝜎), 𝜏(𝜎)} in each loop (step 3 in Figure 6.2). Note which 

sites in 𝑺 are the site numbers inside the unit cell.  

d. Find all possible pairs of now populated surface sites (step 4 in Figure 6.2). 

e. Use Equation 6.9 to find their pairwise distances (in practice it is better to 

compute the square of the distance to avoid numerical round-off errors). Store this 

information in a matrix whose indices map to the indices in the matrix of vectors 

𝑺. This creates a (large) symmetric matrix,𝑹, of all pairwise distances for all 

potentially relevant sites on the surface (step 5 in Figure 6.2).  

f. Find all possible k-body clusters and determine their Equation 6.2 labels. 

i. Loop over the k possible k-body clusters up to the specified cutoff (step 6 

in Figure 6.2).  

ii. Loop over each site number (we are only interested in clusters that connect 

to the sites in the unit cell) (step 7 in Figure 6.2).  

1. Determine which of the other sites in 𝑺 are outside the relevant 

radius cutoff. Eliminate these from consideration (step 8 in Figure 

6.2).  

2. For all x sites left in S, find all k-body combinations, «𝑥𝑘¬ of those 

sites (step 9 in Figure 6.2). 

3. Remove all clusters of sites that don’t contain the original site 

numbers (step 10 in Figure 6.2). 
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4. Loop over each remaining combination of sites (step 11 in Figure 

6.2). 

a. Determine the site types and pairwise distances between all 

constituent bodies in each of those clusters via a lookup of 

𝑺 and 𝑹, respectively. Create a matrix, 𝑳, of vectors 

corresponding to the labels defined by Equation 6.2: each 

cluster’s constituent site types and, in a consistent ordering, 

their pairwise distances (step 12 in Figure 6.2).  

iii. Continue adding until all loops above have been exhausted.  

g. Find all unique cluster labels in 𝑳 being sure to account for all possible 

permutations of each label (step 13 in Figure 6.2).  

2. Given a surface configuration, 𝚽, find its representation in terms of number of “counts,” 

𝒎. 

a. Since most configurations are found from a DFT calculation with periodic 

boundary conditions, input each surface configuration as a combination of their 

supercell vectors in the unit cell “direct” coordinates, and the position of each 

occupied site in unit cell “direct” coordinates (i.e. using Equation 6.7). Append 

which site number each occupied site within the supercell corresponds to.  

b. Rerun the process described in step 1(d) and 1(f) above. However, instead of 

finding all unique values, match each k-body cluster label to the labels found in 

step 1, again accounting for potential permutations. Each match is a “count” for 

that cluster. Continuously adding to the counts already found produces the vector, 

𝒎. 
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There are in principle an infinite number of terms both with respect to the summation of 

each k-body cluster (continuing to infinity by systematically increasing pairwise distances 

between its k bodies) and with respect to the number of bodies in clusters (continuing to infinity 

by adding higher-body cluster summation terms) in Equations 6.1 and 6.3. In practice, however, 

these CEs must be truncated in some manner. The first step in this is to specify, as described 

above, a maximum k-body cluster size (e.g. truncate at 4-body cluster terms, 𝑋7) and maximum 

pairwise distance or radius cutoff. This cutoff can be specified overall, for each k-body cluster, or 

for each combination of site types. However, given reasonable truncations, this can still leave 

intact easily over 100  𝑋V terms in Equation 6.3 and potentially well over 1000 terms even if the 

system has only a couple of site numbers defined. Since the CE needs to ultimately predict new 

DFT electronic energies accurately, the problem of overfitting the data with so many terms is a 

non-trivial one; the set of terms that provides the most predictiveness is desired. This is an 

optimization problem and requires an objective function and optimization algorithm to solve it. 

 

6.3. Finding the Most Predictive Lattice Gas Cluster Expansion 

6.3.1 The Leave Multiple Out Cross Validation Score as an Objective Function 

The typical objective function for the purposes of variable selection is the Leave-One-Out 

(LOO) Cross Validation (CV) score. Its strength appears to lie in its simplicity. However, as was 

determined by Baumann in 2009, the LOO-CV score is not the best objective function for 

variable selection.[84] Baumann supported the use of the Leave-Multiple-Out (LMO) CV score 

with a fraction “left out” to range from 0.4 to 0.6. The LOO-CV score was explored and 

criticized previously[82, 83] as well but, as noted by Baumann, this work appears to have been 

largely ignored. In Section 6.4 we compare the LOO-CV score to the LMO-CV score for a 
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prototypical LG model. Figure C1 shows the associated algorithm for the LOO-CV score for 

reference.  

The LMO-CV score calculation algorithm is shown in Figure 6.5.3 along with the 

algorithm for evaluating the root mean squared residual (RMSR) of the fit for comparison. The 

algorithm used to produce the LMO-CV score will be referenced to as process #1 (P1) in 

subsequent figures. Due to the fact that the LMO-CV score uses all known data at some point in 

its evaluation, it is an “internal CV score,” contrasting with an “external CV score,” which is 

defined by prediction errors of data that lie outside of the dataset that is used for fitting. We will 

come back to this and their juxtaposition in a moment. 

As shown in Figure 6.3, we assume we start with a set of structures whose electronic 

energies have been calculated and whose occupied sites and clusters have been counted via the 

formalism developed in the previous section. We further require the input of some subset of the 

known cluster terms, i.e. of the known 𝑋V labels. Assuming there are 𝑁 structures and 𝑛 cluster 

terms with their associated counts, we begin with an (𝑁 × 𝑛) matrix and an (𝑁 × 1) vector of 𝑁 

energies. In practice, we can manipulate the matrix of counts and vector of energies in some way 

to produce adsorption, formation, or surface energies, but we assume some generalized energy 

here as this does not affect the algorithm as shown. In Figure 6.3, the matrix of counts is 

represented with black line-filled rectangles and the vector of energies with colored line-filled 

rectangles; this comprises the “data set”. To calculate the RMSR, a least-squares fit of the entire 

data set is used to produce a model (shown as a red box in Figure 6.3) of ECI values, Figure 

6.3(A). These are then used to predict, Figure 6.3(B), the energies of the entire data set—the 

same data used to do the fit—and the root mean squared deviation from the actual DFT energies 

is the RMSR, Figure 6.3(C). It is the RMSR that is minimized in the least-squares fit.    
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Figure 6.3. Flow diagram for the algorithm used to calculate the LMO-CV (represented by labels 1 to 6) 
and RMSR (represented by labels A to C). 
 

To calculate the LMO-CV score, the data set shown at Figure 6.3(1) is split, Figure 

6.3(2), into a random subset of some fraction, (1 − 𝑑), of the total N data to create the 

“construction set”. Following the recommendation from Baumann, we set 𝑑 to 60% of the 

dataset in our work but this can be arbitrarily set by the user. The remaining data then constitutes 

the “validation set.” A set of ECIs is then found, Figure 6.3(3), by performing a least-squares fit 

of the construction set data to create a model. These ECIs are used to predict, Figure 6.3(4), the 

energies of the validation set (dot product of vector of ECIs with vector of counts for that 

structure). The mean squared deviation from the actual DFT energies, Figure 6.3(5), is stored as 

CVj for that particular random cut of the data. This process is then repeated from step 2 with 

another random cut of the data. The LMO-CV score is the root mean CVj value and is evaluated 

at the end of every loop. This process ends when the LMO-CV score converges to some 

tolerance. Another stopping criteria, not shown in Figure 6.3 explicitly, is that each structure 
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must, in the end, be represented in the validation set an equal number of times as every other 

structure to avoid biasing the value toward any particular structure(s). A count bias manifests as 

an unstable (non-deterministic) final value upon repeated evaluations of the LMO-CV score.  

 

6.3.2 Optimizing a Cluster Expansion: Steepest Descent with the LMO-CV Score 

 The value of the LMO-CV score is a function of the subset of clusters used to define the 

CE. However, the choice of which clusters one should use is an entirely separate issue. Our goal 

is to find the subset of clusters that gives the lowest possible LMO-CV score. To do this, we 

implement a steepest descent type algorithm shown in the flow diagram in Figure 6.4 which will 

be referred to as process #2 (P2). 

1. Some starting CE, comprised of a subset of the clusters remaining after the truncation 

mentioned is Section 6.1, is inputted. We will let the number of total clusters available be 

‘X’.  

2. We then use P1 to find the LMO-CV score of that CE to establish the “old CV score” as a 

point of comparison for subsequently generated CV scores.  

3. An X-length array, ‘A’, is created before heading into the ‘Calculating the Gradient’ loop 

labeled in orange in Figure 6.4. 

4. To calculate the gradient, we loop over all X clusters (the loop index is ‘j’ in Figure 6.4), 

adding these to the starting CE if it isn’t part of the starting CE, and removing from the 

starting CE if it is. In this way the starting CE is never changed by more than 1 cluster at 

a time. This is the finite-space equivalent of the usual gradient. 

5. For each perturbed CE, its CV score is calculated using P1. This result is added to the 

array, A, at its position, j.  



 

 169 

6. After looping over all X, the array, A, is sorted in ascending order—such that the first 

entry is the lowest calculated CV-score.  

7. We then enter the steepest descent portion of the algorithm, labeled in blue in Figure 6.3.  

Here, we loop over the clusters corresponding to the newly sorted A array (the loop index 

is ‘k’ in Figure 6.4).  

8. Starting with the first entry in A, if the cluster in question is part of the CE, it is added, 

and if it is not, it is removed. This becomes the ‘new CE’. 

9. P1 is used to calculate the CV score once more. However, this time, if the CV score 

lowers compared to the “old CV score” (first established in step 2), then cluster addition 

or removal is made permanent and the CE and target CV score are updated, becoming the 

“old CE” and “old CV score,” respectively. A “lowering flag” is also activated if the CV 

score lowers. If the CV score does not lower, then the CE and target CV score are not 

updated, and a “count” is incremented. 

10. Each time a new CV score does not lower, the “count” is evaluated against some value Z, 

here we allow the CV score to not lower 3 times (Z = 3) before determining that we’ve 

reached the minimum along the gradient. This is the default behavior but is user-optional 

and a strict steepest descent algorithm would exit the loop as soon as the CV score 

stopped lowering.  

11. When the “count” threshold is reached, the “lowering flag” is checked. If it was 

activated, the newly updated CE is sent back to the top of the algorithm for further 

optimization starting at step 2 and the lowering flag is then deactivated for use in the next 

cycle. If the lowering flag stayed inactive, then no new additions or removals to the CE 

score resulted in the lowering of the CV score and the CE is declared optimized. 
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Figure 6.4. Flow diagram for the steepest descent algorithm (Process #2, P2) described here. The color 
coding is to help the reader identify each distinct part of the algorithm.   
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6.3.3 Optimizing the Cluster Expansion: Global Minimum Search and the External CV Score. 

 With a parameter space of X potential clusters, it can be anticipated that a large number 

of local minima exist within the optimization space. To find at least an approximate global 

minimum, a large number of randomly (or partial randomly) generated CEs must be generated 

and optimized via P2. This process, Process #3 or P3, is described in Figure 6.5.  

 

Figure 6.5. Overall process for developing a LG CE as new data is added to the dataset. The values in 
thick black, blue, and red boxes are collected during each loop along with the RMSR for graphic 
representation. Full arrow connectors represent logical progression while dashed lines represent a flow of 
information.  



 

 172 

 As can be seen in Figure 6.5, the data set is used to optimize a large number of randomly 

generated CEs (we have generally used no less than 30, often 100s). After all of these CEs have 

been optimized, the one with the best CV score is chosen and can be reported for this data set. 

However, it is helpful to have an external validation of the predictiveness of the LG CE beyond 

the LMO-CV score. In principle, the LG CE should be capable of predicting the energies of new 

data, structures that are outside the data set and therefore never seen by the algorithm. This 

introduces the idea of an external CV score, which is determined by calculating new data with 

DFT and then seeing how well these new energies are predicted with the current LG CE. This is 

then contrasted by the internal CV score, which can be the LOO-CV score, LMO-CV score, or 

any other metric of cross validation that is similarly devised that uses in some fashion all of the 

data within the data set.  This external CV score is very sensitive to the characteristics of the new 

data, and as such, is not as suitable as the internal CV score (the LMO-CV score, here) as an 

optimization function. Nonetheless, it is a useful check since a truly robust LG CE should be able 

to predict the energies for entirely new data to within at least the same accuracy with which the 

CE describes data within the dataset, i.e. it should fall below the RMSR. After this, the new data 

are added to the dataset set to help refine the LG CE. If the external CV score does fall below the 

RMSR, we have instituted an idealized heuristic for convergence stating that the external CV 

score must fall below the RMSR and stay there over C = 4 subsequent loops of P3. (We would 

consider falling to within twice the RMSR the lowest bound on convergence). However, this 

choice is based on our general experience and is thus more or less arbitrary; C can therefore be 

chosen by the user as well if desired. This can be seen in Figure 6.5. This describes a general 

cycle that then continues until both the internal and external CV scores reduce to their respective 

acceptable tolerances and the CE is declared complete. 
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6.3.4 Augmentation with a Mean Field  

 AMALGM has been designed to allow for the optional implementation of pre-processing 

energy data using a mean field (MF) model. The rationale behind this is that by describing the 

largest energy changes in a mean field manner, the job of describing the remaining energy 

fluctuations should be more straightforward. Such a procedure was adopted in the past in a 

phenomenological multi-site lattice gas model of CO/Pt(111)38 and, more recently, in a lattice 

gas model of O/Fe(100) where the lateral interactions between the oxygen adatoms where 

determined from first principles.91 With a set of ab initio data, the “coverage determining sites” 

can be specified and a MF model constructed from a user-specified nth-order polynomial 

expansion of those sites. The program can then be instructed to use the residuals of the least 

squares fitting procedure as the input energies for the LG model fitting algorithm.  

 The MF augmented LG Hamiltonian is shown in Equation 6.10, where we explicitly 

convert total energy to surface energy, 𝛾, via a division by 𝑁]: 

𝛾 =
𝐸(𝒏)
𝑁]

= 𝑉 𝜃 + 𝑐8
𝑉/
¦N

𝑛 + 1
/�j

𝜃/yj

+
1
𝑁]
L8𝑉lx𝑚lx +

�

lx

8𝑉lz𝑚lz +
�

lz

8𝑉l{𝑚l{ +
�

l{

…V

 (6.10) 

where the terms in parentheses are the LG contribution from Eq. 3 and the first two terms are the 

MF model. Here, 𝜃 is coverage of the “coverage-determining-sites,” which can be specified as 

any or all of the site numbers defined by the user; 𝑉  is the MF adsorption energy of the 

coverage-determining-sites at the limit of zero coverage;  𝑉/
¦N are the MF coefficients 

corresponding to 𝑛 + 1 body interactions (or, in terms of its formulation, the interaction of 1 site 
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with 𝑛 other bodies93); and 𝑐 is the nearest neighbor coordination number of the surface (e.g. 4 

for square lattices, 6 for hexagonal). 

 The degree of polynomial to be used in the MF model and how often to refit it to the data 

are entirely up to the user and should be chosen with some care. As with any polynomial fitting, 

the higher the degree of polynomial, the better the fit will be. However, there is risk of 

overfitting here as well. Even though the LG model is meant to “fill the gaps” in the MF model, 

severe overfitting can be difficult to compensate for. It is also unnecessary and ill-advised to 

continually refit the MF model as new data is added to the dataset, which can make convergence 

of the LG model difficult due to the fluctuations in the residuals of the MF model that the LG 

model is trying to fit to. While the polynomial degree could be systematically changed along 

with the clusters in the LG model to ultimately find the most predictive overall model, 

automating the fitting schedule of the MF model is not a straightforward matter. As a result, MF 

augmentation is seen as a preprocessing step for the dataset and the user must take care to 

implement it optimally. Nonetheless, as shown by Bray et al.,91 augmentation with a MF model 

can have excellent utility and yield highly predictive results when applied properly. 

 

6.4. Example: O/Fe(100) 

  To demonstrate the algorithms and utility of the AMALGM code, we construct here a 

LG CE of O/Fe(100) using the raw data from Bray et al.91 and fitting using the procedures 

outlined in this paper. In the work of Bray et al., the MF option was invoked and the interested 

reader is directed to that work for an example of this option. Here, we choose to instead use our 

implemented option of pre-defining the adsorption energy of isolated O on Fe(100) and also the 

first nearest neighbor (1NN) interaction energy. These two quantities are calculated as: 
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𝐸[�]  = 𝐸�/�S(j  ) − 𝐸�S(j  ) −
1
2𝐸�z(§) 

(6.11) 

𝐸j>> = 𝐸7�/�S(j  ) − 𝐸�S(j  ) − 𝐸�z(§) − 2𝐸[�]
   (6.12) 

Where 𝐸[�]   is the adsorption energy of O on Fe(100) with superscript “0” indicating the 

adsorption energy is taken at the zero coverage limit, 𝐸�/�S(j  ) is the total DFT energy of the 

system with O adsorbed on the Fe(100) surface, 𝐸�S(j  ) is the total DFT energy of the clean 

Fe(100) surface, 𝐸�z(§) is the DFT energy of gas-phase O2, 𝐸j>> indicates the 1NN interaction 

energy and 𝐸7�/�S(j  ) is the DFT energy of two O atoms on Fe(100) placed at the 1NN distance 

from each other but otherwise isolated. These quantities, 𝐸[�]   and 𝐸j>>, were found to be -3.08 

eV/O and +0.229 eV/interaction, respectively. 

 The surface unit cell was inputted as 

4
1 0 0
0 1 0
0 0 5.335

D (6.13) 

which is a simplified Fe(100) surface unit cell where the lattice constant of Fe has been factored 

out. Doing this allows us to define lengths in “units” of lattice constants (i.e. the distance from 

one top site to the next is “1” instead of 2.868 Å). Unless the z-component of the user-defined 

shift vectors have non-constant values, the final column in Equation 6.13 has no real 

consequence. This is the case here but may not be the case for other systems thus necessitating 

that a 3´3 matrix generally be defined. 

Only a single site, the 4-fold hollow site is defined in the data and was provided as input 

to the AMALGM code with shift vector {0,0,0} and site type “1”. The radial cutoff for 2-body 

and 3-body clusters was set to “4” (i.e. 11.472 Å) while the radial cutoff for 4-body clusters was 

set to “3” (i.e. 8.604 Å). Higher-body clusters beyond this were not considered. In total, 77 k-
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body clusters were found using this set-up: one 1-body cluster, 9 2-body clusters, 35 3-body 

clusters, and 32 4- body clusters. The corresponding labels, 𝑋V, outputted by AMALGM are 

shown in Table 6.1. While it is by no means a necessity, the benefit of factoring out the lattice 

constant is more apparent here: distances are kept integer in value. The cluster labels shown in 

Table 6.1 are depicted in Figures C2 and C3. 

Table 6.1. Cluster labels, 𝑋V, for the O/Fe(100) system as outputted by AMALGM. The first column is 
the cluster ID # that is used to reference the label with the number of such clusters in a particular 
configuration. Columns labeled “B1 – B4” show the site type(s) involved in the k-body cluster, where a 
“0” indicates the absence of a body. The remaining columns are the (squared) distances between pairwise 
bodies indicated by the subscripts.  

Cluster 
ID # B1 B2 B3 B4 R12 R13 R23 R14 R24 R34 

1 1 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 1 0 0 0 0 0 
3 1 1 0 0 2 0 0 0 0 0 
4 1 1 0 0 4 0 0 0 0 0 
5 1 1 0 0 5 0 0 0 0 0 
6 1 1 0 0 8 0 0 0 0 0 
7 1 1 0 0 9 0 0 0 0 0 
8 1 1 0 0 10 0 0 0 0 0 
9 1 1 0 0 13 0 0 0 0 0 
10 1 1 0 0 16 0 0 0 0 0 
11 1 1 1 0 1 1 2 0 0 0 
12 1 1 1 0 1 4 1 0 0 0 
13 1 1 1 0 1 2 5 0 0 0 
14 1 1 1 0 4 2 2 0 0 0 
15 1 1 1 0 1 4 5 0 0 0 
16 1 1 1 0 2 8 2 0 0 0 
17 1 1 1 0 5 5 2 0 0 0 
18 1 1 1 0 1 5 8 0 0 0 
19 1 1 1 0 1 9 4 0 0 0 
20 1 1 1 0 4 5 5 0 0 0 
21 1 1 1 0 1 5 10 0 0 0 
22 1 1 1 0 4 2 10 0 0 0 
23 1 1 1 0 4 4 8 0 0 0 
24 1 1 1 0 9 2 5 0 0 0 
25 1 1 1 0 1 9 10 0 0 0 
26 1 1 1 0 5 13 2 0 0 0 
27 1 1 1 0 10 5 5 0 0 0 
28 1 1 1 0 10 8 2 0 0 0 
29 1 1 1 0 1 8 13 0 0 0 
30 1 1 1 0 4 5 13 0 0 0 
31 1 1 1 0 9 5 8 0 0 0 
32 1 1 1 0 1 10 13 0 0 0 
33 1 1 1 0 4 10 10 0 0 0 
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34 1 1 1 0 4 16 4 0 0 0 
35 1 1 1 0 1 16 9 0 0 0 
36 1 1 1 0 4 9 13 0 0 0 
37 1 1 1 0 16 5 5 0 0 0 
38 1 1 1 0 2 13 13 0 0 0 
39 1 1 1 0 10 10 8 0 0 0 
40 1 1 1 0 10 13 5 0 0 0 
41 1 1 1 0 16 2 10 0 0 0 
42 1 1 1 0 9 10 13 0 0 0 
43 1 1 1 0 16 8 8 0 0 0 
44 1 1 1 0 16 5 13 0 0 0 
45 1 1 1 0 16 13 13 0 0 0 
46 1 1 1 1 1 1 2 2 1 1 
47 1 1 1 1 1 4 1 2 1 2 
48 1 1 1 1 1 2 5 1 2 1 
49 1 1 1 1 1 4 1 1 2 5 
50 1 1 1 1 1 2 5 2 1 4 
51 1 1 1 1 2 2 4 4 2 2 
52 1 1 1 1 5 2 1 5 2 1 
53 1 1 1 1 1 1 2 5 8 2 
54 1 1 1 1 1 2 5 4 5 2 
55 1 1 1 1 4 2 2 5 5 1 
56 1 1 1 1 1 4 1 5 4 5 
57 1 1 1 1 1 4 1 9 4 1 
58 1 1 1 1 1 4 5 5 4 1 
59 1 1 1 1 1 1 2 8 5 5 
60 1 1 1 1 1 2 5 5 4 5 
61 1 1 1 1 1 2 5 5 8 1 
62 1 1 1 1 1 9 4 2 1 5 
63 1 1 1 1 4 2 2 4 8 2 
64 1 1 1 1 1 4 1 4 5 8 
65 1 1 1 1 1 9 4 5 2 2 
66 1 1 1 1 1 2 5 5 2 9 
67 1 1 1 1 1 5 8 4 5 1 
68 1 1 1 1 1 5 8 5 4 4 
69 1 1 1 1 5 2 9 4 5 2 
70 1 1 1 1 5 2 9 5 2 5 
71 1 1 1 1 9 2 5 5 8 1 
72 1 1 1 1 1 9 4 5 4 8 
73 1 1 1 1 9 2 5 8 5 2 
74 1 1 1 1 1 9 4 8 5 5 
75 1 1 1 1 4 4 8 8 4 4 
76 1 1 1 1 1 5 8 8 5 9 
77 1 1 1 1 5 2 9 9 8 5 

 

We should note that the number of potential clusters increases dramatically as site-types 

are added and that careful consideration of the k-body cut-off radii may be necessary to avoid 

prohibitively large numbers of potential clusters. Parallelization of AMALGM is being 
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considered to extend its applicability to larger/more complicated systems without having to 

impose egregious cut-off radii.     

 With the potential clusters found, 271 structures with their associated DFT energies were 

inputted from Bray et al.’s work. AMALGM found that only 204 of these were unique. Here, 

uniqueness is determined simply by comparing the number of clusters per site and if all these are 

the same between two or more structures, all but the lowest energy structure is removed from 

consideration.  

Typically, one would not know how much data is necessary to produce a predictive, 

converged LG CE, i.e. one wouldn’t start with 204 structures already in the dataset. Instead, one 

would preferably start with a much smaller data set and only perform ab initio calculations for 

new structures if necessary. To simulate this, we begin by adding 17 structures and then running 

the “P3” algorithm shown in Figure 6.5 where at least 30 of the inner loops are made to populate 

the “Z” array (in practice it was often more than this as the only cost to add more is the time 

needed to loop through the inner loop of P3). Each inner loop of P3 invokes the “P2” algorithm 

shown in Figure 6.4. We show sample output from this algorithm using AMALGM in Figure C4  

Based on the considerations detailed previously and illustrated in Figures 6.3-6.5, the final CE 

determined by our algorithms is shown in Figure 6.6. 
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Figure 6.6. Final LG CE for O/Fe(100) and its associated ECIs using the LMO-CV score as objective 
function. The red circles are oxygen atoms and the gold spheres are Fe atoms. 
 
 We can construct a parity plot between the DFT-calculated surface energies and those 

predicted by the LG CE shown in Figure 6.6. This is shown in Figure 6.7. The plot shows nearly 

perfect parity with barely visible deviations. This reflects the low RMSR of 9.9 meV/site. 

Because the LMO-CV score is also low (11.5 meV/site) and the external CV score appears well 

converged (final four values: 9.7, 4.5, 9.8, and 6.2 meV/site), we can declare this a highly 
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predictive and converged LG CE model. This demonstrates the practicality and power of the 

AMALGM code.   

 

Figure 6.7. Parity plot of DFT vs LG-predicted energies using the LG CE found using AMALGM and 
the LMO-CV score.  
 
 

6.5. Leave-Multiple-Out vs. Leave-One-Out Cross-Validation 

To illustrate the practical difference between the LOO-CV score and LMO-CV score 

(and confirm that LMO-CV is indeed preferable), we ran two simultaneous “simulations” using 

both LOO and LMO for the “P1” algorithms in Figure C1 and Figure 6.3, respectively. To begin, 

17 DFT-optimized structures were added to make the data set.  P3 was then ran to determine the 

CE that minimizes the internal CV score, once with the LMO-CV score and once with the LOO-
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CV score. The results were quite striking even at this early stage: the best LOO-CV score was 

0.002 meV/site  (effectively 0 meV/site) and corresponded to a CE containing 13 clusters {1, 2, 

13, 17, 20, 22, 26, 30, 31, 52, 53, 72, 76} (see Figures C2 and C3 to cross reference the cluster 

structures), while the best LMO-CV score was 16.0 meV/site corresponding to a CE containing 4 

clusters {1, 2, 13, 53}. This illustrates a general tendency of the LOO-CV score: it tends to 

choose larger CEs than the LMO-CV score. These internal CV scores are plotted in blue in 

Figure 6.8A and 6.8C and the number of clusters in each CE is shown in purple in Figure 6.8B 

and 8D for the LMO- and LOO-CV scores, respectively. It should be noted that the resulting LG 

CE model corresponding to the above CEs is constructed by fitting the ECIs to all 17 data points; 

the root mean squared residual (RMSR) of this fit is plotted in green in Figure 6.8A and 6.8C. 

These CEs and their corresponding ECIs constitutes the LG CE model associated with the 

number of unique structures in the dataset; here, 17. 
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Figure 6.8. Simulated progressions of CE optimization using the P1 – P3 algorithms shown in Figures 
6.3-6.5. Panels (A-B) Progression in the LMO-CV score objective function (blue) for choosing the best 
CE as the data included in the dataset increases is compared to the (B & D) LOO-CV score. 
 

While the LOO-CV score is lower than the LMO-CV score, we find that this does not 

translate to higher predictiveness. The DFT surface energies of 17 new structures (i.e. never 

included in the evaluation of the internal CV scores) were predicted using each LG CE model 

(final step in P3, seen in Figure 6.5). The absolute errors on these predictions are shown forward-

offset as black X’s in Figure 6.8A and 6.8C, and the external CV score is determined from these 

and shown in red. These first external CV scores are 27.4 meV/site and 32.2 meV/site for the 

LOO- and LMO-determined LG CE models, respectively. While the LOO-determined LG CE 

model gives a slightly better external CV score than LMO-CV score here, neither is very good. 

We thus add these new structures to the dataset and begin the process of determining the best CE 

again. The best CEs are then used to predict the energies of another set of structures as before. 

This process is continued for all 204 structures in the data set and tracked in Figure 6.8(A-B) for 
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the LMO-CV score and Figure 6.8(C-D) for the LOO-CV score. To avoid frivolous changes to 

the CE, we impose a rule that the CE is only allowed to change if the new CE lowers the internal 

CV score by at least 1 meV/site as compared to what the current CE provides for the new 

dataset.  

Another metric of interest is the convergence of the CE itself: ideally the clusters found 

to provide the most predictiveness should not change if the CE is converged or converging. 

Clearly, the size of the data set reflects this, but if every one of the clusters changes as data is 

added but the overall number of clusters doesn’t, this won’t be reflected. A “CE similarity score” 

(CESS) is devised here to directly assess this and is defined as the dot product of a normalized 

vector representing the CE, 𝑪𝑬𝒊	 with the normalized vector representing the previous CE, 

𝑪𝑬𝒊e𝟏:  

𝑪𝑬𝑺𝑺 = Ç
𝑪𝑬𝒊	
‖𝑪𝑬𝒊‖

É ∙ Ç
𝑪𝑬𝒊e𝟏
‖𝑪𝑬𝒊e𝟏‖

É (6.14) 

where 𝑪𝑬𝒊 is an occupation vector of 1’s and 0’s with as many components as there are potential 

clusters, each of which corresponds to the cluster ID numbers in Table 6.1 and Figures C2 and 

C3. If a cluster is present in the CE, its associated component is “1”. Otherwise, the component 

is “0”. As an example, if there were 10 potential clusters and the current CE was {1,2, 5, 7, 8}, 

the CE vector would be 𝑪𝑬𝒊 =	 〈1, 1, 0, 0, 1, 0, 1, 1, 0, 0〉. The CESS is thus defined between 0, 

(no similarity) and 1 (perfect similarity). This value is shown left-offset in orange in Figure 6.8B 

and 6.8D for the LMO- and LOO-determined CEs, respectively (note: offsetting to the left 

effectively places each CESS data point between the two CEs it compares). It should be noted 

that this value contains no information about the relative ECIs associated with the clusters. While 

a similarity score can be defined that includes this information (replacing the 1’s in the vector 
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with the clusters’ ECI values), such a definition is sensitive to the relative magnitudes of ECIs 

and will be biased toward the clusters with largest ECIs. Furthermore, the dot product would be 

defined from -1 to 1 due to potential sign changes and whether the dot product is greater than or 

less than 0 would be determined by the relative magnitude of same-sign and opposite-sign ECIs. 

For certain applications this definition could be useful, but for our purposes here, the CESS as 

defined in Equation 6.14 is preferable as it treats the presence or absence of any one cluster as 

equivalent to the presence or absence of any other cluster. 

With the terms defined, we can now discuss the final results of these “simulations” 

shown in Figure 6.8.  The first and most striking difference between the two internal CV 

methods is that the internal LOO-CV score trends upward and increases dramatically as the data 

set grows but that the internal LMO-CV score trends mostly downward and remains similar in 

magnitude to the RMSR. This means that the internal LMO-CV score reflects a more consistent 

fit to the data; the ECIs found from fits to the validation sets must be much more similar to the 

ECIs found from the final fit of the data. This is not the case for internal LOO-CV score. In fact, 

if the external CV score were not also being tracked, the internal LOO-CV score would indicate 

that more data was needed because, as an estimate of error, an internal LOO-CV score of nearly 

100 meV/site is far from acceptable (see the far-right values of the blue data series in Figure 

6.8C). On the other hand, the final internal LMO-CV score is 11.5 meV/site, which is a far more 

acceptable value (see the far-right values of the blue data series in Figure 6.8A). 

If we assume the external CV score and CESS are always tracked in a practical setting, 

these values would show that convergence occurred or is occurring after 172 structures were 

added to the dataset for the LOO-determined CEs. However, the CESS is not perfectly stable 

after 172 structures, a change to the CE occurred at 195 structures (see the last three CESSs, 
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orange data points, in Figure 6.8D) and would likely indicate that more data was required to 

finally declare convergence. The CESS does not show a single value of 1 up to this point, as 

well, showing that the CE is constantly changing as new data is added, often radically. On the 

other hand, the LMO-CV score fell below the RMSR after only 95 structures were added to the 

dataset and stayed there from then on with only one data point going slightly above it (with a 

value of ~1.33*RMSRs). The CESS from 95 to 155 structures in the dataset was 1, indicating the 

CE was perfectly stable throughout, as well. The CE did change after 155 but again remained 

stable thereafter.  

Interestingly, if the prior stable CE corresponding to the flat CESS in Figure 6.8B 

(between 95 – 155 structures) in the dataset is kept instead, we find that the external CV score, 

while slightly higher (no more than 2.3 meV/site), does not change drastically enough to affect 

the overall conclusion that the CE has converged. This is shown in Figure C5. Assuming that 

we’d declare the CE converged after 4 times of the CE not changing, the root mean difference in 

the ECI values from this point (138 structures in the dataset) to the final CE (204 structures in the 

dataset) is only 6 meV/interaction. These two CEs and their ECIs are shown in Table 6.2. 
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Table 6.2. ECIs (in meV) for the first stable CE in Figure 6.8A based on fitting to the first 138 structures 
in the dataset and the fit to the total 204 structures. Because they are inputted and don’t change, cluster 
number 1 and 2 (the adsorption energy and first nearest neighbor interaction, as defined in Equation 6.10 
and Equation 6.11) are not shown. 

  Structures in Data set 
  138 204 

C
lu

st
er

s i
n 

D
at

a 
se

t 

4 -50.9 -51.8 

11 -49.8 -48.0 

14 34.0 24.1 

16 -33.2 -21.4 

18 -41.9 -40.9 

23 17.6 22.9 

37 38.8 34.0 

56 71.3 63.8 

59 90.9 87.6 

60 -35.8 -31.8 

  

Finally, we note that we add structures in “batches” because this more accurately 

simulates the process by which one would typically construct a LG CE model. Typically, one 

would calculate the energies of new structures in a roughly continuous way and, as the dataset 

grows, wish to check if the CE is converged enough to stop new calculations. Unfortunately, 

finding the best CE given either the LOO- or LMO- CV scores is not instantaneous, and it is 

more pragmatic to determine the best CE for the current data set and allow a buffer of new 

calculations to build up in the meantime. The external CV score would ideally be determined 

from the prediction errors on this buffer of data. As such, while not a formal statement, it is 

reasonable to expect that a converged CE should have the external CV score fall below 1 – 2 

times the RMSR and remain there for at least 4 separate evaluations of the external CV score 

based on at least 10 new structures per evaluation. 
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6.6. Conclusions 

 We have presented here new computational and theoretical schemes and algorithms 

aimed at providing researchers with a tool for creating robust and arbitrarily complex 

multicomponent lattice gas cluster expansions based on ab initio data for surfaces and interfaces. 

These algorithms have been implemented in the Ab initio Mean-field Augmented Lattice Gas 

Model code (AMALGM). AMALGM is in its beta stage of development and can be made 

available to researchers upon request in the near future. The algorithms described herein are used 

on the O/Fe(100) system to illustrate the performance of AMALGM. This same system is used to 

demonstrate the desirability of the leave-multiple-out cross validation score over the popular 

leave-one-out cross validation score when used as the objective function for lattice gas cluster 

expansion optimization. The final release of AMALGM is expected to be written in a high-level, 

non-proprietary language (i.e. C++) that can be compiled on standard UNIX infrastructures with 

optional parallelization schemes. 
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Abstract 

 The promise of lattice gas (LG) cluster expansions (CEs) is that they can describe any 

system property to any level of accuracy since the orthogonal “cluster basis functions” have been 

shown to span the complete space of configurations available to any arbitrarily large surface of 

finite sites. Unfortunately, this is only true for the case of an ideal, fixed lattice decorated with 

components at precise lattice points (the lattice “sites”) with no distortions or relaxations 

subsequently allowed. Since most systems, and surfaces specifically, do not conform to such an 

ideal set of constraints, errors in the LG CEs must be expected or CE convergence severely 
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hampered. Beyond this, numerical errors in the provided data can complicate the proper 

construction of a truly predictive and/or physically significant CE. We show here how reliance 

on typical statistical tools like confidence intervals cannot be expected to provide an accurate 

representation of the uncertainty of the effective cluster interactions (ECIs) in the CE due to the 

nature of the target ab initio data and the nature of CEs themselves. We develop a method for 

estimating these errors that does not rely on statistical assumptions about the model or data. We 

then use these ECI errors to quantify the fundamental consequences on the uncertainty of ECIs in 

CEs built from O/Fe(100) data whose surface and adsorbates have been allowed to relax in the 

typical manner and from O/Fe(100) data whose surface and adsorbates are fixed in ideal lattice 

positions. We also quantify the effect of using a different density functional theory exchange 

correlation functional, using these ECI errors to assess the significance in any deviations. In both 

cases, our method is shown to have incredible utility in the quantification of errors in the ECIs of 

CEs. While we stick to the lattice gas convention in this work, the method is in principle equally 

applicable to the Ising convention. 

  

7.1. Introduction 

 Fitting cluster expansions (CEs)[1-4] to ab initio data—generally from density functional 

theory (DFT) calculations—is a well-established tool for the characterization and rationalization 

of alloy and surface behavior. The theory (and to an extent, the validity) of CEs relies on the 

treatment of systems as a configurational problem: that of decorating an ideal, fixed lattice with 

substitutional components.  Early on in the development of CEs, the effect of geometric 

relaxations in the underlying structural data used to fit the CE was recognized as an issue[5-12] 
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requiring special attention and having considerable consequence on the energetic behavior of the 

constituent system including (but not limited to) lowered miscibility-gap temperature,[5] 

incorrect predicted order structures,[8] and shifted density of states.[7] More recently, it has been 

suggested that these relaxations are in direct contradiction to the theory of CEs and that some 

supercell volume/concentration-dependency needs to be included in the effective cluster 

interactions (ECIs) of CEs or else the CE will fail.[4, 13] The idea behind concentration-

dependent ECIs is that in, e.g., substitutional alloys the higher concentration of one component 

over another will cause the unit cell to shrink or expand to accommodate the extra atoms 

(depending on the relative covalent radii of the components). If the unit cell of an alloy shrinks 

or expands, the distance between nearest neighbors shrinks or expands accordingly and the same 

energetic contribution, or ECIs, should not be expected from clusters made up of these nearest 

neighbors across unit cells of varying size. Interestingly, volume-dependent ECIs were indeed 

used long before this in the early 1990s,[14, 15] but they appear to have fallen out of favor since 

then. Nonetheless, the consequences of geometric relaxations are still of active interest within the 

community of CE developers/users,[4, 16] but a method for directly quantifying their effect on 

the CEs themselves is still missing. 

 Here, we are specifically interested in the lattice gas (LG) model[17, 18] and how internal 

geometric relaxations of surface/adsorbate system calculations affect fitted LG CEs. In such 

calculations, the supercells used are typically not allowed to relax, meaning the volume is 

constant and concentration-dependent ECIs, as proposed by Sanchez,[4] will not capture the 

effect of relaxations in our LG CEs. However, internal relaxations of the supercell’s constituent 

atoms are allowed. Due to the presence of a vacuum layer and often significant surface void 

space, these internal relaxations can be quite severe—perhaps more so than in substitutional 
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alloy systems. Despite this, concentration-independent ECIs are also important to the 

interpretation of ECIs in the LG paradigm, and so we are inclined to assume they will remain a 

mainstay of LG CE development. In this case, our aim is to quantify the uncertainty in these 

ECIs due to relaxations. As the ECIs within LG CEs are typically fit to ab initio data, another 

important factor in the ECI uncertainty energy variations induced by the choice of exchange 

correlation function, so we take the opportunity to also assess the uncertainty of ECIs due to this 

variable.  

 In order to quantify the extent to which geometric relaxations (away from ideal lattice 

positions) and DFT functional affect the quality of CEs, our goal is to assess, quantitatively, the 

uncertainty in CE’s ECIs. Since CEs are generally constructed via a linear regression procedure, 

it is tempting to appeal to the statistics of linear regression for this purpose since Analysis of 

Variance (ANOVA) and subsequent confidence intervals (CIs) are often used for precisely this 

purpose. Unfortunately, the legitimacy of these statistics is based on three basic assumptions[19] 

that ab initio data and CEs do not uphold: (1) normality—that the residuals are normally (or at 

least likewise) distributed with a mean value of zero, (2) homoscedasticity—that the model 

independent variables (the ECIs) are distributed equivalently (e.g. same variance) about their 

mean value, which is taken to be the true underlying value, and (3) independence—that the 

independent variables (again, the ECIs) are uncorrelated. Because the ab initio data we wish to 

use in fitting CEs have errors unrelated to the kind of random sampling error seen in 

experimental data, it is not difficult to see that the first assumption, normality, is very likely 

violated. More crucially however, the second and third assumptions, homoscedasticity and 

independence, are violated by the very nature of CEs themselves. This is because higher-body 

ECIs are expected to have sequentially lesser effect on the final energies or else truncating the 
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CE would not be possible (violation of assumption 2). Also, since higher-body clusters are built 

up from lower-body clusters (e.g. the removal of any of the 3 two-body clusters making up a 

three-body cluster will always result in the removal of that three-body cluster) the ECIs will 

absolutely be correlated (violation of assumption 3). Thus, we should not at all expect CIs (or 

other ANOVA-derived statistics) to be representative of the CE’s true uncertainty. 

  Here, we will present a method for determining “ECI errors” that avoids statistical 

assumptions in their entirety. Instead we rely on a direct sampling procedure that takes advantage 

of our convergent implementation[20] of the leave-multiple-out cross-validation (LMO CV) 

score[21]. These ECI errors are then used to allow a direct comparison of four similar systems 

wherein atoms are either fixed or allowed to relax to their simultaneous energetic minimum; and 

wherein a standard generalized gradient approximation (GGA) functional and a van der Waals 

containing functional are used.  
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7.2. Theory and Formulation 

7.2.1. Defining ECI errors 

 

Figure 7.1. Illustration of the pertinent information extracted during the calculation of the LMO CV score 
starting from (A) the complete set of data comprised of 𝑵 structures where all specified possible cluster 
‘counts’ are included. A subset of clusters corresponding to the chosen CE is extracted from all structures 
becoming the training set used for (B) evaluation of the LMO CV score. The data (known structures) are 
split into various (ideally) random subsets of size (𝟏− 𝒂)𝑵 (the construction set) and 𝒂𝑵 (the validation 
set) where 𝒂 is the “fraction left out.” The data needed to evaluate the ECI errors are sequestered and 
shown in (C), while the data needed for the evaluation of the LMO CV score is sequestered and shown in 
(D). 

Our procedure for determining ECI errors is shown in Figure 7.1. Once a complete data 

set of 𝑁 ab initio structural data (which contains a CE “fingerprint” for each structure along with 

their computed ab initio energies) has been collected (Figure 7.1A), the “training set” can be 

extracted, which is simply the complete data set with a subset of cluster “counts” selected to 
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form a potential CE (thus implicitly setting all other possible cluster ECIs to zero). As shown in 

Figure 7.1B, this training set is then split into a “construction set” (CS) and a “validation set” 

(VS). The split is ideally made by selecting a random subset of 𝑎𝑁 structures (where 𝑎 is the 

“fraction left out”) to be the VS and then using the remaining (1 − 𝑎)𝑁 structures as the CS (we 

use 𝑎 = 0.6, based on the recommendations of Baumann[21] and considerations described 

elsewhere[22, 23]). We denote each split and corresponding CS/VS subset of structures with 

index 𝑘 and the ECIs are then fit to the CS data to provide a set of ECIs specific to that	𝑘K\ 

subset of CS structures: §𝐸𝐶𝐼v
(V)©, where 𝑗 demarks the 𝑗K\ cluster in the chosen CE and 

superscript (𝑘) denotes from which CS subset the ECI was fit. From this newly created CE 

model, the energies of the structures in the VS (which were not used in the previous fitting) are 

then predicted (𝐸2æ
(V) for the 𝑖K\ structure; a “hat” denoting prediction) and compared against their 

actual computed energy values (𝐸æ). A root mean squared prediction error is then assessed for 

that 𝑘K\ split as  

𝐶𝑉V = Î
1
𝑎𝑁8«𝐸2æ

(V) − 𝐸æ¬
7

�q

æ

Ï

j
7

 (7.1) 

The LMO CV score is calculated as the root mean squared 𝐶𝑉V across some 𝑀 random splits of 

the training set data (making it the root mean squared error of all predictions): 

𝐶𝑉 = 4
1
𝑀8𝐶𝑉V7

¬

V

D

j
7

 (7.2) 

The number of cuts required (𝑀) is chosen so that the LMO CV score converges to some 

tolerance (more on this value in section 7.3.5). The optimum CE for a data set is that which 
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produces the lowest LMO CV score and the final model ECIs are assessed by fitting to the entire 

training set, §𝐸𝐶𝐼v
(∗)©, where superscript (∗) denotes the final model “ultimate” ECI . 

 To directly assess the “ECI errors,” the data shown in Figure 7.1C is collected alongside 

the data needed for the evaluation of the LMO CV score in Figure 7.1D as described above. As 

different training set splits are made, a different 𝐸𝐶𝐼v
(V) is produced, unique to the subset of 

structures in the CS. Since the CS has fewer structures than the total training set, we can expect 

these values to be “better” solutions for those structures and the deviation of these values from 

the final ECI (𝐸𝐶𝐼v
(∗)), a good indication of the potential variance in that ECI. However, at the 

same time, if the model produced with 𝐸𝐶𝐼v
(V) gives a poor prediction error in the VS (i.e. a high 

𝐶𝑉V or low 1 𝐶𝑉V⁄ ) we lower the significance of that deviation (whether initially large or small). 

We do this by weighting each deviation with a value proportional to  1 𝐶𝑉V⁄ . These 

considerations result in the following equation: 

𝜀v = Î
1
𝑀8𝑤V«𝐸𝐶𝐼v

(V) − 𝐸𝐶𝐼v
(∗)¬

7
¬
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 (7.3) 

where 𝜀v is the “ECI error” and 𝑤V is a weighting factor that accounts for the aforementioned 

poor prediction behavior: 

𝑤V = 𝑀

1
𝐶𝑉V7

9∑ 1
𝐶𝑉V7

¬
V =

 (7.4) 

which uses the square of the LMO CV score so that the weight on the absolute deviation is in 

fact proportional to 1 𝐶𝑉V⁄ , and which is then normalized such that the sum of all 𝑤V is the 
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number of training sets cuts performed, 𝑀, and designed to give greater weight to 𝐸𝐶𝐼v
(V) 

deviations that produce better predictions in the VS. An unweighted version of Equation 7.3 

would have 𝑤V set to 1.  

A difficulty arises in the evaluation of the LMO CV score that deserves mentioning here. 

Due to the random nature of the training set splits, some structures can become over (or under) 

represented in the various 𝑀 number of VS’s. This is illustrated in Figure 7.2A – 7.2C. The bias 

can be quantified by defining a “VS residence” vector, 𝐯, with 𝑁 components {v;}, one for each 

structure in the training set, initially starting at 0 (Figure 7.2A). The bias is then defined as 

𝐵𝑖𝑎𝑠 = max[𝐯] − min[𝐯] (7.5) 

As structures are randomly assigned to the VS, their presence is marked by an increment in its 

VS residence (Figure 7.2B) and the build-up of bias becomes apparent after a subsequent split of 

the training set, where due to the random nature of the cuts, some structures are added twice 

while others are left out twice (Figure 7.2C). A CV score based on these two training set splits 

would be biased toward the structures overrepresented in the VS’s. To fix this, the 

underrepresented structures are constantly identified and added to the next validation set, with 

any remainder being chosen at random. This is shown in Figure 7.2D. If this is done 

continuously, the degree of non-randomness is kept to a minimum and the bias can be kept to 

below 2, which at large enough M is for all practical purposes completely unbiased. 
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Figure 7.2. Demonstration of bias build up (orange shaded regions) and bias removal (green shaded 
region). (A) The initialization of the “VS residence” vector defined in the main text before Equation 7.5. 
(B) The training set is split into a validation set (VS) and construction set (VS) choosing 𝒂𝑵 structures at 
random in order to form the VS. The VS residence vector indices corresponding to the 𝒂𝑵 structures 
chosen are incremented by 1. (C) The same process in (B) is repeated and the formation of a bias in the 
structures chosen to be in the VS becomes apparent. (D) To remove the bias, those (𝑵𝒙) structures that 
have been underrepresented are identified (red font and arrows) and added to the VS before the remaining 
(𝒂𝑵−𝑵𝒙) VS structures are chosen at random to finish forming the VS. In so doing, the bias is reduced. 

 In order for all these procedures and formulae to be visualized, an LMO CV score 

calculation is shown in Figure 7.3 where the incremental CV score is allowed to converge 

without bias removal in order to demonstrate bias build-up and the resultant behavior in the 

evaluations of 𝐶𝑉V and 𝑤V before and after bias removal is implemented (as shown in Figure 

7.2). As can be seen in Figure 7.3A and 7.3B, the random sampling of the data is largely 

unaffected by the bias removal, and importantly, the incremental CV score starts converging to a 
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completely different result after the bias is removed, showing in this case that the sampling was 

biased towards structures that were better predicted (since it was converging to a lower CV 

score) than other structures in the data set. The 𝑤V values distribute about a value of 1 in a way 

consistent with the development of Equation 7.4. The point at which bias removal begins is 

apparent in Figure 7.3D, where a bias of nearly 75 had accumulated shortly before 1000 training 

set splits were made where it is evident that the bias removal algorithm shown in Figure 7.2 

performs very quickly and efficiently. It is important to note that, in practice, the bias removal 

algorithm is always implemented from the start of the LMO CV score calculation with negligible 

effect on the final converged CV score.  

 

Figure 7.3. Visualization of various quantities calculated during the evaluation of the LMO CV score and 
corresponding ECI errors: (A) 𝑪𝑽𝒌 as defined in Equation 7.1 and Figure 7.1 for each 𝒌𝒕𝒉 training set cut 
as also illustrated in Figure 7.1; (B) the weight, 𝒘𝒌, applied to each squared ECI deviation of Equation 
7.3; (C) the incremental LMO CV score as calculated up to the current 𝒌𝒕𝒉 training set cut (i.e. the root 
mean squared value of the preceding data in (A)); and (D) the bias as defined in Equation 7.5. 
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7.2.2. Data Sets and Methodology  

 Our primary motivation for developing the procedure for determining ECI errors is to be 

able to quantify the uncertainty in CEs brought about by geometric relaxations and choice of 

exchange correlation functional. To do this (and also demonstrate the implementation of the 

procedure outlined in the previous section), we have developed a LG CE for four different 

systems: (1) the relaxed-O/Fe(100) RPBE system, using the raw data from Bray et al.,[24] (2) for 

the fixed-O/Fe(100) RPBE system using data produced for this work, (3) for the fixed-O/Fe(100) 

optB88-vdW system, using data again produced for this work, and (4) relaxed-H/Fe(100) system 

using the raw data from Henlsey et al.[25]. In the O/Fe(100) systems, O adatoms are confined to 

the 4-fold hollow sites of the Fe(100) surface (which is the most favorable site[24]), while in the 

H/Fe(100) system both 4-fold hollow and bridge sites are included due to their similar adsorption 

energies; a pseudo 3-fold hollow site was also included in the work of Hensley et al.[25] due to 

massive lattice relaxations during their optimizations (hence why this system is of interest here). 

In the “relaxed” systems, the top two layers of the Fe(100) model slab and adatoms were allowed 

to relax completely during geometric optimization, while in the fixed systems, the atoms of the 

Fe(100) slab and the O adatoms are kept fixed in their “ideal” positions (i.e. the clean surface 

geometry and the O in the direct center of the 4-fold hollow site at its ideal height for an isolated 

O adatom on that fixed surface). The data produced for this work, i.e. “fixed” O/Fe(100) 

systems, were generated in an automated manner using the Alloy Theoretic Automated Toolkit 

(ATAT)[26-28] while the lattice gas models were found by fitting to the adsorption energies of 

all data and optimizing using our recently developed Ab initio Mean-field Augmented Lattice 
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Gas Modeling (AMALGM) code[29]. Computational methodology for the ab initio calculations 

is given in Appendix D. The ab initio adsorption energies for all systems along with their LG CE 

predicted adsorption energies can be seen in Figure 7.4 with their final LMO CV scores and root 

means squared residuals (RMSRs). The corresponding clusters for these systems are shown in 

Figure 7.5. Note that while the clusters shown for the O/Fe(100) systems (Figure 7.5A – 7.5C) 

are exhaustive, only the clusters with ECI magnitudes greater than 10 meV are shown for the 

H/Fe(100) system (Figure 7.5D) because this system has more than double the number of 

clusters than the O/Fe(100) systems.  

 

Figure 7.4. DFT-calculated and LG-predicted adsorption energies for (A-C) the O/Fe(100) system and 
(D) the H/Fe(100) system. In (A) and (B), the Fe lattice is fixed in its bulk position and the O is fixed in 
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the ideal position for an isolated O atom on this fixed lattice. In (C) and (D), both adsorbate and top two 
layers of the lattice are allowed to fully relax. The RPBE functional was used in (A) and (C), while the 
optB88-vdW functional was used in (B) and (D). The predicted ground states are denoted GS in the 
legends. Note that the x-axis in (D) ends at 3.0 ML instead of 1.0 ML due to the greater complexity and 
configurational space spanned in the H/Fe(100) system (see Ref. [25]). 

 

Figure 7.5. Clusters and their cluster IDs corresponding to the optimum LG CEs found for the systems 
shown in Figure 7.4: (A) relaxed-O/Fe(100) RPBE, (B) fixed-O/Fe(100) optB88-vdW, (C) fixed-
O/Fe(100) RPBE, and (D) relaxed-H/Fe(100) optB88-vdW. The color of the adatoms corresponds to the 
color coding established in Figure 7.4, with red circles, green circles, and blue circles denoting oxygen 
atoms in their respective system; and orange circles denoting hydrogen atoms. The gold circles denote 
iron atoms. 
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7.3. Results and Discussion 

7.3.1. Visualization of the ECI errors 

Before analyzing and comparing the ECI errors found for the optimum LG CEs produced 

for the four systems shown in Figure 7.4, we wish to explicitly allow the reader to visualize the 

direct sampling being made in the evaluation of the ECI errors as defined in Equation 7.3 as the 

interpretation of ECI errors is contingent upon the behavior of the ECI deviations from which 

they are derived. Figure 7.6 shows the quantity in curly brackets in Equation 7.3 collected over 

all training set splits needed to converge the respective LMO CV scores for the relaxed-

O/Fe(100) RPBE (Figure 7.6A – 7.6B) and fixed-O/Fe(100) RPBE systems (Figure 7.6C – 7.6D) 

using both the optimum LG CEs for the relaxed system (Figure 7.6A and 7.6C) and the fixed 

system (Figure 7.6B and 7.6D). It is immediately apparent when comparing the relaxed-

O/Fe(100) to the fixed-O/Fe(100) system that the ECI deviations in the relaxed system have an 

overall greater variation (~175% greater) than in the fixed system regardless of what CE is used, 

suggesting greater uncertainty in the relaxed system ECIs that is fundamentally unavoidable. 

This is apparent because, while the ECI deviations are greater in both systems when using their 

non-optimum LG CEs, the non-optimal CE for the fixed system (Figure 7.6C) still displays less 

variation (relaxed system displays ~70% greater overall variance) in its ECI deviations than the 

optimum CE for the relaxed system (Figure 7.6A).  
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Figure 7.6. Illustration of how the weighted ECI deviations ultimately distribute about zero for each 
respective cluster in the displayed CE. Panels (A – B) show these results for the relaxed-O/Fe(100) RPBE 
system while panels (C – D) show results for the fixed-O/Fe(100) RPBE system. To compare the two on a 
one-to-one basis, the optimized CE for the relaxed-O/Fe(100) RPBE system is used in A and C while the 
optimum CE for the fixed-O/Fe(100) RPBE system is used in B and D. The LMO CV scores and RMSRs 
for these systems are shown inset for context.  

It is important to comment, for the interpretation of the ECI errors we wish to report, that 

the values in Figure 7.6 distribute nearly symmetrically about 0 meV for all of the clusters. This 

suggests that their root mean squared value (i.e. 𝜀v from Equation 7.3) can indeed be used as a ± 

“standard deviation” of the distribution for the final ECIs. A “two sigma” value (i.e. two times 

the root mean squared value) accurately captures the height of these data and we will therefore 

use ±2𝜀v as the reported ECI error and to determine ECI significance. For comparison, the 

unweighted version of these distributions of ECI deviations are shown in Figure D2. We should 

note that, in this work, the ECI error values derived from the unweighted version is negligibly 

different (<1 meV) from the weighted version. 

 

 



 

 210 

7.3.2. Quantifying Uncertainty Due to Relaxations and DFT Functional 

We first compare ECIs and their ECI errors for the O/Fe(100) systems to illustrate the 

quantitative errors induced in CEs by geometric relaxations and choice of exchange correlation 

functional in the underlying ab initio data. Figure 7.7 shows the ECIs (colored columns) and 

their associated “two sigma” ECI errors (black error bars) for these systems. The relaxed-

O/Fe(100) RPBE system is compared directly to the fixed-O/Fe(100) RPBE system using their 

respective optimum CEs in Figures 7.7A and 7.7B; the ECI errors for these systems are derived 

from the data shown in Figure 7.6. Based on the LMO CV scores for these two systems when 

using the optimum LG CE for the relaxed-O/Fe(100) RPBE system (Figure 7.7A), the fixed 

system (in blue) is actually quite amenable to using a non-optimal CE (its LMO CV score 

increases to 14.1 meV/O from its optimum value of 11.1 meV/O—only a 27% increase) and is 

still more predictive than the optimum value for the relaxed system (23.8 meV/O). We are 

therefore very confident in the direct comparison between these two systems. The relaxed system 

LMO CV score increases by a similar amount (28%) when using the optimum LG CE for the 

fixed-O/Fe(100) RPBE system (Figure 7.7B), but the disparity between the two CV scores is 

great enough that we are less confident in their direct comparison. We therefore turn to Figure 

7.7A for our analysis first.  
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Figure 7.7. Comparison of the (A – B) relaxed-O/Fe(100) RPBE (red bars and text) vs. fixed-O/Fe(100) 
RPBE (blue bars and text) systems; and comparison of the (C – D) fixed-O/Fe(100) optB88-vdW (green 
bars and text) vs. fixed-O/Fe(100) RPBE (blue bars and text) systems. The optimum CE for each data set 
is used to allow direct comparison of ECIs and ECI errors. The ECI errors are shown as black error bars. 
Due to magnitude discrepancy, the isolated O/Fe(100) adsorption energy, Eads,O (corresponding to cluster 
ID #1), is shown in the inset in each panel. The LMO CV score and RMSR are also shown as insets with 
the appropriate color coding established in Figure 7.4. 

An interesting feature of the ECIs in Figure 7.7A themselves is that their character (i.e. 

repulsive vs. attractive) is essentially the same between the fixed vs. relaxed systems. Only 

cluster #63 shows contrary character in the two systems, but only barely (-1 meV vs +7 meV in 

the fixed and relaxed systems respectively). This suggests that relaxations do not necessarily 

serve to reverse the most basic physics of the underlying system. However, this is not necessarily 

true if the ECI errors are taken into account, which indicates that for many structures in the data, 



 

 212 

ECI values could in fact be repulsive, attractive or simply 0 meV. It is for this reason that we 

must deem ECI values with magnitudes less that their ECI errors to be insignificant, and in 

Figure 7.7A, this is true of clusters 5, 6, 19, 21, 24, 63, 96, and 110 for the fixed system. For the 

fixed system in Figure 7.7A, such an effect is mostly due to the fact that the ECI magnitudes are 

small to begin with (recall that this is a non-optimal LG CE for this system). In the relaxed 

system, only clusters 63 and 96 are insignificant and again primarily because their ECI 

magnitudes are small. However, comparing between the two systems we can see that for all 

clusters except 24 and 110, the fixed and relaxed systems’ ECI error bars overlap. The relaxed 

system ECI errors are on average 10 meV greater than then those in the fixed system suggesting 

that the overlap can be primarily blamed on the increased uncertainty in the relaxed system ECIs. 

This suggests that there are structures within the relaxed data set that could be better predicted 

using the fixed system ECIs.  

It is important to clarify, however, that this apparent equivalence does not mean that the 

final fixed system LG CE can be used in place of the relaxed system LG CE. On the one hand, 

there is no way to know a priori what this “essentially same” LG CE for the fixed system is as it 

is not its optimum CE. On the other hand, it was a set of ECIs that provided better agreement to 

the energies, not just a single perturbation to a single ECI value—meaning, as we’ve stated 

previously, that the errors are correlated—so we cannot expect to get better fits from just any set 

of ECIs that fall within the error bars. Nonetheless, this does mean that we are highly uncertain 

that the final ECIs in the relaxed system will accurately predict the energetic consequences in the 

relaxed structure data that are outside the training set much better than if those data were based 

on fixed structures. While this does not mean that relaxations cannot be captured by CEs, it does 
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mean that it is incredibly important to be able to quantify the uncertainties inherent in their 

inclusion, and our method provides exactly that. 

The results shown in Figure 7.7C and 7.7D, comparing the fixed-O/Fe(100) RPBE 

system (blue bars) to the fixed-O/Fe(100) optB88-vdW system (green bars), demonstrate the 

consequences brought about by a change in the DFT functional. Here, the LMO CV scores are 

both small and comparable allowing for the direct comparison of both CEs used. Strikingly, the 

error bars again overlap for virtually every cluster in either Figure 7.7C or 7.7D; only the 

adsorption energy and 1st nearest neighbor (NN) (Cluster #2) are shown to be significantly 

different. However, this time, there is only a 2 meV discrepancy in average ECI errors, so this is 

due to the ECIs themselves being practically equivalent for all clusters (again except for the 

adsorption energy and 1st NN). Thus, in this case, we have shown that the primary consequence 

of using a different DFT functional is in the adsorption energy and 1st NN, but in practically no 

other terms. Even discounting the error bars, there is only one cluster (#50 in Figures 7.7D) that 

is large enough and different enough to be consequentially different (a 24 meV difference). This 

corresponds to a fairly standard “usual suspect”: the most compressed square 4-body interaction 

(Cluster #50 in Figure 7.5A). This means that, in principle, one need not actually collect an entire 

dataset of structures using a new functional, but instead simply calculate a handful of interactions 

corresponding to the “usual suspects” and replace these in an already optimized CE. This of 

course is only potentially true in these fixed systems, but given the uncertainty shown in the 

relaxed system, this result may well be universal.  
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7.3.3. Uncertainty in the H/Fe(100) system 

 Here, we expand our consideration of ECI error quantification of relaxations in a more 

complex system, namely H/Fe(100). In this system, both 4-fold hollow and bridge sites were 

included, but due to massive geometric relaxations of the underlying Fe(100) lattice that are a 

function of hydrogen coverage, a pseudo 3-fold hollow had to be added to the site definitions in 

the LG CE.[25] This added complexity along with the underlying severity of relaxation makes 

for an ideal test case for the analyses already laid out in Section 7.3.2.  

 As can be seen in Figure 7.8, the ECI errors assessed for the H/Fe(100) system are 

significant. This leads to high uncertainty in the resulting ECIs. Despite this, none of the 

insignificant ECIs are greater than 10 meV, meaning that the insignificant ECIs would likely 

have little effect on the chemical behavior for the LG CE. Thus, despite the massive geometric 

relaxations present in this system, the LG CE has captured the most important physical 

interactions even with a quantitatively larger degree of uncertainty in their exact values than 

those for the O/Fe(100) systems. This is also reflected in the reasonably low LMO CV score of 

18.4 meV/H (Hensley et al. [30] fit their LG CE to the data’s surface energies, providing a value 

of 11.5 meV/unit cell, which is difficult to compare to our values fitted to adsorption energies 

due to different normalization). It is also worth noting that the majority of the most significant 

ECIs (e.g. Clusters 30, 49, 284, 305, and 325) involve both 4-fold hollow and bridge sites 

showing that the increased complexity of this system is being captured. Nonetheless, these 

interactions have non-negligible ECI errors and thus high uncertainty, making it difficult to 

determine if one source of uncertainty is not the increased complexity itself. Based on the results 

from section 7.3.2, however, we can definitely say that a very major component contributing to 
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these uncertainties is geometric relaxation. Also, it is clear from these results that even weakly 

bound adatoms like hydrogen can produce quantitatively high ECI uncertainty.  

 

Figure 7.8. ECIs with their corresponding ECI errors for the optimized CE of the H/Fe(100) optB88-vdW 
system. Due to magnitude discrepancy, the isolated H/Fe(100) adsorption energies, Eads, (corresponding 
to clusters #1, #2, and #3) are given in the inset. 

 

3.4. ECI errors vs. Confidence Intervals 

 To explicitly illustrate the difference between ECI errors and the more customary Student 

t-test based 95% CIs, we present both side by side for the relaxed-O/Fe(100) RPBE and fixed-

O/Fe(100) RPBE systems in Figure 7.9. The 95% CI are constructed from Equation 7.6: 

95%	𝐶𝐼v = 𝑡ej(𝑁 − 𝑥; 0.95)
𝑅𝑀𝑆𝑅
𝜎v

	 (7.6) 
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where 𝑡ej(𝑁 − 𝑥; 0.95) is the inverse cumulative Student-t distribution with 𝑁 − 𝑥 degrees of 

freedom and a bound of 0.95, 𝑁 is the number of structures in the training set, 𝑥 is the number of 

clusters specified in the CE, and 𝜎v is the square root of the variance, 𝜎v7, in cluster 𝑗 which is 

found from 

𝜎v7 = [(𝐴Ö𝐴)ej]	vv 	 (7) 

where 𝐴 is the (𝑁 × 𝑥) design matrix used in regression, (𝐴Ö𝐴)ej is the variance-covariance 

matrix[31], and [(𝐴Ö𝐴)ej]	vv is the 𝑗K\ diagonal of the variance-covariance matrix.  

Figures 7.9A – 7.9D show immediately that the ECI errors are not equivalent to their 

cluster’s corresponding 95% CIs and that not even trends are the same between the two. For 

example, the 95% CIs for the fixed system (Figure 7.9A – 7.9B) are indeed smaller than for the 

relaxed system (Figure 7.9C – 7.9D), which is qualitatively similar to the ECI errors, but this is 

most likely due to the better fit to the data set (i.e. lower RMSR) as will be explained shortly. 

While the 95% CI appear to capture this basic property, it is important to remember that the form 

of Equation 7.6 is based on the (violated) assumptions presented in section 7.2.1. Thus, we 

should still not expect these values to be accurate representations of the uncertainty in these 

systems. This leaves only the question of whether or not our method for determining ECI errors 

are simply capturing the fixed system’s better fit to the CEs as this is the largest factor 

controlling the CIs.   
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Figure 7.9. Comparison of ECI errors against 95% CIs for the fixed and relaxed O/Fe(100) RPBE 
systems using the optimized CE for the relaxed system (left column) and the optimized CE for the fixed 
system (right column).  

As shown in Equation 7.6, there are three factors that control the value of the CI: the 

inverse cumulative student-t distribution, the data variance, and the RMSR. With a large enough 

degree of freedom, 𝑡ej(𝑁 − 𝑥; 0.95) approaches the inverse cumulative normal distribution 

which produces the same output regardless of data set size, and our data set sizes are large 

enough that this is the case here. The variance-covariance matrix from which the variance is 

derived is a function of the structural fingerprints alone, meaning that regardless of the energies 

of the structures in the dataset, any two data sets with the same structures (say one where the 
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atoms are allowed to relax and one where they are fixed) will output the same variance. The 

O/Fe(100) data sets here are not exact replicas of each other, but the number of dissimilar 

structures is quite low. The RMSR, it would therefore seem, is the main controller of the 95% 

CIs here. We can then ask if this dependence on the RMSRs is also true of our ECI errors or if 

they in fact capture something more. 

To answer this question, we scale up the fixed system ECI errors such that its RMSR 

matches that of the relaxed system and present the results in Figure 7.9E – 7.9F. This is also 

done to the 95% CIs and presented in Figure 7.9G – 7.9H to show the degree of control of the 

RMSR. As expected, the fixed system 95% CI is quite nearly a perfect match to the relaxed 

system 95% CI after being scaled up, especially when the relaxed system optimum LG CE is 

used (Figure 7.9G). There is clearly more influence from the variance when the optimum LG CE 

for the fixed system is used (Figure 7.9H), but the match is still quite significant. This is not true 

at all for the ECI errors in Figure 7.9E – 7.9F. In fact, even despite the RMSR scaling, the 

nearest neighbor ECI errors (clusters 2 – 6) for the fixed system are still significantly smaller 

than for the relaxed system, showing that the ECI errors capture the fundamental ideality in the 

fixed system that is being lost in the relaxed system. The scaled ECI errors for the higher body 

clusters (clusters 17 – 110) in the fixed system (Figure 7.9E) are generally significantly larger 

than the ECI errors in the relaxed system when the fixed system is fit to a non-optimal CE (i.e. 

the optimum CE for the relaxed system). This suggests that the better fit to the data (i.e. the 

lower RMSR) of the fixed system is what is primarily being reflected in the overall lower ECI 

errors in the higher body clusters seen in the fixed system CEs when a non-optimal CE is used. 

However, when the optimum CE for the fixed system is used, every scaled ECI error is smaller 

than for the relaxed system. This suggests that there is some connection between the minimizing 
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of the LMO CV score (leading to the optimum CE) and what property of the system is being 

primarily captured by the ECI errors. This is perhaps unsurprising since the ECI errors are found 

from the CS’s used in the determination of the LMO CV score.  

 

7.3.5 Practical Considerations: Effect of Convergence Criteria 

 In the preceding sections, we have presented data taken from the numerous calculations 

of LMO CV scores (and associated ECI errors) using an excessively stringent convergence 

criteria (“CV tolerance”) of 10e½ eV to avoid any potential issues of convergence. However, this 

is a burdensome tolerance criterion resulting in computationally onerous time requirements and 

choosing a lower tolerance would increase the practicality of our method. A lower tolerance in 

effect lowers the number of training set splits needed to converge the LMO CV score (“𝑀” in 

Figure 7.1) and thus the amount of time required to arrive at a suitable value. Furthermore, we 

would expect that the stochastic nature of the training set splits will result in some uncertainty in 

the final overall value of the CV score and ECI errors but that increased splits will reduce this 

uncertainty. This deserves explicit testing. To do this, we specify a simple, non-optimal CE 

containing clusters 1 through 10 for the relaxed-H/Fe(100) optB88-vdW system and then 

calculate the LMO CV score and ECI errors 50 times for each of a range of CV tolerances. The 

results are shown in Figures 7.10 and 7.11.  
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Figure 7.10. (A) The average number of training set cuts required to converge the LMO CV score of a set 
CE for the relaxed-H/Fe(100) optB88-vdW system to the tolerance specified on the x-axis (units in eV) 
over 50 separate runs of the algorithm presented in Figure 7.1, and (B) the corresponding average LMO 
CV Score with two standard deviations of the 50 runs shown as error bars. 

Figure 7.10A shows the relationship between the CV tolerance (in eV) and the average 

number of splits required to reach that tolerance, M, and Figure 7.10B shows the corresponding 

average LMO CV score with error bars indicating two standard deviations of the 50 LMO CV 

scores calculated at each CV tolerance. There is a very linear positive dependence between the 

logarithm of the (average) number of splits and the negative logarithm of the CV tolerance 

selected demonstrating that a magnitude decrease in the CV tolerance results in a magnitude 

increase in the number of splits (and thus time) required. Remarkably, the calculated LMO CV 
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scores are largely stable across all convergence criteria and the uncertainty (error bars) remains 

effectively the same with no appreciable reduction as the CV tolerance is decreased from 10e� 

eV to 10e½ eV (left to right in both Figures 7.10 and 7.11). This LMO CV score uncertainty is 

approximately ±1 meV/H, which means our method of calculating the LMO CV score is 

sufficiently reliable even at the least stringent convergence criteria for this system. However, this 

is not true for the ECI errors. 

 In Figure 7.11, the ECI errors for each cluster in the CE used, clusters 1 – 10, as a 

function of the set CV tolerance for LMO CV score convergence. The ECI error values are not as 

stable across the range of CV tolerances as was the case for the LMO CV score, and as the CV 

tolerance is decreased (made more stringent), the maximum uncertainty in their values decreases 

significantly, appearing to converge to less than ±1 meV by a CV tolerance of 10e6.6 eV and less 

than ±0.5 meV by 10e¾ meV. For the purpose of determining an ECIs significance, a ±1 meV 

uncertainty is more than sufficient, and since the certainty in the LMO CV score is ±1 meV/H 

regardless of the CV tolerance chosen, we would regard a CV tolerance of 10e6.6 eV a 

reasonable default value—assuming that the H/Fe(100) system is a representative, worst case 

scenario for ECI errors. Importantly, at a CV tolerance of 10e6.6 eV, only ~1000 training set 

splits are typically required, and in our lab, this takes less than a couple of seconds to achieve. 

While this is encouraging, this type of convergence analysis should be performed as a general 

rule for the individual system of interest. 
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Figure 7.11. Average ECI errors for clusters within a set CE for the relaxed-H/Fe(100) optB88-vdW 
system found over 50 separate calculations of the LMO CV score at the specified tolerance. Two standard 
deviations of the 50 runs are shown as error bars demonstrating at which tolerance the ECI errors 
converge. The corresponding ECI values for these clusters are given in the inset. Note that while the 
bounds change, the y-axes in panels A – J are the same size (16 meV). 

 

 

 



 

 223 

7.4. Conclusions 

 We have demonstrated here a method for quantifying the uncertainty in CE ECIs free 

from major statistical assumptions. We provide the expression and process needed to calculate 

these “ECI errors” and have demonstrated their use in specifically quantifying the effect of 

geometric relaxations and functional used in the underlying structural data. As has been 

described previously, geometric relaxations do indeed cause greater degrees of uncertainty in the 

quality of the ECIs, and our method shows quantitively that this corresponds to a general 

doubling of the ECI errors in CEs built from data where relaxations were allowed as compared to 

a model where atoms were fixed in ideal lattice positions. This result does not mean that the 

energetic consequences of relaxations cannot be captured in CEs but does point to the need for 

being able to quantify the degree of uncertainty that results from them. ECI errors were also able 

to reveal that the effect of DFT functional is primarily to change the adsorption energy and 1st 

nearest neighbor ECIs, potentially precluding the need to calculate whole new data sets to build 

CEs for systems when only the functional is changed. This would allow for the quick screening 

of functionals when attempting to build CEs.   

 ECI errors are calculated as part of our recently implemented convergent version of the 

LMO CV score, and the worst case uncertainty in the LMO CV score due to the stochastic nature 

of the method was shown to be ±1 meV/adsorbate for the H/Fe(100) system while the 

uncertainty in the ECI errors can be brought to below ±1 meV using suitable convergence 

criteria. We correspondingly advise that these convergence criteria be tested for any new system 

of interest. While a LMO CV score uncertainty of ±1 meV/adsorbate is very sufficient for 

determining the predictiveness of the vast majority of CEs, it should be noted that we have found 
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that a nonnegligible subset of CEs have LMO CV scores well within 1 meV/adsorbate of the 

optimum LMO CV score found when using AMALGM. ECI errors present an opportunity to 

fully differentiate this subset of structures by filtering out CEs with insignificant clusters or 

otherwise give weight to those with the smallest ECI errors. We are actively considering this 

possibility in our own work. 

 Overall, the ability to calculate ECI errors as shown here permits researchers to go 

beyond qualitative descriptions of CE suitability. With this tool, as was done here, direct 

comparisons between systems can be performed and conclusions made about their CE’s 

reliability. We posit that such analyses will guide development of CEs with minimal uncertainty 

and maximal transparency.  
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Abstract 

 Cobalt undergoes a phase change from its native (low-temperature) hexagonal close 

packed (hcp) to face centered cubic (fcc) for nanoparticles smaller than ~10 nm in diameter. 

These smaller fcc nanoparticles are known to exhibit lower activity in Fischer-Tropsch synthesis 

than their larger hcp counterparts, and this could be for one or a few different reasons. Here, we 

explore the possibility that the reduced activity is due to an effective ~2% compressive strain 

experienced in the fcc surface due to the smaller effective bulk lattice constant of the Co fcc unit 

cell. We construct two lattice gas (LG) cluster expansions (CEs) to assess the underlying 

energetics, decomposed into effective cluster interactions (ECIs), of the CO/Co(111) fcc and the 

CO/Co(0001) hcp systems. To ensure the most meaningful LG CEs are found, we utilize our 
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recently developed method for determining ECI errors to effectively filter out insignificant 

clusters during the optimization procedure. The final optimum LG CEs show that the primary 

and most meaningful energetic difference between the two systems is simply the first nearest 

neighbor interaction energy, which is nearly ~100 meV less repulsive in the hcp system as 

compared to the fcc system. Since proximal CO can destabilize or stabilize key FT intermediates, 

that proximal CO are more difficult to induce on fcc nanoparticles could be a contributing factor 

into their reduced activity.  

 

8.1. Introduction 

CO adsorption on Co surfaces has historically and consistently maintained the interest of 

the heterogenous catalysis community due to its relevance to the Fischer-Tropsch (FT) 

reaction[1]. While bulk Co is stable in its hcp phase at most temperatures relevant to FT  (at least 

~420ºC at any pressure[2]), it has long been known that nanoparticles of Co have been observed 

to transition to the fcc phase if they are of sufficiently small size.[3-7] Kitakami and coworkers 

reported that this transition point occurs around a particle diameter of ~10 nm and that the fcc 

phase is indeed stable against temperature changes, indicating that the fcc phase is not merely 

metastable.[8-10] These results are of particular consequence because it has been reported that 

hcp nanoparticles are more active in CO hydrogenation than their fcc counterparts.[11-13] 

Combined with the important observation by the group of de Jong that Co nanoparticles show a 

pronounced and sudden size-insensitivity as the diameter of a Co nanoparticle increases past 6-8 

nm in diameter[14], these studies suggest that the crystallographic morphology of cobalt may be 

of serious consequence to FT. 
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The origin of the reduced activity in Co FT catalysts for small nanoparticles was 

investigated by Liu et al.[15] In their work, they argued that the increased activity in hcp 

nanoparticles is likely due to the increase in stepped facets observed in its Co in-vacuum Wulff 

construction as compared to that of the fcc Wulff construction. This seems to be corroborated to 

some degree experimentally by the work of den Breejan et al.[16] Because this increase in 

stepped facets is imposed by the crystal symmetry of the hcp unit cell (i.e. there are no basal 

planes in directions perpendicular to the <0001> axis), the massive reconstructions observed in 

Co FT catalysts[17, 18] are unlikely to offset this disparity without also inducing a phase change. 

Thus, it seems likely that the relative preponderance of stepped facets in hcp nanoparticles will 

persist even in the presence of reactants. While this phenomenon may indeed be an underlying 

contributor to the observed difference in activity between fcc and hcp nanoparticles, there are 

potentially two other complementary or competing sources: (1) the chemical dissimilarity of 

coordination-similar fcc and hcp surfaces (the simplest example of “coordination-similar” facets 

being the Co(0001) and Co(111) surfaces), and (2) the surface atom strain brought about by the 

change in lattice parameters. The first potential source, chemical dissimilarity, is easiest to 

dismiss for the two basal planes, Co(0001) and Co(111), since one must go three layers deep 

before the chemical dissimilarity is evident. In other facets, this source may play a larger role, 

but since the coordination number of Co in the two crystals remains the same, comparable facets 

seem unlikely to exhibit major chemical dissimilarity. However, the second potential source, 

surface lattice strain, cannot be so easily dismissed.  

Surface lattice strain has been shown to have a profound impact on the catalytic 

performance of many catalysts[19-23]. The typical (and importantly, ideally tunable) method for 

imparting strain is via a lattice mismatch between a lattice-fixing core and a lattice-matching 
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shell. However, and relevant to our work here, in supported cobalt catalysts (which don’t exhibit 

core-shell morphology), strain effects can be brought about by other sources such as via carbon 

adatom penetration[24] — unfortunately this does not seem likely to be a tunable parameter. 

While the surface of an fcc cobalt nanoparticle cannot be said to be strained in the traditional 

sense, the lattice constant of fcc cobalt is indeed smaller as compared to that of the hcp 

nanoparticle, corresponding to a roughly 2% compressive strain at the surface (see Figure 8.1). 

Since the top two layers of the basal planes of fcc and hcp Co are identical with likely similar 

chemical properties, this “strain” may indeed be of considerable consequence to the CO 

overlayers which form on the catalysts surface in the early stages of the FT reaction.  

 

Figure 8.1. Comparison of the surface lattice constants of (A) fcc Co(111) and (B) hcp Co(0001). 

To systematically investigate this potential strain effect on CO adsorption and 

configurations, we construct two separate lattice gas (LG) cluster expansions (CEs) of the 

CO/Co(0001) and CO/Co(111) systems. We use these to determine the fundamental chemical 

consequences of catalyst crystallographic morphology on CO adsorption via direct comparison 

of the LG effective cluster interactions (ECIs). We incorporate also our newly developed method 

of estimating ECI errors to effectively “filter” clusters with insignificant ECIs out of 
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consideration during the CE optimization procedure. The end result is a relatively compact LG 

CE for each of the CO/Co(0001) and CO/Co(111) systems with minimal loss in predictiveness.  

 

8.2. Methods 

 The Vienna ab initio Simulation Package (VASP)[25-27] was used to perform electronic 

structure and geometric relaxation calculations on the CO/Co(0001) and CO/Co(111) systems. 

VASP employs periodic boundary conditions and a plane wave basis set (which we expand to an 

energy cutoff of 450 eV) and projector augmented wave[28, 29] (PAW) pseudopotentials 

(version: VASP2012/VASP) to solve the Kohn-Sham[30] equations. Self-consistent field 

electronic ground states were solved to within an energy tolerance of 1´10-4 eV while forces 

were minimized to within 0.03 eV/Å to perform geometric relaxations. Here, the Perdew-Burke-

Enzerhof[31] (PBE) exchange-correlation functional was used to be consistent with our previous 

work.[32-34] All calculations were spin polarized and dipole corrections were applied to account 

for the fictitious dipole created by our asymmetric slab model. 

302 unique CO/Co(0001) and 332 unique CO/Co(111) configurations were generated in 

an automated fashion using the Alloy Theoretic Automated Toolkit (ATAT).[35-37] Each 

structure consists of a 4-layer Co(0001) or Co(111) slab with a ~15Å vacuum imposed. The 

bottom two layers are fixed in bulk positions (calculated as 2.494 Å (1.618 c/a ratio) and 3.457 Å 

for hcp Co and fcc Co, respectively) while the top two layers are allowed to completely relax 

during geometric optimization. CO molecules are adsorbed at top sites only in this study (a 

simplification to make the problem more tractable) and the xy-coordinates of the carbon atoms 

are fixed to avoid relaxation to bridge and hollow sites at high coverages. The oxygen atoms are, 

however, allowed to fully relax to permit potential “tilting” of the CO molecules off 
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perpendicular, a phenomenon shown to be important in the CO/Ru(0001) system.[38] ATAT 

generates structures of increasing supercell size to avoid (presumably) unnecessary 

computational burden, preferentially creating the smallest possible supercell to represent the 

periodicity of a given configuration. When this is done, the reciprocal space dimensions of the 

supercells change considerably, and k-point sampling cannot be performed in a precisely 

equivalent manner from one supercell to the next. As a result, ATAT sets the k-point sampling 

on a “k-points per reciprocal atom” (KPPRA) basis, which, at least in alloy systems, exhibit a 

near one-to-one equivalence to k-points per reciprocal angstrom. We set our KPPRA to a rather 

high value of 2400 as an attempt to hopefully overcompensate for the aforementioned 

imprecision and issues related to imposing a vacuum whose lattice vector has a tendency to act 

like a k-point sink within ATAT.  

Lattice gas (LG) cluster expansion (CE) models were created using the Ab initio Mean-

field Augmented Lattice Gas Modeling (AMALGM)[39] code. To create the library of potential 

clusters from which LG CE could be constructed,  up to 5-body clusters were considered with a 

2-body cutoff radius of 5 surface lattice constants (s.l.c.’s), 3- and 4-body cutoff radii of 3.7 

s.l.c.’s, and a 5-body radius cutoff of 3 s.l.c.’s (these correspond to radial cutoffs of 12.47/12.22 

Å, 9.23/9.04 Å, and 7.48/7.33 Å cutoffs for Co(0001) and Co(111), respectively).  We fit the LG 

CE to the adsorption energies found for the structures in our two data sets.  Here, we further 

implement our recently devised method for determining effective cluster interaction (ECI) 

errors[40] which are reported in the “two sigma” form that work suggests is appropriate for 

capturing their full variation within the data.  

Two LG CEs were constructed for both of the systems considered here, one wherein the 

optimal LG CE was determined as that which minimizes the leave-multiple-out cross-validation 
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(LMO-CV) score as implemented within AMALGM regardless of the ECI errors found and 

another where the optimal LG CE was determined by minimizing the LMO-CV score but 

allowing only for LG CEs whose ECIs have magnitudes greater than their ECI errors by at least 

1 meV (i.e. where ¿ECIN¿ − (ECI	Error)N > 1	meV ). Practically speaking, this was done by 

assigning a very large number (e.g. 10,000 eV/CO) to the LMO-CV score of LG CEs containing 

clusters that violate this rule during optimization. AMALGM implements a convergent version 

of the LMO-CV score calculation; we set the fraction-left-out to 0.6 and the “CV tolerance” to 

10-7.5 eV/CO, which was determined to provide LMO CV scores accurate to within 1 meV/CO 

upon rerunning.  

  

8.3. Results and Discussion 

We first wish to compare the effects that ECI error “filtering” has on the LG CE results 

for both the CO/Co(111) and CO/Co(0001) systems, which we will refer to as the “fcc” and 

“hcp” systems for simplicity. The motivation for ECI error filtering is illustrated in Figure 8.2 

where the fcc system results are shown in blue and the hcp system results are shown in orange. 

The LG CE used in Figure 8.2A is that optimized for the fcc system (i.e. the LG CE giving the 

minimum LMO-CV score for the fcc system data set) with the blue bars showing the resultant 

ECIs; the orange bars correspond to the ECIs for the hcp system using the same clusters shown 

for comparison. The LMO-CV score for the optimized fcc system LG CE is 28 meV/CO, 

however, its root mean squared residual (RMSR) is only slightly lower at 27 meV/CO. This 

similarity in values is worth elaborating on as it indicates that we can expect the predictiveness to 

only be barely worse than the fit to the data set itself. In other words, similar LMO-CV scores 

and RMSRs indicate that if new data were added to the dataset from the same theoretical 



 

 234 

distribution (i.e. the new data contains the same relevant energetic information as that captured 

by the current data set), the LG CE would predict their energies to within the same accuracy that 

it currently does the known data. That the LG CE fit is as large as it is regardless of this parity 

could indicate that the dataset itself contains significant deviations from ideality (whether from 

numerical errors/inconsistencies or relaxations). The error bars shown in Figure 8.2A bear this 

out to a degree since there are many ECIs with errors greater than the ECI values themselves. 

When this is the case, we know there are many subsets of the data set whose predicted CO 

adsorption energies would be better predicted if these ECIs were modified well away from the 

final fit value shown.  
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Figure 8.2. (A) ECIs for the optimum LG CE for the CO/Co(111) system (blue bars). The error bars 
indicate each ECIs associated “two sigma” ECI errors. The CO adsorption energy (cluster ID #1) is given 
as an inset due to magnitude discrepancy. ECIs for Clusters 16 – 223 are also shown inset at a smaller 
energy scale to make their values discernable. The orange bars are the ECIs found for the CO/Co(0001) 
shown for comparison only. (B) The predicted CO adsorption energies (blue crosses) found from 
optimum LG CE fit to the CO/Co(111) dataset set against the DFT calculated Co adsorption energies 
(black squares). The LMO-CV score and RMSR of the final fit are shown inset. (C) ECIs for the optimum 
LG CE for the CO/Co(0001) system (orange bars). The error bars indicate each ECIs associated “two 
sigma” ECI errors. The CO adsorption energy (cluster ID #1) is shown inset due to magnitude 
discrepancy. ECIs for Clusters 16 – 209 are also shown inset at a smaller energy scale to make their 
values discernable. The blue bars are the ECIs found for the CO/Co(111) are shown for comparison only. 
(B) The predicted CO adsorption energies (orange crosses) found from optimum LG CE fit to the 
CO/Co(0001) dataset set against the DFT calculated Co adsorption energies (black squares). The LMO-
CV score and RMSR of the final fit are given as an inset. 
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Figure 8.2B shows the fcc system LG CE predicted (blue crosses) against the DFT 

calculated (black squares) CO adsorption energies (E[�]) for the fcc system data set. Visually, 

the quality of the fit is striking with most deviations occurring at coverages less than 0.33 ML. 

Given that the LMO-CV score is nearly as low as the RMSR, this asymmetry in the fit strongly 

indicates that there are inconsistencies in the data set. In principle, if the data set is consistent, the 

ECIs found for the lower coverage structures, which have far fewer cluster terms to fit to, would 

be easily “corrected” by the higher order cluster terms available to the higher-coverage 

structures. Since this does not appear to happen (the fits are poorer for the low coverage 

structures), it is likely that the data set exhibits inconsistencies. We posit these are most likely 

due to inconsistent k-point sampling and inconsistent artificial boundary conditions imposed by 

the widely varying supercell sizes that are produced by ATAT.  

Figure 8.2C shows the optimized LG CE for the hcp system with the orange bars showing 

the resultant ECIs; the blue bars correspond to the ECIs for the hcp system using the same 

clusters shown for comparison. Here, the LMO-CV score and RMSR demonstrate parity similar 

to the fcc system. However, these values are reduced by ~10 meV/CO indicating much more 

ideal data in the data set. However, despite this, many of the ECIs are found to be insignificant 

when their ECI errors are accounted for. As was seen in the fcc system, Figure 8.1D shows that 

the fit to the lower coverage structures is worse in the hcp data set despite the lower LMO-CV 

score and RMSR. This again suggests that there are inconsistencies in its data set.  The 

preponderance of insignificant ECIs in the optimum LG CEs shown in Figure 8.2 motivates us to 

include these ECI errors as a “filter” in the optimization process as described in section 8.2. The 

idea here is that many of these insignificant ECIs may simply be trying to capture the 

inconsistencies in the data set mentioned above. The result of this process is shown in Figure 8.3. 
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Figure 8.3. (A) ECIs for the optimum LG CE for the CO/Co(111) system (blue bars) using ECI errors as 
a filter. The error bars indicate each ECIs associated “two sigma” ECI errors. The CO adsorption energy 
(cluster ID #1) is shown inset due to magnitude discrepancy. ECIs for Clusters 30 – 233 are also given as 
an inset at a smaller energy scale to make their values discernable. The orange bars are the ECIs found for 
the CO/Co(0001) shown for comparison only. (B) The predicted CO adsorption energies (blue crosses) 
found from optimum LG CE fit to the CO/Co(111) dataset set against the DFT calculated Co adsorption 
energies (black squares). The LMO-CV score and RMSR of the final fit are shown inset. (C) ECIs for the 
optimum LG CE for the CO/Co(0001) system (orange bars) using ECI errors as a filter. The error bars 
indicate each ECIs associated “two sigma” ECI errors. The CO adsorption energy (cluster ID #1) is 
shown inset due to magnitude discrepancy. ECIs for Clusters 85 – 251 are also shown inset at a smaller 
energy scale to make their values discernable. The blue bars are the ECIs found for the CO/Co(111) are 
shown for comparison only. (D) The predicted CO adsorption energies (orange crosses) found from 
optimum LG CE fit to the CO/Co(0001) dataset set against the DFT calculated Co adsorption energies 
(black squares). The LMO-CV score and RMSR of the final fit are given as an inset. 
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The clusters found in both Figure 8.2 and Figure 8.3 are shown in Figure 8.4 for 

reference. When LG CEs with insignificant ECIs are filtered out during optimization, the number 

of retained clusters in the LG CE falls dramatically. In both the fcc and hcp system, only six 

clusters are found to be both predictive and significant, and of those, only three are greater than 

20 meV in magnitude. In both systems, both the first nearest neighbor (“1NN”, cluster #2, see 

Figure 8.4) and 1-1-1 triangular trio (“1TT”, cluster #13, see Figure 8.4) dominate the energetics. 

The LMO-CV scores of the filtered fcc and hcp system LG CEs in Figure 8.3 are only 4 eV/CO 

and 2 eV/CO higher than their unrestricted counterparts in Figure 8.2. This is incredibly 

encouraging and demonstrates the utility of using ECI errors as a filter: (1) the nine to ten 

additional long-range and higher-body clusters of the unrestricted LG CEs in Figure 8.2 provide, 

at most, ~0.44 meV per additional cluster suggesting they may be superfluous artifacts of the 

fitting process, (2) it is expected that such simple systems (with only a single site and the xy-

position of the carbon of the CO fixed) should intuitively not display overly complex LG CEs, 

and (3) it makes a lot of physical sense that these particular clusters (the 1NN and 1TT) dominate 

as they are the most compact 2- and 3-body clusters available representing, respectively, 

repulsions from close proximity and a correction for the tilting allowed to the CO molecule. The 

three higher-body interactions in both unrestricted LG CEs in Figure 8.3 are difficult to assign to 

any physical significance as they are very small, and the majority can only be guaranteed to be at 

most 2 meV when their ECI errors are accounted for. 
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Figure 8.4. Clusters in the optimized LG CEs shown in Figures 8.2 and 8.3. Cluster IDs and ECIs are 
shown below each cluster graphic.  
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The differences in the ECIs of the same clusters that are present between the filtered and 

unrestricted LG CEs of the fcc and hcp systems is worth noting. In both fcc and hcp systems, 

cluster #13 is present in both the filtered and unrestricted LG CEs. However, the ECI for cluster 

13, the 1TT, in the fcc system is -218 meV in the filtered LG CE but only -180 meV in the 

unrestricted LG CE. However, notice that clusters 200, 201, and 209 contain cluster 13 within 

them. Ideally, if there were no concern over the consistency of the DFT data, these higher-body 

clusters would be providing corrections to cluster 13 when more adsorbates are in proximity 

around it thus allowing the energetics of the isolated cluster 13 to be more accurately 

represented. However, in only one case (cluster 201 of the fcc system) is the ECI error smaller 

than the magnitude of the ECI itself. This means that these “corrections” are insignificant or, 

more exactly, too variable to suggest that the energetic contribution of isolated cluster 13 is being 

captured accurately. We posit that ECI filtering allows the most accurate version of ECIs for 

clusters like the 1TT in the fcc and hcp systems here to be found given the data set provided, and 

that this process mitigates some of the superfluous artificial fitting inherent to the linear 

regression procedure used on the total data set to get the final ECIs.  

With the effect of ECI filtering stated, we turn now to the elucidation of the effect that the 

crystallographic morphology of the Co nanoparticle has on the CO adsorption energetics on 

Co(111) and Co(0001) within the LG CE framework presented here. For this purpose, we use the 

ECI filtered LG CEs presented in Figure 8.2. First of note, the adsorption energy (the ECI of 

cluster #1, “ECI1” in Figure 8.2A and 8.2C) are shown to differ by ~20 meV with no overlapping 

ECI errors, suggesting this difference is significant. The hcp system adsorption energy is 

stronger than that of the fcc system which is the general trend in the data for the low coverage 

structures that are similar between the two systems. This difference is significant, but is unlikely 
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to lead to great differences in, say, CO dissociation rates unless C and O binding energies are 

asymmetrically affected or otherwise not similarly affected. However, the 1NN ECIs are 

considerably different between the two system (641 meV vs 533 meV for the fcc and hcp 

systems, respectively). Both are large enough to be considered a 1NN exclusion energy (i.e. 

effectively infinite) at most temperatures. However, at large enough chemical potentials, such as 

those created by the high pressures in FT, the hcp 1NN may be accessed where the fcc 1NN is 

still prohibited. Proximal CO may have effects on CO dissociation, but if this discrepancy in 

1NN is a trend for other CO – R interactions, the implications could be considerable as the 

presence of proximal CO has been shown to change the favorability of certain FT coupling 

reactions.[41] That this trend should continue is suggested because the source of this increased 

1NN interaction energy appears to be entirely due to the decreased lattice spacing in the Co(111) 

surface as compared to the Co(0001) surface. Thus it should be expected that any two adspecies 

should have a more difficult time attaining proximity in fcc Co nanoparticles as compare to hcp 

Co nanoparticles.  

The 1TT ECIs also significantly differ between the fcc and hcp systems here (-218 meV 

vs -122 meV for the fcc and hcp systems, respectively). However, their effect on the system must 

be contextualized by their constituent 1NNs. The ECIs of higher body clusters are always 

additive with the ECIs of their constituent lower-body clusters. In the case of the 1TT, three 1NN 

ECIs worth of energy must be expended before the attractive 1TT interaction is assessed. If two 

CO form a 1NN pair on the surface, the addition of a third CO in proximity to this 1NN pair can 

minimize the energy expenditure by only forming a single additional 1NN pair via creation of a 

1-1-2 linear trio or 1-1-√3 bent trio instead of creating the 1-1-1 triangular trio since the energy 

of two repulsive 1NN ECIs is still less than three repulsive 1NN and one attractive 1TT. A 1TT 
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can be avoided completely all the way up to 2/3 ML, above which 1TT must start being created. 

For this reason, we expect that the difference in 1TT ECIs between these two systems will 

remain inconsequential at all but the highest chemical potentials, likely inaccessible in any 

experimental setting.  

 

8.4. Conclusions 

 Differences in the CO/Co(0001) and CO/Co(111) systems were assessed via the 

construction of first principles lattice gas cluster expansions (LG CEs). Two LG CEs were 

created for both systems to demonstrate the utility of using our recently developed method of 

determining ECI errors to effectively filter out LG CEs with “insignificant” clusters. The method 

is shown to drastically reduce the number of clusters included in the LG CEs of these two 

systems. Additionally, the most physically important clusters are still retained whose energetics, 

we posit, are ultimately better described. We thus recommend using this method to produce the 

most reliable LG CEs in a general setting. 

 Using the ECI filtered LG CEs for the two systems, we are able to show that the primary 

difference produced, given the simplified single-site model we have constructed, is in the first 

nearest neighbor (1NN) repulsion. While the adsorption energies are shown to be minimally 

different between the fcc crystal and hcp crystal, the 1NN energies have a large discrepancy. 

This means that, at high enough chemical potentials, 1NN pairs may be formed preferentially on 

the hcp crystal where they are still prohibitively energy costly on the fcc crystal. Since this 

discrepancy is likely due to the roughly 2% compressive strain induced in the surface of fcc 

crystals as compared to that of hcp crystals, we posit that this effect is likely replicated for other 

species pairings, ones where proximal spectators may stabilize or destabilize important FT 
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reaction intermediates. This hints at an explanation for the reduced activity of fcc Co 

nanoparticles observed experimentally[11-13] beyond the relative ratios of stepped vs flat 

surfaces prevalent in the fcc vs. hcp in-vacuum Wulff construction.  
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CHAPTER NINE:  

CONCLUSIONS 

 Two different but complimentary research efforts to determine the structure, reaction 

environment, and catalytically active phase of Co-based Fischer-Tropsch (FT) catalysts have 

been covered in great detail in this dissertation from a first principles computational perspective 

(at the level of density functional theory (DFT)). The first endeavor was covered in the chapters 

three through five and concerned cobalt-copper (CoCu) nanoparticles and the ways in which the 

strongest adsorbing FT reactant, carbon monoxide (CO), interacts with them. The second 

endeavor was covered in chapters six through eight and involved the development and 

implementation of a reformulation of lattice gas (LG) cluster expansion (CE) theory and code, 

new methods to assess their errors, and application of these error-minimized LG CEs to CO 

adsorption energetics on the face centered cubic (fcc) and hexagonal close packed (hcp) phases 

of Co nanoparticles. These latter crystal phases have been shown to have marked effect on the 

activity of the FT reaction. 

In the first of these endeavors, we were able to show that in the absence of CO, CoCu 

nanoparticles have a strong thermodynamic tendency to self-assemble into a Co@Cu core-shell 

morphology. However, we were able to show that CO adsorption induces an antisegregation of 

Co to the surface of these nanoparticles. Interestingly, at FT temperatures and relevant pressures, 

the amount of Co enrichment of the surface was found to be limited to at most 50% of step edges 

and 25% of terraces due to the formation of highly favorable geminal subcarbonyl complexes 

(Co(CO)x, x=2 or 3). Favorability was determined via the construction of surface phase 

diagrams, which require the application of statistical mechanical principles to our DFT data to 

determine Gibbs free energies. These subcarbonyl structures, highly metal bound at steps, were 
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then computationally subjected to “rupturing”, wherein the Co(CO)x complex is removed from 

the step—creating one to two kink sites—and adsorbed on CoCu terraces. The thermodynamic 

favorability of this process was demonstrated for the cobalt tricarbonyl complex, Co(CO)3, and 

we were further able to show that these Co tricarbonyl complexes can dimerize to begin the 

nucleation process for nanoisland formation. These results, in sum total, contribute to our 

understanding of CoCu reconstruction and what surface moieties can be expected on the surface 

during FT to oxygenates.  

In the second of the two research endeavors covered in this dissertation, a reformulation 

of multi-component LG CE theory was developed alongside the algorithms needed to implement 

this new theory. These algorithms were used to create the framework of a new LG CE 

development code called the ab initio Mean-field Augmented Lattice Gas Modeling 

(AMALGM) code, which is designed to parameterize LG CEs using ab initio data, particularly 

from DFT calculations. A new method, minimally reliant on statistical assumption about the 

inputted data, was also developed to assess the errors of the energetic fitting coefficients within 

the LG CE. This method was shown to be useful in quantifying the degree to which LG CEs are 

able (or unable) to capture geometric relaxations away from ideal lattice behavior in the inputted 

DFT data. While confidence intervals rely heavily on the statistical assumption of linear 

regression and only capture uncertainty due to poor configuration space sampling, we 

demonstrated that these error estimates capture the uncertainty brought about due solely to the 

non-ideality of the energetic data itself. We were then able to use these error estimate as criteria 

within the LG CE optimization routines of AMALGM to effectively filter out unreliable LG CEs 

while still maximizing their predictiveness. This process was used on the fcc CO/Co(111) and 

hcp CO/Co(0001) systems to reveal the fundamental differences inherent to CO adsorption on 
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the two crystal phases of cobalt. We showed that the first nearest neighbor repulsion in the 

CO/Co(0001) system is significantly smaller (by nearly 100 meV) than that of the CO/Co(111) 

system, and posited that at high chemical potentials, CO-CO first nearest neighbor pairs may 

form on the Co(0001) surface where they are still prohibited on the Co(111) surface. These types 

of pairs, involving possibly CO and other key FT intermediates, may contribute to the 

stabilization or destabilization of such species which may explain the increased activity of the 

hcp phase over the fcc phase in FT. These results contribute to our understanding of LG CE 

theory and provide a means to quantifying LG CE reliability, a capability currently missing from 

the tools available to researchers in the fields of surface science and heterogenous catalysis.  

The work performed in this dissertation provides a clear “jumping off point” for future 

research into FT on Co and CoCu, both for the purposes of increasing selectivity to oxygenates 

and determining the structure-activity relationships in FT synthesis in general. We expect that the 

development of AMALGM and our LG CE error estimation technique will provide a heretofore 

missing tool to the computational catalysts community that will aid in research into myriad 

catalytic systems, mitigating the problems inherent in using relaxed surface calculations with the 

ideal lattice assumption of general CE theory.  

 

 

 

  



 

 250 

APPENDIX A 

I. Derivation of Gibbs Free Energy from Statistical Mechanical First Principles 

 In general − for ideal, isothermal, constant volume chemical reactions − we can write the 

Helmholtz free energy in terms of the canonical partition function, Q, for each molecular species 

thusly[1]: 

𝐹(𝑁, 𝑉, 𝑇) = −𝑘g𝑇𝑙𝑛(𝑄)	

𝑄 =
𝑞q

𝑁! =
(𝑞LSLO𝑞KJ�/H𝑞JIK𝑞]æ¥)q

𝑁!  

⟹ 𝐹(𝑁, 𝑉, 𝑇) = M−𝑘g𝑇𝑙𝑛(𝑞LSLO(𝑁, 𝑇)q) − 𝑘g𝑇𝑙𝑛 Ð
𝑞KJ�/H(𝑁, 𝑉, 𝑇)q

𝑁! Ñ − 𝑘g𝑇𝑙𝑛(𝑞JIK(𝑁, 𝑇)q)

− 𝑘g𝑇𝑙𝑛(𝑞]æ¥(𝑁, 𝑇)q)O 

⟹ 𝐹(𝑁, 𝑉, 𝑇) = [𝐹LSLO(𝑁, 𝑇) + 𝐹KJ�/H(𝑁, 𝑉, 𝑇) + 𝐹JIK(𝑁, 𝑇) + 𝐹]æ¥(𝑁, 𝑇)] 

where small q’s are the molecular canonical partition functions, overall as well as for various 

contributions, electronic (elec), translational (trans), rotational (rot), and vibrational (vib). It will 

be helpful (as will become apparent shortly) to point out that the electronic, rotational, and 

vibrational molecular canonical partition functions do not depend on V, while the translational 

partition function is the only contribution that does. 

 Reuter and Scheffler[2], as an example, proceed by pointing out that the pV term in 

𝐺 = 𝐹 + 𝑝𝑉 

is generally quite small on a per unit area basis and can thus be neglected in a restricted pressure 

range. We opt to create an exact, unrestricted connection to G by evaluating the isothermal-

isobaric partition function, Δ, directly: 

𝐺(𝑁, 𝑝, 𝑇) = −𝑘g𝑇𝑙𝑛(Δ)	
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Δ(N, p, T) = ¢ 𝑄(𝑁, 𝑉, 𝑇)
�

 
	𝑒e

¹Ä
VÅÖ𝑑𝑉 

where Q is the canonical partition function as defined previously. We have chosen to use the 

notation and ensemble definition provided in Shell’s Thermodynamic and Statistical 

Mechanics[3]. From here, it is quite easy to show that for the molecular canonical partition 

functions that do not depend on V, their contribution to the isothermal-isobaric partition function 

becomes:  

ΔLSLO,JIK,]æ¥(N, p, T) = ¢ 	𝑞(𝑁, 𝑇)q𝑒e
¹Ä
VÅÖ𝑑𝑉

�

 
= 𝑞(𝑁, 𝑇)q Ð¢ 	𝑒e

¹Ä
VÅÖ𝑑𝑉

�

 
Ñ = 𝑞(𝑁, 𝑇)q Ç

𝑘g𝑇
𝑝 É 

and taking advantage of chemical potentials, we differentiate the logarithm with respect to N, 

and generate: 

𝜇LSLO,JIK,]æ¥ = −𝑘g𝑇
∂(ln «𝛥LSLO,JIK,]æ¥(𝑁, 𝑝, 𝑇)¬

∂𝑁 = −𝑘g𝑇
∂(ln Ð𝑞(𝑁, 𝑇)q «𝑘g𝑇𝑝 ¬Ñ

∂𝑁

= −𝑘g𝑇𝑙𝑛¸𝑞(𝑁, 𝑇)À 

which, due to summability rules (i.e. 𝐺 = ∑𝑁æ𝜇æ) results in 

⟹ 𝐺LSLO,JIK,]æ¥(𝑁, 𝑇) = 𝐹LSLO,JIK,]æ¥(𝑁, 𝑇) 

for any molecular species and no approximation is consequently necessary. 

 The translational canonical partition function depends on V thusly: 

𝑞KJ�/H(𝑁, 𝑉, 𝑇)
𝑁!

q

= Ç
𝑇
ΛÉ

�q
7 𝑉q

𝑁!  

where	Λ is the translational “temperature” equal to \z

7í¦VÅ
. This changes the evaluation of its 

contribution to Δ as shown: 
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ΔKJ�/H(N, p, T) = ¢ Ç
𝑇
ΛÉ

�q
7 𝑉q

𝑁! 	𝑒
e ¹Ä
VÅÖ𝑑𝑉

�

 
= Ç

𝑇
ΛÉ

�q
7
M¢

𝑉q

𝑁! 	𝑒
e ¹Ä
VÅÖ𝑑𝑉

�

 
O = Ç

𝑇
ΛÉ

�q
7
MÇ
𝑘g𝑇
𝑝 É

qyj

O 

and, once again, we use the definition of chemical potentials and summability rules to give: 

𝜇KJ�/H(𝑝, 𝑇) = −𝑘g𝑇𝑙𝑛 ÊÇ
𝑇
ΛÉ

�
7
Ç
𝑘g𝑇
𝑝 ÉË 

𝐺KJ�/H(𝑁, 𝑝, 𝑇) = −𝑁𝑘g𝑇𝑙𝑛 ÊÇ
𝑇
ΛÉ

�
7
Ç
𝑘g𝑇
𝑝 ÉË 

 To confirm these conclusions, the translational contribution to the Helmholtz free energy 

is commonly calculated (from the canonical partition function) as  

𝐹KJ�/H(𝑁, 𝑉, 𝑇) = −𝑁𝑘g𝑇𝑙𝑛 ÊÇ
𝑇
ΛÉ

�
7
Ç
𝑉
𝑁É 𝑒Ë 

which we can see is exactly the same as 𝐺KJ�/H(𝑁, 𝑝, 𝑇) except for the last term(s) in the 

logarithm. Because we assumed ideal gas behavior from the very start, the «Ä
q
¬ term is equal to 

«VÅÖ
¹
¬ and 𝐹KJ�/H(𝑁, 𝑉, 𝑇) actually only differs from 𝐺KJ�/H(𝑁, 𝑝, 𝑇) by the exponential “𝑒” in 

the logarithm. Making ideal gas equation of state substitutions and separating this out gives  

𝐹KJ�/H(𝑁, 𝑉, 𝑇) = −𝑁𝑘g𝑇𝑙𝑛 ÊÇ
𝑇
ΛÉ

�
7
Ç
𝑉
𝑁ÉË − 𝑁𝑘g𝑇𝑙𝑛

[𝑒]	

= 𝐺KJ�/H(𝑁, 𝑝, 𝑇) − 𝑁𝑘g𝑇 

= 𝐺KJ�/H(𝑁, 𝑝, 𝑇) − 𝑝𝑉 

which can be compared to the thermodynamic definition 𝐹 = 𝐺 − 𝑝𝑉 to show that the entire 𝑝𝑉 

term is consumed by the transitional contributions to 𝐺 and 𝐹. This leaves all other contributions 

(vib., rot., elec., etc) exactly equal to each other (e.g. 𝐺]æ¥(𝑁, 𝑝, 𝑇) = 𝐹]æ¥(𝑁, 𝑉, 𝑇)) and confirms 
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what was found before using the isothermal-isobaric ensemble: for all contributions not 

dependent on 𝑉 or 𝑝, the Gibbs free energy can be calculated directly as the Helmholtz free 

energy without restriction. In summary: 

𝐺KJ�/H = 𝐹KJ�/H + 𝑝𝑉 = 𝐹KJ�/H + 𝑁𝑘g𝑇	(𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔	𝑖𝑑𝑒𝑎𝑙	𝑔𝑎𝑠) 

𝐺LSLO = 𝐹LSLO 	

𝐺JIK = 𝐹JIK	

𝐺]æ¥ = 𝐹]æ¥ 

 We should note that these relationships hold even without the assumption of an ideal gas 

so long as 𝐹KJ�/H and 𝑝𝑉 are evaluated directly (likely within the grand canonical ensemble) to 

account for the non-ideality. However, the assumption that the contributions are uncoupled (i.e. 

𝑞 = 𝑞LSLO𝑞KJ�/H𝑞JIK𝑞]æ¥) is still required. 

 We are now in a position to delineate and manipulate the expressions used to calculate 

the various contributions to the Gibbs free energy in our calculations: 

a) We assume, with negligible loss of accuracy, that only the ground state electronic energy 

− found from DFT − is important: 

𝐺LSLO = 𝑁𝜇LSLO = −𝑁𝑘g𝑇𝑙𝑛 M𝑒
eÇ

ÈÉÊ

VÅÖ O = 𝑁𝐸deÖ 

b) Rotational contributions are found from the “high T” limit of the rigid-rotor 

approximated rotational molecular canonical partition function: 

𝐺JIK = 𝑁𝜇JIK(𝑇) = 𝑁 M𝑘g𝑇𝑙𝑛 Ð
8𝜋7𝜇𝑟7𝑘g𝑇

𝜎ℎ7 ÑO 

 where 𝜇 is the reduced mass and 𝜇𝑟7 is(are) the moment(s) of inertia, and σ is the 

symmetry number of the molecule in question (equal to 1 for CO). 
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c) Vibrational contributions are found from the harmonic oscillator vibrational molecular 

canonical partition function: 

𝐺]æ¥ = 𝑁𝜇]æ¥(𝑇) = 𝑁 Ê𝑘g𝑇 8 L𝑙𝑛 Ê
𝑒e

\Ì�
7VÅÖ

1 − 𝑒e
\Ì�
VÅÖ

ËV
/IJ¦.¦IGLH

V

Ë	 

d) And translational contributions are found via the equation(s) derived previously. As is 

traditionally done, we break this down into a “standard” chemical potential (𝑝 = 1bar) 

plus a pressure correction term as such: 

𝐺KJ�/H = 𝑁𝜇KJ�/H(𝑇, 𝑝) = 𝑁 Í−𝑘g𝑇𝑙𝑛 ÊÇ
2𝜋𝑚𝑘g𝑇

ℎ7 É
�
7
Ð
𝑘g𝑇
𝑝 

𝑝 

𝑝 ÑËÎ

= 𝑁 Ê−𝑘g𝑇𝑙𝑛 ÊÇ
2𝜋𝑚𝑘g𝑇

ℎ7 É
�
7
Ç
𝑘g𝑇
𝑝  ÉË + 𝑘g𝑇𝑙𝑛 Ç

𝑝
𝑝 ÉË

= 𝑁 9𝜇KJ�/H(𝑇, 𝑝 ) + 𝑘g𝑇𝑙𝑛 Ç
𝑝
𝑝 É=	

with  

𝜇JIK(𝑇) + 𝜇]æ¥(𝑇) + 𝜇KJ�/H(𝑇, 𝑝 ) = 𝜇 (𝑇, 𝑝 ) 

 

II. Calculating ΔG and Δγ for Phase Diagrams 

 In our system, we have the following chemical reaction occurring: 

(𝑁QR)𝐶𝑂(𝑔) + 𝐶𝑜𝐶𝑢	
�GH
ÑÒ 𝐶𝑂(𝜃 =

𝑁QR
𝑁H

)/𝐶𝑜𝐶𝑢		 

where 𝑁H is the total number of adsorption sites.  We assume adsorption is in chemical 

equilibrium with a CO reservoir. From this we, at least intermediately, need ΔG: 
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Δ𝐺 = 𝐺QR(�)/QIQM − 𝐺QIQM − 𝐺QR = 𝜇QR(�)/QIQM − 𝜇QIQM − 𝑁QR𝜇QR

= «𝐸QR(�)/QIQMdeÖ + 𝜇QR(�)/QIQM]æ¥ (𝑇)¬ − «𝐸QIQMdeÖ + 𝜇QIQM]æ¥ (𝑇)¬

− Ç𝑁QR 9𝐸QRdeÖ + 𝜇QR  (𝑇, 𝑝 ) + 𝑘g𝑇𝑙𝑛 Ç
𝑝æ
𝑝 É=É	

Which, as is often done, can be expressed as  

Δ𝐺(𝑁QR , 𝑝QR , 𝑇) = Δ𝐺 (𝑁QR , 𝑝 , 𝑇) − 𝑁QR𝑘g𝑇𝑙𝑛 Ç
𝑝QR
𝑝  É	

and since this value is now on an ambiguous “per supercell” basis, we divide through by the 

surface area , A, per supercell to get Δγ. Variation in 𝑝QR (on a log scale) at a chosen T results in 

the generation of our phase diagram.  

 

III.  Surface Vibrations 

 At this point, we address the calculation of the non-DFT chemical potential terms.  We 

use our specific terms to illustrate some general examples. 

 For the gas phase CO, 𝜇QR  (𝑇, 𝑝 ), two choices are commonly taken: 1) As, for example, 

Reuter and Scheffler[2] and Getman et al.[4], taken from tabulated values in thermodynamic 

tables, or 2) as, for example, the group of Mark Saeys[5, 6], evaluated from the vibrational 

partition function and frequency calculations as implemented in VASP or other ab initio 

software. We have opted here to use the latter choice and calculate vibrational frequencies using 

VASP since we will do so for the surfaces, as well. 

 For the adsorbed system,	𝜇QIQM~QR]æ¥ (𝑇), and the clean surface, 𝜇QIQM]æ¥ (𝑇), there are a few 

methods to choose from: 1) As, for example, Getman et al.[4], assume that the adsorbate 

vibrations are all that matter in the calculations and that the surface metal vibrations are 
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unperturbed by the adsorbate(s); scale the vibrational contribution from one adsorbate by the 

total number of adsorbates in the system or calculate them explicitly. 2) As, for example, Reuter 

and Scheffler[2], use the Einstein model to evaluate the phonon density of states (aka “spectral 

density function”) and evaluate the surface vibrational contributions by selecting a range of 

characteristic frequencies for the surface atoms. 3.) Assume the two terms will approximately 

cancel each other out[7, 8]. For reasons expounded upon in the full article, we have chosen to 

eschew all of these approaches and calculate the surface vibrational modes for the clean and 

adsorbate-covered surfaces directly, allowing all atoms to relax except for those kept fixed in 

their bulk positions (the bottom two to three layers, generally).  The vibrational partition function 

is then calculated via an explicit sum of the resultant normal modes. In order to fully capture 

these modes, the supercell is quadrupled in size (doubled in the x and y directions). 

 

III.A. VASP Vibrational Mode Calculation Details 

The vibrational calculations were run at a tighter SCF tolerance in order to recover all the 

real-valued vibrational modes. In only one case was this criterion not sufficient to eliminate 

imaginary modes. For that one case, the geometric optimization tolerance was set to 1.0× 10-2 

eV/Å prior to running the vibrational calculation (still at the tighter SCF tolerance). Visually, 

there was no difference in the newly optimized structure, and running the extra optimization 

corresponded to an error in the original calculation of less than 2 meV. As such, the original 

optimized structure was still used for energy comparison purposes. To ensure that running the 

geometric optimizations at the higher SCF tolerance was not necessary for the rest of the 

structures, we re-ran a few select geometric optimization calculations at the 1.0 ×10-8 eV SCF 

criteria and found that 1.0 ×10-4 eV was in error by less than 0.1 meV, and no additional 
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geometric optimization steps had to be taken during these runs. This confirms that the optimized 

structures − ran with the tighter SCF tolerance − actually correspond to their energy minima. 

These results are shown in Table A1.  

Table A1. Comparison of total DFT energies calculated using a looser and tighter self-consistent field 
(SCF) tolerance for a few select structures. As can be seen, little error in the looser tolerance is implied by 
the use of a tighter tolerance. 

System 
Tested 

Adsorption Energy (eV/CO) Energy Differences (eV) 
1×10-4 eV 

SCF Tolerance 
1×10-8 eV 

SCF Tolerance system diff clean E diff CO E diff ads E diff 

0.50 ML CO/ 
0.25 ML Co 
Cu/Co(0001) 

-1.15685 -1.15027 0.00009 

0.00005 

-0.00656 

0.00658 

0.75 ML CO/ 
0.25 ML Co 
Cu/Co(0001) 

-0.85377 -0.84722 0.00003 0.00655 

0.50 ML CO/ 
0.25 ML Co 

Cu/Co(101$2) 
-1.43024 -1.42408 0.00001 

0.00081 

0.00616 

0.75 ML CO/ 
0.25 ML Co 

Cu/Co(101$2) 
-1.22391 -1.21762 0.00002 0.00629 
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IV. Co patching in CoCu models 

 

Figure A1. A clean surface with 1/3 ML Co terminating the surface (shown to be thermodynamically 
unfavorable) and the same surface with CO adsorbed (shown to be more stable by >1 eV). As can be 
seen, the Co atoms in the clean surface do in fact have a thermodynamic tendency to cluster and create 
patches - a model proposed for CoCu catalysts. However, in the presence of CO, such patching is far less 
likely to occur.  
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V. Comparing the Favorability of the Geminal Dicarbonyl across other GGA Functionals 

 

Figure A2. Calculated adsorption energies for the geminal dicarbonyl (far left inset picture and data 
points) with the three next most favorable coverage-equivalent configurations. In the 2nd and 4th pictures 
from the left, there is a terrace Co at the surface that is partially obscured by the CO adsorbed to the step 
Co above it. Here, Co is blue, Cu is orange, C is black, and O is red. The structures do not change 
noticeably when a different functional is used. 
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VI. Phase Diagram for CO/Cu/Co(0001) 

 

Figure A3. CO/Cu/Co(0001) Phase diagram of minimal DFT energy configurations for each CO 
coverage tested in our previous study[9] at 513 K and 653 K. Vertical dotted lines are placed at its marked 
pressure to delineate a phase transition. Here, numerous low-lying energy configurations exist for 0.5 ML 
CO and 0.75 ML CO and are thus assigned different shades of the same color in the legend (reds for 0.5 
ML CO and greens for 0.75 ML CO). 
  

We show a similarly constructed phase diagram for our previously studied CO on 

Cu/Co(0001) as a comparison to the stepped surface presented here and as a fleshing out of the 

CO on CoCu story. This is shown in Figure A2. At 513 K, the clean surface (no Co enrichment) 

is only favorable at pressures less than 1 mbar - similar to the stepped surface. The 0.25 ML CO 

coverage on Cu0.25Co0.75/Co(0001) (8(a)) is thermodynamically favored up to ~0.3 bar, at which 

point we find that the 0.50 ML CO coverage on Cu0.25Co0.75/Co(0001) (8(b)), corresponding to 

the formation of geminal dicarbonyl Co, is most thermodynamically favorable. At no reasonable 

pressure does another surface phase transition occur. The story is similar at 653 K.  The 

transition between the clean Cu-terminated surface and monocarbonyl-coordinated Co (8(a)) 
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occurs at 40 mbar, and the transition to the geminal carbonyl Co covered surface (8(b)) is 

predicted at a considerably higher pressure of ~35 bar (since gas phase CO starts to become 

significantly non-ideal at this point, the transformation might occur at a higher pressure). In both 

cases, the adsorbed CO induces only 0.25 ML Co enrichment of the surface. Therefore, Co 

“pumping” is expected to be driven to at most 0.25 ML surface enrichment at these temperatures. 

Our calculations indicate that the thermodynamically driven transition to 0.75 ML CO coverage, 

corresponding to 1.00 ML surface Co enrichment (the complete inversion of the CoCu surface 

layer sequence), does not occur at 10 bar until the temperature is lowered to ~331 K and does not 

occur at 1 bar until it is lowered to ~283 K, at which point the kinetics might be prohibitively 

controlling. This is in contrast to the stepped surface, of course, where Co pumping to 1.00 ML 

surface enrichment is never favorable regardless of temperature or pressure.  
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VII. Surface Chemical Potential Change for the Flat Surface 

 

Figure A4. The Cu/Co(0001) surface chemical potential change (given in eV per p(2×2) supercell) for 
the minimum DFT energy Co/CO configurations studied here as a function of temperature. A common 
practice is to assume this value is zero or very close to zero. The black dashed line shows the root mean 
error (RME), or root mean deviation from a value of zero, for all configurations. This error is as great as 
~0.6 eV/p(2×2) supercell and only as low as ~0.25 eV/p(2×2) supercell depending on the temperature 
and, like the stepped surface, does not appear to be bounded. 
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VIII. Comparison of Phase Diagrams for CO/Cu/Co(0001) 

 

Figure A5. Comparison of phase diagrams constructed for the Cu/Co(0001) surface that have had 
surface phonon modes accounted for vs. unaccounted for. To highlight the largest differences, the low 
energy surface phase (bold lettering in parenthesis) is shown in each region delineated by the vertical 
dashed lines. The legend corresponds to the configurations shown in Figure A2. 
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IX. Vibrational Density of States  

 

Figure A6. Vibrational Density of States for the CO adsorbed on Cu/Co(101$2) systems. Here (a)-(e) 
correspond to the structures referenced in Figure 4.7, representing (a) the single CO molecules adsorbed 
on single surface Co atoms at the terrace (0.25 ML CO, 016 ML surface Co); (b) the geminal dicarbonyl 
structure (0.50 ML CO, 0.16 ML surface Co); (c) the geminal tricarbonyl structure (0.75 ML CO, 0.16 
ML Co); (d) the CO bridging a geminal dicarbonyl Co and terrace Co (0.75 ML CO, 0.33 ML Co); and 
(e) the geminal tricarbonyl structure with single CO adsorbed on single Co at the terrace (1.00 ML CO, 
0.33 ML Co). 
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Figure A7. Vibrational Density of States for the CO adsorbed on Cu/Co(0001) systems. Here (a)-(g) 
correspond to the structures referenced in Figure A3. Briefly: (a) 0.25 ML CO, 0.25 ML Co; (b) 0.50 ML 
CO, 0.25 ML Co; (c) 0.50 ML CO, 0.50 ML Co; (d) 0.75 ML CO, 0.25 ML Co; (e) 0.75 ML CO, 0.75 
ML Co; (f) 0.75 ML CO, 1.00 ML Co; and (g) 1.00 ML CO, 1.00 ML Co. 
 

Vibrational density of states were obtained by applying a Lorentz distribution at each 

VASP-calculated vibrational mode with a lambda value of 3 cm-1 and intensity of 1.0 then 

summing over all Lorentz-distributed modes to obtain a single distribution across all 

wavenumbers. Each distribution was then normalized such that numerically integrating each 

distribution returned the 3N VASP-calculated vibrational modes originally inputted. As such, we 

have constructed a surface “spectral density function”[1]. 

 

X. Propagation of Error in DFT Calculated Vibrational Frequencies. 

 Concerning the DFT error in the calculated frequencies, we have run small vibrational 

mode calculations on the p(2x2) cell of clean Cu/Co(0001) and the geminal dicarbonyl on 

Cu/Co(0001) using revPBE and revPBE with vdW-DF to find an approximate error in the 

calculated frequencies obtained using the pure PBE functional. While these calculations could be 
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characterized as preliminary, they reveal that the calculated frequencies are sensitive to the 

functional used (and therefore DFT error) by at most 22 cm-1 or ~0.003 eV, where the high CO 

stretch frequencies show the most error.  

 Error propagation analysis shows that the error in Gibbs energy resulting from an error in 

the vibrational frequency is   

 

𝑑𝐺æ = 4j
7
+ j

L
ÔÕ�
�ÅÊej	

D𝑑(ℎ𝜐æ)  

 

or   

 

𝑑𝐺æ = «j
7
+ 𝑛æ¬ 𝑑𝐸æ, 

 

where 𝑛æ is the vibrational occupation number. This shows that lower frequencies result in larger 

errors since lower frequencies have higher occupation numbers. The occupation numbers at the 

lowest frequencies of our systems tend to be between 10 and 20, and thus our Gibbs energy 

would have a maximal error of ~0.06 eV due to that frequency’s error. Depending on the number 

of low modes and the degree of error cancelation between systems, this could result in errors in 

excess of the usual DFT error. However, if we ignore the calculated high CO stretch frequencies 

when determining our approximate frequency error (which have occupation numbers near zero, 

anyway), the error drops to about 8 cm-1 or ~0.001 eV and even with a significant number of low 

modes and only modest error cancelation would give errors in the calculated Gibbs energy that 

are within DFT error.   
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APPENDIX B 

I. DFT Parameters and Theory 

All calculations were carried out in the Vienna Ab-initio Simulation Package (VASP)[1-

3], which uses Projector Augmented Wave (PAW) pseudopotentials[4] and a plane wave basis 

set to solve the Kohn-Sham Equations[5, 6]. For all the calculations except those reported in 

Section III of Appendix B we utilized the Perdew-Burke-Enzerhof (PBE) Generalized Gradient 

Approximation (GGA) functional[7, 8] to describe the exchange-correlation. For the calculations 

reported in Section III, we used the vdW-DF functional[9, 10]. We determined that a plane wave 

basis set expanded to a 450 eV energy cutoff[11] and the first Brillouin zone of the p(1×3) 

Cu/Co(755) supercell sampled with a Monkhorst-Pack k-point mesh of 3 × 4 × 1 (see Figure B1) 

accurately described the underlying energetics of the adsorbate system. Spin polarization was 

incorporated to account for the presence of ferromagnetic Co and dipole corrections were 

included to eliminate the fictitious dipole created by the asymmetric finite metal slab. Self-

consistent field (SCF) and geometric optimization criteria were set at 1.0 × 10-4 eV and 3.0 × 10-2 

eV/Å, respectively. For minimum energy pathway calculations and finding transition states, the 

nudged elastic band (NEB)[12, 13] and climbing image nudged elastic band (CINEB)[14] 

method was used, and geometric optimization criteria was decreased (made more stringent) to 

1.0 × 10-5 eV and 1.0 × 10-2 eV/Å, respectively.  For vibrational mode calculations, SCF 

optimization criteria of 1.0 ×10-6 eV and central finite differences with atomic displacements of 

±0.01 Å were used. To eliminate z-direction interaction between slabs, a ~15 Å vacuum layer 

was imposed. The computed lattice constant for the fcc phase of Co is given in Table B1 and 

compared to its values in the hcp phase. Surface free energies changes, Δ𝛾(𝑇, 𝑝), and Gibbs free 

energies, 𝐺(𝑇, 𝑝QR),	were calculated using the statistical mechanical procedures and equations 
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outlined previously,[15] where the harmonic oscillator approximation is used to determine the 

surface species’ contribution to each system’s free energy and all relaxed metal atoms are 

included in the evaluation of the Hessian. If a low-lying real or imaginary mode is shown to 

correspond to a surface translation or rotation, the appropriate free translator/rotor partition 

function is used instead, otherwise the structure is reoptimized to remove all imaginary modes. 

Equilibrium constants were calculated as 

𝐾LØ(𝑇, 𝑝QR) = 𝑒
eÙÚ(Ö,¹jk)

VÅÖ  (B1) 

where 𝐾LØ(𝑇, 𝑝QR) is the equilibrium constant at absolute temperature, 𝑇, and CO partial 

pressure, 𝑝QR; 𝑘g is Boltzmann's constant. The DFT energy and adsorption energy are defined as  

𝐸deÖ = 𝐸�GHIJ¥�KLH/HS�¥ − 𝐸HS�¥ −	𝑁�GHIJ¥�KLH𝐸�GHIJ¥�KL
T�H  (B2) 

𝐸�GH =
𝐸deÖ

𝑁�GHIJ¥�KLH
 (B3) 

where 𝐸�GHIJ¥�KLH/HS�¥, 𝐸HS�¥, and 𝐸�GHIJ¥�KL
T�H  are the DFT-calculated energies of the total 

adsorbed system (on a per supercell basis), the clean slab (on a per supercell basis), and the gas-

phase adsorbate (on a per molecule basis), respectively. 𝑁�GHIJ¥�KLH is the number of adsorbates 

per supercell.  
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Figure B1. K-point mesh (X´Y´1) convergence test performed for CO adsorbed on the Cu covered 
terrace of the p(1´3) Cu/Co(755) surface.  

 

The lengths of the surface (reciprocal space) vectors in the 1st Brillouin zone suggest that 

the k-point mesh should be larger in the “Y” direction than in the “X” direction by a factor of no 

more than 2. Thus, for each “X” value, “Y” is varied from X to 2X and the adsorption energy is 

plotted as a function of the number of irreducible k-points and the “X” value. When “X” is 

increased from a value of 3 to 4, the adsorption energy does not change significantly from the 

final value on the X=3 (blue) line (9 irreducible k-points), suggesting that the “X” value is 

sufficiently converged at a value of 3. All remaining values are less than ~20 meV/CO from the 

value at 6 irreducible k-points (k-point mesh of 3´4´1) on the blue line, which being roughly 

1/10th  the error of GGA-DFT, we consider sufficiently converged for this study. The value at 6 

irreducible k-points is also within 2 meV/CO of the highest k-point sampling tested at 16 

irreducible k-points, further reassuring that it is well converged. 
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Table B1. Lattice constants (in Å) calculated for cobalt in both its fcc and hcp phases using both the PBE 
and revPBE + vdW-DF functionals. 

Co phase PBE revPBE + vdW-DF 

hcp a 2.494 2.526 
c/a 1.618 1.612 

fcc a 3.457 3.501 
 

II. Model Justification 

Here, we choose to work with the Cu/Co(755) surface because it is comprised of a 6 atom 

long (111) terrace with a single atom high (100) step (see Figure B2). This can be regarded as a 

good approximation of a step defect in a (111) surface. Ideally, a step surface with an even 

longer terrace would be used but performing DFT calculations on supercells much greater in size 

would become computationally prohibitive.  

We have previously worked with the hcp phase of Co[11, 15], but we wish to move 

toward models that are more congruent with experimental work, where particle sizes or synthesis 

conditions can be small enough to induce the transition of Co to its fcc phase[16-19]. Due to the 

similarity in the surface electronic structure of these two phases, we do not anticipate any 

difficulty in transferring the information gained from work on hcp structures to fcc structures.  

In our previous work[11, 15], we concerned ourselves with a catalyst surface that had 

been sufficiently equilibrated with its reaction environment. That investigation lead to the 

conclusion that a CoCu catalyst would present a predominantly Cu surface, with adsorbed CO 

coordinated to a low concentration of disperse surface Co. This is admittedly simplified—the 

larger backdrop of potential early-reaction species will affect this picture to some degree (which 

we note as relevant to future work). However, this picture of the surface is likely a good first-

order approximation since it has been indicated that adsorbed CO, undissociated, is predominant 

on the surface[20]. We also showed that surface geminal Co di- and tricarbonyls occupy up to 
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50% of the step sites, with "clean" Cu atoms acting as spacers between adjacent carbonyl 

structures. In the early transient phase of the reaction, we argue that these step site Co carbonyls 

will form long before any of the CO adsorbed on the terrace sites has had time to equilibrate with 

the underlying Co (as we have predicted should eventually occur). We base this on two main 

arguments: (1) our calculations show that these step site carbonyls are lower in free energy than 

the simultaneously predicted CO-adsorbed terrace structures, meaning the thermodynamic 

driving force will generally favor step site CO over terrace CO and (2), the kinetic barriers of Co 

bulk diffusion should be significantly lower for diffusion from the bulk to steps sites than for 

diffusion from the bulk to terrace sites, which is simply due to the lower number of metal bonds 

that must be distorted to accomplish such a diffusion process. This suggests terrace CO/Co 

equilibration is slowed compared to that of step CO/Co. Therefore, the terrace is modeled such 

that any CO is adsorbed to the Cu without inducing surface Co antisegregation in our models of 

CO/Cu/Co(755).  
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Figure B2. Model of the Cu/Co(755) system used here. The p(1×3) supercell is shown outlined in black. 
The blue spheres are Co, the orange spheres are Cu, and the brown spheres are Cu at the step sites. 

 

With regard to the rupturing favorability shown in Figure B2 of the main text, it is 

important to note that our model has only one layer of Cu on the surface and so when dissolution 

occurs it necessarily exposes a Co atom. If more layers of Cu were to make up the Cu shell, then, 

if we neglect thermal entropy-driven mixing, no Co atoms would be exposed after rupturing. 

However, as the temperature is increased, such thermal entropy-driven effects will become more 

significant. Further, geminal Co carbonyl formation is still predicted even when no bare Co is 

exposed at the surface[15]. This implies that our proposed dissolution scheme is still applicable 

to even higher Cu loadings than what we explicitly model here and not necessarily dependent on 

the exposure of surface Co during the rupturing process.    
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III. PBE vs. vdW-DF 

 

Figure B3. Energy differences, defined as E(ruptured) – E(unruptured), for systems A-F found in Figure 
5.2 of chapter five. Here, we present the results of the PBE functional as well as those found when using 
the vdW-DF functional. For systems D-F, where the kink-IS is formed in the FS of each process, there 
appears to be an additional ~0.5 eV cost associated with rupturing when using the vdW-DF functional.  
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Table B2. DFT energy (ΔEDFT), standard Gibbs free energy (ΔG0) at 573K, and average DFT CO 
adsorption energy (ΔEads) of each structure, A-F, presented in Figure 5.1 of chapter five as calculated with 
both the PBE and vdW-DF functionals. Units are in eV, eV, and eV/CO, respectively. Here, the 
vibrational component of the thermal correction added to the DFT energy to arrive at the standard Gibbs 
free energy has been calculated using the PBE functional. This makes the ΔG0 for the vdW-DF case 
approximate, though it is not expected that the vdW-DF functional would change the calculated 
vibrational modes enough to make up for the differences seen herein.  

 

 Calculation with the vdW-DF functional shows a massive increase in the average 

adsorption strength of the CO in each system. Using the PBE functional, the CO adsorption 

strength is within the range expected for CO given the values obtained on  either Co(111) or 

Cu(111) (~1.7 eV/CO[21] and ~0.8 eV/CO[22], respectively). The discrepancy was concerning 

enough that the PBE functional was deemed the more conservative choice. However, it can be 

noted that if one uses the vdW-DF functional, the tetracarbonyl rupturing process seen in Figure 

5.2F is predicted to be most favorable across all pressure ranges of interest at 573 K. Pressure 

effects are then negligible: at no reasonable pressure does the next-most favorable process 

(tricarbonyl rupturing as in Figure 5.2E) become the most favorable process. Thus, in the end, 

the story does not change substantially despite the choice of functional.   
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IV. CO Adsorption Energy Calculations 

 

Figure B4. PBE DFT adsorption energy calculations for three step-site-equivalent coverages: (A) 0.050 
ML, (B) 0.067 ML, and (C) 0.100 ML. Each coverage; A, B, and C; contains two adsorbed CO molecules 
per p(1×8), p(1x6), and p(1x4) Cu/Co(755) supercell, respectively. Within each coverage, we compare 
four systems where, from left two right, (i) both CO are on Cu terrace sites, (ii) one CO is on a Cu terrace 
site and one is on a Co step site, (iii) both CO are on Co step sites, and (iv) both CO are on the same Co 
step site in the form of a dicarbonyl. In all three system, the energetic trends are the same and the step site 
Co dicarbonyl is predicted to be significantly more favorable than the other adsorption configurations. 
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Figure B5. PBE DFT adsorption energy calculations for three coverages: (D) 0.133 ML, (E) 0.200 ML, 
and (F) 0.400 ML. D and E contain two adsorbed CO molecules per p(1×3), p(1x2) Cu/Co(755) supercell, 
respectively; while F contains four CO molecules per p(1x2) Cu/Co(755) supercell. Within D and E, we 
compare four systems where, from left two right, (i) both CO are on Cu terrace sites, (ii) one CO is on a 
Cu terrace site and one is on a Co step site, (iii) both CO are on Co step sites, and (iv) both CO are on the 
same Co step site in the form of a dicarbonyl. In F the step site coverage is kept at 1.00 ML and the 
remaining two CO add to the step in a similar fashion as in the previous two systems. Systems D and E 
have the same energetic trends scene in Figure B4, and only at 2.00 ML do we see a change in this trend. 
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Figure B6. Summary of all data presented in Figures B4-B5. 
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V. Potentially IR-Active Vibrational Modes  

Table B3. Normal modes of the relevant species in this paper extracted from the direct rupturing 
structures’ vibrational mode calculations. Unless otherwise stated in the description, all modes are 
“stretch” modes. All wavenumber values have been rounded to the nearest 10 cm-1. The notation in the 
normal mode description shows the number of species involved, in what ratio, as well as the type of 
vibration. e.g. “2/1-CO antisymmetric” means that 2 CO vibrate symmetrically, while 1 CO (the third 
CO) vibrates antisymmetric to the other two. 
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APPENDIX C 

 

Figure C1. Algorithm for calculation of the LOO-CV score. 

 



 

 283 

 

Figure C2. Potential clusters found for the O/Fe(100) system with a cutoff radius of 4 lattice constants for 
the 2- and 3- body clusters and 3 lattice constants for 4-body clusters. The numbers at the upper left-hand 
corner of each cluster is its cluster ID number. Additional potential clusters are shown in Figure C3. 
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Figure C3. Potential clusters found for the O/Fe(100) system with a cutoff radius of 4 lattice constants for 
the 2- and 3- body clusters and 3 lattice constants for 4-body clusters. The numbers at the upper left-hand 
corner of each cluster is its cluster ID number. Additional potential clusters are shown in Figure C2. 
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Figure C4. AMALGM output for “P2” in Figure 6.4 of chapter six. 
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Figure C5. Progression of the LMO-CV score (blue), RMSR (green), external CV score (red), and the 
absolute prediction errors (black X’s) as a function of the number of unique structures in the dataset. Here, 
instead of allowing the CE to change after 155 structures to the slightly better CE presented in the main 
text, the prior CE is used instead. This demonstrates how little the quantities tracked change. 
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APPENDIX D 

I. Density Functional Theory (DFT) Calculation Parameters for the Fixed-O/Fe(100) Systems 

 DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP) with the 

core electrons modeled using the projector augmented wave (PAW) method and the valence electrons 

modeled with a plane wave basis set expanded to a cutoff energy of 400 eV. The exchange-correlation 

functional used was either the RPBE or optB88-vdW functionals, as denoted in the main text. Methfessl-

Paxton smearing (N = 1) with a smearing width of 0.1 eV was used to perform electron smearing. Spin 

polarization was used to model the magnetization of Fe, and dipole corrections in the �̂�-direction were 

applied. The energies and structures used in the “fixed” O/Fe(100) system datasets, i.e. those generated 

using the Alloy Theoretic Automated Toolkit (ATAT), were from single point calculations where the self-

consistent field cycle tolerance was set to 10-4 eV. K-point grids were generated automatically with the 

condition of 1200 k-points/reciprocal atom with the Gamma distribution. The Fe lattice constants used were 

2.868 and 2.825 Å for the RPBE and optB88-vdW calculations, respectively. 

 The Fe(100) slab was modeled using four atomic layers with the bottom two layers fixed into their 

bulk positions. The vacuum space above the Fe(100) slab was at least 14 Å. The top two Fe(100) layers 

were fixed into their bulk 𝑥Ü- and 𝑦Ü-positions, and the oxygen adatoms were fixed into their ideal, 4-fold 

hollow 𝑥Ü- and 𝑦Ü-positions, as shown in Figure D1. The �̂�-position for the top two Fe(100) layers and oxygen 

adatoms were chosen based on ground state optimizations of a p(4x4) Fe(100) supercell, where the surface 

was clean and with a single oxygen adatom, respectively. The force tolerance for these optimizations was 

0.03 eV/Å, and a Gamma point centered k-point mesh of (4×4×1) was used.  
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Figure D1. Top and side views of the fixed-O/Fe(100) system. The red and gold spheres represent oxygen 
and Fe, respectively. The oxygen is adsorbed in the ideal, 4-fold hollow site and the top two Fe(100) layers 
are fixed in their ideal, bulk 𝑥Ü- and 𝑦Ü-positions. The �̂�-position of the oxygen is set to that found by ground 
state optimization of a p(4x4) Fe(100) supercell with a single oxygen adatom. The �̂�-position of the top two 
Fe(100) layers are set to that found by ground state optimization of a clean p(4x4) Fe(100) supercell.  
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II. Unweighted ECI Error Deviations 

 

Figure D2. Unweighted ECI error deviations for the systems found in Figure 7.4 of chapter seven. 
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APPENDIX E 

AMALGM MATLAB CODES 

INTERACTIONS_GEN.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% INTERACTIONS_GEN.m %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Build and find interaction terms in a cluster expansion for adsorbates 
% on metal surfaces. 
  
% v3: Hopefully output MC_POSITIONS for use in MC simulations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clearvars 
format short g 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN USER INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% User provided "natural" vectors of the metal surface. Be sure to use 
% the vectors that create an obtuse angle. For FCC(111) this would be  
% [1 ; 0 ; 0] and [-1/2 ; sqrt(3)/2 ; 0] instead of [1 ; 0; 0] and  
% [1/2 ; sqrt(3)/2 ; 0]. Technically these are the a, b, and c vectors of   
% p(1 x 1) unit cell of your surface. If you intend to use the z 
% coordinate position in defining adsorption site locations (only important  
% if you have numerous adsorption sites and they aren't all on the same 
% plane.)...i.e. you can easily define them as having the same z position),  
% you should provide the c vector as it appears in your POSCAR divided by  
% the 1st NN distance. Otherwise, you can (and should) leave it as  
% [0 ; 0 ; 1]. Mind, whatever length a unit vector within this coordinate  
% system is will be the "natural unit" used from here on out. 
% NOTE: This is the only place where cartesian coordinates should be  
% encountered! 
  
ux = [1 ; 0 ; 0]; 
uy = [-1/2 ; sqrt(3)/2 ; 0]; 
uz = [0 ; 0 ; 22.98170/2.47558]; 
  
% Alternatively, change infile to "1" and provide a file called 
% "NATURAL_COORDINATES.txt" with each ux uy and uz provided as column 
% vectors.  
  
infile = 0; 
  
% This file must be written in decimal (floating point) format. 
% An example for FCC(11) or HCP(0001) follows: 
% 
%     1 0 0 
%     -0.5 0.866025403784439 0 
%     0 0 1     
% 
%     end of example 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% How many sites within this "natural" cell? 
  
sites_per_cell = 1; 
  
% If there are more than one site, please provide their location within the 
% natural unit cell (in "natural coordinates") along with a number to 
% signify the type of site. The site "type" can be any positive non-zero 
% integer and does not need to be continuous.  
% e.g. if you have an FCC(111) surface, there are potentially top sites (1), 
% bridge sites (2), fcc hollow sites (3), and hcp hollow sites (4). If 
% you want to specify more than one type of adsorbate, you can do that here 
% by repeating the same adsorption site, but changing the "type" number  
% (i.e. the 4th element) 
    Site(:,1) = [0; 0 ; 0 ; 1]; % O site (hollow site) 
  
% If any of the sites are linked, as in through a bond, then identify 
% below. THis will simply remove the point EIC (V naught) for the linked 
% site 
  
linked = []; 
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% User specified overall maximum N-body clusters to include (even if the 
% max is different for different site types, still specify the max of all 
% types here) 
  
maxNbody= 5; 
  
%%%%%%%%%%%%%%%%%%% BOOK KEEPING, PLEASE DON'T TOUCH %%%%%%%%%%%%%%%%%%%%%% 
        vecbody = [ones(1,maxNbody)*maxNbody maxNbody]; 
        Rmax = zeros(vecbody); 
%%%%%%%%%%%%%%%%%%%%%%%%%% OKAY DONE, CONTINUE %%%%%%%%%%%%%%%%%%%%%%%%%%%%       
  
% User defined maximum interaction distances "Rmax" in units of  
% natural unit vectors. Each matrix (e.g. Rmax(:,:,2)) corresponds to a  
% n-body interaction (e.g. 2 body interaction). Each row and column  
% correspond to each site type (so if there are 3 site TYPES, these 
% will be 3 x 3 symmetric matrices. Each element corresponds to  
% interactions between the types designated by the row and column. For 
% example, if there are 3 site types (1, 2, and 3), Rmax(:,:,3) contains 
% the maximum site distances (or "cluster sizes") for 3-body interactions  
% and Rmax(1,3,3) is the maximum 3-body site distance between sites  
% 1 and 3 (corresponding to the sites entered above). If you want (say) 4 
% body interactions between site 1 and itself (Rmax(1,1,4)) but not between 
% site 1 and 2, just enter "0" for that entry (i.e. Rmax(1,2,4) = 0). 
  
Rmax(1,1,:,:,:,2) = 5; 
Rmax(1,1,1,:,:,3) = 3.7; 
Rmax(1,1,1,1,:,4) = 3.7; 
Rmax(1,1,1,1,1,5) = 3; 
  
% User defined minimum interaction distance "Rmin" in units of  
% natural unit vectors. This is the same for all types of interactions. 
  
Rmin = 0.001; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%& END USER INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
  
% manipulate/fill in Rmax array 
for ii=2:maxNbody 
    Ncombs = nmultichoosek(unique(Site(4,:)),ii); 
    if size(Ncombs,1) == 1 
        Ncombs = ones(1,ii)*unique(Site(4,:)); 
    end 
    sz_Ncombs = size(Ncombs,1); 
    RtoUse = zeros(sz_Ncombs,1); 
    for jj = 1:sz_Ncombs 
        Nperms = unique(perms(Ncombs(jj,:)),'rows'); 
        sz_Nperms = size(Nperms,1); 
        for kk = 1:sz_Nperms 
            vecp = [Nperms(kk,:) ones(1,maxNbody-ii) ii]; 
            vecind = num2cell(vecp);  
            Rvecind(jj,kk) = Rmax(sub2ind(size(Rmax),vecind{:})); %#ok<SAGROW> 
        end 
        RtoUse(jj) = max(Rvecind(jj,:)); 
    end 
    if any(RtoUse == 0) 
        whichjj = find(RtoUse == 0); 
        uniqtype = unique(Ncombs(whichjj,:)); 
        for jj = 1:sz_Ncombs 
            if all(unique(Ncombs(jj,:)) == uniqtype) 
                matchjj = jj; 
                break 
            end 
        end 
        RtoUse(whichjj) = RtoUse(matchjj); 
    end 
    for jj = 1:sz_Ncombs 
        Nperms = unique(perms(Ncombs(jj,:)),'rows'); 
        sz_Nperms = size(Nperms,1); 
        for kk = 1:sz_Nperms 
            vecp = [Nperms(kk,:) ones(1,maxNbody-ii) ii]; 
            vecind = num2cell(vecp);  
            Rmax(sub2ind(size(Rmax),vecind{:})) = RtoUse(jj); 
        end     
    end 
end 
Rmax = Rmax.^2; 
Rmin = Rmin.^2; 
  
%if size(Rmax,2) ~= max(max(Nbody)) - 1 
    %error('Error. Number of defined maximum distances per n-body interaction inconsistent with the number of n-body 
interactions specified.'); 
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%end 
fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('\nWorking...\n\n') 
fprintf('----------------------------------------------------------------\n\n') 
  
% Get the natural coordinate system from file "NATURAL_COORDINATES.txt" if 
% infile flag has been turned on 
if infile == 1 
    fID = fopen('NATURAL_COORDINATES.txt'); 
    tline = fgetl(fID); 
    ux = cell2mat(textscan(tline, '%f')); 
    tline = fgetl(fID); 
    uy = cell2mat(textscan(tline, '%f')); 
    tline = fgetl(fID); 
    uz = cell2mat(textscan(tline, '%f'));    
    fclose(fID); 
end 
  
% Determine the "norm conserving matrix" for later determination of 
% distances 
natcoor = [ux uy uz]; 
normR = natcoor'*natcoor; 
     
% determine the max X and Y values needed to reach the maximum Rmax value 
% specified 
maxRmax = max(Rmax(:)); 
unitX = [1;0;0]; 
unitY = [0;1;0]; 
lengthX = unitX'*normR*unitX; 
lengthY = unitY'*normR*unitY; 
maxX = ceil(sqrt(maxRmax)/lengthX); 
maxY = ceil(sqrt(maxRmax)/lengthY); 
% Total number of sites and bodies 
Site = Site(:,Site(4,:)~=0);        % get rid of Sites where the "type" is 0 
sMax = size(unique(Site(4,:)),2); 
nMax = maxNbody; 
  
% Total number of body-to-body pair distances 
numRs = nchoosek(nMax,2); 
site_max = size(Site,2); 
% The "CELL" and "SIG" matrix: 
CELL = [1 0 ; 0 1 ]; 
SIG = [zeros(site_max,2) (1:site_max)']; 
  
num_adsorbates = size(SIG,1); 
  
% Initial Size of sig matrix (dynamic preallocation of memory) 
BLOCK = 100; 
col_BLOCK = 4; 
sig = zeros(BLOCK,col_BLOCK); 
  
% Find SigMaxX and SigMaxY: the dimensions needed to create a surface 
% large enough to encompass the maxR distance for each adsorbate 
SigMaxX = maxX; 
SigMaxY = maxY; 
  
cellvecX = CELL'\[2*SigMaxX ; -2*SigMaxY]; 
cellvecY = CELL'\[-2*SigMaxX ; 2*SigMaxY]; 
  
xMin = cellvecY(1); 
xMax = cellvecX(1); 
  
xMin = sign(xMin)*ceil(abs(xMin)); 
xMax = sign(xMax)*ceil(abs(xMax)); 
  
yMin = cellvecX(2); 
yMax = cellvecY(2); 
  
yMin = sign(yMin)*ceil(abs(yMin)); 
yMax = sign(yMax)*ceil(abs(yMax)); 
  
xTot = xMax - xMin; 
yTot = yMax - yMin; 
  
% Populate "sig" matrix 
kk = 1; 
SIG_dif = zeros(num_adsorbates,2); 
for ii = 1:num_adsorbates      
    for xx = 0:xTot 
        sigx = xx + xMin;          
        for yy = 0:yTot     
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            sigy = yy + yMin; 
            repeat = SIG(ii,1:2)+(CELL'*[sigx;sigy])'; 
            SIG_dif = SIG(:,1:2) - repeat;                      % difference between this repeated position and all 
adsorbates' positions                    
            R_check = (diag([SIG_dif zeros(num_adsorbates,1)]*normR*[SIG_dif zeros(num_adsorbates,1)]'));                
            if any(R_check <= maxRmax+0.1) 
                Shift = Site(1:3,SIG(ii,3))'; 
                sig_type = Site(4,SIG(ii,3)); 
                sig(kk,:) = [[repeat 0]+Shift sig_type]; 
                 
                kk = kk + 1;                       
            end 
            % Add new block of memory to sig matrix if needed 
            check = sig(any(sig~=0,2),:); 
            if size(check,1)/size(sig,1) > 0.95                 % Only 5% of the current allocation is left 
                list_size = size(check,1) + BLOCK; 
                sig(kk+1:list_size,:)=0;                        % ...so add a new block of memory 
            end                          
        end 
    end   
end 
  
sig = sig(any(sig~=0,2),:); 
sig = sortrows(sig,1:3); 
  
nTot = size(sig,1); 
X = sig(:,1); 
Y = sig(:,2); 
Z = sig(:,3); 
% Find where each site within the unit cell is within the sig matrix  
sigPos = zeros(1,num_adsorbates); 
sig_coord = zeros(num_adsorbates,4); 
for ii = 1:num_adsorbates 
    Shift = Site(1:3,SIG(ii,3))'; 
    sig_type = Site(4,SIG(ii,3)); 
    check = [[SIG(ii,1:2) 0]+Shift sig_type]; 
    [sig_coord(ii,:),sigPos(ii)] = intersect(sig,check,'rows'); 
end        
  
% All combinations of pairs for every adsorbate on the SigMaxX by 
% SigMaxY surface 
CombTot = sortrows(nchoosek(1:nTot,2),2); 
nCombs = size(CombTot,1); 
frstn = CombTot(:,1)'; 
scndn = CombTot(:,2)'; 
  
% Find the delta X,Y,Z between each pair of bodies with each site 
delX = zeros(1,nCombs); 
delY = zeros(1,nCombs); 
delZ = zeros(1,nCombs); 
delXYZ = zeros(3,nCombs); 
R = zeros(1,nCombs); 
for ii = 1:nCombs 
    delX(ii) = X(scndn(ii))-X(frstn(ii)); 
    delY(ii) = Y(scndn(ii))-Y(frstn(ii)); 
    delZ(ii) = Z(scndn(ii))-Z(frstn(ii)); 
    delXYZ(:,ii) = [delX(ii);delY(ii);delZ(ii)]; 
    R2 = delXYZ(:,ii)'*normR*delXYZ(:,ii); 
    R(ii) = (R2); 
end 
  
% Associate R's with each of its associated pair's positions. 
% Swaping these positions changes nothing so do that now. 
Rassoc = zeros(nTot); 
for h = 1:size(CombTot,1) 
    Rassoc(CombTot(h,1),CombTot(h,2)) = R(h); 
    Rassoc(CombTot(h,2),CombTot(h,1)) = Rassoc(CombTot(h,1),CombTot(h,2)); 
end 
  
% Now find all pairs that contain the number of the position of each 
% supercell adsorbate. Use this to extract all the R's that connect the 
% various n-body interactions     
clusters = zeros(BLOCK, nMax+numRs); 
posclusters = zeros(BLOCK, 4*nMax+numRs);     % create a matrix with enough position for each n-body, each R, and each 
one's 3 coordinates 
min_clusters = zeros(1,BLOCK); 
Int_sz = BLOCK; 
int_ptr = 1; 
  
% Create point (V naught) clusters first 
principle_sites = unique(Site(4,:)); 
if size(principle_sites,1) > 1 
    uu = unique(linked); 
    nn = histcounts(linked); 
    over_linked = uu(nn>1); 
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    principle_site = intersect(principle_sites,uu); 
  
    for ii = 1:size(over_linked,2) 
        over_linked_sites = linked(linked==over_linked(ii),:); 
        principle_sites = [principle_sites min(over_linked_sites(:))]; %#ok<AGROW> 
    end 
    non_linked_sites = principle_sites; 
    for ii = 1:size(linked,1) 
        if isempty(intersect(linked(ii,:),principle_sites)) 
            non_linked_sites = [non_linked_sites min(linked(ii,:))]; %#ok<AGROW> 
        end 
    end 
end 
  
    non_linked_sites = principle_sites; 
for ii = 1:size(non_linked_sites,2) 
    clusters(int_ptr,1) = non_linked_sites(ii); 
    posclusters(int_ptr,1) = non_linked_sites(ii); 
    int_ptr = int_ptr + 1; 
end 
  
% Now go through and find the rest of the clusters 
for ii = 2:nMax 
    fprintf('\tFinding all %d-body clusters...\n',ii) 
    for kk = 1:num_adsorbates 
        fprintf('\t\tSite #%d\n',kk) 
        curr_ads_type = sig(sigPos(kk),4); 
        vec_dif = sig(:,1:3) - sig(sigPos(kk),1:3); 
        R_vec_dif = (diag(vec_dif*normR*vec_dif'));        
        sigwR = [sig R_vec_dif]; 
        irrel_sigA = sigwR(sig(:,1)==sig(sigPos(kk),1) & sig(:,2)<sig(sigPos(kk),2),:);       % Find the "irrelevant" 
positions in sig (A) those where Y < X when X = the X of adsorbate kk 
        irrel_sigB = sigwR(sig(:,1)<sig(sigPos(kk),1),:);                                     % ...(B) those where X is 
lower than the adsorbate         
        ind_sigC = zeros(10000,1); 
        ind_ptr = 1;  
        for bb = 1:sMax                                                             % ...(C) those where their distance 
from the adsorbate is greater than this type's n-body Rmax                            
            nd = ndims(Rmax);                                                       % Since it can change, how many 
dimension in the Rmax array? 
            hold_ind = repmat({':'},1,nd-3);                                        % Create nd-3 ":" indices to insert 
into the Rmax indexing 
            subsetR = Rmax(curr_ads_type,bb,hold_ind{:},ii);                        % Get the 2-body subset of Rmax of 
the current site type and bb 
            maxSubsetR = max(subsetR(:));                                           % Find the maximum value for this 
subset 
            temp_ind = find(sigwR(:,4)==bb & sigwR(:,5) > maxSubsetR);              % Grab the sigwR positions that are 
outside the maxRmax distance from the current position 
            sz_temp = size(temp_ind,1);                                             % Number of these positions? 
            ind_sigC(ind_ptr:(ind_ptr+sz_temp-1)) = temp_ind;                       % Add their indices to ind_sigC 
            ind_ptr = ind_ptr + sz_temp;                                            % advance pointer 
        end           
        ind_sigC = ind_sigC(ind_sigC ~= 0,:); 
        ind_sigC = sort(ind_sigC); 
        irrel_sigC = sigwR(ind_sigC,:);                                                                                                                
        irrel_sig = [irrel_sigA ; irrel_sigB ; irrel_sigC]; 
        irrel_sig = setdiff(irrel_sig,sigwR(sigPos(kk),:),'rows'); 
        [rel_sig,rel_bodies] = setdiff(sigwR,irrel_sig,'rows');                               % Find which bodies 
(indices in sig) fit the above criteria 
        rel_combs = nchoosek(rel_bodies',ii);                                               % Use these bodies to find 
the relevant n-body combos 
        rel_combs = rel_combs(any(rel_combs == sigPos(kk),2),:);                            % Restrict the relevant 
bodies to those with the kk adsorbate in it 
        bTot = size(rel_combs,1); 
        dist = zeros(bTot,numRs); 
        types = reshape(sig(rel_combs',4),ii,[])';                                          % rel_bodies are read row 
THEN column by sig, so transpose rel_bodies first, then read their types (col 4 of sig). Reshape this back into a 
matrix the same shape as rel_bodies 
        rel_pos = []; 
        for yyy = 1:ii 
            rel_pos = [rel_pos sig(rel_combs(:,yyy)',1:3)]; %#ok<AGROW> 
        end 
        good_types = zeros(bTot,ii); 
        good_pos = zeros(bTot,3*ii); 
        zz = 1; 
        for ll = 1:bTot 
            pairs = sortrows(nchoosek(rel_combs(ll,:),2),2); 
            num_pairs = size(pairs,1);    
            dist_temp = diag(Rassoc(pairs(:,1),pairs(:,2)))';             
            index_vec = num2cell([types(ll,:) ones(1,nMax-ii) ii]); 
            if all(dist_temp <= Rmax(sub2ind(size(Rmax),index_vec{:})))   
                dist(ll,1:num_pairs) = dist_temp;  
                good_types(ll,:) = types(ll,:);   
                good_pos(ll,:) = rel_pos(ll,:); 
            end 
        end                    
        fill_zeros = zeros(bTot,nMax-ii); 
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        fill_zeros2 = zeros(bTot, 3*(nMax-ii)); 
        dum_types = [good_types fill_zeros];   
        dum_pos = [good_pos fill_zeros2]; 
        dum = [dum_types dist];   
        dum2 = [dum dum_pos]; 
        dum(all(dum == 0,2),:) = []; 
        dum2(all(dum2 == 0,2),:) = []; 
        dum = dum(all(dum(:,nMax+1:nMax+num_pairs) >= Rmin-0.01,2),:); 
        dum_sz = size(dum,1);            
            % Fill memory as needed 
            check = clusters(all(clusters == 0,2),:);            
            check_sz = size(check,1);                
            while check_sz < dum_sz 
                Int_sz = Int_sz + BLOCK; 
                clusters(int_ptr+1:Int_sz,:)=0; 
                posclusters(int_ptr+1:Int_sz,:)=0; 
                min_clusters(int_ptr+1:Int_sz) =0; 
                check = clusters(all(clusters == 0,2),:); 
                check_sz = size(check,1);                
            end      
         
        clusters(int_ptr:int_ptr+dum_sz-1,:) = dum; 
        posclusters(int_ptr:int_ptr+dum_sz-1,:) = dum2; 
        int_ptr = int_ptr + dum_sz + 1;                      
    end  
     
end  
% Clean up clusters matrix: remove unused space 
clusters = clusters(any(clusters~=0,2),:); 
posclusters = posclusters(any(posclusters~=0,2),:); 
TotInts = size(clusters,1); 
  
% Find where each n-body interaction starts and ends 
section_ctr = zeros(1,nMax); 
dummy_int = clusters; 
for mm = 2:nMax 
    if mm ~= nMax 
        section = dummy_int(all(dummy_int(section_ctr(mm-1)+1:end,mm+1)==0,2),:); 
    else 
        section = dummy_int(section_ctr(mm-1)+1:end,:); 
    end  
    section_ctr(mm) = section_ctr(mm-1) + size(section,1); 
end 
section_ctr(nMax+1) = TotInts; 
fprintf('\nAll n-body clusters found!\n\nNow reducing to non-equivalent interactions...\n\n')     
  
% Initial Size of INTERACTIONS matrix (dynamic preallocation of memory) 
BLOCK = 100; 
list_size = BLOCK; 
col_BLOCK = nMax+numRs; 
INTERACTIONS = zeros(BLOCK,col_BLOCK); 
POS_INTERACTIONS = zeros(BLOCK,4*nMax+numRs); 
list_ptr = 1; 
  
% Now permute the n-bodies and check against all previously found 
% interactions, if it's a new one, add it to INTERACTIONS 
  
for qq = 2:nMax 
    fprintf('\n\nFinding equivalent site-permutations of %d-body clusters\nCounting unique clusters as they are 
found:\n',qq)    
    Nperm = sortrows(perms(1:qq));        % Find all permutations of qq bodies 
    Nperm_sz = size(Nperm,1); 
    tpair = sortrows(nchoosek(1:qq,2),2); % Total combinations of pairs used here according to number qq 
    tpair_sz = size(tpair,1); 
    for ii = section_ctr(qq-1)+1:section_ctr(qq) 
        if size(INTERACTIONS(any(INTERACTIONS ~= 0,2),:),1) == 0 
            fprintf('1...') 
            INTERACTIONS(list_ptr+1,:) = clusters(1,:); 
            POS_INTERACTIONS(list_ptr+1,:) = posclusters(1,:); 
            list_ptr = list_ptr + 1; 
            continue 
        end 
        newRassoc = zeros(nMax); 
        for kk = 1:tpair_sz 
            newRassoc(tpair(kk,1),tpair(kk,2)) = clusters(ii,nMax+kk); 
            newRassoc(tpair(kk,2),tpair(kk,1)) = newRassoc(tpair(kk,1),tpair(kk,2)); 
        end 
  
        swappedRs = zeros(Nperm_sz,numRs); 
        swappedTypes = zeros(Nperm_sz,nMax);   
        type_holder = clusters(ii,1:nMax); 
        for ll = 1:Nperm_sz 
            for kk = 1:tpair_sz 
                BodyA = Nperm(ll,tpair(kk,1)); 
                BodyB = Nperm(ll,tpair(kk,2)); 
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                swappedRs(ll,kk) = newRassoc(BodyA,BodyB); 
                if qq ~= nMax 
                    swappedTypes(ll,:) = [type_holder(Nperm(ll,:)) zeros(1,nMax-qq)]; 
                else 
                    swappedTypes(ll,:) = type_holder(Nperm(ll,:)); 
                end             
            end 
        end            
        allpossperms = [swappedTypes swappedRs]; 
        % Check each permutation against the interactions already found 
        flag = 0; 
             
        check = INTERACTIONS(any(INTERACTIONS~=0,2),:); 
        INT_sz = size(check,1);     
        for nn = 1:Nperm_sz 
            for mm = 1:INT_sz                           
                checkdif = abs(allpossperms(nn,:) - check(mm,:)); 
                if all(checkdif < 0.05) 
                    flag = 1; 
                    break 
                elseif nn == Nperm_sz && mm == INT_sz && flag ==0 
                    fprintf('%d...',list_ptr) 
                    if mod(list_ptr,7)==0 
                        fprintf('\n') 
                    end 
                    INTERACTIONS(list_ptr+1,:) = clusters(ii,:); 
                    POS_INTERACTIONS(list_ptr+1,:) = posclusters(ii,:); 
                    list_ptr = list_ptr + 1; 
                    % Add memory as it's needed 
                    if list_ptr+BLOCK/20 > list_size 
                        list_size = list_size + BLOCK; 
                        INTERACTIONS(list_ptr+1:list_size,:)=0; 
                        POS_INTERACTIONS(list_ptr+1:list_size,:)=0; 
                    end 
                end 
            end 
            if flag == 1 
                break 
            end 
        end    
    end  
end 
blah = INTERACTIONS(any(INTERACTIONS~=0,2),:); 
pblah = POS_INTERACTIONS(any(POS_INTERACTIONS~=0,2),:); 
blah = [blah sum(blah(:,nMax+1:end),2)]; 
  
% Create headings 
Combs = sortrows(nchoosek(1:nMax,2),2); 
numCombs = size(Combs,1); 
for i = 1:nMax 
    bawd{i} = sprintf('B%d',i); %#ok<SAGROW> 
end 
for i = 1:numCombs 
    dists{i} = sprintf('R%d%d',Combs(i,1),Combs(i,2)); %#ok<SAGROW> 
end 
for i = 1:3:3*nMax 
    poses{i} = sprintf('X%d',ceil(i/3)); %#ok<SAGROW> 
    poses{i+1} = sprintf('Y%d',ceil(i/3)); %#ok<SAGROW> 
    poses{i+2} = sprintf('Z%d',ceil(i/3)); %#ok<SAGROW> 
end 
     
Headings = [bawd dists]; 
Headings2 = [bawd dists poses]; 
% Get rid of unused rows 
clusters(list_ptr:end,:)=[]; 
posclusters(list_ptr:end,:)=[]; 
new_inter = zeros(size(clusters,1),size(clusters,2)); 
pos_new_inter = zeros(size(posclusters)); 
tblah = blah; 
ptblah = pblah; 
front_pntr = 1; 
  
% Sort the output so that interactions are clearly separated into the  
% various n-body interactions and then increase in "size"  
for i = 2:nMax 
    zrow = nMax + nchoosek(i,2) + 1; 
    if i == nMax 
        [tempA, ti] = sortrows(tblah,[nMax:-1:1 size(tblah,2)]); 
        tempB = ptblah(ti,:); 
    else 
        [tempA, ti] = sortrows(tblah(tblah(:,zrow)==0,:),[nMax:-1:1 size(tblah,2)]); 
        tempB = ptblah(ptblah(:,zrow)==0,:); 
        tempB = tempB(ti,:); 
    end 
    back_pntr = front_pntr+size(tempA,1)-1; 
    tblah = setdiff(tblah,tempA,'rows'); 
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    ptblah = setdiff(ptblah,tempB,'rows'); 
    new_inter(front_pntr:back_pntr,:) = tempA(:,1:end-1); 
    pos_new_inter(front_pntr:back_pntr,:) = tempB; 
    front_pntr = back_pntr + 1; 
end 
num_interactions = size(blah,1); 
  
%%%% Generate MC_POSITIONS.txt %%%% 
fprintf('\Working on MC_POSITIONS.txt now...\n\n') 
  
clusters = zeros(BLOCK, nMax+numRs); 
posclusters = zeros(BLOCK, 4*nMax+numRs+4);     % create a matrix with enough position for each n-body, each R, and 
each one's 3 coordinates 
min_clusters = zeros(1,BLOCK); 
Int_sz = BLOCK; 
int_ptr = 1; 
  
for ii = 2:nMax 
    fprintf('\tFinding all %d-body clusters...\n',ii) 
    for kk = 1:num_adsorbates 
        fprintf('\t\tSite #%d\n',kk) 
        curr_ads_type = sig(sigPos(kk),4); 
        vec_dif = sig(:,1:3) - sig(sigPos(kk),1:3); 
        R_vec_dif = (diag(vec_dif*normR*vec_dif'));        
        sigwR = [sig R_vec_dif]; 
        irrel_sigA = []; 
        irrel_sigB = [];       
        ind_sigC = zeros(10000,1); 
        ind_ptr = 1;  
        for bb = 1:sMax                                                             % ...(C) those where their distance 
from the adsorbate is greater than this type's n-body Rmax                            
            nd = ndims(Rmax);                                                       % Since it can change, how many 
dimension in the Rmax array? 
            hold_ind = repmat({':'},1,nd-3);                                        % Create nd-3 ":" indices to insert 
into the Rmax indexing 
            subsetR = Rmax(curr_ads_type,bb,hold_ind{:},ii);                        % Get the 2-body subset of Rmax of 
the current site type and bb 
            maxSubsetR = max(subsetR(:));                                           % Find the maximum value for this 
subset 
            temp_ind = find(sigwR(:,4)==bb & sigwR(:,5) > maxSubsetR);              % Grab the sigwR positions that are 
outside the maxRmax distance from the current position 
            sz_temp = size(temp_ind,1);                                             % Number of these positions? 
            ind_sigC(ind_ptr:(ind_ptr+sz_temp-1)) = temp_ind;                       % Add their indices to ind_sigC 
            ind_ptr = ind_ptr + sz_temp;                                            % advance pointer 
        end           
        ind_sigC = ind_sigC(ind_sigC ~= 0,:); 
        ind_sigC = sort(ind_sigC); 
        irrel_sigC = sigwR(ind_sigC,:);                                                                                                                
        irrel_sig = [irrel_sigA ; irrel_sigB ; irrel_sigC]; 
        irrel_sig = setdiff(irrel_sig,sigwR(sigPos(kk),:),'rows'); 
        [rel_sig,rel_bodies] = setdiff(sigwR,irrel_sig,'rows');                               % Find which bodies 
(indices in sig) fit the above criteria 
        rel_combs = nchoosek(rel_bodies',ii);                                               % Use these bodies to find 
the relevant n-body combos 
        rel_combs = rel_combs(any(rel_combs == sigPos(kk),2),:);                            % Restrict the relevant 
bodies to those with the kk adsorbate in it 
        bTot = size(rel_combs,1); 
        dist = zeros(bTot,numRs); 
        types = reshape(sig(rel_combs',4),ii,[])';                                          % rel_bodies are read row 
THEN column by sig, so transpose rel_bodies first, then read their types (col 4 of sig). Reshape this back into a 
matrix the same shape as rel_bodies 
        rel_pos = []; 
        for yyy = 1:ii 
            rel_pos = [rel_pos sig(rel_combs(:,yyy)',1:3)]; %#ok<AGROW> 
        end 
        good_types = zeros(bTot,ii); 
        good_pos = zeros(bTot,3*ii); 
        zz = 1; 
        for ll = 1:bTot 
            pairs = sortrows(nchoosek(rel_combs(ll,:),2),2); 
            num_pairs = size(pairs,1);    
            dist_temp = diag(Rassoc(pairs(:,1),pairs(:,2)))';             
            index_vec = num2cell([types(ll,:) ones(1,nMax-ii) ii]); 
            if all(dist_temp <= Rmax(sub2ind(size(Rmax),index_vec{:})))   
                dist(ll,1:num_pairs) = dist_temp;  
                good_types(ll,:) = types(ll,:);   
                good_pos(ll,:) = rel_pos(ll,:); 
            end 
        end                    
        fill_zeros = zeros(bTot,nMax-ii); 
        fill_zeros2 = zeros(bTot, 3*(nMax-ii)); 
        dum_types = [good_types fill_zeros];   
        dum_pos = [good_pos fill_zeros2]; 
        dum = [dum_types dist];   
        all_sig_coord = ones(bTot,4).*sig_coord(kk,:); 
        dum2 = [dum dum_pos all_sig_coord]; 
        dum(all(dum == 0,2),:) = []; 



 

 298 

        dum2(all(dum2(:,1:end-1) == 0,2),:) = []; 
        dum = dum(all(dum(:,nMax+1:nMax+num_pairs) >= Rmin-0.01,2),:); 
        dum_sz = size(dum,1);            
            % Fill memory as needed 
            check = clusters(all(clusters == 0,2),:);            
            check_sz = size(check,1);                
            while check_sz < dum_sz 
                Int_sz = Int_sz + BLOCK; 
                clusters(int_ptr+1:Int_sz,:)=0; 
                posclusters(int_ptr+1:Int_sz,:)=0; 
                min_clusters(int_ptr+1:Int_sz) =0; 
                check = clusters(all(clusters == 0,2),:); 
                check_sz = size(check,1);                
            end      
         
        clusters(int_ptr:int_ptr+dum_sz-1,:) = dum; 
        posclusters(int_ptr:int_ptr+dum_sz-1,:) = dum2;         
        int_ptr = int_ptr + dum_sz + 1;                      
    end  
     
end  
% Clean up clusters matrix: remove unused space 
clusters = clusters(any(clusters~=0,2),:); 
posclusters = posclusters(any(posclusters~=0,2),:); 
TotInts = size(clusters,1); 
  
% Find where each n-body interaction starts and ends 
section_ctr = zeros(1,nMax); 
dummy_int = clusters; 
for mm = 2:nMax 
    if mm ~= nMax 
        section = dummy_int(all(dummy_int(section_ctr(mm-1)+1:end,mm+1)==0,2),:); 
    else 
        section = dummy_int(section_ctr(mm-1)+1:end,:); 
    end  
    section_ctr(mm) = section_ctr(mm-1) + size(section,1); 
end 
section_ctr(nMax+1) = TotInts; 
fprintf('\nAll n-body clusters found!\n\n')     
  
% Initial Size of INTERACTIONS matrix (dynamic preallocation of memory) 
BLOCK = 100; 
list_size = BLOCK; 
col_BLOCK = nMax+numRs; 
INTERACTIONS2 = zeros(BLOCK,col_BLOCK); 
POS_INTERACTIONS2 = zeros(BLOCK,4*nMax+numRs+4); 
list_ptr = 1; 
  
% Now permute the n-bodies and check against all previously found 
% interactions, if it's a new one, add it to INTERACTIONS 
  
pnt = ones(INT_sz,1); 
MC_POSITIONS = zeros(100,size(posclusters,2),INT_sz); % Initialize MC_POSITIONS 3D array (1st_ind: position of NNs ; 
2nd_ind: X Y Z of each NN; 1st_ind: cluster #)    
  
for qq = 2:nMax 
    fprintf('\n\nFinding equivalent site-permutations of %d-body clusters\nCounting unique clusters as they are 
found:\n',qq)    
    Nperm = sortrows(perms(1:qq));        % Find all permutations of qq bodies 
    Nperm_sz = size(Nperm,1); 
    tpair = sortrows(nchoosek(1:qq,2),2); % Total combinations of pairs used here according to number qq 
    tpair_sz = size(tpair,1); 
    for ii = section_ctr(qq-1)+1:section_ctr(qq) 
        if size(INTERACTIONS2(any(INTERACTIONS2 ~= 0,2),:),1) == 0 
  
            INTERACTIONS2(list_ptr+1,:) = clusters(1,:); 
            POS_INTERACTIONS2(list_ptr+1,:) = posclusters(1,:); 
            list_ptr = list_ptr + 1; 
            continue 
        end 
        newRassoc = zeros(nMax); 
        for kk = 1:tpair_sz 
            newRassoc(tpair(kk,1),tpair(kk,2)) = clusters(ii,nMax+kk); 
            newRassoc(tpair(kk,2),tpair(kk,1)) = newRassoc(tpair(kk,1),tpair(kk,2)); 
        end 
  
        swappedRs = zeros(Nperm_sz,numRs); 
        swappedTypes = zeros(Nperm_sz,nMax);   
        type_holder = clusters(ii,1:nMax); 
        for ll = 1:Nperm_sz 
            for kk = 1:tpair_sz 
                BodyA = Nperm(ll,tpair(kk,1)); 
                BodyB = Nperm(ll,tpair(kk,2)); 
                swappedRs(ll,kk) = newRassoc(BodyA,BodyB); 
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                if qq ~= nMax 
                    swappedTypes(ll,:) = [type_holder(Nperm(ll,:)) zeros(1,nMax-qq)]; 
                else 
                    swappedTypes(ll,:) = type_holder(Nperm(ll,:)); 
                end             
            end 
        end            
        allpossperms = [swappedTypes swappedRs]; 
        % Check each permutation against the list of known interactions 
        % (i.e. INTERACTIONS matrix). Increase the count of that 
        % interaction 
        flag = 0; 
        INT_sz = size(new_inter,1); 
      
        for nn = 1:Nperm_sz 
            for mm = 1:INT_sz             
                checkdif = abs(allpossperms(nn,:) - new_inter(mm,:)); 
                if all(checkdif < 0.05)             % Adjust this tolerance if using substantially large Rmax. 
                    flag = 1; 
                    MC_POSITIONS(pnt(mm),:,mm) = posclusters(ii,:); 
                    pnt(mm) = pnt(mm) + 1; 
                    break 
                elseif mm == INT_sz && nn == Nperm_sz && flag == 0 
                    fprintf('A structure could not be assigned to an interaction!\n') 
                end 
            end 
            if flag == 1 
                break 
            end 
        end    
    end  
end 
mx_pnt = max(pnt); 
MC_POSITIONS(mx_pnt:end,:,:)=[]; 
% Fix output for use in MC simulations where coordinates are of the type  
% [X Y Z S] where S is the site type and X Y Z correspond to the INTEGER 
% cell coordinate (unshifted) 
  
sz1 = size(MC_POSITIONS,1); 
sz2 = size(MC_POSITIONS,2); 
sz3 = size(MC_POSITIONS,3); 
bg = nMax+numRs; 
  
for ii = 1:sz3 
    for jj = 1:sz1 
        dm = MC_POSITIONS(jj,:,ii); 
        bodies = dm(1:nMax); 
        bds = sum(bodies~=0); 
        if bds == 0 
            continue 
        end 
        part2 = dm(nMax+1:bg); 
        MC_POSITIONS(jj,1,ii) = dm(end); 
         
        for kk = 1:bds 
            MC_POSITIONS(jj,2+4*(kk-1):4*kk,ii) = dm(bg+1+3*(kk-1):bg+3*kk); 
            MC_POSITIONS(jj,5+4*(kk-1),ii) = bodies(kk); 
            shift = Site(1:3,Site(4,:)==bodies(kk)); 
            MC_POSITIONS(jj,2+4*(kk-1):4*kk,ii) = MC_POSITIONS(jj,2+4*(kk-1):4*kk,ii) - shift'; 
        end 
        % Fill in remaining places with zeros 
        MC_POSITIONS(jj,2+4*bds:end,ii) = 0; 
        % Find the [ 0 0 0 S ] coordinate and move to front for eventual deletion 
        part = zeros(nMax,4); 
        for kk = 1:bds 
            part(kk,:) = MC_POSITIONS(jj,2+4*(kk-1):1+4*kk,ii); 
            if isequal(part(kk,1:3),[0 0 0]) && part(kk,4) == MC_POSITIONS(jj,1,ii) 
                foundit = kk; 
            end 
        end 
        dummy = MC_POSITIONS(jj,2:5,ii); 
        MC_POSITIONS(jj,2:5,ii) = MC_POSITIONS(jj,2+4*(foundit-1):1+4*foundit,ii); 
        MC_POSITIONS(jj,2+4*(foundit-1):1+4*foundit,ii) = dummy; 
    end 
end 
  
% remove all unused space after the coordinates 
MC_POSITIONS(:,2+4*nMax:end,:) =[]; 
% remove the central coordinates 
MC_POSITIONS(:,2:5,:) = []; 
  
%%%%%%% 
  
  
%%% Write MC_POSITIONS to files 
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if exist('MC_POSITIONS','dir')==7 
    rmdir 'MC_POSITIONS' s 
    mkdir('MC_POSITIONS') 
else 
    mkdir('MC_POSITIONS') 
end 
cd './MC_POSITIONS' 
for ii=1:sz3 
    dlmwrite(num2str(ii),MC_POSITIONS(:,:,ii),'delimiter','\t','precision','%4.6g') 
end 
cd '../' 
  
% Create a table from the sorted interactions with the heading created above 
final_out = array2table(new_inter,'VariableNames',Headings); 
  
fprintf('\n----------------------------------------------------------------\n\n') 
fprintf('DONE!\nHere are the  n-body clusters that were found:\n\n') 
disp(final_out) 
fprintf('A total of %d unique clusters were found\n',num_interactions) 
fprintf('These results have been written to "OUTPUT_INTERACTIONS.txt"\nRename as "INTERACTIONS.txt" in order to use as 
input to "COUNTS_GEN.m"\n') 
  
  
  
  
%%% Write the output to file "OUTPUT_INTERACTIONS.txt" 
fileID = fopen('OUTPUT_INTERACTIONS.txt','w'); 
fprintf(fileID,'   %s\t',Headings{1:end-1}); 
fprintf(fileID,'   %s\n',Headings{end}); 
fclose(fileID); 
dlmwrite('OUTPUT_INTERACTIONS.txt',new_inter,'delimiter','\t','precision','%4.6g','-append') 
  
fileID = fopen('CLUSTER_POSITIONS.txt','w'); 
fprintf(fileID,'   %s\t',Headings2{1:end-1}); 
fprintf(fileID,'   %s\n',Headings2{end}); 
fclose(fileID); 
dlmwrite('CLUSTER_POSITIONS.txt',pos_new_inter,'delimiter','\t','precision','%4.6g','-append') 
  
%Timing stuff 
elapsed=toc; 
inmin = elapsed/60; 
fprintf('\nThis run took %9.2f seconds (or %3.2f min) to run.\n',elapsed,inmin) 
fprintf('\n----------------------------------------------------------------\n') 
fprintf('\n----------------------------------------------------------------\n\n') 
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COUNTS_GEN_v8.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COUNTS_GEN.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Build and find interaction terms in a cluster expansion for adsorbates 
% on metal surfaces, along with occupancies of these interactions (given a 
% certain configuration) 
  
% v5:   finds "problem structures" 
% v6:   find which of the new structures in "new_configs" is repeated, if 
% any; does not include these in the calculation of the external CV score. 
% v6.1: fixes "double counting" of interactions based on site number 
% v7: finds ground states 
% v8: determines the matrix of constraints needed to ensure that 
% the ground states are recovered in the fitting of the ECIs to the dataset 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if exist('surf_normalized_counts','var') == 1 
    MAT = surf_normalized_counts; 
    EN = surf_energy; 
end 
clearvars -except MAT EN surf_normalized_counts surf_energy 
format short g 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN USER INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% User provided "natural" vectors of the metal surface. Be sure to use 
% the vectors that create an obtuse angle. For FCC(111) this would be  
% [1 ; 0 ; 0] and [-1/2 ; sqrt(3)/2 ; 0] instead of [1 ; 0; 0] and  
% [1/2 ; sqrt(3)/2 ; 0]. Technically these are the a, b, and c vectors of   
% p(1 x 1) unit cell of your surface. If you intend to use the z 
% coordinate position in defining adsorption site locations (only important  
% if you have numerous adsorption sites and they aren't all on the same 
% plane.)...i.e. you can easily define them as having the same z position),  
% you should provide the c vector as it appears in your POSCAR. Otherwise,  
% you can (and should) leave it as [0 ; 0 ; 1]. Mind, whatever length a 
% unit vector within this coordinate system is will be the "natural unit"  
% used from here on out. 
% NOTE: This is the only place where cartesian coordinates should be  
% encountered! 
  
ux = [1 ; 0 ; 0]; 
uy = [-1/2 ; sqrt(3)/2 ; 0]; 
uz = [0 ; 0 ; 1]; 
  
% Alternatively, change infile to "1" and provide a file called 
% "NATURAL_COORDINATES.txt" with each ux uy and uz provided as column 
% vectors.  
  
infile = 0; 
  
% This file must be written in decimal (floating point) format. Be careful 
% here, the script appears to suffer from round off errors and you might 
% need to a "fudge factor" to your Rmax. Experiment. Otherwise, don't use 
% this feature. 
% An example for FCC(11) or HCP(0001) follows: 
% 
%     1 0 0 
%     -0.5 0.866025403784439 0 
%     0 0 1     
% 
%     end of example 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% If you know which clusters correspond to 1-body interactions in 
% equilibrium with some chemical potential, you may want to subtract off 
% the electronic (DFT) energy from that cluster. Add it here, if so, where 
% the first entry is the cluster ID number and the second entry is the 
% energy  
  
mu_elec(1,:) = [1 -14.778323]; 
  
% User specified ECI value(s). First entry is the cluster ID #, second entry 
% is the ECI value (in eV). 
  
%ECI_val(1,:) = [1 -1.687979080]; 
  
% Specify whether to make regression constraints based on surface energy 
% ("ads_flag = 0") or adsorption energy ("ads_flag = 1") 
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ads_flag = 1; 
  
% How many sites within this "natural" cell? 
  
sites_per_cell = 1; 
  
% If there are more than one site, please provide their location within the 
% natural unit cell (in "natural coordinates") along with a number to 
% signify the type of site. The site "type" can be any positive non-zero 
% integer and does not need to be continuous.  
% e.g. if you have an FCC(111) surface, there are potentially top sites (1), 
% bridge sites (2), fcc hollow sites (3), and hcp hollow sites (4). If 
% you want to specify more than one type of adsorbate, you can do that here 
% by repeating the same adsorption site, but changing the "type" number  
% (i.e. the 4th element) 
    Site(:,1) = [0; 0 ; 0 ; 1]; % Subsurface 
   %Site(:,2) = [1/2; 1/2 ; 0 ; 2]; % Surface 
  
% If any of the sites are linked, as in through a bond, then identify 
% below. THis will simply remove the point EIC (V naught) for the linked 
% site 
  
linked = []; 
  
% Which sites (not types) will be used to calculate the coverage of this 
% system? 
  
coverage_sites = [1]; 
  
% User specified overall maximum N-body clusters to include (even if the 
% max is different for different site types, still specify the max of all 
% types here) 
  
maxNbody= 5; 
  
% User specified "problematic length". When a supercell has a length that  
% is equal to or smaller than this, the corresponding structure will be  
% marked as problematic and REMOVED. 
  
prob_length = 1; 
  
%%%%%%%%%%%%%%%%%%% BOOK KEEPING, PLEASE DON'T TOUCH %%%%%%%%%%%%%%%%%%%%%% 
        vecbody = [ones(1,maxNbody)*maxNbody maxNbody]; 
        Rmax = zeros(vecbody); 
%%%%%%%%%%%%%%%%%%%%%%%%%% OKAY DONE, CONTINUE %%%%%%%%%%%%%%%%%%%%%%%%%%%%       
  
% User defined maximum interaction distances "Rmax" in units of  
% natural unit vectors. Each matrix (e.g. Rmax(:,:,2)) corresponds to a  
% n-body interaction (e.g. 2 body interaction). Each row and column  
% correspond to each site type (so if there are 3 site TYPES, these 
% will be 3 x 3 symmetric matrices. Each element corresponds to  
% interactions between the types designated by the row and column. For 
% example, if there are 3 site types (1, 2, and 3), Rmax(:,:,3) contains 
% the maximum site distances (or "cluster sizes") for 3-body interactions  
% and Rmax(1,3,3) is the maximum 3-body site distance between sites  
% 1 and 3 (corresponding to the sites entered above). If you want (say) 4 
% body interactions between site 1 and itself (Rmax(1,1,4)) but not between 
% site 1 and 2, just enter "0" for that entry (i.e. Rmax(1,2,4) = 0). 
  
Rmax(1,1,:,:,:,2) = 5; 
Rmax(1,1,1,:,:,3) = 3.7; 
Rmax(1,1,1,1,:,4) = 3.7; 
Rmax(1,1,1,1,1,5) = 3; 
  
% User defined minimum interaction distance "Rmin" in units of  
% natural unit vectors. This is the same for all types of interactions. 
  
Rmin = 0.01; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%& END USER INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic 
display_flag = 0;  
% manipulate/fill in Rmax array 
for ii=2:maxNbody 
    Ncombs = nmultichoosek(unique(Site(4,:)),ii); 
    sz_Ncombs = size(Ncombs,1); 
    RtoUse = zeros(sz_Ncombs,1); 
    for jj = 1:sz_Ncombs 
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        Nperms = unique(perms(Ncombs(jj,:)),'rows'); 
        sz_Nperms = size(Nperms,1); 
        for kk = 1:sz_Nperms 
            vecp = [Nperms(kk,:) ones(1,maxNbody-ii) ii]; 
            vecind = num2cell(vecp);  
            Rvecind(jj,kk) = Rmax(sub2ind(size(Rmax),vecind{:})); %#ok<SAGROW> 
        end 
        RtoUse(jj) = max(Rvecind(jj,:)); 
    end 
    if any(RtoUse == 0) 
        whichjj = find(RtoUse == 0); 
        uniqtype = unique(Ncombs(whichjj,:)); 
        for jj = 1:sz_Ncombs 
            if all(unique(Ncombs(jj,:)) == uniqtype) 
                matchjj = jj; 
                break 
            end 
        end 
        RtoUse(whichjj) = RtoUse(matchjj); 
    end 
    for jj = 1:sz_Ncombs 
        Nperms = unique(perms(Ncombs(jj,:)),'rows'); 
        sz_Nperms = size(Nperms,1); 
        for kk = 1:sz_Nperms 
            vecp = [Nperms(kk,:) ones(1,maxNbody-ii) ii]; 
            vecind = num2cell(vecp);  
            Rmax(sub2ind(size(Rmax),vecind{:})) = RtoUse(jj); 
        end     
    end 
end 
Rmax = Rmax.^2; 
Rmin = Rmin.^2; 
  
fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('Running COUNTS_GEN.m.\nAll configurations available should be placed in a folder name "configs".\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('\nWorking...\n\n') 
fprintf('----------------------------------------------------------------\n\n') 
  
% Get the natural coordinate system from file "NATURAL_COORDINATES.txt" if 
% infile flag has been turned on 
if infile == 1 
    fID = fopen('NATURAL_COORDINATES.txt'); 
    tline = fgetl(fID); 
    ux = cell2mat(textscan(tline, '%f')); 
    tline = fgetl(fID); 
    uy = cell2mat(textscan(tline, '%f')); 
    tline = fgetl(fID); 
    uz = cell2mat(textscan(tline, '%f'));    
    fclose(fID); 
end 
  
% Determine the "norm conserving matrix" for later determination of 
% distances 
natcoor = [ux uy uz]; 
normR = natcoor'*natcoor; 
     
% determine the max X and Y values needed to reach the maximum Rmax value 
% specified 
unitX = [1;0;0]; 
unitY = [0;1;0]; 
lengthX = unitX'*normR*unitX; 
lengthY = unitY'*normR*unitY; 
maxRmax = max(Rmax(:)); 
factor = lengthX/lengthY; 
if factor > 1 
    big_vec = factor*unitY + unitX; 
     
    leng_bigvec = big_vec'*normR*big_vec; 
    max_fac = sqrt(maxRmax)/leng_bigvec; 
     
    maxX = ceil(max_fac*big_vec(1)); 
    maxY = ceil(factor*max_fac*big_vec(2)); 
elseif factor < 1 
    big_vec = unitY + unitX./factor; 
     
    leng_bigvec = big_vec'*normR*big_vec; 
    max_fac = sqrt(maxRmax)/leng_bigvec; 
     
    maxX = ceil(max_fac*big_vec(1)/factor); 
    maxY = ceil(max_fac*big_vec(2)); 
else 
    big_vec = unitY + unitX; 
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    leng_bigvec = big_vec'*normR*big_vec; 
    max_fac = sqrt(maxRmax)/leng_bigvec; 
     
    maxX = ceil(max_fac*big_vec(1)); 
    maxY = ceil(max_fac*big_vec(2)); 
end 
maxX= ceil(maxX); 
maxY=ceil(maxY); 
% Total number of sites and bodies 
Site = Site(:,Site(4,:)~=0); 
sMax = size(unique(Site(4,:)),2); 
nMax = maxNbody; 
site_max = size(Site,2); 
  
% Total number of body-to-body pair distances 
numRs = nchoosek(nMax,2); 
  
% Get all possible interactions from file "INTERACTIONS.txt" which  
% needs to be in the parent directory 
  
fID = fopen('INTERACTIONS.txt');                            
tline = fgetl(fID); 
line=0; 
while ischar(tline) 
    line = line + 1 ; 
    tline = fgetl(fID);   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%% Kill program if number of columns in INTERACTIONS.txt is inconsistent 
    %%% with the number in those specified by nMax 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if line == 2 
        COLS = cell2mat(textscan(tline,'%f'))'; 
        INT_COLS = size(COLS,2); 
        nCalc = -1/2 + 1/2*sqrt(1+8*INT_COLS); 
  
        if abs(nCalc-nMax)>0.1 
            error('Error. The maximum number of n-body interactions suggested by the number of columns in the 
INTERACTIONS.txt file is %3.0g, but you have specified %3.0g in this script. Correct this and try again.',nCalc,nMax) 
        end 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
line = line - 1; 
  
fclose(fID); 
INTERACTIONS = zeros(line,nMax+numRs); 
INT_sz = line; 
fID = fopen('INTERACTIONS.txt'); 
tline = fgetl(fID); 
for ii = 1:line 
    tline = fgetl(fID); 
    INTERACTIONS(ii,:) = cell2mat(textscan(tline, '%f')); 
end 
fclose(fID); 
  
% Check if folder new_configs exists. If so, check that user has generated 
% file LG_EICs.txt and/or mf_coeffs.txt. Prompt for user input where 
% necessary. 
if exist('new_configs','dir') == 7 
    fprintf('Directory "new_configs" has been created...\n...checking if a LG model has been provided...\n')  
    if exist('LG_EICs.txt','file') == 0 
        no_LG = 1; 
        fprintf('"LG_EICs.txt" not found.\nWould you like this script to simply move any new structures\nfound in 
folder "new_configs" to folder "configs"?\n') 
        move_input = input('\nEnter "1" (yes) or "0" (no): ');             
    else 
        no_LG = 0; 
        fprintf('"LG_EICs.txt" found.\nThis script will calculate the external-CV score for any new 
configurations\nfound in folder "new_configs".\n') 
        fprintf('Do you want to move any non-problematic structures found in new_configs to folder "configs"?\n') 
        move_input2 = input('\nEnter "1" (yes) or "0" (no): ');     
        fprintf('Do you want to move any problematic structures found in new_configs to folder "prob_configs"?\n') 
        move_input3 = input('\nEnter "1" (yes) or "0" (no): ');     
    end 
    if exist('mf_coeffs.txt','file') == 0 
        no_mf = 1; 
    else 
        no_mf = 0; 
        fprintf('\nmf_coeffs.txt found.\nThis script assumes the LG model in LG_EICs.txt is\nfit to the residuals of 
this mean field model.\nIf this is not the case,the external-CV score will be useless.\n') 
        kill_flag = input('Proceed? ("1") or end this script? ("0"): '); 
        if kill_flag ~= 1 
            return 
        end 
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    end 
    fprintf('Proceeding...\n\n')    
  
    % Loop over configurations in directory "new configs", which should be located 
    % in your working directory where this script is located 
    all_configs = dir('./new_configs');             % command 'dir' assigns each file a fileID starting from 3 
    newest_configs = {all_configs.name}; 
    newest_configs = newest_configs(3:end); 
    num_configs = numel(all_configs)-2;             % since fileID 1 and 2 are STDIN and STDERR we want to discount 
these 
    counts = zeros(num_configs,line);               % A whole bunch of preallocation follows... 
    energy = zeros(num_configs,1); 
    coverages = zeros(num_configs,1); 
    surf_normalized_counts = counts; 
    surf_energy = energy; 
    confnum = 0; 
    for jj=1:num_configs                    % start working through the new configurations...    
        if exist('move_input','var')== 1 
            if move_input == 1  
                movefile(['./new_configs/' all_configs(jj+2).name],'./configs/') 
                fprintf('NEW CONFIGURATION #%d, %s:\n',jj, all_configs(jj+2).name) 
                if move_input2 ~= 1 
                    fprintf('\tMoved!');               
                end 
                continue 
            end 
            if move_input ~= 1 
                fprintf('Ignoring new_configs.\n') 
                break 
            end 
        end 
        fprintf('NEW CONFIGURATION #%d, %s:\n',jj, all_configs(jj+2).name) 
        backhome = cd('./new_configs/'); 
        confnum = confnum + 1; 
        analyzed_flag = 0; 
         
        % Determine how many lines there are in this file 
        fID = fopen(all_configs(jj+2).name); 
        tline = fgetl(fID); 
        line=0; 
  
        while ischar(tline) 
            if isempty(tline) 
                tline = fgetl(fID); 
                continue 
            end 
  
            if strcmp(tline,'analyzed')                         % check if this configuration has already been analyzed 
                analyzed_flag = 1;                              % Turn the analyzed_flag on 
                tline = fgetl(fID); 
                if strcmp(tline,'Confidence') || strcmp(tline,'No Confidence') 
                    tline = fgetl(fID); %#ok<NASGU> 
                end 
                tline = fgetl(fID);                             % advance to where the counts should be                
                counts(jj,:) = cell2mat(textscan(tline, '%f')); % grab these counts for the matrix 
                break 
            else 
            line = line + 1 ; 
            tline = fgetl(fID);    
            end 
        end    
        fclose(fID);     
  
        line = line -1; 
        CELL = zeros(2,2); 
        SIG = zeros(line-2,3); 
  
        % Now extract the unit cell of the configuration (CELL) along with the 
        % positions of the adsorbates (SIG) and the configuration energy 
        % (energy) 
        fID = fopen(all_configs(jj+2).name); 
  
        for linenum = 1:2 
            tline = fgetl(fID); 
            CELL(linenum,:) = cell2mat(textscan(tline, '%f')); 
        end 
        for linenum = 3:line 
            tline = fgetl(fID); 
            SIG(linenum-2,:) = cell2mat(textscan(tline, '%f')); 
        end 
        tline = fgetl(fID); 
        energy(jj) = str2double(tline);          
  
        fclose(fID); 
        cd('../') 
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        Ns = norm(det([CELL(1,:);CELL(2,:)]))*sites_per_cell; 
        rel_SIG = []; 
        for ii = 1:max(size(coverage_sites)) 
            rel_SIG = [rel_SIG; SIG(SIG(:,3)==coverage_sites(ii),:)];  %#ok<AGROW> 
        end 
        num_adsorbates = size(rel_SIG,1); 
         
        coverages(jj) = num_adsorbates/Ns; 
  
        num_adsorbates = size(SIG,1); 
  
        % find length of all effective vector lengths in the unit cell 
        cell_length = zeros(1,4); 
        cell_length(1) = CELL(1,:)*normR(1:2,1:2)*CELL(1,:)'; 
        cell_length(2) = CELL(2,:)*normR(1:2,1:2)*CELL(2,:)'; 
        cell_length(3) = (CELL(1,:)-CELL(2,:))*normR(1:2,1:2)*(CELL(1,:)-CELL(2,:))'; 
        cell_length(4) = (CELL(1,:)+CELL(2,:))*normR(1:2,1:2)*(CELL(1,:)+CELL(2,:))'; 
         
        % If any of those length are equal to or less than the problematic 
        % length, flag this structure 
        prob_flag = 0; 
        if sum(cell_length-prob_length^2 < 1) > 0.999 && sum(cell_length-prob_length^2 < 1) < 1.999 
            if exist('prob_configs','dir') ~= 7 
                mkdir('prob_configs'); 
            end 
            prob_flag = 1;             
        end 
         
        if analyzed_flag == 1                                   % if this configuration has already been analyzed  
            fprintf('Already analyzed!\n') 
            surf_normalized_counts(jj,:) = counts(jj,:)./Ns; 
            surf_energy(jj) = energy(jj)./Ns; 
            if move_input2 == 1 
                movefile(['./new_configs/' all_configs(jj+2).name],'./configs/') 
            end 
            continue                                            % ...then we can skip the rest of this iteration 
        end 
  
        % Initial Size of sig matrix (dynamic preallocation of memory) 
        BLOCK = 100; 
        list_size = BLOCK; 
        col_BLOCK = 4; 
        sig = zeros(BLOCK,col_BLOCK); 
  
        % Find SigMaxX and SigMaxY: the dimensions needed to create a surface 
        % large enough to encompass the maxR distance for each adsorbate 
  
        diagonal_vec = (CELL(1,:)+CELL(2,:)); 
        SigMaxX = diagonal_vec(1)+maxX; 
        SigMaxY = diagonal_vec(2)+maxY; 
  
        cellvecX = CELL'\[2*SigMaxX ; -2*SigMaxY]; 
        cellvecY = CELL'\[-2*SigMaxX ; 2*SigMaxY]; 
  
        xMin = cellvecY(1); 
        xMax = cellvecX(1); 
  
        if xMax < xMin 
            dumX = xMax; 
            xMax = xMin; 
            xMin = dumX; 
        end 
         
        xMin = floor(xMin); 
        xMax = ceil(xMax); 
  
        yMin = cellvecX(2); 
        yMax = cellvecY(2); 
  
        if yMax < yMin 
            dumY = yMax; 
            yMax = yMin; 
            yMin = dumX; 
        end 
         
        yMin = floor(yMin); 
        yMax = ceil(yMax); 
  
        xTot = xMax - xMin; 
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        yTot = yMax - yMin; 
  
       % Populate "sig" matrix 
        kk = 1; 
        SIG_dif = zeros(num_adsorbates,2); 
        for ii = 1:num_adsorbates      
            for xx = 0:xTot 
                sigx = xx + xMin;          
                for yy = 0:yTot     
                    sigy = yy + yMin; 
                    repeat = SIG(ii,1:2)+(CELL'*[sigx;sigy])'; 
                    SIG_dif = SIG(:,1:2) - repeat;                      % difference between this repeated position and 
all adsorbates' positions                    
                    R_check = (diag([SIG_dif zeros(num_adsorbates,1)]*normR*[SIG_dif zeros(num_adsorbates,1)]'));                
                    if any(R_check <= maxRmax+1) 
                        Shift = Site(1:3,SIG(ii,3))'; 
                        sig_type = Site(4,SIG(ii,3)); 
                        sig(kk,:) = [[repeat 0]+Shift sig_type]; 
                        kk = kk + 1;                       
                    end 
                    % Add new block of memory to sig matrix if needed 
                    check = sig(any(sig~=0,2),:); 
                    if size(check,1)/size(sig,1) > 0.95                 % Only 5% of the current allocation is left 
                        list_size = size(check,1) + BLOCK; 
                        sig(kk+1:list_size,:)=0;                        % ...so add a new block of memory 
                    end                          
                end 
            end   
        end 
  
        sig = sig(any(sig~=0,2),:); 
        sig = sortrows(sig,1:3); 
  
        nTot = size(sig,1); 
        X = sig(:,1); 
        Y = sig(:,2); 
        Z = sig(:,3); 
        % Find where each site within the unit cell is within the sig matrix  
        sigPos = zeros(1,num_adsorbates); 
        for ii = 1:num_adsorbates 
            Shift = Site(1:3,SIG(ii,3))'; 
            sig_type = Site(4,SIG(ii,3)); 
            check = [[SIG(ii,1:2) 0]+Shift sig_type]; 
            [~,sigPos(ii)] = intersect(sig,check,'rows'); 
        end        
  
        % All combinations of pairs for every adsorbate on the SigMaxX by 
        % SigMaxY surface 
        CombTot = sortrows(nchoosek(1:nTot,2),2); 
        nCombs = size(CombTot,1); 
        frstn = CombTot(:,1)'; 
        scndn = CombTot(:,2)'; 
  
        % Find the delta X,Y,Z between each pair of bodies with each site 
        delX = zeros(1,nCombs); 
        delY = zeros(1,nCombs); 
        delZ = zeros(1,nCombs); 
        delXYZ = zeros(3,nCombs); 
        R = zeros(1,nCombs); 
        for ii = 1:nCombs 
            delX(ii) = X(scndn(ii))-X(frstn(ii)); 
            delY(ii) = Y(scndn(ii))-Y(frstn(ii)); 
            delZ(ii) = Z(scndn(ii))-Z(frstn(ii)); 
            delXYZ(:,ii) = [delX(ii);delY(ii);delZ(ii)]; 
            R2 = delXYZ(:,ii)'*normR*delXYZ(:,ii); 
            R(ii) = (R2); 
        end 
  
        % Associate R's with each of its associated pair's positions. 
        % Swaping these positions changes nothing so do that now. 
        Rassoc = zeros(nTot); 
        for h = 1:size(CombTot,1) 
            Rassoc(CombTot(h,1),CombTot(h,2)) = R(h); 
            Rassoc(CombTot(h,2),CombTot(h,1)) = Rassoc(CombTot(h,1),CombTot(h,2)); 
        end 
  
        % Now find all pairs that contain the number of the position of each 
        % supercell adsorbate. Use this to extract all the R's that connect the 
        % various n-body interactions     
        clusters = zeros(BLOCK, nMax+numRs); 
        min_clusters = zeros(1,BLOCK); 
        Int_sz = BLOCK; 
        int_ptr = 1; 
  
        % Create point (V naught) clusters first 
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        principle_sites = unique(Site(4,:)); 
        if size(principle_sites,2) > 1 
            uu = unique(linked); 
            nn = histcounts(linked); 
            over_linked = uu(nn>1); 
            principle_site = intersect(principle_sites,uu); 
  
            for ii = 1:size(over_linked,2) 
                over_linked_sites = linked(linked==over_linked(ii),:); 
                principle_sites = [principle_sites min(over_linked_sites(:))]; %#ok<AGROW> 
            end 
            non_linked_sites = principle_sites; 
            for ii = 1:size(linked,1) 
                if isempty(intersect(linked(ii,:),principle_sites)) 
                    non_linked_sites = [non_linked_sites min(linked(ii,:))]; %#ok<AGROW> 
                end 
            end 
        end 
  
            non_linked_sites = principle_sites; 
        for ii = 1:size(non_linked_sites,2) 
       num_sites_here = size(SIG(SIG(:,3)==ii,:),1); 
            for  ww= 1:num_sites_here 
                clusters(int_ptr,1) = non_linked_sites(ii); 
                posclusters(int_ptr,1) = non_linked_sites(ii); 
                int_ptr = int_ptr + 1; 
            end 
        end 
  
        % Now go through and find the rest of the clusters 
        for ii = 2:nMax 
            fprintf('\tFinding all %d-body clusters...\n',ii) 
            for kk = 1:num_adsorbates 
                fprintf('\t\tSite #%d\n',kk) 
                curr_ads_type = sig(sigPos(kk),4); 
                vec_dif = sig(:,1:3) - sig(sigPos(kk),1:3); 
                R_vec_dif = (diag(vec_dif*normR*vec_dif'));        
                sigwR = [sig R_vec_dif]; 
                irrel_sigA = sigwR(sig(:,1)==sig(sigPos(kk),1) & sig(:,2)<sig(sigPos(kk),2),:);       % Find the 
"irrelevant" positions in sig (A) those where Y < X when X = the X of adsorbate kk 
                irrel_sigB = sigwR(sig(:,1)<sig(sigPos(kk),1),:);                                     % ...(B) those 
where X is lower than the adsorbate         
                irrel_sigD = sigwR(sig(:,3)<sig(sigPos(kk),3),:);                                     % ...(D) whose 
site number is less than the adsorbates 
            ind_sigC = zeros(10000,1); 
            ind_ptr = 1;  
            for bb = 1:sMax                                                            % ...(C) those where their 
distance from the adsorbate is greater than this type's n-body Rmax                            
                nd = ndims(Rmax);                                                       % Since it can change, how man 
dimension in the Rmax array? 
                hold_ind = repmat({':'},1,nd-3);                                        % Create nd-3 ":" indices to 
insert into the Rmax indexing 
                subsetR = Rmax(curr_ads_type,bb,hold_ind{:},ii);                        % Get the 2-body subset of Rmax 
of the current site type and bb 
                maxSubsetR = max(subsetR(:));                 
                temp_ind = find(sigwR(:,4)==bb & sigwR(:,5) > maxSubsetR);  
                sz_temp = size(temp_ind,1); 
                ind_sigC(ind_ptr:(ind_ptr+sz_temp-1)) = temp_ind; 
                ind_ptr = ind_ptr + sz_temp; 
            end           
            ind_sigC = ind_sigC(ind_sigC ~= 0,:); 
            ind_sigC = sort(ind_sigC); 
            irrel_sigC = sigwR(ind_sigC,:);                                                                                                                
            irrel_sig = [irrel_sigA ; irrel_sigB ; irrel_sigC; irrel_sigD]; 
                irrel_sig = setdiff(irrel_sig,sigwR(sigPos(kk),:),'rows'); 
                [rel_sig,rel_bodies] = setdiff(sigwR,irrel_sig,'rows');                               % Find which 
bodies (indices in sig) fit the above criteria 
                if size(rel_bodies,1) <= 1 
                    continue 
                end 
                rel_combs = nchoosek(rel_bodies',ii);                                               % Use these bodies 
to find the relevant n-body combos 
                rel_combs = rel_combs(any(rel_combs == sigPos(kk),2),:);                            % Restrict the 
relevant bodies to those with the kk adsorbate in it 
                bTot = size(rel_combs,1); 
                dist = zeros(bTot,numRs); 
                types = reshape(sig(rel_combs',4),ii,[])';                                          % rel_bodies are 
read row THEN column by sig, so transpose rel_bodies first, then read their types (col 4 of sig). Reshape this back 
into a matrix the same shape as rel_bodies 
                good_types = zeros(bTot,ii); 
                zz = 1; 
                for ll = 1:bTot 
                    pairs = sortrows(nchoosek(rel_combs(ll,:),2),2); 
                    num_pairs = size(pairs,1);    
                    dist_temp = diag(Rassoc(pairs(:,1),pairs(:,2)))'; 
                    index_vec = num2cell([types(ll,:) ones(1,nMax-ii) ii]); 
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                    if all(dist_temp <= Rmax(sub2ind(size(Rmax),index_vec{:})))   % will need to generalize this part 
another time 
                        dist(ll,1:num_pairs) = dist_temp;  
                        good_types(ll,:) = types(ll,:);   
                    end 
                end                    
                fill_zeros = zeros(bTot,nMax-ii); 
                dum_types = [good_types fill_zeros];               
                dum = [dum_types dist];   
                dum(all(dum == 0,2),:) = []; 
                dum = dum(all(dum(:,nMax+1:nMax+num_pairs) >= Rmin-0.01,2),:); 
                dum_sz = size(dum,1);                  
                    % Fill memory as needed 
                    check = clusters(all(clusters == 0,2),:); 
                    check_sz = size(check,1);                
                    while check_sz < dum_sz 
                        Int_sz = Int_sz + BLOCK; 
                        clusters(int_ptr+1:Int_sz,:)=0; 
                        min_clusters(int_ptr+1:Int_sz) =0; 
                        check = clusters(all(clusters == 0,2),:); 
                        check_sz = size(check,1);                
                    end      
  
                clusters(int_ptr:int_ptr+dum_sz-1,:) = dum; 
                int_ptr = int_ptr + dum_sz + 1;                      
            end  
  
        end  
        % Clean up clusters matrix: remove unused space 
        clusters = clusters(any(clusters~=0,2),:); 
        TotInts = size(clusters,1); 
  
        % Find where each n-body interaction starts and ends 
        section_ctr = zeros(1,nMax); 
        dummy_int = clusters; 
        for mm = 2:nMax 
            if mm ~= nMax 
                section = dummy_int(all(dummy_int(section_ctr(mm-1)+1:end,mm+1)==0,2),:); 
            else 
                section = dummy_int(section_ctr(mm-1)+1:end,:); 
            end  
            section_ctr(mm) = section_ctr(mm-1) + size(section,1); 
        end 
        section_ctr(nMax+1) = TotInts; 
        fprintf('\nAll n-body clusters found!\n\nNow assigning them to the provided interactions...\n')     
  
        % Now permute the n-bodies and check against the INTERACTIONS matrix 
  
        for qq = 2:nMax 
            Nperm = sortrows(perms(1:qq));        % Find all permutations of qq bodies 
            Nperm_sz = size(Nperm,1); 
            tpair = sortrows(nchoosek(1:qq,2),2);              % Total combinations of pairs used here according to 
number qq 
            tpair_sz = size(tpair,1); 
            for ii = section_ctr(qq-1)+1:section_ctr(qq) 
                newRassoc = zeros(nMax); 
                for kk = 1:tpair_sz 
                    newRassoc(tpair(kk,1),tpair(kk,2)) = clusters(ii,nMax+kk); 
                    newRassoc(tpair(kk,2),tpair(kk,1)) = newRassoc(tpair(kk,1),tpair(kk,2)); 
                end 
  
                swappedRs = zeros(Nperm_sz,numRs); 
                swappedTypes = zeros(Nperm_sz,nMax);   
                type_holder = clusters(ii,1:nMax); 
                for ll = 1:Nperm_sz 
                    for kk = 1:tpair_sz 
                        BodyA = Nperm(ll,tpair(kk,1)); 
                        BodyB = Nperm(ll,tpair(kk,2)); 
                        swappedRs(ll,kk) = newRassoc(BodyA,BodyB); 
                        if qq ~= nMax 
                            swappedTypes(ll,:) = [type_holder(Nperm(ll,:)) zeros(1,nMax-qq)]; 
                        else 
                            swappedTypes(ll,:) = type_holder(Nperm(ll,:)); 
                        end             
                    end 
                end            
                allpossperms = [swappedTypes swappedRs]; 
                % Check each permutation against the list of known interactions 
                % (i.e. INTERACTIONS matrix). Increase the count of that 
                % interaction 
                flag = 0; 
                for nn = 1:Nperm_sz 
                    for mm = 1:INT_sz             
                        checkdif = abs(allpossperms(nn,:) - INTERACTIONS(mm,:)); 
                        if all(checkdif < 0.05)             % Adjust this tolerance if using substantially large Rmax. 
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                            flag = 1; 
                            counts(jj,mm) = counts(jj,mm) + 1; 
                            break 
                        elseif mm == INT_sz && nn == Nperm_sz && flag == 0 
                            fprintf('A structure could not be assigned to an interaction!\n') 
                        end 
                    end 
                    if flag == 1 
                        break 
                    end 
                end    
            end  
        end 
        fprintf('...Done!\n') 
        Int_sz = size(INTERACTIONS,1); 
        output_stuff = [(1:Int_sz)' INTERACTIONS]; 
        surf_normalized_counts(jj,:) = counts(jj,:)./Ns; 
        surf_energy(jj) = energy(jj)./Ns; 
        ads_energy(jj) = energy(jj)./num_adsorbates; 
        % Put "analyzed" at end of the file for this configuration 
        backhome = cd('./new_configs'); 
        fID = fopen(all_configs(jj+2).name,'a'); 
        fprintf(fID,'\nanalyzed\n'); 
        if prob_flag == 0 
            fprintf(fID,'Confidence\n'); 
        else 
            fprintf(fID,'No Confidence\n'); 
        end 
        dlmwrite(all_configs(jj+2).name,1:size(counts,2),'delimiter','\t','-append'); 
        dlmwrite(all_configs(jj+2).name,counts(jj,:),'delimiter','\t','-append'); 
        fprintf(fID,'Coverage:     %6.5g ML\nNumber of sites: %g\nSurface Energy: %7.4g eV/site\nAdsorption Energy: 
%8.4',coverages(jj),Ns,surf_energy(jj),ads_energy(jj)); 
        fprintf(fID,'\n\nHere are the interactions types for easy reference:\n'); 
        dlmwrite(all_configs(jj+2).name,output_stuff,'delimiter','\t','precision','%4.3g','-append'); 
        fclose(fID); 
        cd(backhome) 
        if prob_flag == 1 && move_input3 == 1 
            movefile(['./new_configs/' all_configs(jj+2).name],'./prob_configs/') 
            fprintf('File Moved to "prob_configs"\n'); 
        elseif prob_flag == 0 && move_input2 == 1 
            movefile(['./new_configs/' all_configs(jj+2).name],'./configs/') 
            fprintf('File Moved to "configs"\n'); 
        end 
    end 
    if num_configs > 0 
        % Extract zero coverage energy from 'zero_energy.txt' 
        fID = fopen('zero_energy.txt');                            
        tline = fgetl(fID);   
        zero_en = cell2mat(textscan(tline, '%f')); 
        fclose(fID); 
  
        if no_LG == 0 
            % Extract LG EICs from LG_EICs.txt 
            fID = fopen('LG_EICs.txt');                            
            tline = fgetl(fID); 
            line=0; 
            while ischar(tline) 
                line = line + 1 ; 
                tline = fgetl(fID);          
            end 
            line = line - 1; 
  
            fclose(fID); 
            LG_EICs = zeros(line-1,1);  
            fID = fopen('LG_EICs.txt'); 
            tline = fgetl(fID); 
            CE = cell2mat(textscan(tline, '%f')); 
            for ii = 1:line-1 
                tline = fgetl(fID); 
                LG_EICs(ii) = cell2mat(textscan(tline, '%f')); 
            end 
            fclose(fID); 
  
             
           %%% Determine if any of the new structures are not unique 
           %%% amongst themselves. Remove all not unique structures from 
           %%% calculation of external CV score, keeping the lowest energy 
           %%% version 
            repeat_flag = 0; 
            uCovs = unique(coverages); 
            sMat = surf_normalized_counts; 
            testing = unique(surf_normalized_counts,'rows','stable'); 
            indMat = 1:size(surf_normalized_counts,1); 
            sEn = surf_energy; 
            totoss = []; 
            for ii = uCovs' 
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                sub_mat= sMat(abs(coverages-ii)<0.001,:); 
                sub_en = sEn(abs(coverages-ii)<0.001); 
                sub_ind = indMat(abs(coverages-ii)<0.001); 
                [uSubMat,jja,jjb] = unique(sub_mat,'rows','stable'); 
                sz_dup = numel(jjb)-numel(jja); 
                if sz_dup == 0 
                    continue 
                end 
                [count,~,idxcount] = histcounts(jjb,numel(jja)); 
                kk = 0; 
                count(count>1) = 2; 
                for jj = 1:numel(count) 
                    if count(jj)>1 
                        count(jj) = count(jj) +kk; 
                        kk = kk + 1; 
                    end 
                end 
                what = count(idxcount); 
                mincount = min(what(what>1)); 
                maxcount = max(what); 
                for jj = mincount:maxcount 
                    test = find(what==jj); 
                    [~, iik] = min(sub_en(test)); 
                    totoss = [totoss sub_ind(test(test~=test(iik)))]; %#ok<AGROW>    
                end 
                if totoss > 0 
                    repeat_flag = 1; 
                end 
            end 
            tokeep = setdiff(indMat,totoss);     
            surf_normalized_counts = surf_normalized_counts(tokeep,:);                
            coverages = coverages(tokeep);                                         % grab the associated coverages 
            surf_energy = surf_energy(tokeep); 
            newest_configs = newest_configs(tokeep); 
             
            %%% Determine if any of these new structures are equivalent to 
            %%% previous structures: remove these from evaluation of 
            %%% external CV score 
             
            if ~isempty(MAT) 
               [~,repi] = intersect(surf_normalized_counts,MAT,'rows','stable');  
               if ~isempty(repi) 
                   repeat_flag = 1; 
                   surf_normalized_counts(repi,:) = []; 
                   relevant_counts = surf_normalized_counts(:,CE); 
                   surf_energy(repi,:) = []; 
                   coverages(repi) = []; 
                   surf_energy = surf_energy - zero_en; 
                   labels_tokeep = setdiff(1:numel(newest_configs),repi); 
                   newest_configs = newest_configs(labels_tokeep); 
               else 
                   relevant_counts = surf_normalized_counts(:,CE); 
                   surf_energy = surf_energy - zero_en; 
               end 
            end 
            %%%% 
             % Subtract off the mu_elec energy provided by the user (if it exists) 
            if exist('mu_elec','var')==1 
                if ~isempty(mu_elec) 
                    sz_mu_elec = size(mu_elec,1); 
  
                    for ii = 1:sz_mu_elec 
                        cluster_num = mu_elec(ii,1); 
                        cluster_ECI = mu_elec(ii,2); 
  
                        part_en = surf_normalized_counts(:,cluster_num)*cluster_ECI; 
                        surf_energy = surf_energy - part_en; 
                    end 
                end 
            end 
           
            if no_mf == 1 
                % Calculate predicted surface energy based on this LG model 
                predicted_energy = relevant_counts*LG_EICs; 
            else 
                % Extract mean field coefficients from mf_coeffs.txt 
                ID = fopen('mf_coeffs.txt');                            
                tline = fgetl(fID); 
                line=0; 
                while ischar(tline) 
                    line = line + 1 ; 
                    tline = fgetl(fID);          
                end 
  
                fclose(fID); 
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                mf_coeffs = zeros(line,1);  
                fID = fopen('mf_coeffs.txt');         
                for ii = 1:line 
                    tline = fgetl(fID); 
                    mf_coeffs(ii) = cell2mat(textscan(tline, '%f')); 
                end 
                fclose(ID); 
  
                % Calculate the predicted mean field energy:  
                mf_energy = 0; 
                for ii = 1:line 
                    mf_energy = mf_energy + mf_coeffs(ii)*coverages.^ii; 
                end 
                % ...and then predicted surface energy: 
                predicted_energy = mf_energy + relevant_counts*LG_EICs; 
            end 
            residuals = surf_energy - predicted_energy; 
            predicted_ads_en = predicted_energy./coverages; 
            ads_en = surf_energy./coverages;        
            sqrd_residuals = residuals.^2; 
            ext_CV = sqrt(mean(sqrd_residuals)); 
            resid_stdev = sqrt(mean(sqrd_residuals)-(mean(residuals))^2); 
            Rr = sqrd_residuals; 
            ext_stdev = (mean(Rr.^2)-(mean(Rr))^2)^(1/4); 
            if num_configs > 0 
                display_flag = 1; 
            end 
            % Plot up the results    
            mf_model = 0; 
            th = 0:0.01:1; 
            zeroline = zeros(size(th,2),2); 
  
            subplot(2,1,1) 
            scatter(coverages,ads_en,'sk') 
            hold on 
            scatter(coverages,predicted_ads_en,'r+') 
            ylabel('Ads. En. (eV/adsorbate)') 
            title('Current LG Model') 
            xlim([0 1]) 
            hold off 
  
            subplot(2,1,2) 
            scatter(coverages,residuals,'r+') 
            hold on 
            plot(th,zeroline,'k') 
            xlabel('OH Coverage (ML)') 
            ylabel('Residuals (eV/site)') 
            xlim([0 1]) 
            hold off 
        end 
    end 
end 
  
  
% Loop over configurations in directory "configs", which should be located 
% in your working directory where this script is located 
  
all_configs = dir('./configs');         % command 'dir' assigns each file a fileID starting from 3 
num_configs = numel(all_configs)-2;     % since fileID 1 and 2 are STDIN and STDERR we want to discount these 
counts = zeros(num_configs,INT_sz);       % A whole bunch of preallocation follows 
energy = zeros(num_configs,1); 
coverages = zeros(num_configs,1); 
surf_normalized_counts = counts; 
surf_energy = energy; 
confnum = 0; 
for jj=1:num_configs                    % start working through the configurations... 
    fprintf('CONFIGURATION #%d, %s:\n',jj, all_configs(jj+2).name) 
    backhome = cd('./configs/'); 
    confnum = confnum + 1; 
    analyzed_flag = 0; 
    % Determine how many lines there are in this file 
    fID = fopen(all_configs(jj+2).name); 
    tline = fgetl(fID); 
    line=0; 
    emptylines = 0; 
    while ischar(tline) 
        if isempty(tline) 
            tline = fgetl(fID); 
            continue 
        end 
  
        if strcmp(tline,'analyzed')                         % check if this configuration has already been analyzed 
            analyzed_flag = 1;                              % Turn the analyzed_flag on 
            tline = fgetl(fID); 
            if strcmp(tline,'Confidence') || strcmp(tline,'No Confidence') 
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                tline = fgetl(fID); %#ok<NASGU> 
            end 
            tline = fgetl(fID);                             % advance to where the counts should be                
            counts(jj,:) = cell2mat(textscan(tline, '%f')); % grab these counts for the matrix 
            break 
        else 
        line = line + 1 ; 
        tline = fgetl(fID);    
        end 
    end    
    fclose(fID);     
      
    line = line -1; 
    CELL = zeros(2,2); 
    SIG = zeros(line-2,3); 
  
    % Now extract the unit cell of the configuration (CELL) along with the 
    % positions of the adsorbates (SIG) and the configuration energy 
    % (energy) 
    fID = fopen(all_configs(jj+2).name); 
     
    for linenum = 1:2 
        tline = fgetl(fID); 
        CELL(linenum,:) = cell2mat(textscan(tline, '%f')); 
    end 
    for linenum = 3:line 
        tline = fgetl(fID); 
        SIG(linenum-2,:) = cell2mat(textscan(tline, '%f')); 
    end 
    tline = fgetl(fID); 
    energy(jj) = str2double(tline);          
    
    fclose(fID); 
    cd('../') 
  
  
    Ns = norm(det([CELL(1,:);CELL(2,:)]))*sites_per_cell; 
    rel_SIG = []; 
    for ii = 1:max(size(coverage_sites)) 
        rel_SIG = [rel_SIG; SIG(SIG(:,3)==coverage_sites(ii),:)];  %#ok<AGROW> 
    end 
    num_adsorbates = size(rel_SIG,1); 
  
    coverages(jj) = num_adsorbates/Ns; 
     
    num_adsorbates = size(SIG,1); 
     
    % find length of all effective vector lengths in the unit cell 
    cell_length = zeros(1,4); 
    cell_length(1) = CELL(1,:)*normR(1:2,1:2)*CELL(1,:)'; 
    cell_length(2) = CELL(2,:)*normR(1:2,1:2)*CELL(2,:)'; 
    cell_length(3) = (CELL(1,:)-CELL(2,:))*normR(1:2,1:2)*(CELL(1,:)-CELL(2,:))'; 
    cell_length(4) = (CELL(1,:)+CELL(2,:))*normR(1:2,1:2)*(CELL(1,:)+CELL(2,:))'; 
  
    % If any of those length are equal to or less than the problematic 
    % length, flag this structure 
    prob_flag = 0; 
    if sum(cell_length-prob_length^2 < 1) > 0.999 && sum(cell_length-prob_length^2 < 1) < 1.999 
        if exist('prob_configs','dir') ~= 7 
            mkdir('prob_configs'); 
        end 
        prob_flag = 1;             
    end 
         
    if analyzed_flag == 1                                   % if this configuration has already been analyzed  
        fprintf('Already analyzed!\n') 
        surf_normalized_counts(jj,:) = counts(jj,:)./Ns; 
        surf_energy(jj) = energy(jj)./Ns; 
        if prob_flag == 1 
            movefile(['./configs/' all_configs(jj+2).name],'./prob_configs/') 
            fprintf('File Moved to "prob_configs"\n'); 
        end 
        continue                                            % ...then we can skip the rest of this iteration 
    end 
     
    % Initial Size of sig matrix (dynamic preallocation of memory) 
    BLOCK = 100; 
    list_size = BLOCK; 
    col_BLOCK = 4; 
    sig = zeros(BLOCK,col_BLOCK); 
     
    % Find SigMaxX and SigMaxY: the dimensions needed to create a surface 
    % large enough to encompass the maxR distance for each adsorbate 
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    diagonal_vec = (CELL(1,:)+CELL(2,:)); 
    SigMaxX = diagonal_vec(1)+maxX; 
    SigMaxY = diagonal_vec(2)+maxY; 
     
    cellvecX = CELL'\[2*SigMaxX ; -2*SigMaxY]; 
    cellvecY = CELL'\[-2*SigMaxX ; 2*SigMaxY]; 
     
    xMin = cellvecY(1); 
    xMax = cellvecX(1); 
  
    if xMax < xMin 
        dumX = xMax; 
        xMax = xMin; 
        xMin = dumX; 
    end 
  
    xMin = floor(xMin); 
    xMax = ceil(xMax); 
  
    yMin = cellvecX(2); 
    yMax = cellvecY(2); 
  
    if yMax < yMin 
        dumY = yMax; 
        yMax = yMin; 
        yMin = dumY; 
    end 
  
    yMin = floor(yMin); 
    yMax = ceil(yMax); 
     
    xTot = xMax - xMin; 
    yTot = yMax - yMin; 
         
    % Populate "sig" matrix 
    kk = 1; 
    SIG_dif = zeros(num_adsorbates,2); 
    for ii = 1:num_adsorbates      
        for xx = 0:xTot 
            sigx = xx + xMin;          
            for yy = 0:yTot     
                sigy = yy + yMin; 
                repeat = SIG(ii,1:2)+(CELL'*[sigx;sigy])'; 
                SIG_dif = SIG(:,1:2) - repeat;                      % difference between this repeated position and all 
adsorbates' positions                    
                R_check = (diag([SIG_dif zeros(num_adsorbates,1)]*normR*[SIG_dif zeros(num_adsorbates,1)]'));                
                if any(R_check <= maxRmax+1) 
                    sig_type = Site(4,SIG(ii,3)); 
                    Shift = Site(1:3,SIG(ii,3))'; 
                    sig(kk,:) = [[repeat 0]+Shift sig_type]; 
                    kk = kk + 1;                       
                end 
                % Add new block of memory to sig matrix if needed 
                check = sig(any(sig~=0,2),:); 
                if size(check,1)/size(sig,1) > 0.95                 % Only 5% of the current allocation is left 
                    list_size = size(check,1) + BLOCK; 
                    sig(kk+1:list_size,:)=0;                        % ...so add a new block of memory 
                end                          
            end 
        end   
    end 
  
    sig = sig(any(sig~=0,2),:); 
    sig = sortrows(sig,1:3); 
  
    nTot = size(sig,1); 
    X = sig(:,1); 
    Y = sig(:,2); 
    Z = sig(:,3); 
    % Find where each site within the unit cell is within the sig matrix  
    sigPos = zeros(1,num_adsorbates); 
    for ii = 1:num_adsorbates 
        Shift = Site(1:3,SIG(ii,3))'; 
        sig_type = Site(4,SIG(ii,3)); 
        check = [[SIG(ii,1:2) 0]+Shift sig_type]; 
        [~,sigPos(ii)] = intersect(sig,check,'rows'); 
    end        
  
    % All combinations of pairs for every adsorbate on the SigMaxX by 
    % SigMaxY surface 
    CombTot = sortrows(nchoosek(1:nTot,2),2); 
    nCombs = size(CombTot,1); 
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    frstn = CombTot(:,1)'; 
    scndn = CombTot(:,2)'; 
  
    % Find the delta X,Y,Z between each pair of bodies with each site 
    delX = zeros(1,nCombs); 
    delY = zeros(1,nCombs); 
    delZ = zeros(1,nCombs); 
    delXYZ = zeros(3,nCombs); 
    R = zeros(1,nCombs); 
    for ii = 1:nCombs 
        delX(ii) = X(scndn(ii))-X(frstn(ii)); 
        delY(ii) = Y(scndn(ii))-Y(frstn(ii)); 
        delZ(ii) = Z(scndn(ii))-Z(frstn(ii)); 
        delXYZ(:,ii) = [delX(ii);delY(ii);delZ(ii)]; 
        R2 = delXYZ(:,ii)'*normR*delXYZ(:,ii); 
        R(ii) = (R2); 
    end 
  
    % Associate R's with each of its associated pair's positions. 
    % Swaping these positions changes nothing so do that now. 
    Rassoc = zeros(nTot); 
    for h = 1:size(CombTot,1) 
        Rassoc(CombTot(h,1),CombTot(h,2)) = R(h); 
        Rassoc(CombTot(h,2),CombTot(h,1)) = Rassoc(CombTot(h,1),CombTot(h,2)); 
    end 
  
    % Now find all pairs that contain the number of the position of each 
    % supercell adsorbate. Use this to extract all the R's that connect the 
    % various n-body interactions     
    clusters = zeros(BLOCK, nMax+numRs);    
    Int_sz = BLOCK; 
    int_ptr = 1; 
  
    % Create point (V naught) clusters first 
    principle_sites = unique(Site(4,:)); 
    if size(principle_sites,1) > 1 
        uu = unique(linked); 
        nn = histcounts(linked); 
        over_linked = uu(nn>1); 
        principle_site = intersect(principle_sites,uu); 
  
        for ii = 1:size(over_linked,2) 
            over_linked_sites = linked(linked==over_linked(ii),:); 
            principle_sites = [principle_sites min(over_linked_sites(:))]; %#ok<AGROW> 
        end 
        non_linked_sites = principle_sites; 
        for ii = 1:size(linked,1) 
            if isempty(intersect(linked(ii,:),principle_sites)) 
                non_linked_sites = [non_linked_sites min(linked(ii,:))]; %#ok<AGROW> 
            end 
        end 
    end 
  
        non_linked_sites = principle_sites; 
    for ii = 1:size(non_linked_sites,2) 
        num_sites_here = size(SIG(SIG(:,3)==ii,:),1); 
        for  ww= 1:num_sites_here 
            clusters(int_ptr,1) = non_linked_sites(ii); 
            posclusters(int_ptr,1) = non_linked_sites(ii); 
            int_ptr = int_ptr + 1; 
        end 
    end 
     
    % Now go through and find the rest of the clusters 
    for ii = 2:nMax 
        fprintf('\tFinding all %d-body clusters...\n',ii) 
        for kk = 1:num_adsorbates 
            fprintf('\t\tSite #%d\n',kk) 
            curr_ads_type = sig(sigPos(kk),4); 
            vec_dif = sig(:,1:3) - sig(sigPos(kk),1:3); 
            R_vec_dif = (diag(vec_dif*normR*vec_dif'));        
            sigwR = [sig R_vec_dif]; 
            irrel_sigA = sigwR(sig(:,1)==sig(sigPos(kk),1) & sig(:,2)<sig(sigPos(kk),2),:);       % Find the 
"irrelevant" positions in sig (A) those where Y < X when X = the X of adsorbate kk 
            irrel_sigB = sigwR(sig(:,1)<sig(sigPos(kk),1),:);                                     % ...(B) those where 
X is lower than the adsorbate         
            irrel_sigD = sigwR(sig(:,3)<sig(sigPos(kk),3),:);                                     % ...(D) whose site 
number is less than the adsorbates 
            ind_sigC = zeros(10000,1); 
            ind_ptr = 1;  
            for bb = 1:sMax                                                            % ...(C) those where their 
distance from the adsorbate is greater than this type's n-body Rmax                            
                nd = ndims(Rmax);                                                       % Since it can change, how man 
dimension in the Rmax array? 
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                hold_ind = repmat({':'},1,nd-3);                                        % Create nd-3 ":" indices to 
insert into the Rmax indexing 
                subsetR = Rmax(curr_ads_type,bb,hold_ind{:},ii);                        % Get the 2-body subset of Rmax 
of the current site type and bb 
                maxSubsetR = max(subsetR(:));                 
                temp_ind = find(sigwR(:,4)==bb & sigwR(:,5) > maxSubsetR);  
                sz_temp = size(temp_ind,1); 
                ind_sigC(ind_ptr:(ind_ptr+sz_temp-1)) = temp_ind; 
                ind_ptr = ind_ptr + sz_temp; 
            end           
            ind_sigC = ind_sigC(ind_sigC ~= 0,:); 
            ind_sigC = sort(ind_sigC); 
            irrel_sigC = sigwR(ind_sigC,:);                                                                                                                
            irrel_sig = [irrel_sigA ; irrel_sigB ; irrel_sigC; irrel_sigD]; 
            irrel_sig = setdiff(irrel_sig,sigwR(sigPos(kk),:),'rows'); 
            [rel_sig,rel_bodies] = setdiff(sigwR,irrel_sig,'rows');                               % Find which bodies 
(indices in sig) fit the above criteria 
            if size(rel_bodies,1) <= 1 
                    continue 
            end 
            rel_combs = nchoosek(rel_bodies',ii);                                               % Use these bodies to 
find the relevant n-body combos 
            rel_combs = rel_combs(any(rel_combs == sigPos(kk),2),:);                            % Restrict the relevant 
bodies to those with the kk adsorbate in it 
            bTot = size(rel_combs,1); 
            dist = zeros(bTot,numRs); 
            types = reshape(sig(rel_combs',4),ii,[])';                                          % rel_bodies are read 
row THEN column by sig, so transpose rel_bodies first, then read their types (col 4 of sig). Reshape this back into a 
matrix the same shape as rel_bodies 
            good_types = zeros(bTot,ii); 
            zz = 1; 
            for ll = 1:bTot 
                pairs = sortrows(nchoosek(rel_combs(ll,:),2),2); 
                num_pairs = size(pairs,1);    
                dist_temp = diag(Rassoc(pairs(:,1),pairs(:,2)))'; 
                index_vec = num2cell([types(ll,:) ones(1,nMax-ii) ii]); 
                if all(dist_temp <= Rmax(sub2ind(size(Rmax),index_vec{:})))    
                    dist(ll,1:num_pairs) = dist_temp;  
                    good_types(ll,:) = types(ll,:);   
                end 
            end                    
            fill_zeros = zeros(bTot,nMax-ii); 
            dum_types = [good_types fill_zeros];               
            dum = [dum_types dist];   
            dum(all(dum == 0,2),:) = []; 
            dum = dum(all(dum(:,nMax+1:nMax+num_pairs) >= Rmin-0.01,2),:); 
            dum_sz = size(dum,1);             
                % Fill memory as needed 
                check = clusters(all(clusters == 0,2),:); 
                check_sz = size(check,1);                
                while check_sz < dum_sz 
                    Int_sz = Int_sz + BLOCK; 
                    clusters(int_ptr+1:Int_sz,:)=0; 
                     
                    check = clusters(all(clusters == 0,2),:); 
                    check_sz = size(check,1);                
                end      
  
            clusters(int_ptr:int_ptr+dum_sz-1,:) = dum; 
            int_ptr = int_ptr + dum_sz + 1;                      
        end  
  
    end  
    % Clean up clusters matrix: remove unused space 
    clusters = clusters(any(clusters~=0,2),:); 
    TotInts = size(clusters,1); 
     
    % Find where each n-body interaction starts and ends 
    section_ctr = zeros(1,nMax); 
    dummy_int = clusters; 
    for mm = 2:nMax 
        if mm ~= nMax 
            section = dummy_int(all(dummy_int(section_ctr(mm-1)+1:end,mm+1)==0,2),:); 
        else 
            section = dummy_int(section_ctr(mm-1)+1:end,:); 
        end  
        section_ctr(mm) = section_ctr(mm-1) + size(section,1); 
    end 
    section_ctr(nMax+1) = TotInts; 
    fprintf('\nAll n-body clusters found!\n\nNow assigning them to the provided interactions...\n')     
     
    % Now permute the n-bodies and check against the INTERACTIONS matrix 
     
    for qq = 2:nMax 
        Nperm = sortrows(perms(1:qq));        % Find all permutations of qq bodies 



 

 317 

        Nperm_sz = size(Nperm,1); 
        tpair = sortrows(nchoosek(1:qq,2),2);              % Total combinations of pairs used here according to number 
qq 
        tpair_sz = size(tpair,1); 
        for ii = section_ctr(qq-1)+1:section_ctr(qq) 
            newRassoc = zeros(nMax); 
            for kk = 1:tpair_sz 
                newRassoc(tpair(kk,1),tpair(kk,2)) = clusters(ii,nMax+kk); 
                newRassoc(tpair(kk,2),tpair(kk,1)) = newRassoc(tpair(kk,1),tpair(kk,2)); 
            end 
  
            swappedRs = zeros(Nperm_sz,numRs); 
            swappedTypes = zeros(Nperm_sz,nMax);   
            type_holder = clusters(ii,1:nMax); 
            for ll = 1:Nperm_sz 
                for kk = 1:tpair_sz 
                    BodyA = Nperm(ll,tpair(kk,1)); 
                    BodyB = Nperm(ll,tpair(kk,2)); 
                    swappedRs(ll,kk) = newRassoc(BodyA,BodyB); 
                    if qq ~= nMax 
                        swappedTypes(ll,:) = [type_holder(Nperm(ll,:)) zeros(1,nMax-qq)]; 
                    else 
                        swappedTypes(ll,:) = type_holder(Nperm(ll,:)); 
                    end             
                end 
            end            
            allpossperms = [swappedTypes swappedRs]; 
            % Check each permutation against the list of known interactions 
            % (i.e. INTERACTIONS matrix). Increase the count of that 
            % interaction 
            flag = 0; 
            for nn = 1:Nperm_sz 
                for mm = 1:INT_sz             
                    checkdif = abs(allpossperms(nn,:) - INTERACTIONS(mm,:)); 
                    if all(checkdif < 0.05)             % Adjust this tolerance if using substantially large Rmax. 
                        flag = 1; 
                        counts(jj,mm) = counts(jj,mm) + 1; 
                        break 
                    elseif mm == INT_sz && nn == Nperm_sz && flag == 0 
                        fprintf('A structure could not be assigned to an interaction!\n') 
                    end 
                end 
                if flag == 1 
                    break 
                end 
            end    
        end  
    end 
    fprintf('...Done!\n') 
    Int_sz = size(INTERACTIONS,1); 
    output_stuff = [(1:Int_sz)' INTERACTIONS]; 
    surf_normalized_counts(jj,:) = counts(jj,:)./Ns; 
    surf_energy(jj) = energy(jj)./Ns; 
    ads_energy(jj) = energy(jj)./num_adsorbates; 
        % Put "analyzed" at end of the file for this configuration 
        backhome = cd('./configs'); 
        fID = fopen(all_configs(jj+2).name,'a'); 
        fprintf(fID,'\nanalyzed\n'); 
        if prob_flag == 0 
            fprintf(fID,'Confidence\n'); 
        else 
            fprintf(fID,'No Confidence\n'); 
        end 
        dlmwrite(all_configs(jj+2).name,1:size(counts,2),'delimiter','\t','-append'); 
        dlmwrite(all_configs(jj+2).name,counts(jj,:),'delimiter','\t','-append'); 
        fprintf(fID,'Coverage:     %6.5g ML\nNumber of sites: %g\nSurface Energy: %7.4g eV/site\nAdsorption Energy: 
%8.4',coverages(jj),Ns,surf_energy(jj),ads_energy(jj)); 
    fprintf(fID,'\n\nHere are the interactions types for easy reference:\n'); 
    dlmwrite(all_configs(jj+2).name,output_stuff,'delimiter','\t','precision','%4.3g','-append'); 
    fclose(fID); 
    cd(backhome) 
end 
% Subtract off the zero coverage (i.e. clean surface) energy  
% If this energy is not available warn the user 
no_zero_flag = 0; 
if any(ismember(coverages,0,'rows')) == 1 
    [~,iz] = intersect(coverages,0); 
    zero_en = surf_energy(iz); 
    surf_energy = surf_energy - zero_en; 
     
    fID = fopen('zero_energy.txt','w'); 
    fprintf(fID,'%12.8f',zero_en); 
    fclose(fID); 
else 
    no_zero_flag = 1; 
end 
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%%%% Find all unique structures and amongst duplicates, select the 
%%%% structure corresponding to the lowest energy inputted. 
uCovs = unique(coverages); 
sMat = surf_normalized_counts; 
testing = unique(surf_normalized_counts,'rows','stable'); 
indMat = 1:size(surf_normalized_counts,1); 
sEn = surf_energy; 
totoss = []; 
for ii = uCovs' 
    sub_mat= sMat(abs(coverages-ii)<0.001,:); 
    sub_en = sEn(abs(coverages-ii)<0.001); 
    sub_ind = indMat(abs(coverages-ii)<0.001); 
    [uSubMat,jja,jjb] = unique(sub_mat,'rows','stable'); 
    sz_dup = numel(jjb)-numel(jja); 
    if sz_dup == 0 
        continue 
    end 
    [count,~,idxcount] = histcounts(jjb,numel(jja)); 
    kk = 0; 
    count(count>1) = 2; 
    for jj = 1:numel(count) 
        if count(jj)>1 
            count(jj) = count(jj) +kk; 
            kk = kk + 1; 
        end 
    end 
    what = count(idxcount); 
    mincount = min(what(what>1)); 
    maxcount = max(what); 
    for jj = mincount:maxcount 
        test = find(what==jj); 
        [~, iik] = min(sub_en(test)); 
        totoss = [totoss sub_ind(test(test~=test(iik)))]; %#ok<AGROW>    
    end 
  
     
end 
tokeep = setdiff(indMat,totoss);     
surf_normalized_counts = surf_normalized_counts(tokeep,:); 
coverages = coverages(tokeep);                                         % grab the associated coverages 
surf_energy = surf_energy(tokeep); 
  
  
atat_names = all_configs(3:end); 
atat_names = {atat_names.name}; 
atat_names = atat_names(tokeep); 
% Subtract off the mu_elec energy provided by the user (if it exists) 
part_en = 0; 
if exist('mu_elec','var')==1 
    if ~isempty(mu_elec) 
        sz_mu_elec = size(mu_elec,1); 
  
        for ii = 1:sz_mu_elec 
            cluster_num = mu_elec(ii,1); 
            cluster_ECI = mu_elec(ii,2); 
  
            part_en = part_en + surf_normalized_counts(:,cluster_num)*cluster_ECI; 
            surf_energy = surf_energy - part_en; 
        end 
    end 
end 
ads_normalized_counts = surf_normalized_counts./coverages; 
ads_normalized_counts(~isfinite(ads_normalized_counts(:))) = 0; 
ads_energy = surf_energy./coverages; 
ads_energy(~isfinite(ads_energy)) = 0; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% v7 addition %%%%%%%%%%%%%%%%%%% 
  
% Find isosteric ground states 
[uniq_covs] = unique(round(coverages*1E9)/1E9);             % i.e. unique out to 9 decimal points 
num_uniq_covs = numel(uniq_covs); 
iso_gs = (1:num_uniq_covs)*0; 
  
  
for ii = 1:num_uniq_covs 
    subset = find(abs(coverages - uniq_covs(ii)) <= 1E-8);     % grab indices of coverages equal to the ii'th unique 
coverage         
    subset_energies = surf_energy(subset);                     % Find the energies for their corresponding structures 
    [~,isu] = min(subset_energies);                                 % which index within subset energies corresponds to 
the lowest energy structure (the isosteric ground state) 
    iso_gs(ii) = subset(isu);                                  % and this corresponds to which index within the entire 
coverages vector 
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end 
  
iso_gs_ens = surf_energy(iso_gs);                                   % grab the energies of the iso_gs 
iso_gs_covs = coverages(iso_gs);                                    % grab the coverages of the iso_gs 
  
  
% Find true ground states 
is_true_gs = (1:num_uniq_covs)*0;                                   % preallocating (is_true_gs = "is this a true 
ground state") 
is_true_gs(1) = 1;                                                  % the first (empty coverage) iso_gs is always a 
true_gs 
  
ii = 1; 
while ii < num_uniq_covs 
    Slope = (1:num_uniq_covs)*inf;                                  % preallocating 
    for jj = ii+1:num_uniq_covs                                     % look at all slopes connecting this iso_gs to all 
future iso_gs 
        Slope(jj) = (iso_gs_ens(jj) - iso_gs_ens(ii))/(iso_gs_covs(jj) - iso_gs_covs(ii));    % slope (a forward finite 
difference) 
    end 
    minS = min(Slope);                                              % the minimum slope 
    minjj = find(Slope == minS,1);                                        % find which iso_gs is the next true_gs 
    is_true_gs(minjj) = 1;                                          % mark this is as a true_gs 
     
    ii = minjj;                                                     % move 'ii' counter to the location of the new 
true_gs 
end 
  
true_gs = iso_gs(is_true_gs == 1);                                  % find the indices of the true ground states 
  
%%% Now that we know the final surf energies we can grab those 
%%% corresponding to the ground states %%% 
  
true_gs_covs = coverages(true_gs);                                  % find the corresponding true_gs coverages 
true_gs_ens = surf_energy(true_gs);                                 % find the corresponding true_gs surf energies 
true_gs_ads_en = ads_energy(true_gs);                               % find the corresponding true_gs adsorption 
energies 
true_gs_names = atat_names(true_gs);                                % grab the true ground states' structure names 
  
true_gs_slopes = true_gs.*0;                                        % preallocating for the gs_slopes 
for ii = 2:numel(true_gs) 
    true_gs_slopes(ii) = (true_gs_ens(ii) - true_gs_ens(ii-1))/(true_gs_covs(ii) - true_gs_covs(ii-1)); %forward finite 
difference slope 
end 
  
form_E = surf_energy - surf_energy(coverages == max(coverages))*coverages/max(coverages);   % calculate the formaiton 
energy 
  
convex_hull = true_gs_ens - surf_energy(coverages == max(coverages))*true_gs_covs/max(coverages);   % do the same for 
the ground states to get convex hull 
  
convex_hull_ads_E = true_gs_ens./true_gs_covs;                      % adsorption energy convex hull 
%convex_hull_ads_E(~isfinite(convex_hull_ads_E)) = [];               % convert NaN due to division by zero to "0" 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% v8 Find the normal matrix of constraints 
if ads_flag == 1 
    temp_counts = ads_normalized_counts; 
    temp_energy = ads_energy; 
else 
    temp_counts = surf_normalized_counts; 
    temp_energy = surf_energy; 
end 
  
% First all structures except the ground states 
constraints = temp_counts;                       % preallocate 
delta_else = temp_energy;                            % preallocate 
kk = 2; 
for ii = 1:num_uniq_covs  
    phi = (uniq_covs(ii) - true_gs_covs(kk-1))/(true_gs_covs(kk) - true_gs_covs(kk-1));         % fractional distance 
between the previous gs and the next 
    if phi - 1 > 0                                                  % if phi is greater than 1, we are between two new 
ground states  
        kk = kk + 1;                                                % ...and must increment to that pair 
        phi = (uniq_covs(ii) - true_gs_covs(kk-1))/(true_gs_covs(kk) - true_gs_covs(kk-1));         % fractional 
distance between the previous gs and the next 
    end 
    
    subset = find(abs(coverages - uniq_covs(ii)) <= 1E-8);      % grab indices of coverages equal to the ii'th unique 
coverage         
    subset_energies = temp_energy(subset);                      % Find the energies for their corresponding structures 
    subset_counts = temp_counts(subset,:);             % the counts for this isosteric subset 
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    if abs(phi - 1) < 1E-8 
        gs_line = temp_counts(kk,:);               % if phi = 1 then we're at ground state kk and can just use the 
ground state directly 
        delta_else(subset) = 0; 
    else 
        gs_line = temp_counts(kk-1,:) + phi*(temp_counts(kk,:) - temp_counts(kk-1,:));  % counts that produce the 
predicted point on the ground state line 
        delta_else(subset) = temp_energy(iso_gs(ii)) - (temp_energy(true_gs(kk-1)) + phi*(temp_energy(true_gs(kk)) - 
temp_energy(true_gs(kk-1)))); % use the actual distance between iso_gs and the gs line as the minimum constrained 
distance 
    end 
    constraints(subset,:) = subset_counts - gs_line; 
end 
% And then the ground states 
constraints(true_gs,:) = temp_counts(true_gs,:); 
delta_else(true_gs) = 0; 
energy_gs = temp_energy(true_gs); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Now print out a summary and plot 
fprintf('----------------------------------------------------------\n') 
fprintf('The provided dataset exhibits the following ground states:\n') 
T = table(true_gs_names',true_gs_covs,true_gs_ads_en, true_gs_ens,true_gs_slopes'); 
T.Properties.VariableNames = {'Structure' 'Coverage' 'Ads_Energy' 'Surf_Energy','GS_Chem_Pot'}; 
disp(T) 
  
figure 
plot(coverages(coverages~=0), ads_energy(coverages~=0), 'rx') 
hold on 
plot(true_gs_covs, convex_hull_ads_E, 'b-o') 
hold off 
title('Adsorption Energy') 
  
figure 
plot(coverages, form_E, 'rx') 
hold on 
plot(true_gs_covs, convex_hull, 'b-o') 
hold off 
title('Formation Energy') 
  
figure 
plot(coverages,surf_energy,'rx') 
hold on 
plot(true_gs_covs,true_gs_ens,'b-o') 
hold off 
title('Surface Energy') 
  
  
  
% Subtract off energy due to specified ECI values (if they exist) 
  
part_en = 0; 
part_ads_en = 0; 
part_gs_slope_en = 0; 
part_slope_en = 0; 
if exist('ECI_val','var')==1 
    if ~isempty(ECI_val) 
        sz_ECI_vals = size(ECI_val,1); 
  
        for ii = 1:sz_ECI_vals 
            cluster_num = ECI_val(ii,1); 
            cluster_ECI = ECI_val(ii,2); 
  
            part_en = part_en + surf_normalized_counts(:,cluster_num)*cluster_ECI; 
            part_ads_en = part_ads_en + ads_normalized_counts(:,cluster_num)*cluster_ECI; 
             
                orig_surf_normalized_counts = surf_normalized_counts;   % Don't think I need this anymore... 
            surf_normalized_counts(:,cluster_num) = 0;  
            ads_normalized_counts(:,cluster_num) = 0; 
             
        end 
    end 
end 
surf_energy = surf_energy - part_en; 
ads_energy = ads_energy - part_ads_en; 
ads_energy(~isfinite(ads_energy)) = 0; 
  
dlmwrite('COUNTS_MATRIX.txt',counts,'delimiter',' '); 
dlmwrite('NORMALIZED_MATRIX.txt',surf_normalized_counts,'delimiter',' '); 
dlmwrite('COVERAGES.txt',coverages,'delimiter',' '); 
dlmwrite('SURF_ENERGY',surf_energy,'delimiter',' '); 
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fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('FINSIHED!\nEach configuration file has had its results added to it.\nThe strict total counts have been written 
to "COUNTS_MATRIX.txt"\nThe normalized counts have been written to "NORMALIZED_MATRIX.txt"\nThe coverage of each system 
has been written to "COVERAGES.txt"\nThe surface normalized energies have been written to "SURF_ENERGY.txt"\n') 
if no_zero_flag == 1 
    fprintf('\nWARNING. You have not provided a zero-coverage structure in the configs directory.\nThe current results 
cannot be fit to a lattice gas model!\n\n') 
end 
fprintf('----------------------------------------------------------------\n') 
fprintf('For ease of manual manipulation of the data,\nall the above data can be found in the following 
variables:\n"counts"\n"surf_normalized_counts"\n"coverages"\n"surf_energy"\n') 
fprintf('----------------------------------------------------------------\n') 
if exist('repeat_flag','var') == 1 
    if repeat_flag == 1 
        if numel(repi)+numel(totoss) == 1 
            fprintf('\t\tOOPS!\n\t\tBased on the available data,\n\t\t%d of these new structures is equivalent to one 
of\n\t\tthe structures that have already been added!\n\t\tThis structure will be ignored in evaluation of the external 
CV-score\n',numel(repi)+numel(totoss)) 
        elseif numel(repi)+numel(totoss) > 1 
            fprintf('\t\tOOPS!\n\t\tBased on the available data,\n\t\t%d of these new structures are equivalent to each 
other\n\t\tor to structures that have already been added!\n\t\tThese structures will be ignored in evaluation of the 
external CV-score\n',numel(repi)+numel(totoss))             
        end 
    else 
        fprintf('\t\tCongrats!\n\t\tBased on the available data,\n\t\tALL of these new structures are unique!\n') 
    end 
end 
fprintf('----------------------------------------------------------------') 
if display_flag == 1 
    fprintf('\nThe external-CV score is %8.6g eV/site\n',ext_CV); 
    fprintf('The standard deviation of the residuals is %8.6g eV/site\n',resid_stdev); 
    fprintf('The external-CV deviation is %8.6g eV/site\n',ext_stdev); 
    fprintf('The residuals are:\n'); 
    for ii = 1:size(residuals,1) 
        fprintf('%s   %8.6g \n', newest_configs{ii}, residuals(ii)); 
    end 
     
end 
%Timing stuff 
elapsed=toc; 
inmin = elapsed/60; 
fprintf('\nThis run took %9.2f seconds (or %5.4f minutes) to run.\n',elapsed,inmin) 
fprintf('----------------------------------------------------------------') 
fprintf('\n----------------------------------------------------------------\n') 
clearvars -except constraints energy_gs delta_else slope_counts slope_energy part_slope_en true_gs_slopes_counts 
true_gs_slopes part_ads_en ads_normalized_counts true_gs_ens true_gs_ads_ens true_gs_covs true_gs iso_gs 
diff_ads_counts diff_surf_counts diff_surf_energies diff_ads_energies true_gs_covs true_gs_ads_e  true_gs_ens 
true_gs_slopes ads_energy part_en orig_surf_normalized_counts atat_names newest_configs residuals mf_resids counts 
surf_normalized_counts coverages surf_energy sMax INTERACTIONS 
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CONSTRUCT_CE_v4.m 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CONSTRUCT_CE.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% A script to hopefully find the optimal set of clusters that best 
% describes and predicts the training data provided in matrix  
% "surf_normalized_counts" and either "surf_energy" or "mf_resids".  
  
% Must have CV_calc_v2.m in the active directory. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
format short g 
  
% If you'd like to use the mean field residuals as your fitting energies, 
% please set "mf_flag" to "1". Else, set to "0". Default is "0" 
                 
mf_flag = 0; 
  
% Would you like to add clusters 1 at a time of both 1 and 2 at a time? 
% Adding 2 at a time increases the total number of gradent calculation  
% loops by M choose 2...so it scales as M^2 ('M squared') where M is the  
% total number of clusters available in "INTERACTIONS.txt".  
% Select 1 at a time (1) or 1 AND 2 at a time (2) 
  
at_a_time = 2; 
  
% User defined percentage (fraction) of total number of known energies that become 
% validation set during CV calculation (for a constant leave-x-out, set "a" 
% to x/N) 
  
a = 0.60; 
  
% If a cluster is underrepresented in the known structures, it can be 
% removed from consideration to speed up the algorithm. Set "rep" as the 
% minimum number of structures that have to have a cluster for that cluster  
% to be considered  
  
rep = 20; 
  
% If you'd like to specify that certain clusters be added at the start (no 
% guarantee the algorithm won't remove them, mind you) add them here. Note: 
% if you don't want ANY starting clusters, just delete the numbers and 
% leave an empty set...DO NOT comment this out. 
  
start_clusters = [ 1    2   3   4   5   6   13  25  53  55  56  58  81  104 139 159 193 195 199]; 
  
protect_clusters = []; 
  
% User defined fraction of clusters to delete from start_clusters (must be 
% less than 1) 
  
start_fraction_to_remove = 0; %0.8*rand;  
  
% User defined initial size of *randomly* generated clusters 
  
max_stsz = 30 - round(start_fraction_to_remove*size(start_clusters,2)); 
min_stsz = 3; 
  
start_sz = 0; %round(min_stsz +(max_stsz-min_stsz)*rand); 
  
% Specify a CV lowering tolerance, making it so additions/removals only  
% occur if the CV lowers by AT LEAST this amount (0.005 eV is a good start) 
  
tol = 0.00002; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
unrep = find(~any(surf_normalized_counts,1));  
zero_clust=find(sum(surf_normalized_counts,1)==0); 
[MAT,iaa,~] = unique(surf_normalized_counts,'rows','stable'); 
N=size(MAT,1);                                                              % total number of known (unique) structures 
candidate_clusters = find(sum(counts > 0,1)>=rep);                                                             
M=size(MAT,2);                                                             % total number of clusters 
if isempty(start_clusters) 
    nonzero_M = union(candidate_clusters, start_clusters)'; 
else 
    nonzero_M = union(candidate_clusters, start_clusters); 
end 
  



 

 323 

% Grab appropriate energies 
if mf_flag == 1 
    energy = mf_resids; 
else 
    energy = surf_energy(iaa); 
end                        
                
% create random vector of interactions that will be used as a starting CE 
% in addition to specified starting CE 
starting_flag = 0; 
while starting_flag ==0 
     
    out_CE = setdiff(nonzero_M,start_clusters);                 % which clusters aren't part of the starting clusters? 
    rsCE = randperm(size(out_CE,2),start_sz);                   % A randon permutation to use as indices 
    test_CE = out_CE(rsCE); 
    sz_CE = size(test_CE,2); 
     
    sz_start_clusters = size(start_clusters,2);                             % How many clusters in the start_clusters 
vector? 
    start_remove = round(start_fraction_to_remove*sz_start_clusters);       % How many to remove? 
    rrCE = randperm(sz_start_clusters,start_remove);                        % a random permutation to use as indices 
    start_clusters(rrCE) = [];                                              % Remove those indices from the start 
clusters 
    start_clusters = union(start_clusters,protect_clusters);                % add back the protected clusters in any 
have been removed. 
    CE = sort([test_CE start_clusters]); 
     
     
    test_mat = MAT(:,CE); 
    if size(CE,2) >= rank(MAT) 
        error('There are not enough known structures for this many starting clusters. Reduce the amount or add more 
structures and try again.') 
    end     
    [CV_score,std_dev] = CV_calc_v2(test_mat,energy,a);        %calulate the intial CV score 
    if CV_score < 100 
        starting_flag = 1; 
    end 
end 
fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('\nThe starting Cluster Expansion (CE) is:\n') 
disp(CE) 
fprintf('Its CV score is: %8.6g eV/site\n',CV_score) 
fprintf('Its standard deviation is: %8.6g eV/site\n',std_dev) 
fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
% Run through every cluster and either adding it or subtracting it from the 
% current CE. Keep a record of  
  
flag = 1; 
AA = zeros(M.^2,4);        % Column 1 and 2 are clusters ii and jj. Col 3 is used to track what kind of 
addition/removal was performed. Col 4 is the CV score 
newl = 0; 
if at_a_time == 2 
    totloops = 1/2*size(nonzero_M,2)*(size(nonzero_M,2)-1); 
else 
    totloops = size(nonzero_M,2); 
end 
while flag < 2 
    fprintf('Calculating the gradient of the current CE...\n(This can take a while)\n') 
    loop = 0; 
    for kk = nonzero_M 
        loop = loop + 1; 
        AA(loop,1) = kk; 
        if any(zero_clust==kk) 
            AA(loop,4) = 1000; 
        elseif any(CE == kk) 
            AA(loop,3) = -1;                       % This is used to track which clusters were added or removed along 
the 1 thru M cluster additions/removals 
            test_CE = setdiff(CE,kk); 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a); 
                        
        else 
            AA(loop,3) = 1; 
            test_CE = sort([CE kk]); 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a); 
             
        end      
        if mod(loop,round(totloops/20)) == 0                    % Display a percent complete 
            pcent = round(round(loop/totloops/.05)*0.05*100); 
            if pcent >= 100 
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                pcent = 99.99; 
            end 
            fprintf('%2g%%...',pcent); 
            newl = newl + 1; 
        end 
        if mod(newl,10) < 0.001 && mod(loop,round(totloops/20)) == 0 
            fprintf('\n'); 
        end 
    end 
    if at_a_time == 2 
        tt = 0; 
        for kk = nonzero_M 
            tt = tt + 1; 
            for jj = nonzero_M(tt+1:end) 
                loop = loop + 1; 
                AA(loop,[1 2]) = [kk jj];     
                if any(zero_clust==kk) || any(zero_clust==jj) 
                    AA(loop,4) = 1000;         
                elseif any(CE == kk) && any(CE == jj) 
                    AA(loop,3) = -3;                                               % This is used to track which 
clusters were added or removed along the 1 thru Mchoose2 cluster additions/removals 
                    test_CE = setdiff(CE,[kk jj]); 
                    out_CE = setdiff(nonzero_M,test_CE); 
                    test_mat = MAT(:,test_CE); 
                    [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a);                   
                elseif any(CE == kk) && ~any(CE == jj) 
                    AA(loop,3) = -2; 
                    test_CE = setdiff(CE,kk); 
                    test_CE = [test_CE jj];                                         %#ok<AGROW> 
                    out_CE = setdiff(nonzero_M,test_CE); 
                    test_mat = MAT(:,test_CE); 
                    [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a); 
                elseif ~any(CE == kk) && any(CE == jj) 
                    AA(loop,3) = 2; 
                    test_CE = setdiff(CE,jj); 
                    test_CE = [test_CE kk];                                         %#ok<AGROW> 
                    out_CE = setdiff(nonzero_M,test_CE); 
                    test_mat = MAT(:,test_CE); 
                    [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a); 
                else 
                    AA(loop,3) = 3;                
                    test_CE = [CE kk jj];                                      
                    out_CE = setdiff(nonzero_M,test_CE); 
                    test_mat = MAT(:,test_CE); 
                    [AA(loop,4),~] = CV_calc_v2(test_mat,energy,a); 
                end     
                if mod(loop,round(totloops/20)) == 0                    % Display percent complete 
                    pcent = round(round(loop/totloops/.05)*0.05*100); 
                    if pcent >= 100 
                        pcent = 99.99; 
                    end 
                    fprintf('%2g%%...',pcent); 
                    newl = newl + 1; 
                end 
                if mod(newl,10) < 0.001 && mod(loop,round(totloops/20)) == 0 
                    fprintf('\n'); 
                end 
            end 
        end 
    end 
    fprintf('...done!\n\n') 
    fprintf('----------------------------------------------------------------\n') 
    fprintf('Adding and removing clusters along the gradient\nuntil CV score no longer decreases..\n\n') 
    AA = AA(any(AA ~= 0,2),:);  % Remove all unused rows 
    sorted_AA = sortrows(AA,4); 
    sz_AA = size(AA,1); 
   
    new_CE = CE; 
    attempt = 0; 
    for kk = 1:sz_AA    
        ii = sorted_AA(kk,1); 
        jj = sorted_AA(kk,2); 
        if at_a_time == 2 
            if (kk ~= 1 && any(any(sorted_AA(1:kk-1,1:2) == ii)))==1 || (kk ~= 1 && any(any(sorted_AA(1:kk-1,1:2) == 
jj)))==1 
                 sorted_AA(kk,[1,2]) = [-1 -1]; 
                continue 
            end 
        else 
            if (kk ~= 1 && any(any(sorted_AA(1:kk-1,1:2) == ii)))==1 
                 sorted_AA(kk,[1,2]) = [-1 -1]; 
                continue 
            end 
        end 
        if sorted_AA(kk,3) == -3 
            test_CE = setdiff(CE,[ii jj]); 
            out_CE = setdiff(nonzero_M,test_CE); 
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            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        elseif sorted_AA(kk,3) == -2 
            test_CE = setdiff(CE,ii); 
            test_CE = [test_CE jj];                        %#ok<AGROW> 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        elseif sorted_AA(kk,3) == -1 
            test_CE = setdiff(CE,ii); 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        elseif sorted_AA(kk,3) == 1 
            test_CE = sort([CE ii]); 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        elseif sorted_AA(kk,3) == 2 
            test_CE = setdiff(CE,jj); 
            test_CE = [test_CE ii];                        %#ok<AGROW> 
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        elseif sorted_AA(kk,3) == 3 
            test_CE = [CE ii jj];           
            out_CE = setdiff(nonzero_M,test_CE); 
            test_mat = MAT(:,test_CE); 
            [new_CV_score,new_std_dev] = CV_calc_v2(test_mat,energy,a); 
  
        end 
  
        if CV_score - new_CV_score >= tol            
            flag = 0; 
            CE = sort(test_CE); 
            CV_score = new_CV_score; 
            std_dev = new_std_dev;  
  
            if sorted_AA(kk,3) == -3 
                fprintf('\nCluster %d and %d removed!\n',ii,jj) 
            elseif sorted_AA(kk,3) == -2 
                fprintf('\nCluster %d removed and %d added!\n',ii,jj) 
            elseif sorted_AA(kk,3) == -1 
                fprintf('\nCluster %d removed!\n',ii) 
            elseif sorted_AA(kk,3) == 1 
                fprintf('\nCluster %d added!\n',ii) 
            elseif sorted_AA(kk,3) == 2    
                fprintf('\nCluster %d added and %d removed!\n',ii,jj) 
            elseif sorted_AA(kk,3) == 3 
                fprintf('\nCluster %d and %d added!\n',ii,jj) 
            end            
            fprintf('\nThe new CE is:\n') 
            disp(CE) 
            fprintf('Its CV score is: %8.6g eV/site\n',CV_score) 
            fprintf('Its standard deviation is: %8.6g eV/site\n',std_dev) 
            fprintf('----------------------------------------------------------------\n')        
        elseif CV_score - new_CV_score < tol     
            
            if flag < 2   
                if attempt == 4  
                    flag = flag + 1; 
                    if flag < 2 
                        fprintf('\nReached a minimum along this gradient!\n') 
                        fprintf('----------------------------------------------------------------\n') 
                        fprintf('----------------------------------------------------------------\n') 
                    end 
                    break 
                end 
                attempt = attempt + 1; 
                continue 
            elseif flag >= 2 
                continue 
            end 
        end         
    end 
    if kk == sz_AA    
        fprintf('\nAll possible additions/removals along this gradient exhausted!\n') 
        fprintf('----------------------------------------------------------------\n') 
    end 
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end 
interactions = INTERACTIONS(CE,:);  
  
final_mat = MAT(:,CE); 
final_coeffs = (final_mat'*final_mat)\(final_mat'*energy); 
final_en = final_mat*final_coeffs; 
final_resids = energy - final_en; 
RMSE = sqrt(mean(final_resids.^2)); 
  
%%% Write the output to file "LG_EICs.txt" 
dlmwrite('LG_EICs.txt',CE,'delimiter','\t') 
dlmwrite('LG_EICs.txt',final_coeffs,'delimiter','\t','-append') 
fID = fopen('LG_EICs.txt','a'); 
fprintf(fID,'%8.6f eV/site',CV_score); 
fclose(fID); 
fprintf('----------------------------------------------------------------\n') 
fprintf('----------------------------------------------------------------\n') 
fprintf('\nThe algorithm has found a local minimum!\nNo further cluster additions or removals lower the CV score\n\n') 
fprintf('\nThe final CE is:\n') 
disp(CE) 
fprintf('Its CV score is: %8.6g eV/site\n',CV_score) 
fprintf('Its standard deviation is: %8.6g eV/site\n',std_dev) 
fprintf('The RMSE of the final fit is: %8.6g eV/site\n',RMSE) 
fprintf('The LG EIC for this CE are:\n') 
disp(final_coeffs) 
%fprintf('The corresponding residuals are:\n') 
%display(final_resids) 
fprintf('This CE corresponds to the following interactions:\n') 
disp(interactions) 
  
clearvars -except max_pCs min_pCs pC CE interactions CV_score final_resids final_coeffs counts surf_normalized_counts 
coverages surf_energy sMax final_en INTERACTIONS mean_coeffs mf_resids 
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CV_CALC.m 
 
function [ CV_score, std_dev] = CV_calc_v2( test_mat,energy,a,optional_reference_CV_score) 
% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%% CV_calc.m: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Given an N x M submatrix corresponding to the M interaction coefficients 
% of some (size M) cluster expansion (CE) for some N known DFT energies,  
% calculates the Leave Multiple Out - Cross Validation (LMO-CV) score. 
% 
% The training set of N DFT energies is split into a construction set (size 
% N-d) and validation set (size d). The relative size of these is 
% determined by the user specified "a": the fractional portion of the N 
% total data that becomes the d validation set data. 
% Per K. Baumann, Trends Anal. Chem. 22 (2003) 395-406, "a" should not be 
% set below 0.4 
% 
% v2: Enforces an unbiased sampling of the data set.  
%     ...After N random cuts of the data, the algorithm chooses the 
%     validation set from structures that have been biased against in the 
%     original cuts until there is no more bias remaining and until at 
%     least 9N more cuts have been made and the CV score stops changing by  
%     at least 10^-6 eV.  
%     This turns out to be a far more stable (repeatable) value than the 
%     previous randomaly biased version. 
% 
%     2018-02-15: Optimized. Now allows for a 0.001% bias where bias is 
%     defined as total imbalance divided by total number of cuts of the 
%     data. Also skips a step if a matrix is 'close to singular' 
  
if ~exist('optional_reference_CV_score','var') 
    optional_reference_CV_score = 10; 
end 
ref_CV_score = optional_reference_CV_score; 
lastwarn('') 
warning('off','all') 
  
% remove 0 coverage structure (the one with all zeros) from consideration 
  
  
N = size(test_mat,1); 
sz_constn_set = floor((1-a)*N); 
sz_validn_set = ceil(a*N); 
  
  
% calculate CV score for this CE 
  
count=zeros(1,N); 
diffCV = 1000; 
new_CV_score = 100; 
k = 1; 
cnt_rng = 100; 
  
tot_skips = 0; 
  
while abs(diffCV) > 10^-7 || k < 10*N || cnt_rng/k > 0.0001 
    old_CV_score = new_CV_score; 
  
    if tot_skips > N 
        CV_score = 10000; 
        std_dev = 10000; 
        return 
    end 
     
    if k <= N 
        cc = randperm(N,sz_constn_set); 
        constn_configs = cc; 
        constn_set = test_mat(constn_configs,:); 
        validn_configs = 1:N; 
        validn_configs(constn_configs)=[]; 
        count(validn_configs)=count(validn_configs)+1; 
        cnt_rng = max(count) - min(count); 
    else 
        [~, ii] = sort(count); 
        validn_configs = ii(1:sz_validn_set);        
        constn_configs = 1:N; 
        constn_configs(validn_configs)=[]; 
        constn_set = test_mat(constn_configs,:); 
        count(validn_configs)=count(validn_configs)+1; 
        cnt_rng = max(count) - min(count);      
    end 
    constn_en = energy(constn_configs); 
    validn_set = test_mat; 
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    validn_set(constn_configs,:) = []; 
    validn_en = energy; 
    validn_en(constn_configs) = []; 
    [~,warcheck] = lastwarn; 
    if strcmp(warcheck,'MATLAB:nearlySingularMatrix') 
        lastwarn(''); 
        tot_skips = tot_skips + 1; 
        continue 
    end 
     
    if any(all(constn_set==0,1))==1  
        tot_skips = tot_skips + 1; 
        continue 
    end 
    coeffs = (constn_set'*constn_set)\(constn_set'*constn_en); 
    pred_en = validn_set*coeffs; 
    predn_err = pred_en - validn_en; 
    sq_predn_err(k) = dot(predn_err,predn_err); %#ok<AGROW> 
    sum_predn_err(k) = sum(predn_err); %#ok<AGROW> 
    new_CV_score = sqrt(mean(sq_predn_err)/sz_validn_set);   
    diffCV = new_CV_score - old_CV_score; 
     
    k = k + 1; 
    if tot_skips > 1000 
        new_CV_score = 10000; 
        break 
    end 
    if new_CV_score - ref_CV_score > 0.0005  && abs(diffCV) < 0.001 && k > 2*N        
        break 
    end 
    if new_CV_score - ref_CV_score > 0  && abs(diffCV) < 0.01 && k > 10*N  
        break 
    end 
    if k > 500*N 
        break 
    end 
    if new_CV_score > 1E6 
        break 
    end 
end 
%fprintf("...\n") 
CV_score = new_CV_score; 
avg_error = sum(sum_predn_err)/(k*sz_validn_set); 
std_dev = sqrt(sum(sq_predn_err)/(k*sz_validn_set)-avg_error^2); 
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make_mf.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% make_mf.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% v2: exclude duplicate structures from fit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           Choose the order of the fit to the mean field model:          %  
                                  n = 3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%             Force the fit to pass through the 1 ML coverage?            % 
%                            (yes = 1, no = 0)                            % 
                                 flag = 0; 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[AAA,ia,~] = unique(surf_normalized_counts,'rows','stable');  
uniqcov = coverages(ia); 
uniqen = surf_energy(ia); 
  
[mean_coeffs,mf_resids,MSE,MAE,ME]=mean_field(uniqcov,uniqen,n,flag); 
  
fprintf('The mean field coefficients are:\n') 
disp(mean_coeffs) 
fprintf('Root Mean Squared Error: %8.6f eV/site\nMean Absolute Error: %8.6f ev/site\nMean Signed Error: %8.6f 
eV/site\n\n',MSE,MAE,ME) 
  
% Make a pretty plot 
mf_model = 0; 
th = 0:0.01:1; 
line = zeros(size(th,2),2); 
for i = 1:n 
    mf_model = mf_model + mean_coeffs(i)*th.^(i-1); 
end 
ads_en = uniqen./uniqcov; 
ads_en(isnan(ads_en)) = []; 
mod_coverages = uniqcov; 
mod_coverages(mod_coverages==0) = []; 
subplot(2,1,1) 
scatter(mod_coverages,ads_en); 
hold on 
plot(th,mf_model) 
ylabel('Ads. En. (eV/adsorbate)') 
title('Mean Field Model') 
hold off 
  
subplot(2,1,2) 
scatter(uniqcov,mf_resids) 
hold on 
plot(th,line,'k') 
xlabel('Adsorbate Coverage (ML)') 
ylabel('Residuals (eV/site)') 
hold off 
  
%%% Write the output to file "mf_coeffs.txt" 
dlmwrite('mf_coeffs.txt',mean_coeffs) 
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OVERNIGHT_CE.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%% overnight_CE_v2.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Runs "CONSTRUCT_CE_v4.m" on a loop the numbers of times specified.  
%%%% Output from "CONSTRUCT_CE_v4.m" is placed in a folder called "LG_EICs", 
%%%% which must exist for this script to work. 
  
%%%%%%% USER INPUT %%%%%%%%% 
numRuns = 500; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
tic 
  
backhome = cd('./LG_EICs'); 
for i = 1:numRuns     
    cd(backhome) 
    run('CONSTRUCT_CE_v4.m') 
    thisCV = sprintf('%6.6f',CV_score); 
    backhome = cd('./LG_EICs'); 
    movefile('../LG_EICs.txt',['LG_EICs.' thisCV '.txt']); 
end 
cd(backhome) 
toc 
 




