
NVSWAP: LATENCY-AWARE PAGING USING NON-VOLATILE MAIN MEMORY

By

YEKANG WU

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY

School of Engineering and Computer Science, Vancouver

MAY 2021

© Copyright by YEKANG WU, 2021

All Rights Reserved

© Copyright by YEKANG WU, 2021

All Rights Reserved

ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of YEKANG WU find it

satisfactory and recommend that it be accepted.

Xuechen Zhang, Ph.D., Chair

Xinghui Zhao, Ph.D.

Scott Wallace, Ph.D.

iii

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my research adviser, Dr. Xuechen Zhang

for navigating me in the world of graduate studies. He is very patient, knowledgeable, and his

professional suggestions always help me solve hard problems.

I would like to express my sincere gratitude to my parents. Without their support, I am

not able to finish my studies. Their words always motivate and inspire me in difficult times.

iv

NVSWAP: LATENCY-AWARE PAGING USING NON-VOLATILE MAIN MEMORY

Abstract

by Yekang Wu, M.S.
Washington State University

May 2021

Chair: Xuechen Zhang

Page relocation (paging) from DRAM to swap devices is an important task of a virtual

memory system in operating systems. Existing Linux paging mechanisms have two main

deficiencies: (1) they may incur a high I/O latency due to write interference on solid-state disks

and aggressive memory page reclaiming rate under high memory pressure and (2) they do not

provide predictable latency bound for latency-sensitive applications because they cannot control

the allocation of system resources among concurrent processes sharing swap devices.

In this thesis, we present the design and implementation of a latency-aware paging

mechanism called NVSwap. It supports a hybrid swap space using both regular secondary

storage devices (e.g., solid-state disks) and non-volatile main memory (NVMM). The design is

more cost-effective than using only NVMM as swap spaces. Furthermore, NVSwap uses NVMM

as a persistent paging buffer to serve the page-out requests and hide the latency of paging

between the regular swap device and DRAM. It supports in-situ paging for pages in the

persistent paging buffer avoiding the slow I/O path. Finally, NVSwap allows users to specify

latency bounds for individual processes or a group of related processes and enforces the bounds

by dynamically controlling the resource allocation of NVMM and page reclaiming rate in

memory among scheduling units. We have implemented a prototype of NVSwap in the Linux

v

kernel-3.16.74. Our results demonstrate that NVSwap reduces paging latency by up to 99% and

provides performance guarantee and isolation among concurrent applications sharing swap

devices.

Keywords Paging, Virtual Memory, Storage QoS, Non-Volatile Main Memory

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT.. iii

ABSTRACT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: MOTIVATION AND RELATED WORK.. 4

2.1 Needs for Latency-Aware Paging .. 5

2.2 Previous Work .. 8

CHAPTER 3: NVSwap Design .. 12

CHAPTER 4: Latency Control Module .. 17

CHAPTER 5: Implementation Issues ... 21

CHAPTER 6: Evaluation .. 23

6.1 System Setup .. 23

6.2 Latency Enforcement ... 25

6.2.1 Single Workloads .. 25

6.2.2 Concurrent Homogeneous Workloads... 26

6.2.3 Concurrent Heterogeneous Workloads ... 28

vii

6. 3 Changing Latency Bounds Dynamically... 30

6. 4 Impact of DB Record Size .. 32

6. 5 Impact of NVMM Size .. 33

6. 6 Comparison with Other Systems ... 34

6.7 Experiments with Real NVMM ... 35

CHAPTER 7: Conclusion ... 38

REFERENCES ... 39

viii

LIST OF TABLES

Page

Table 1：Comparison of NVSwap with existing major paging schemes. 9

Table 2：Configurations of heterogeneous Workload A, B, and C. .. 28

Table 3：Configurations of heterogeneous Workload A, C, and F. .. 30

file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892357
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892358
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892359

ix

LIST OF FIGURES

Page

Figure 1: Motivation. .. 4

Figure 2: Illustration of the Linux paging mechanism.. 5

Figure 3: NVSwap system architecture. ... 10

Figure 4: Illustration of NVSwap paging scheme... 16

Figure 5: Single Workloads experiment. .. 26

Figure 6: Concurrent Homogeneous Workloads experiment. .. 27

Figure 7: Concurrent Heterogeneous Workloads experiment 1. .. 28

Figure 8: Concurrent Heterogeneous Workloads experiment 2. .. 29

Figure 9: Dynamic latency bounds experiment. ... 31

Figure 10: DB Record Size experiment. ... 32

Figure 11: NVMM Size experiment. .. 33

Figure 12: Comparison of latency by NVSwap versus Dr. swap. .. 34

Figure 13: Single Workload experiment with Real NVMM. ... 35

Figure 14: Concurrent Homogeneous Workloads experiment with real NVMM. 37

Figure 15: Concurrent Heterogeneous Workloads experiment with real NVMM. 37

file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892342
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892343
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892344
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892345
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892346
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892347
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892348
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892349
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892350
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892351
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892352
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892353
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892354
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892355
file:///D:/Graduation/working/afterdefense/dealfig/NVSWAP%20LATENCY-AWARE%20PAGING%20USING%20NON-VOLATILE%20MAIN%20MEMORY.docx%23_Toc69892356

1

CHAPTER 1: INTRODUCTION

 In the Linux operating system, paging is designed to extend the main memory capacity

using the space of secondary storage devices [31]. The existing paging policy in Linux is

designed to improve the overall I/O throughput of concurrent paging workloads. For example,

upon paging out, memory pages are written out to swap space in the unit of page clusters [29] to

exploit spatial locality. However, the tail latency (i.e., Xth percentile latency) of paging for a

particular application can be unprohibitedly high because it is affected by many factors such as

queuing time in kernels and I/O interference of applications concurrently accessing the swap

devices. In addition, the latency is unpredictable because the existing paging systems cannot

enforce the latency bound of paging for an application, which may result in poor swap

experience of users of latency-sensitive applications, e.g., in-memory databases and mobile

applications.

 In this thesis, we present a new paging system called NVSwap using Non-Volatile Main

Memory (NVMM) (e.g., Intel Optane DIMMs [2, 24]) to extend memory capacity for serving

latency-sensitive memory-demanding applications. Supporting paging to NVMM in operating

systems hides the complexity of programming and enables programmers to directly run memory-

demanding legacy code without the need of understanding NVMM memory models and its

programming interface. NVSwap has the following desirable properties to hide paging latency

and improve users’ experience.

A cost-effective hybrid swap space: For paging, NVSwap employs two swap zones

including a swap zone in NVMM on the memory bus and a regular swap zone in solid-state disks

(SSDs) on the I/O bus. Latency-sensitive applications can page to both of the zones according to

their latency requirements. Other applications can page to the regular zone for a low cost.

2

NVSwap may swap in pages in NVMM in an in-situ manner (in-situ paging) without extra

memory copy, which will further reduce the latency of paging.

Latency-bound enforcement: NVSwap allows users to specify QoS requirements in the

form of tail latency bounds of page-in requests for any latency-sensitive processes. These may be

set for individual processes or collectively for a group of related processes. NVSwap enforces

the latency bound for page-in requests by controlling the space allocation of NVMM among

scheduling units (e.g., processes). According to the latency requirements, it also dynamically

selects the host swap device from the regular swap zone and the NVMM zone and adjusts the

rate of memory page reclaiming to reduce the queuing time of paging requests in the disk

scheduling queue.

Persistent paging buffer: We implemented a persistent paging buffer in NVMM for

latency enforcement and reduce I/O interference in the regular swap zone. It organizes its space

into multiple latency groups, each of which consists of pages from processes having the same

latency bound. The pages in the buffer are destaged in the unit of latency groups and in

descending order of their respective latency bounds. In this way, pages from latency-sensitive

processes will have a higher chance of staying in NVMM. It exploits the temporal locality by

storing the pages in the same group in the order of eviction from DRAM. By serving the page-

out requests using the persistent paging buffers and providing higher priority to read requests in

the disk scheduling queue, NVSwap significantly reduces write interference on SSDs. Finally,

subsequent page-in requests that hit any pages in the buffer will be directly copied to the swap

zone in NVMM and then mapped to process address spaces. With the help of in-situ paging, the

page can be immediately used by the process without triggering the overhead of block-level I/O

processing.

3

 We have implemented a prototype of NVSwap in the Linux kernel-3.16.74. Our

extensive evaluation with the in-memory database and YCSB benchmark show that NVSwap can

reduce the paging latency by up to 99% compared to those using only SSDs for swapping.

Furthermore, it dynamically adapts the allocation of system resources for enforcing the Xth

percentile latency for concurrent paging workloads and provides the desired performance

isolation among them.

4

CHAPTER 2: MOTIVATION AND RELATED WORK

 In this section, we first motivate the need for latency-aware paging using motivation

examples. We then review the literature on paging mechanisms and the limitations of existing

paging techniques.

 (a) DB Update Records (b) DB Read Records

 (c) OS Page in (d) OS Page out

 (a) and (b) show the minimum, 95th percentile, and 99th percentile latency of

DB update and read operations of with one instance of memcached (Dedicated) and two concurrent

instances (Concurrent). (c) and (d) show the minimum, 95th percentile, and 99th percentile latency of

page-out and page-in operations during the execution of memcached.

Figure 1: Motivation.

5

2.1 Needs for Latency-Aware Paging

Paging in virtual memory is a core component of the Linux operating system. Figure 2

illustrates the existing Linux paging mechanism. Paging out happens when the swap out daemon

kswapd in the kernel is wakened up under memory pressure or when direct page reclaiming is

required under an even higher memory pressure [1, 11]. To swap out a page in DRAM, the

kernel needs to generate a block-level I/O request and adds it to a disk scheduling queue

associated with the device for dispatch. Then the page is written to the swap space hosted on

block storage devices, e.g., SSDs. When a page fault is triggered by STORE or LOAD CPU

instructions, the kernel needs to swap in the page to be accessed back to DRAM. Paging to

NVMM hides the complexity of the new memory models and enables programmers to smoothly

adapt their applications to the new hardware.

 The current Linux paging mechanism is designed to improve the overall I/O bandwidth

of slow swap devices [29] by exploiting spatial locality. For paging out, the kernel typically

 Page(1) is paged out from DRAM to the swap

space and Page(2) is paged in from the swap space to DRAM. Both of the page-out and page-in

requests are issued from the disk scheduling queue.

Figure 2: Illustration of the Linux paging mechanism.

6

selects 32 pages from the list of inactive pages and sequentially writes them in a page cluster on

swap devices. The size of a cluster ranges from 8 KB to 4096 KB. For paging in, the kernel

prefetches multiple pages in a cluster benefiting from high sequential read bandwidth of storage

devices.

 However, these design options may cause a long paging latency at both kernel and

application levels. To illustrate the impact of paging on the latency of major operations of

applications. We run the memcached in-memory database server provided in the YCSB

benchmark [3]. The server daemons access an SSD-based swap device. The size of the main

memory and swap space are set to 5 GB and 10 GB respectively. We run Workload A with 50/50

read/update ratio,1KB record size, and zipfian [10] request distribution. The detailed

hardware configuration can be found in Section 6. In Figure 1, we compare the latency of major

database operations (e.g., update and read) with one memcached server using the swap space

(Dedicated) to that with two memcached servers concurrently accessing the space (Concurrent).

We have the following observations from the results.

 1. During paging, both of the DB read and update operations may have a long tail

latency. With dedicated accesses to the swap space, the 99th percentile latency of DB read

operations (840 us as shown in Figure 1(b)) is 25X longer than its minimum latency (34 us).

With concurrent accesses to the swap space, the 99th percentile latency of read operations is

increased to 2143 us which is 61X higher than its minimum latency (35 us) while the minimum

latency is increased by only 3%. A similar pattern is observed for DB updates. This is because

when the page to read or update is in the swap space the kernel needs to synchronously read the

page from the SSD-based swap space. While reading the page, the SSD also needs to serve page-

out requests due to memory reclaim under high memory pressure. When page-in requests and

7

page-out requests are mixed and concurrently access the SSD, the read (page-in) requests might

be blocked by write (page-out) requests, causing a long tail latency [12, 27] at the application

level.

 2. During paging, page-out requests have an extremely long tail latency. We observe

that the 99th percentile latency of page-out requests is 260495 us, which is 2503X higher than its

corresponding minimum latency (Figure 1(c)) with concurrent access to the swap space. This is

because under a high memory pressure the kernel executed memory pre-cleaning which swaps

out pages from the inactive page list before new pages are requested [29]. The page reclaiming.

rate becomes more aggressive as the ratio of free page frames is decreased. Even though paging

out is asynchronously executed, we observed that the page-out I/O requests issued by page

precleaning may saturate the disk scheduling queue, leading to a long queuing time and long tail

latency.

 3. The Linux paging system is not able to enforce latency bounds. We observed the

huge variation between minimum latency and its corresponding 99th percentile latency for page-

in and page-out requests in Figure 1.

4. The OS page-in latency has a critical impact on the latency of DB operations at

the application level. Our experimental results show that the OS page-in latency is directly

correlated to users’ perceived latency because the latency of serving page-in requests is in the

critical path of major page faults while page-out requests can be asynchronously served in the

kernel. As a result, the 99th percentile latency of page-in requests is comparable to those of DB

reads and updates. In contrast, the tail latency of page-out requests can be 122X higher than the

latency of the DB operations.

8

In summary, while the paging systems have been well implemented to provide high I/O

bandwidth during paging, they are not latency-sensitive. The current deficiencies in its design

prevent users who are sensitive to latency from using the swap space and prevent paging being

used with in-memory applications and mobile devices [37] requiring predictable and low latency

bounds for improving users’ experience or used with high-performance computing applications

[6] whose performance is sensitive to OS noises.

2.2 Previous Work

We classified existing work on paging in virtual memory management into three

categories, as discussed below.

Paging Approaches for Flash: FlashVM was designed to improve paging performance

with aggressive pre-cleaning, stride prefetching, and reduce the number of page writes to flash-

based swap devices with page sampling and sharing [29]. In comparison, NVSwap is designed

for enforcing paging latency bounds with the help of NVMM. Because of the good random

access performance of NVMM, prefetching is no longer needed for the swap zone in NVMM.

Instead, it uses in-situ paging and persistent write buffers to reduce paging latency. Hybrid Swap

allocates SSD space according to users’ specified bound on the program stall time due to page

faults as a percentage of the program’s total run time [23]. Most recently, MARS was designed

to speed up the relaunching of mobile applications via flash-aware paging [17]. It reserves

memory space and dynamically adjusts the value of memory watermarks to avoid a mix of page-

out and page-in requests during the relaunching, thus alleviating the impact of write interference.

In addition, it separates the swap space allocated to each application to improve the spatial

locality of page-in workloads. Different from MARS, NVSwap uses a dedicated persistent

paging buffer in NVMM to separate page-out from page-in requests to reduce write interference.

9

Newhall et al. designed a swap space using distributed DRAM and Flash [25].

 Paging Approaches for NVMM: NVMM is used for paging because it has low latency

and vendor-guaranteed lifespan [8, 24] of 5 years at a minimum. Table 1 provides a summary of

existing paging approaches for NVMM and their comparison with NVSwap. Memorage manages

NVMM as storage space when storage capacity is low and manages it as the main memory

extension when the availability of memory pages is low [20]. By dynamically changing the

allocation of NVMM to main memory, it uses existing virtual memory managers to improve the

performance of in-memory applications. Dr. Swap uses a direct read to reduce the overhead of

memory copy from NVMM to DRAM for paging in [37]. Refinery swap and nCode were

designed to reduce the number of page-out and page-in requests by swapping out less-frequently

accessed pages [13] or read-only code page to NVMM [38]. Both SmartSwap [41] and Mars [17]

reduce the user-perceived latency of application relaunching in mobile devices. They typically

swap in the whole process address space of the application for relaunching. Other paging

approaches have been designed to reduce paging overhead in virtual machines using distributed

NVMM [39]. Awad et al. comprehensively studied the impact of the existing techniques (e.g.,

Technique
In-situ Paging-

in

Write

Awareness

Latency

Enforcement

Swap Device

Type
Swapping Unit

Linux [31] No No No No Disk Page

FlashVM [29] No Yes No Flash Page

SmartSwap

[41]
No No Some Flash Application

Mars [17] No Some No Flash Application

Memorage

[20]
Yes No No NVMM Page/block

Dr. swap [37] Yes No No NVMM Page

Refinery swap

[13]
Some Yes No NVMM Page

NVSwap Yes Supported Yes NVMM+Flash Page

Table 1：Comparison of NVSwap with existing major paging schemes.

10

page prefetching, and page replacement algorithms) on the performance of NVMM-based paging

systems [9].

Latency Enforcement in Storage Systems: For non-distributed storage systems,

SARC+Avatar is a two-level scheduler that uses the earliest deadline first scheduling policy to

achieve latency control [36]. In the Xen hypervisor, PSLO was proposed to enforce tail latency

for consolidated VM storage by controlling the level of I/O concurrency and arrival rate for each

VM issue queue [22]. Tiny-tail flash was designed to eliminate the tail latency induced by

garbage collection in solid-state disks. Because the Linux paging system does not maintain an

individual issue queue for each process, NVSwap cannot directly use the approaches like

AVATAR or PSLO. Instead, it uses user-defined latency bound to control the disk scheduling

queue size and process paging location. It also needs to adjust page pre-cleaning rate and the

arrival rate of page-out requests of processes competing for the slots of the disk scheduling

queue and NVMM space.

 Figure 3: NVSwap system architecture.

11

Other studies focus on the latency enforcement in distributed storage systems in which

congestion may happen at either the network or storage layer. For example, Cake [35] is a two-

level scheduling framework designed for tail latency enforcement in HBase [5]. Its first level

scheduler uses a single FIFO queue and needs to split large requests into small requests to reduce

head-of-line blocking in the queue caused by serving large requests and determines the number

of outstanding requests. Its second level scheduler issues I/O requests to storage and reduces

resource underutilization by controlling the queue occupancy. Priority Meister further provides

scheduling for multiple latency-sensitive workloads while Cake can only handle one such

workload [40]. It limits the network rate to manage networking-induced tail latency. Most

recently, Rein [28] was designed to reduce tail latency in distributed key-value stores, e.g.,

assandra [4]. It aims to control tail latency in a distributed storage system using the client-server

model. We do not need to consider networking latency in NVSwap.

12

CHAPTER 3: NVSWAP DESIGN

 The objective of NVSwap is to enforce latency bounds of paging for latency-sensitive

processes using NVMM. We focus on page-in latency in the thesis because it has a direct

impact on users’ perceived latency as shown in Section 2. In this section, we discuss the key

concepts and overall design of NVSwap. Figure 3 shows the system architecture with multiple

processes accessing a shared swap space. From the perspective of software architecture,

NVSwap has similar basic functionalities as Linux including paging to/from disks, page

prefetching to hide disk access latency, page pre-cleaning to eagerly swapping out dirty pages

before new pages are needed using kswapd , and other functionalities (e.g., swap space

management). Besides these, NVSwap supports paging to/from NVMM. It has a new latency

control module, which is responsible for determining memory page reclaim rate and the dynamic

allocation of NVMM for each paging process according to its user-specified tail latency bound.

Since page-out requests are served asynchronously, we only provide latency control for page-in

requests. We describe the algorithm used for latency control and page reclaim in Section 4.

 The swap space of NVSwap has four main components: a regular-zone, an NV-zone, a

persistent paging buffer. and a shadow mapping table. The regular-zone is hosted on block

storage devices, e.g., solid-state disks. It is used to serve paging requests dispatched from a disk

scheduling queue as what the Linux paging scheme does. The NV-zone and persistent paging

buffer are hosted in NVMM. They are used to serve paging requests to enforce the latency

bounds as specified by users. The NV-zone consists of NVMM page frames that can be directly

accessed in process address spaces. The persistent paging buffer stores swapped-out pages from

latency-sensitive processes and prefetched pages from the regular-zone. When the buffer is full,

NVSwap needs to asynchronously flush pages to the regular-zone in background. When page

13

flushing happens, NVSwap does not need to change the page table entry of its corresponding

process. Instead, the new disk location of the flushed pages in the regular-zone is recorded in the

shadow mapping table. Then the incoming page-in requests to access the flushed pages

will be served using their new disk addresses looked up from the shadow mapping table.

 Paging-out: According to the output of the latency control module, the page-out requests

are directed to access either the persistent paging buffer or the regular-zone. In Figure 4(a), we

illustrate three page-out paths of NVSwap. (1) For Page(1) , it is paged out to the persistent

paging buffer first and then asynchronously flushed to the regular-zone when the buffer is full.

Because the persistent paging buffer is on the memory bus, NVSwap simply copies the page to

be swapped out in DRAM to a new page frame in NVMM. Since the persistent paging buffer is

non-volatile, a page-out request can be considered complete once it is sent to the main memory

extension. We schedule writing pages from NVMM to the regular-zone when the scheduling

queue is not saturated. (2) For Page(2) , it is simply paged out to NVMM. After the termination

of the process referencing Page(2), the page frame is freed for future usage by other processes.

(3) Page(3) is paged out to the regular-zone. The page-out request should be dispatched by the

scheduling queue in DRAM. The size of the scheduling queue is measured in queue slots. It has

a huge impact on the tail latency of paging requests as shown in Figure 1. Therefore, the latency

control module periodically adjusts the queue size based on the latency requirements of

processes.

 Paging-in: When a STORE/LOAD instruction triggers a page fault to access a page in

the swap space, NVSwap has two paths for serving the page-in request. We illustrate them in

Figure 4(b). (1) If the page (e.g., Page(3)) is stored in the regular-zone, NVSwap first issues a

read request to read the page from the block device to a new DRAM page frame allocated for

14

serving the page fault. Then by updating the page table entry (PTE) of the process which

references the page, it sets up the PTE mapping from the virtual address to the physical address

in DRAM. Finally, the process can write/read the data to/from the page. This page-in path is the

same as Linux. (2) If the page (e.g., Page(2)) is stored in the persistent paging buffer, NVSwap

allocates a page frame in the NV-zone. Then it sets up the PTE mapping from the virtual address

to the physical address in NVMM. Finally, it copies the data from the persistent paging buffer to

the NVMM page frame in the NV-zone. The existing buffer slot hosting the page is freed. This

operation is called in-situ paging in NVSwap. In-situ paging replaces the operation of reading the

regular-zone with the memory copy from the persistent paging buffer to the NV-zone.

Consequently, it reduces the page-in latency of serving the page fault.

 Resizing the persistent paging buffer: The size of the persistent paging buffer is

periodically adjusted according to the ratio of the number of page-in requests and page-out

requests. Specifically, let’s assume the size of NVMM is Cnvmm, the size of the persistent paging

buffer is C buffer, and the size of the NV-zone is Cnvzone. We further assume the rate of page-in

and page-out is Rate in and Rate out respectively. Then Cnvzone = Ratein ∗ Cnvmm / (Rateout + Ratein)

and Cbuffer = Cnvmm − Cnvzone. To calculate Ratein and Rateout, NVSwap maintains a moving

average of the total number of page-in and page-out requests being served in a 1-second time

window. It does not induce additional overhead as Linux already tracks these metrics (e.g., the

number of page faults). When the NV-zone is full, in-situ paging is disabled until the existing

page frames are freed or more NVMM page frames are allocated for the zone.

 The page layout of swap space and prefetching: When flushing occurs in the persistent

paging buffer, NVSwap evicts pages from processes that have the highest latency bounds

specified by users. For this purpose, it organizes the space of the persistent paging buffer into

15

multiple latency groups, each of which consists of 64 pages from processes having the same

latency bound. When a latency group is full, it is split into two latency groups of the same

latency requirement. Furthermore, it exploits the temporal locality by storing the pages in the

same group in the order of eviction from DRAM. We schedule writing a group of pages from the

persistent paging buffer to the regular-zone when the scheduling queue is not full. NVSwap

manages page slots using a cluster-based approach like Linux for the regular-zone.

 Serving the read requests from the regular-zone is in the critical path and may

significantly increase the latency of page fault handling. Linux prefetches pages after a page fault

to hide the latency [29]. However, the existing prefetching mechanism reads pages from the

regular-zone into DRAM, which may cause memory thrashing under high memory pressure. In

contrast, upon page fault to the regular-zone, NVSwap prefetches the pages from the regular-

zone to the persistent paging buffer in the unit of a latency group. Furthermore, it only prefetches

the pages of latency-sensitive processes that are set to access NVMM according to the output of

the latency control module. When page prefetching happens, NVSwap does not need to change

the page table entry of its corresponding process. Instead, the new page frame ID of the

prefetched pages in NVMM is recorded in the shadow mapping table. The incoming page-in

requests to access the prefetched page will be served using the new NVMM page frame. Because

our flushing and prefetching algorithm exploits applications’ semantics (e.g., latency bound) and

temporal locality, the pages in the same cluster in the regular-zone will likely be accessed

together.

16

 (a) Paging out; (b) Paging in.

Figure 4: Illustration of NVSwap paging scheme.

17

CHAPTER 4: LATENCY CONTROL MODULE

NVSwap supports storage QoS specified using Xth percentile page-in latency. These may

be set for individual processes or collectively for a group of related processes. According to our

observations, the paging latency is affected by the characteristics of both swap devices and

workloads, e.g., read/write latency, disk scheduling queue size, and I/O arrival rate. NVSwap

selects a host swap device for each latency-sensitive process according to its tail latency bound.

Then according to the latency requirements of the processes accessing the regular-zone, it

determines the disk scheduling queue size to control the queuing time. Finally, according to the

size of the queue, it adjusts the rate of memory page reclaiming to control the I/O arrival rate. In

this section, we describe the algorithm used in NVSwap to enforce the latency bounds.

Selecting the host swap device and the queue size: The default host swap device is the

regular-zone for processes. Then given the capacity of the regular-zone, NVSwap may select

NVMM as the host swap device for latency-sensitive processes. We adopt a control strategy to

estimate the capacity in terms of the scheduling queue size. The strategy is inspired by those

used in Storage Resource Pools [16] and PARDA [15].

Let’s assume that the paging latency is Lati for process Pi(1 ≤ i ≤ n). Then the latency

goal to achieve using the scheduling queue Lat goal is min(Lat1,..., Latn) . The queue size is

adjusted based on Lat goal and observed latency Lat observed using Equation 1, where S(t)

denotes the size of the scheduling queue at time t and γ is a smoothing parameter between 0 and

1. For measuring Lat observed, we instrumented the Linux kernel to collect the latency of paging

requests.

S(t + 1) = (1 − γ) ∗ S(t) + γ ∗ (S(t) ∗
Latgoal

Latobserved
) (1)

18

 Using the control strategy, if the observed latency is higher than Latgoal, NVSwap will

reduce the queue size. Otherwise, it will increase the queue size. If the queue size is too large, we

are at risk of losing data in the queue upon system failures. Consequently, we set the maximum

queue size to be no larger than Smax. If S(t + 1) > 𝑆max , S(t + 1) = 𝑆max. We set 𝑆𝑚𝑎𝑥 to be

1024 in the thesis. Furthermore, we also set the minimum queue size to be no smaller than 𝑆𝑚𝑖𝑛.

For example, 𝑆𝑚𝑖𝑛 can be set as the number of channels of SSDs to explore its I/O parallelism. If

the queue size S(t + 1) is smaller than S min using Equation 1, NVSwap considers that the

regular-zone is under-provisioned. It will serve the requests from the most latency-sensitive

processes using the persistent write buffer to reduce the load on the regular-zone until S(t + 1)

becomes no smaller than 𝑆𝑚𝑖𝑛. Algorithm 1 describes the algorithm for the assignment of host

swap devices and the determination of queue size.

 NVSwap reserves a fixed number of slots in the queue to serve other processes that are

not latency-sensitive for solving the starvation issue in request scheduling (#L12). Finally, it is

designed to reduce the write interference in the regular-zone. For this purpose, in the scheduling

queue, we set read requests to have higher priority than write requests to avoid write interference.

Latency-sensitive page reclaiming: Page replacement algorithm determines which

pages should be swapped out. And SWAP_CLUSTER_MAX determines how many pages should

be swapped out [14]. It is set to 32 in Linux [29], indicating that kswapd will swap out 32 pages

from the list of inactive pages. For latency enforcement, instead of using

SWAP_CLUSTER_MAX with a fixed value, NVSwap sets the maximum number of pages to

swap out according to the size of the scheduling queue S(t). As a result, the rate of page

scanning matches the capacity of the regular-zone given the latency bounds of processes.

19

Algorithm 1: Algorithm for the assignment of host swap devices and determination of queue size

Input:

𝐿𝑎𝑡𝑖: User-specified paging latency of process i, 1≤i≤n;

Set LS: Ordered set {ls1, ls2, . . . , ls𝑛} of elements from set {Lat1, Lat2, . . . , Lat𝑛};

index[i]: equals k if 𝑙𝑠𝑖 is 𝐿𝑎𝑡𝑘;

𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥: minimum and maximum size of the scheduling queue respectively;

𝑆reserve: the reserved slots in the scheduling queue;

Latobserved: observed latency of accessing the queue.

Output:

Set NS: the set of processes using the persistent paging

buffer;

Set RS: the set of processes using the regular-zone;

S(t + 1): the size of the scheduling queue.

1 NS = {}, RS = {1, . . . , n}.

2 for k in 1, ..., n do

// Set the latency goal using the minimum latency

3 𝐿𝑎𝑡𝑔𝑜𝑎𝑙 = 𝑙𝑠𝑘;

// Update the scheduling queue size using user-specified latency

4 S (t + 1) = (1 − γ) ∗ S (t) + γ ∗ (S (t) ∗
𝐿𝑎𝑡𝑔𝑜𝑎𝑙

𝐿𝑎𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
);

// Handle the case of under-provisioned regular-zone by serving latency-sensitive processes using persistent paging

buffer

5 if S (t + 1) < 𝑆𝑚𝑖𝑛 then

6 NS = NS ∪ index[k];

7 RS = RS − index[k];

8 else

9 break;

// Handle the case of extremely large queue size

10 if S (t + 1) > 𝑆𝑚𝑎𝑥 then

11 S (t + 1) = 𝑆𝑚𝑎𝑥;

// Add reserved slots for processes that are not latency-sensitive

12 𝑆 (𝑡 + 1) += 𝑆𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ;

Algorithm 1: Algorithm for the assignment of host swap devices and determination of queue size

Input:

𝐿𝑎𝑡𝑖: User-specified paging latency of process i, 1≤i≤n;

20

 The page replacement algorithm is modified to evict pages from latency-sensitive

processes in NS to the persistent paging buffer and evict pages from not in NS to the regular-

zone. Specifically, for selecting a page to reclaim, the algorithm scans pages from the end of the

inactive_list or until the list is empty. We use reverse mapping to map the page frame to its

associated process indexed by the process ID. If the process is in NS, NVSwap directs the paging

request to access the persistent write buffer. Otherwise, it directs the request to access the

regular-zone. The scanning process in a loop is completed until the number of reclaimed pages

from processes not in NS reaches S(t) or until the list is empty.

 Tail latency monitoring and enforcement: In the Linux kernel, we implemented a

monitor, which collects the rate of paging and the Xth percentile latency of paging processes for

any time window k (k>0). Let’s assume that the Xth latency specified by users is Tail 𝑖
𝑘 for

process 𝑃𝑖 (1 ≤ i ≤ n) at the time window k. If the observed tail latency is higher than Tail 𝑖
𝑘,

all the page-out requests from 𝑃𝑖 at the next time window k + 1 will be served using the

persistent write buffer. In addition, it will trigger prefetching the pages from Pi so that the page-

in requests issued at the time window k + 1 will be served using NVMM to reduce page-in

latency Tail 𝑖
𝑘+1.

21

CHAPTER 5: IMPLEMENTATION ISSUES

We discuss some of the implementation issues that we handled while building our

prototype of NVSwap in this section.

Admission control: A key question that arises in the implementation of NVSwap is how

many latency-sensitive paging processes can we serve on a hybrid swap space using NVMM?

We need to understand both the system capacity and the total I/O demand to answer the question.

We use the following equation to provide a general understanding of I/O demand.

DemandIOPS = ∑
1

𝐿𝑎𝑡𝑖

𝑛

𝑖=0

 (2)

 For the capacity of the regular-zone, we suggest to compute its throughput (IOPS) using

random I/O workloads. The request size should be equal to the page size in Linux, e.g., 4KB.The

measurement should be conducted with an increased number of I/O concurrency. This can be

done either during system installation or later by running micro-benchmarks, e.g., IOMETER

[19]. NVSwap only copies the pages to the persistent write buffer. For measuring the capacity of

the persistent write buffer, we develop a simple tool to measure the latency of copying pages

from DRAM to the buffer. Then we convert it to throughput. Using this approach, we obtained

the capacity of the regular-zone and persistent write buffer is 7,900 and 215,000 paging I/O

operations per second respectively in our experiments. With the capacity being set, NVSwap can

automatically determine whether to admit a process given the existing total I/O demand

DemandIOPS and the latency bound of the incoming process.

 Page reclaiming in NV-zone: Once a page frame of NVMM in the NV-zone is mapped

to process address space, it is possible to reclaim the page under high memory pressure in

NVMM. However, since we assume the capacity of NVMM is much larger than DRAM, the

22

page frames in the NV-zone is not subject to page reclaiming in the prototype of NVSwap. In its

implementation, we set kswapd to simply skip the pages in the NVMM zones during page

scanning for replacement. We wish to add the page reclaiming support of the NV-zone as the

future work. Currently, all pages in the NV-zone are freed only after the exit of the processes

which reference them. The freed pages are added back to the persistent write buffer for serving

future paging requests.

 Reducing writes to NVMM: Many existing approaches have been proposed to reduce

the number of writes to NVMM during paging, thus increasing its lifetime [13, 38]. In NVSwap,

we focus on the software design related to the enforcement of paging latency. However, we

believe our idea can also benefit from those schemes. For example, without violating the latency

requirement, NVSwap may swap out less-frequently accessed pages or read-only pages (e.g.,

those store program codes) to persistent write buffers.

 Setting the user-perceived latency bounds: In this thesis, we focus on enforcing the

page-in latency, which is directly correlated to user-perceived latency as shown in Figure 1. The

relationship between the paging latency and user-perceived application-level latency can be

captured either using classical mathematical models (e.g., linear regression modeling) or using

machine-learning approaches (e.g., supervised learning). We experimentally demonstrate the

relationship in Section 6.2.1. In a separate thesis, we will discuss our findings on these in detail.

23

CHAPTER 6: EVALUATION

In this section, we present results from a comprehensive evaluation of our prototype

implementation of NVSwap in the Linux kernel. Our experiments examine the following three

questions: (1) How effective is the latency control module for latency enforcement? (2) Does the

module provide performance isolation between paging processes? (3) How effective is the

approach of in-situ paging compared to others?

6.1 System Setup

We implemented NVSwap in the Linux kernel-3.16.74, which is a longterm state version.

We instrumented the Linux /proc file system to pass the value of Xth percentile latency bound

specified by users for the corresponding processes to the kernel. By default, processes are not

latency-sensitive. Other code modifications are in the virtual memory management system, for

example in the do_swap_page() function for in-situ paging, and in the shrink_page_list()

function to select reclaimed pages using the latency control module.

 For the experiments, we used a server that is configured with 6-core Intel Xeon CPU

X5670 2.93 GHz CPU, 32 GB DRAM, one 1TB hard disk (Seagate Barracuda 7200.12), and one

128 GB SSD (OCZ-VERTEX 4). The hard disk is used to host the operating system. The SSD is

used to host the regular-zone. In most of the experiments, we configured the computer so that the

kernel can only address 5 GB DRAM as the main memory. A reserved DRAM space is used to

emulate NVMM, which hosts the persistent write buffer and the NV-zone. The size of the

emulated NVMM is 10 GB by default.

 We model NVMM using DRAM on the server using an emulation-based approach. Our

emulator is similar to those used in other projects [18, 26, 33, 34]. Specifically, our NVMM

24

emulator introduces extra latency for NVMM write and read in routines that write to or read

from DRAM. The delay is determined using the worse-case read/write latency in published data

in [2, 21, 30, 32]. We set the read and write latency of NVMM to be 100 ns and 150 ns

respectively. We create delays using a software spin loop [26, 33] that uses the x86 RDTSP

instruction to read the processor timestamp counter and spins until the counter reaches the

intended delay. For sequential access, we also model NVMM bandwidth by inserting a proper

delay after the request sequence completes to limit the effective bandwidth. Specifically, the

bandwidth is limited to 10 GB/s for writes and 35 GB/s for reads in the experiments. A similar

approach was used in Mnemosyne [34].

 We used the YCSB [3] benchmark for benchmarking in our experiments. YCSB is a

framework developed for benchmarking cloud system performance. It provides a YCSB client

for workload generation and a variety of database backends. In the experiments, we use

memcached, an in-memory keyvalue database, as the default backend [7]. Unless otherwise

specified, we use Workload A with 50/50 read/update ratio by default. The database record size

is 1 KB. Its request distribution is zipfian [10]. Both of the total recordcount and operationcount

are set to 3 million. To demonstrate the practical effectiveness of NVSwap, we experimented

with other Workloads including B, C, and F. We also varied the I/O characteristics of workloads,

e.g., DB record size and operation types. We use both dedicated workloads and concurrent

workloads to generate paging requests. Please find the configurations of the corresponding

experiments in the following sections.

25

6.2 Latency Enforcement

 In this section, we present several experiments based on the YCSB benchmark that show

the effectiveness of NVSwap in enforcing the latency bounds with both single and concurrent

workloads.

6.2.1 Single Workloads

 We study the effectiveness of latency control using NVSwap with a single memcached

server accessing the swap space in the experiment. We compare NVSwap to the Linux swap

system without latency control. For NVSwap, we set the 99th percentile latency bound to be 200

us for page-in requests. Figure 5 shows the results. We have the following observations. First,

from Figure 5(a), we observe that the 99th percentile latency is reduced from 345 us to 192 us,

which is below the latency bound 200 us. The result shows the effectiveness of NVSwap in

enforcing latency bounds. It achieves the QoS goal by synergistically managing the disk

scheduling queue and NVMM allocation. For example, the memcached server wrote 418,577

pages to the persistent paging buffer. The minimum latency of page-in requests is reduced from

86 us to 0.08 us because serving the requests using NVMM has a smaller latency than using

SSDs. Second, fromFigure5(b), we observe that the 95th and 99th percentile latency of page-out

requests are reduced by 99.6% and 96.7% respectively. It shows that using the persistent paging

buffer can significantly alleviate the write interference on SSDs and reduce the congestion in the

disk scheduling queue while also exploring the locality of workloads. Third, the latency of

application-level requests was reduced by up to 74%. And the 99th percentile latency of DB read

and update is comparable to that of OS page-in requests.

26

6.2.2 Concurrent Homogeneous Workloads

In this experiment, we study the effectiveness of NVSwap with three concurrent

memcached servers accessing the workloads, which are named Workload A1, A2, and A3 for

the convenience of discussion. We set the 99th percentile latency bounds for the three workloads

as 1000 us, 500 us, and 300 us respectively. The results are shown in Figure 6. We can observe

that the 99th percentile latency of page-in requests is 975 us, 498 us, and 291 us for Workload A1,

A2, and A3 respectively. They all meet the latency requirements. In addition, the latency of DB

 (a) OS Page In (b) OS Page Out

 (c) DB Update Records (d) DB Read Records

 (a), (b), (c), and (d) show the minimum, 95th percentile, and

99th percentile latency of OS page-in, page-out, DB update, and DB read records respectively with

one instance of memcached. We set the 99th percentile latency bound of page-in requests to be 200 us

which is indicated by the green line.

Figure 5: Single Workloads experiment.

27

operations is also enforced to the same level of page-in latency bounds. For example, the 99th

percentile latency of DB update of Workload A3 is 334 us while its corresponding latency of

page-in is 291 us. Another observation is that there is a long tail in the latency distribution as

shown in Figure 6(a). This is because SSD writes incur long latency after the persistent paging

buffer becomes full.

 (a) CDF (b) OS Page In

 (c) DB Update Records (d) DB Read Records

 (a) shows the latency distribution with

three instances of memcached workloads. The 99th percentile latency bounds are set to 1000 us, 500

us, and 300 us for workload A1, A2, and A3 respectively. (b), (c), and (d) show the minimum, 95th

percentile, and 99th percentile latency of OS page-in, DB update, and DB read operations.

Figure 6: Concurrent Homogeneous Workloads experiment.

28

6.2.3 Concurrent Heterogeneous Workloads

Workload Read% Update% 99% Latency Bound

A 50% 50% 1000 us

B 95% 5% 500 us

C 100% 0% 300 us

 (a) CDF (b) OS Page In

 (c) DB Update Records (d) DB Read Records

 (a) shows the latency distribution with

three instances of memcached workloads. The 99th percentile latency bounds are set to 1000 us, 500

us, and 300 us for workload A, B, and C respectively. (b), (c), and (d) show the minimum, 95th

percentile, and 99th percentile latency of OS page-in, DB update, and DB read records. Workload C

does not have DB update operations.

Table 2：Configurations of heterogeneous Workload A, B, and C.

Figure 7: Concurrent Heterogeneous Workloads experiment 1.

29

In this section, we study the effectiveness of NVSwap using concurrent heterogeneous

workloads. In the first experiment we run three YCSB workloads A, B, and C. We show their

configurations in Table 2. The DB record size is 1 KB. The results are shown in Figure 7. We

observed that the 99th percentile latency of page-in requests is 737 us, 323 us, and 255 us for

Workload A, B, and C respectively. They are smaller than their corresponding latency bounds,

(a) OS Page In (b) DB Update Records

(c) DB Read Records (d) DB Read-modify-write Records

 (a), (b), (c), and (d) show the

minimum, 95th percentile, and 99th percentile latency of OS page-in, DB update, DB read, and DB

read-modify-write operations. Workload C does not have DB update operations. Only Workload F has

read-modify-write operations.

Figure 8: Concurrent Heterogeneous Workloads experiment 2.

30

indicating that the QoS requirements were met with the help of NVSwap. In addition, because of

the larger ratio of DB read operations in the workloads leading to a higher cache hit ratio, the

99th percentile latency of DB operations is on average 33% smaller than the respective latency

bound.

In the second experiment, we run Workload A, C, and F, whose configurations are shown

in Table 3. The DB record sizeis1KB.WeshowtheresultsinFigure8. We did not show the latency

CDF distribution because it is similar to the one observed in the first experiment. We have two

observations. The 99th percentile latency of page-in requests is 956 us, 410 us, and 299 us for

Workload A, C, and F respectively. They are smaller than their corresponding latency bounds.

Another interesting observation is that the 99th percentile latency of DB read and update

operations also meet latency requirements while that of read-modify-write operations is 370 us

which is 23% higher than the latency bound 300 us. The reason is that the read-modify-write

operation has two phases: read and write. As a result, serving the additional write request

increased the 99th percentile latency of the read-modify-write operations.

6. 3 Changing Latency Bounds Dynamically

In this experiment, we show how the latency bounds set dynamically at the process level

are respected. For this experiment, we ran two Workloads A and C sharing the swap space. Their

initial 99th percentile latency bounds are set to 100 us and 1000 us for Workload A and C

respectively. Then the latency bound of Workload C is changed from 1000 us to 800 us at t =

Workload Read% Update% Read-modify-
write%

99% Latency
Bound

A 50% 50% 0% 1000 us

C 100% 0% 0% 500 us

F 50% 0% 50% 300 us

 Table 3：Configurations of heterogeneous Workload A, C, and F.

31

200 second and from 800 us to 600 us at t = 450 second. Figure 9(a) shows the tail latency of DB

operations in each 1-second time window during the execution of the two workloads.

At the start, the tail latency of the workloads matches the initial latency bounds as

expected. Because of the latency bounds, the persistent paging buffer was used to serve

Workload A and the regular-zone was used to serve Workload C. After the latency bound was

reduced from 1000 us to 600 us for Workload C, more of its pages were directed to the persistent

paging buffer to meet its QoS requirements. For example, after the tail latency became 600 us at

t = 450 second, we see up to 90% of paging requests were served by the persistent paging buffer.

The latency of the other workload Workload A was not affected showing the strong performance

isolation between the two workloads. The overall paging performance is shown in Figure 9(b).

We also observe that the measured 99th percentile latency of Workload A is smaller than 100 us.

For Workload C, its 99th percentile latency is 748 us overall. This experiment shows the latency

bound can be dynamically set and enforced by NVSwap during the execution of processes.

Performance isolation is achieved between latency-sensitive paging processes.

(a) (b)

 The 99th percentile latency bound of Workload C is

changed from 1000 us to 800 us at t = 200 second and is changed from 800 us to 600 us at t = 450

second. (a) shows the measured tail latency of DB operations in each 1-second time window. (b)

shows the overall performance.

Figure 9: Dynamic latency bounds experiment.

32

6. 4 Impact of DB Record Size

 In this section, we study the impact of DB record size. We ran one instance of Workload

A and set the 99th percentile latency bound of VM page-in requests to be 200 us. We increased

the DB record size from 1 KB to 8 KB. From the results shown in Figure 10, we can observe that

the 99th percentile latency of page-in requests is below 200 us, indicating the effectiveness of

NVSwap for latency enforcement. Furthermore, we find the 99th percentile latency of DB read

and update operations are directly correlated to the record size. When the record size is not larger

than a page size, the DB read and update operations can be served with just one page-in request.

Therefore, the tail latency of page-in requests is comparable to that of DB operations at the

application level. When the record size is 8 KB, NVSwap needs to swap in two pages for serving

a single DB read/update operation. This may almost double the 99th percentile latency from 243

us to 455 us for DB reads and from 231 to 325 us for DB updates.

 The 99th percentile latency of page-in requests, DB read and

update operations as we increase the DB record size from 1 KB to 8 KB. We set the 99th percentile

latency bound of page-in requests to be 200 us which is indicated by the green line.

Figure 10: DB Record Size experiment.

33

6. 5 Impact of NVMM Size

NVSwap uses NVMM to host both the persistent paging buffer and NV-zone. In this

experiment, we show the impact of NVMM size on the tail latency of requests. Specifically, we

run one instance of Workload A and use the default size of the Linux scheduling queue (128).

We deactivated the function which adjusts the queue size in the latency control module. Then we

measure the 99th percentile latency as the NVMM size is increased from 2.5 GB to 3.5 GB and

4.5 GB. The results are shown in Figure 11. The 99th percentile latency of page-in requests is

very sensitive to the NVMM size. For example, the latency is reduced by 70% as we increase the

NVMM size from 2.5 GB to 4.5 GB. At the application level, the tail latency of DB read and

update is reduced by 45% and 42% respectively. This is because of the software overhead of

operations (e.g., slab management) in memcached does not change, leading to a smaller

improvement ratio overall as the NVMM size is increased.

 The 99th percentile latency of page-in requests, DB read and

update operations as we increase the NVMM size from 2.5 GB to 4.5 GB.

Figure 11: NVMM Size experiment.

34

6. 6 Comparison with Other Systems

 We compared NVSwap with other state-of-the-art systems that support swapping using

NVMM. Among them,we choose to implement Dr. swap as it is a page-level solution and

provides direct read from NVMM, which is similar to the in-situ paging used in NVSwap.

Because Dr. swap was not designed to provide latency enforcement, we only study the

performance of NVSwap without using the latency control module. In the experiment, both Dr.

swap and NVSwap only access NVMM for paging. No regular-zone is configured. We ran two

instances of Workload A concurrently accessing NVMM. The 99th percentile latency of DB

operations is shown in Figure 12. Since the kernel-level tracing is disabled, we did not show the

latency of page-in requests for fairness of the study. The results show that the tail latency of

NVSwap is 0.8% higher than that of Dr.swap. The reason is that NVSwap needs to copy the page

from the persistent write buffer to the NV-zone, which is then mapped to process address spaces.

In contrast, Dr. swap directly mapped it without the additional latency of memory copy.

 Figure 12: Comparison of latency by NVSwap versus Dr. swap.

35

6.7 Experiments with Real NVMM

To further prove the effectiveness of latency control using NVSwap, we also did the

same experiments on a server with real NVMM. The Optane DIMM Server is configured with 8-

core Intel Xeon Scalable Silver 4208 2.1 GHz CPU, 32GB DRAM, 2 Intel Optane DC Persistent

Memory 128 GB Module and 240 GB SSD (Samsung PM883 Series 2.5" SATA 6Gb/s). To

(a) OS Page In (b) OS Page Out

(a) DB Update (b) DB Read

 (a), (b), (c), and (d) show the minimum, 95th

percentile, and 99th percentile latency of OS page-in, page-out, DB update, and DB read records

respectively with one instance of memcached. We set the 99th percentile latency bound of page-in requests

to be 200 us which is indicated by the green line.

Figure 13: Single Workload experiment with Real NVMM.

36

guarantee the modified kernel to work well on the Optane DIMM Server, we implemented

NVSwap in the Linux kernel-4.4.241 which offers support for NVMM. To avoid extra

unexpected issues, we tried to keep consistency of the experiment configurations. We configured

the Optane DIMM Server so that the kernel can only address 5 GB main memory, and we

reserved 10 GB NVMM to host the persistent write buffer and the NV-zone.

Single Workload Experiment with real NVMM. In the experiment, we set the 99th

percentile latency bound to be 200 us for page-in requests. Figure 13 shows the results. From

Figure 13(a), we observe that the 99th percentile latency is reduced from 527.2 us to 143.2 us,

which is below the latency bound 200 us. The result indicates the effectiveness of NVSwap in

enforcing latency bounds in a real NVMM environment. Besides, the minimum latency of page-

in requests is reduced from 27.1 us to 0.211 us. Moreover, Figure 13(b) shows that the 95th and

99th percentile latency of page-out requests are reduced by 98.6% and 83.4% respectively. All

the results accord with the experiments results and the analysis in the emulation environment.

Concurrent Homogeneous Workloads. In this experiment, just like the concurrent

homogeneous workloads experiment that we did in emulated environment, we run three YCSB

workloads and use Workload A in YCSB for all the three workloads. We set the 99th percentile

latency bounds for the three workloads as 1000 us, 500 us, and 300 us respectively. The results

are shown in Figure 14.

Concurrent Heterogeneous Workloads. In this experiment, we also reproduced the

Concurrent Heterogeneous Workloads experiment in the new platform. We run three YCSB

workloads A, B, and C and set the 99th percentile latency bounds for the three workloads as 1000

us, 500 us, and 300 us respectively. The results are shown in Figure 15.

37

From the results of these experiments, we can find that although the data varies because

of the difference of the hardware environments, the results of experiments with NVMM and

experiments with emulated NVMM are similar and the latency bound is met in all experiments if

specified. It proves the effectiveness of latency control using NVSwap working with real

NVMM.

 (a) OS Page In (b) DB Update (b) DB Read

 The 99th percentile

latency bounds are set to 1000 us, 500 us, and 300 us for workload A1, A2, and A3 respectively.

(a), (b), and (c) show the minimum, 95th percentile, and 99th percentile latency of OS page-in, DB

update, and DB read operations.

 (a) OS Page In (b) DB Update (b) DB Read

 The 99th percentile

latency bounds are set to 1000 us, 500 us, and 300 us for workload A, B, and C respectively. (a),

(b), and (c) show the minimum, 95th percentile, and 99th percentile latency of OS page-in, DB

update, and DB read records. Workload C does not have DB update operations.

Figure 14: Concurrent Homogeneous Workloads experiment with real NVMM.

Figure 15: Concurrent Heterogeneous Workloads experiment with real NVMM.

38

CHAPTER 7: CONCLUSION

In this thesis, we studied the problem of latency-aware paging in the virtual memory of

operating systems. We propose a novel paging scheme called NVSwap which provides a cost-

effective and hybrid swap space using both NVMM and SSD. It allows the setting of Xth

percentile page-in latency bound for a single process or a group of processes. NVSwap controls

the host swap device, the memory page reclaim rate, the scheduling queue size in DRAM, and

the allocation of persistent paging buffer in NVMM for paging processes. We implemented

NVSwap in Linux kernel-3.16.74. Our evaluation with a diverse set of YCSB workloads shows

that NVSwap can enforce the tail latency while providing strong performance isolation for

latency-sensitive processes. As future work, we plan to design and implement page reclaiming in

NV-zone and automate the setting of page-in latency bounds according to user-perceived

application-level latency bounds

39

REFERENCES

[1] 2011. Tunable Watermark. https://lwn.net/Articles/422291/.

[2] 2018. Intel Optane DIMMs. https://blocksandfiles.com/2018/12/13/intel-confirms-optane-

dimm-and-ssd-speed/a.

[3] 2018. Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/YCSB/wiki.

[4] 2019. Apache Cassandra Database. http://cassandra.apache.org/.

[5] 2019. Apache HBase Database. https://hbase.apache.org.

[6] 2019. High Performance Computing using Linux. http://events.

linuxfoundation.org/sites/events/files/slides/LinuxCon.

[7] 2019. A High-performance, Distributed Memory Object Caching Sys-tem.

https://memcached.org/.

[8] 2019. Intel Announces Cascade Lake: Up to 56 Cores and Optane Persistent Memory

DIMMs. https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-

3.html.

[9] Amro Awad, Sergey Blagodurov, and Yan Solihin. 2016. Write-Aware Management of

NVM-based Memory Extensions. In Proceedings of the 2016 International Conference on

Supercomputing (ICS ’16). ACM, New York, NY, USA, Article 9, 12 pages.

https://doi.org/10.1145/2925426. 2926284

[10] Paul E. Black. 2019. Zipfian Distribution. https://xlinux.nist.gov/dads/HTML/zipfian.html.

[11] Daniel Bovet and Marco Cesati. 2005. Understanding The Linux Kernel. Oreilly &

Associates Inc.

40

[12] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understanding Intrinsic

Characteristics and System Implications of Flash Memory Based Solid State Drives. In

Proceedings of the Eleventh International Joint Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS ’09). ACM, New York, NY, USA, 181–192.

https://doi.org/10.1145/1555349.1555371

[13] X. Chen, E. H. . Sha, W. Jiang, Q. Zhuge, Junxi Chen, Jiejie Qin, and Yuansong Zeng.

2016. The design of an efficient swap mechanism for hybrid DRAM-NVM systems. In

2016 International Conference on Embedded Software (EMSOFT). 1–10.

https://doi.org/10.1145/2968478. 2968497

[14] Mel Gorman. 2004. Understanding the Linux Virtual Memory Manager.

[15] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. 2009. PARDA: Proportional

Allocation of Resources for Distributed Storage Access. In 7th USENIX Conference on File

and Storage Technologies (FAST 09). USENIX Association, San Francisco, CA.

https://www.usenix.org/conference/fast-09/parda-proportional-allocation-resources-

distributed-storage-access

[16] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Peter Varman. 2012. Demand

Based Hierarchical QoS Using Storage Resource Pools. In Presented as part of the 2012

USENIX Annual Technical Conference(USENIXATC12).USENIX,Boston,MA,1–13.

https://www. usenix.org/conference/atc12/technical-sessions/presentation/gulati

[17] Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu, Rui Zhang, and Weimin Zheng. 2016.

MARS : Mobile Application Relaunching Speed-Up Through Flash-Aware Page Swapping.

IEEE Trans. Comput. 65, 3 (March 2016), 916–928.

https://doi.org/10.1109/TC.2015.2428692

41

[18] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware Logging in

Transaction Systems. Proc. VLDB Endow. 8, 4 (Dec. 2014).

[19] iometer 1998. The IOMETER benchmark. http://www.iometer.org.

[20] Ju-Young Jung and Sangyeun Cho. 2013. Memorage: Emerging Persistent RAM Based

Malleable Main Memory and Storage Architecture. In Proceedings of the 27th International

ACM Conference on International Conference on Supercomputing (ICS ’13). ACM, New

York, NY, USA, 115–126. https://doi.org/10.1145/2464996.2465005

[21] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting Phase

Change Memory As a Scalable Dram Alternative. In Proceedings of the 36th Annual

International Symposiumon Computer Architecture (ISCA ’09).

[22] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. 2016. PSLO: Enforcing the Xth Percentile

Latency and Throughput SLOs for Consolidated VM Storage. In Proceedings of the

Eleventh European Conference on Computer Systems (EuroSys ’16). ACM, New York, NY,

USA, Article 28, 14 pages. https://doi.org/10.1145/2901318.2901330

[23] K. Liu, X. Zhang, K. Davis, and S. Jiang. 2013. Synergistic coupling of SSD and hard disk

for QoS-aware virtual memory. In 2013 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). 24–33.

https://doi.org/10.1109/ISPASS.2013.6557143

[24] 3D XPoint Memory. 2019. https://www.intel.com/content/www/us/en/architecture-and-

technology/intel-optane-technology.html.

[25] T. Newhall and D. Woos. 2011. Incorporating Network RAM and Flash into Fast Backing

Store for Clusters. In 2011 IEEE International Conference on Cluster Computing. 121–129.

https://doi.org/10.1109/CLUSTER.2011.22

42

[26] Jiaxin Ou, Jiwu Shu, and Youyou Lu. 2016. A High Performance File System for Non-

volatile Main Memory. In Proceedings of the Eleventh European Conference on Computer

Systems (EuroSys ’16).

[27] Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler. In Proceedings

of the 10th USENIX Conference on File and Storage Technologies (FAST’12). USENIX

Association, Berkeley, CA, USA, 13–13.

http://dl.acm.org/citation.cfm?id=2208461.2208474

[28] Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite. 2017. Rein:

Taming Tail Latency in Key-Value Stores via Multiget Scheduling. In Proceedings of the

Twelfth European Conference on Computer Systems (EuroSys ’17). ACM, New York, NY,

USA, 95–110. https://doi.org/10.1145/3064176.3064209

[29] Mohit Saxena and Michael M. Swift. 2010. FlashVM: Virtual Memory Management on

Flash. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference (USENIXATC’10). USENIX Association, Berkeley, CA, USA, 14–14.

http://dl.acm.org/citation. cfm?id=1855840.1855854

[30] Suman Nath Shimin Chen, Phillip B. Gibbons. 2011. Rethinking Database Algorithms for

Phase Change Memory. In CIDR’11: 5th Biennial Conference on Innovative Data Systems

Research.

[31] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. 2012. Operating System Concepts

(9th ed.). Wiley Publishing.

[32] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell.

2011. Consistent and Durable Data Structures for Non-volatile Byte-addressable Memory.

In Proceedings of the 9th USENIX Conference on File and Stroage Technologies (FAST’11).

43

[33] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan Varadarajan,

Prashant Saxena, and Michael M. Swift. 2014. Aerie: Flexible File-system Interfaces to

Storage-class Memory. In Proceedings of the Ninth European Conference on Computer

Systems (EuroSys ’14).

[34] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight

Persistent Memory. SIGPLAN Not. 47, 4 (March 2011), 91–104.

[35] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Stoica. 2012.

Cake: Enabling High-level SLOs on Shared Storage Systems. In Proceedings of the Third

ACM Symposium on Cloud Computing (SoCC ’12). ACM, New York, NY, USA, Article 14,

14 pages. https://doi.org/10.1145/2391229.2391243

[36] J. Zhang, A. Riska, A. Sivasubramaniam, Q. Wang, and E. Riedel. 2005. Storage

performance virtualization via throughput and latency control. In 13th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems. 135–142. https://doi.org/10.1109/MASCOTS.2005.70

[37] K.Zhong, D.Liu, L.Liang, X.Zhu, L.Long, Y.Wang, and E.H.Sha. 2016. Energy-Efficient

In-Memory Paging for Smartphones. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 35, 10 (Oct 2016), 1577–1590.

https://doi.org/10.1109/TCAD.2015.2512904

[38] K. Zhong, D. Liu, L. Long, J. Ren, Y. Li, and E. H. Sha. 2017. Building NVRAM-Aware

Swapping Through Code Migration in Mobile Devices. IEEE Transactions on Parallel and

Distributed Systems 28, 11 (Nov 2017), 3089–3099.

https://doi.org/10.1109/TPDS.2017.2713780

44

[39] G. Zhu, K. Lu, X. Wang, Y. Zhang, P. Zhang, and S. Mittal. 2017. SwapX: An NVM-Based

Hierarchical Swapping Framework. IEEE Access 5 (2017), 16383–16392.

https://doi.org/10.1109/ACCESS.2017.2737634

[40] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.

Ganger. 2014. PriorityMeister: Tail Latency QoS for Shared Networked Storage. In

Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14). ACM, New York,

NY, USA, Article 29, 14 pages. https://doi.org/10.1145/2670979.2671008

[41] X. Zhu, D. Liu, K. Zhong, Jinting Ren, and T. Li. 2017. SmartSwap: High-performance and

user experience friendly swapping in mobile systems. In 2017 54th ACM/EDAC/IEEE

Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/3061639.3062317

