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Page relocation (paging) from DRAM to swap devices is an important task of a virtual 

memory system in operating systems. Existing Linux paging mechanisms have two main 

deficiencies: (1) they may incur a high I/O latency due to write interference on solid-state disks 

and aggressive memory page reclaiming rate under high memory pressure and (2) they do not 

provide predictable latency bound for latency-sensitive applications because they cannot control 

the allocation of system resources among concurrent processes sharing swap devices.  

In this thesis, we present the design and implementation of a latency-aware paging 

mechanism called NVSwap. It supports a hybrid swap space using both regular secondary 

storage devices (e.g., solid-state disks) and non-volatile main memory (NVMM). The design is 

more cost-effective than using only NVMM as swap spaces. Furthermore, NVSwap uses NVMM 

as a persistent paging buffer to serve the page-out requests and hide the latency of paging 

between the regular swap device and DRAM. It supports in-situ paging for pages in the 

persistent paging buffer avoiding the slow I/O path. Finally, NVSwap allows users to specify 

latency bounds for individual processes or a group of related processes and enforces the bounds 

by dynamically controlling the resource allocation of NVMM and page reclaiming rate in 

memory among scheduling units. We have implemented a prototype of NVSwap in the Linux 
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kernel-3.16.74. Our results demonstrate that NVSwap reduces paging latency by up to 99% and 

provides performance guarantee and isolation among concurrent applications sharing swap 

devices. 

Keywords Paging, Virtual Memory, Storage QoS, Non-Volatile Main Memory 
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CHAPTER 1: INTRODUCTION 

 In the Linux operating system, paging is designed to extend the main memory capacity 

using the space of secondary storage devices [31]. The existing paging policy in Linux is 

designed to improve the overall I/O throughput of concurrent paging workloads. For example, 

upon paging out, memory pages are written out to swap space in the unit of page clusters [29] to 

exploit spatial locality. However, the tail latency (i.e., Xth percentile latency) of paging for a 

particular application can be unprohibitedly high because it is affected by many factors such as 

queuing time in kernels and I/O interference of applications concurrently accessing the swap 

devices. In addition, the latency is unpredictable because the existing paging systems cannot 

enforce the latency bound of paging for an application, which may result in poor swap 

experience of users of latency-sensitive applications, e.g., in-memory databases and mobile 

applications. 

 In this thesis, we present a new paging system called NVSwap using Non-Volatile Main 

Memory (NVMM) (e.g., Intel Optane DIMMs [2, 24]) to extend memory capacity for serving 

latency-sensitive memory-demanding applications. Supporting paging to NVMM in operating 

systems hides the complexity of programming and enables programmers to directly run memory-

demanding legacy code without the need of understanding NVMM memory models and its 

programming interface. NVSwap has the following desirable properties to hide paging latency 

and improve users’ experience. 

A cost-effective hybrid swap space: For paging, NVSwap employs two swap zones 

including a swap zone in NVMM on the memory bus and a regular swap zone in solid-state disks 

(SSDs) on the I/O bus. Latency-sensitive applications can page to both of the zones according to 

their latency requirements. Other applications can page to the regular zone for a low cost. 
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NVSwap may swap in pages in NVMM in an in-situ manner (in-situ paging) without extra 

memory copy, which will further reduce the latency of paging. 

Latency-bound enforcement: NVSwap allows users to specify QoS requirements in the 

form of tail latency bounds of page-in requests for any latency-sensitive processes. These may be 

set for individual processes or collectively for a group of related processes. NVSwap enforces 

the latency bound for page-in requests by controlling the space allocation of NVMM among 

scheduling units (e.g., processes). According to the latency requirements, it also dynamically 

selects the host swap device from the regular swap zone and the NVMM zone and adjusts the 

rate of memory page reclaiming to reduce the queuing time of paging requests in the disk 

scheduling queue. 

Persistent paging buffer: We implemented a persistent paging buffer in NVMM for 

latency enforcement and reduce I/O interference in the regular swap zone. It organizes its space 

into multiple latency groups, each of which consists of pages from processes having the same 

latency bound. The pages in the buffer are destaged in the unit of latency groups and in 

descending order of their respective latency bounds. In this way, pages from latency-sensitive 

processes will have a higher chance of staying in NVMM. It exploits the temporal locality by 

storing the pages in the same group in the order of eviction from DRAM. By serving the page-

out requests using the persistent paging buffers and providing higher priority to read requests in 

the disk scheduling queue, NVSwap significantly reduces write interference on SSDs. Finally, 

subsequent page-in requests that hit any pages in the buffer will be directly copied to the swap 

zone in NVMM and then mapped to process address spaces. With the help of in-situ paging, the 

page can be immediately used by the process without triggering the overhead of block-level I/O 

processing. 
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 We have implemented a prototype of NVSwap in the Linux kernel-3.16.74. Our 

extensive evaluation with the in-memory database and YCSB benchmark show that NVSwap can 

reduce the paging latency by up to 99% compared to those using only SSDs for swapping. 

Furthermore, it dynamically adapts the allocation of system resources for enforcing the Xth 

percentile latency for concurrent paging workloads and provides the desired performance 

isolation among them.  
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CHAPTER 2: MOTIVATION AND RELATED WORK 

 In this section, we first motivate the need for latency-aware paging using motivation 

examples. We then review the literature on paging mechanisms and the limitations of existing 

paging techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  (a) DB Update Records    (b) DB Read Records 

     

  (c) OS Page in     (d) OS Page out 

                                         (a) and (b) show the minimum, 95th percentile, and 99th percentile latency of 

DB update and read operations of with one instance of memcached (Dedicated) and two concurrent 

instances (Concurrent). (c) and (d) show the minimum, 95th percentile, and 99th percentile latency of 

page-out and page-in operations during the execution of memcached.  

 

 

Figure 1: Motivation. 
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2.1    Needs for Latency-Aware Paging  

 

 

 

 

 

 

 

 

 

 

 

 

 

Paging in virtual memory is a core component of the Linux operating system. Figure 2 

illustrates the existing Linux paging mechanism. Paging out happens when the swap out daemon 

kswapd in the kernel is wakened up under memory pressure or when direct page reclaiming is 

required under an even higher memory pressure [1, 11]. To swap out a page in DRAM, the 

kernel needs to generate a block-level I/O request and adds it to a disk scheduling queue 

associated with the device for dispatch. Then the page is written to the swap space hosted on 

block storage devices, e.g., SSDs. When a page fault is triggered by STORE or LOAD CPU 

instructions, the kernel needs to swap in the page to be accessed back to DRAM. Paging to 

NVMM hides the complexity of the new memory models and enables programmers to smoothly 

adapt their applications to the new hardware.  

 The current Linux paging mechanism is designed to improve the overall I/O bandwidth 

of slow swap devices [29] by exploiting spatial locality. For paging out, the kernel typically 

 

 

                                                                                        Page(1) is paged out from DRAM to the swap 

space and Page(2) is paged in from the swap space to DRAM. Both of the page-out and page-in 

requests are issued from the disk scheduling queue. 

Figure 2: Illustration of the Linux paging mechanism. 
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selects 32 pages from the list of inactive pages and sequentially writes them in a page cluster on 

swap devices. The size of a cluster ranges from 8 KB to 4096 KB. For paging in, the kernel 

prefetches multiple pages in a cluster benefiting from high sequential read bandwidth of storage 

devices.  

 However, these design options may cause a long paging latency at both kernel and 

application levels. To illustrate the impact of paging on the latency of major operations of 

applications. We run the memcached in-memory database server provided in the YCSB 

benchmark [3]. The server daemons access an SSD-based swap device. The size of the main 

memory and swap space are set to 5 GB and 10 GB respectively. We run Workload A with 50/50 

read/update ratio,1KB record size, and zipfian [10] request distribution. The detailed 

hardware configuration can be found in Section 6. In Figure 1, we compare the latency of major 

database operations (e.g., update and read) with one memcached server using the swap space 

(Dedicated) to that with two memcached servers concurrently accessing the space (Concurrent). 

We have the following observations from the results.  

 1. During paging, both of the DB read and update operations may have a long tail 

latency. With dedicated accesses to the swap space, the 99th percentile latency of DB read 

operations (840 us as shown in Figure 1(b)) is 25X longer than its minimum latency (34 us). 

With concurrent accesses to the swap space, the 99th percentile latency of read operations is 

increased to 2143 us which is 61X higher than its minimum latency (35 us) while the minimum 

latency is increased by only 3%. A similar pattern is observed for DB updates. This is because 

when the page to read or update is in the swap space the kernel needs to synchronously read the 

page from the SSD-based swap space. While reading the page, the SSD also needs to serve page-

out requests due to memory reclaim under high memory pressure. When page-in requests and 
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page-out requests are mixed and concurrently access the SSD, the read (page-in) requests might 

be blocked by write (page-out) requests, causing a long tail latency [12, 27] at the application 

level.  

 2. During paging, page-out requests have an extremely long tail latency. We observe 

that the 99th percentile latency of page-out requests is 260495 us, which is 2503X higher than its 

corresponding minimum latency (Figure 1(c)) with concurrent access to the swap space. This is 

because under a high memory pressure the kernel executed memory pre-cleaning which swaps 

out pages from the inactive page list before new pages are requested [29]. The page reclaiming. 

rate becomes more aggressive as the ratio of free page frames is decreased. Even though paging 

out is asynchronously executed, we observed that the page-out I/O requests issued by page 

precleaning may saturate the disk scheduling queue, leading to a long queuing time and long tail 

latency. 

 3. The Linux paging system is not able to enforce latency bounds. We observed the 

huge variation between minimum latency and its corresponding 99th percentile latency for page-

in and page-out requests in Figure 1. 

4. The OS page-in latency has a critical impact on the latency of DB operations at 

the application level. Our experimental results show that the OS page-in latency is directly 

correlated to users’ perceived latency because the latency of serving page-in requests is in the 

critical path of major page faults while page-out requests can be asynchronously served in the 

kernel. As a result, the 99th percentile latency of page-in requests is comparable to those of DB 

reads and updates. In contrast, the tail latency of page-out requests can be 122X higher than the 

latency of the DB operations.  
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In summary, while the paging systems have been well implemented to provide high I/O 

bandwidth during paging, they are not latency-sensitive. The current deficiencies in its design 

prevent users who are sensitive to latency from using the swap space and prevent paging being 

used with in-memory applications and mobile devices [37] requiring predictable and low latency 

bounds for improving users’ experience or used with high-performance computing applications 

[6] whose performance is sensitive to OS noises. 

2.2    Previous Work 

We classified existing work on paging in virtual memory management into three 

categories, as discussed below.  

Paging Approaches for Flash: FlashVM was designed to improve paging performance 

with aggressive pre-cleaning, stride prefetching, and reduce the number of page writes to flash-

based swap devices with page sampling and sharing [29]. In comparison, NVSwap is designed 

for enforcing paging latency bounds with the help of NVMM. Because of the good random 

access performance of NVMM, prefetching is no longer needed for the swap zone in NVMM. 

Instead, it uses in-situ paging and persistent write buffers to reduce paging latency. Hybrid Swap 

allocates SSD space according to users’ specified bound on the program stall time due to page 

faults as a percentage of the program’s total run time [23]. Most recently, MARS was designed 

to speed up the relaunching of mobile applications via flash-aware paging [17]. It reserves 

memory space and dynamically adjusts the value of memory watermarks to avoid a mix of page-

out and page-in requests during the relaunching, thus alleviating the impact of write interference. 

In addition, it separates the swap space allocated to each application to improve the spatial 

locality of page-in workloads. Different from MARS, NVSwap uses a dedicated persistent 

paging buffer in NVMM to separate page-out from page-in requests to reduce write interference.  
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Newhall et al. designed a swap space using distributed DRAM and Flash [25].  

 

 

 

 

 

 

 

 Paging Approaches for NVMM: NVMM is used for paging because it has low latency 

and vendor-guaranteed lifespan [8, 24] of 5 years at a minimum. Table 1 provides a summary of 

existing paging approaches for NVMM and their comparison with NVSwap. Memorage manages 

NVMM as storage space when storage capacity is low and manages it as the main memory 

extension when the availability of memory pages is low [20]. By dynamically changing the 

allocation of NVMM to main memory, it uses existing virtual memory managers to improve the 

performance of in-memory applications. Dr. Swap uses a direct read to reduce the overhead of 

memory copy from NVMM to DRAM for paging in [37]. Refinery swap and nCode were 

designed to reduce the number of page-out and page-in requests by swapping out less-frequently 

accessed pages [13] or read-only code page to NVMM [38]. Both SmartSwap [41] and Mars [17] 

reduce the user-perceived latency of application relaunching in mobile devices. They typically 

swap in the whole process address space of the application for relaunching. Other paging 

approaches have been designed to reduce paging overhead in virtual machines using distributed 

NVMM [39]. Awad et al. comprehensively studied the impact of the existing techniques (e.g., 

Technique 
In-situ Paging-

in 

Write 

Awareness 

Latency 

Enforcement 

Swap Device 

Type 
Swapping Unit 

Linux [31] No No No No Disk Page 

FlashVM [29] No Yes No Flash Page 

SmartSwap 

[41] 
No No Some Flash Application 

Mars [17] No Some No Flash Application 

Memorage 

[20] 
Yes No No NVMM Page/block 

Dr. swap [37] Yes No No NVMM Page 

Refinery swap 

[13] 
Some Yes No NVMM Page 

NVSwap Yes Supported Yes NVMM+Flash Page 

 
Table 1：Comparison of NVSwap with existing major paging schemes. 
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page prefetching, and page replacement algorithms) on the performance of NVMM-based paging 

systems [9].  

 

 

 

 

 

 

 

 

  

Latency Enforcement in Storage Systems: For non-distributed storage systems, 

SARC+Avatar is a two-level scheduler that uses the earliest deadline first scheduling policy to 

achieve latency control [36]. In the Xen hypervisor, PSLO was proposed to enforce tail latency 

for consolidated VM storage by controlling the level of I/O concurrency and arrival rate for each 

VM issue queue [22]. Tiny-tail flash was designed to eliminate the tail latency induced by 

garbage collection in solid-state disks. Because the Linux paging system does not maintain an 

individual issue queue for each process, NVSwap cannot directly use the approaches like 

AVATAR or PSLO. Instead, it uses user-defined latency bound to control the disk scheduling 

queue size and process paging location. It also needs to adjust page pre-cleaning rate and the 

arrival rate of page-out requests of processes competing for the slots of the disk scheduling 

queue and NVMM space.  

 

 Figure 3: NVSwap system architecture. 
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Other studies focus on the latency enforcement in distributed storage systems in which 

congestion may happen at either the network or storage layer. For example, Cake [35] is a two-

level scheduling framework designed for tail latency enforcement in HBase [5]. Its first level 

scheduler uses a single FIFO queue and needs to split large requests into small requests to reduce 

head-of-line blocking in the queue caused by serving large requests and determines the number 

of outstanding requests. Its second level scheduler issues I/O requests to storage and reduces 

resource underutilization by controlling the queue occupancy. Priority Meister further provides 

scheduling for multiple latency-sensitive workloads while Cake can only handle one such 

workload [40]. It limits the network rate to manage networking-induced tail latency. Most 

recently, Rein [28] was designed to reduce tail latency in distributed key-value stores, e.g., 

assandra [4]. It aims to control tail latency in a distributed storage system using the client-server 

model. We do not need to consider networking latency in NVSwap.  
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CHAPTER 3: NVSWAP DESIGN 

 The objective of NVSwap is to enforce latency bounds of paging for latency-sensitive 

processes using NVMM. We focus on page-in latency in the thesis because it has a direct 

impact on users’ perceived latency as shown in Section 2. In this section, we discuss the key 

concepts and overall design of NVSwap. Figure 3 shows the system architecture with multiple 

processes accessing a shared swap space. From the perspective of software architecture, 

NVSwap has similar basic functionalities as Linux including paging to/from disks, page 

prefetching to hide disk access latency, page pre-cleaning to eagerly swapping out dirty pages 

before new pages are needed using kswapd , and other functionalities (e.g., swap space 

management). Besides these, NVSwap supports paging to/from NVMM. It has a new latency 

control module, which is responsible for determining memory page reclaim rate and the dynamic 

allocation of NVMM for each paging process according to its user-specified tail latency bound. 

Since page-out requests are served asynchronously, we only provide latency control for page-in 

requests. We describe the algorithm used for latency control and page reclaim in Section 4.  

 The swap space of NVSwap has four main components: a regular-zone, an NV-zone, a 

persistent paging buffer. and a shadow mapping table. The regular-zone is hosted on block 

storage devices, e.g., solid-state disks. It is used to serve paging requests dispatched from a disk 

scheduling queue as what the Linux paging scheme does. The NV-zone and persistent paging 

buffer are hosted in NVMM. They are used to serve paging requests to enforce the latency 

bounds as specified by users. The NV-zone consists of NVMM page frames that can be directly 

accessed in process address spaces. The persistent paging buffer stores swapped-out pages from 

latency-sensitive processes and prefetched pages from the regular-zone. When the buffer is full, 

NVSwap needs to asynchronously flush pages to the regular-zone in background. When page 
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flushing happens, NVSwap does not need to change the page table entry of its corresponding 

process. Instead, the new disk location of the flushed pages in the regular-zone is recorded in the 

shadow mapping table. Then the incoming page-in requests to access the flushed pages 

will be served using their new disk addresses looked up from the shadow mapping table.  

 Paging-out: According to the output of the latency control module, the page-out requests 

are directed to access either the persistent paging buffer or the regular-zone. In Figure 4(a), we 

illustrate three page-out paths of NVSwap. (1) For Page(1) , it is paged out to the persistent 

paging buffer first and then asynchronously flushed to the regular-zone when the buffer is full. 

Because the persistent paging buffer is on the memory bus, NVSwap simply copies the page to 

be swapped out in DRAM to a new page frame in NVMM. Since the persistent paging buffer is 

non-volatile, a page-out request can be considered complete once it is sent to the main memory 

extension. We schedule writing pages from NVMM to the regular-zone when the scheduling 

queue is not saturated. (2) For Page(2) , it is simply paged out to NVMM. After the termination 

of the process referencing Page(2), the page frame is freed for future usage by other processes. 

(3) Page(3) is paged out to the regular-zone. The page-out request should be dispatched by the 

scheduling queue in DRAM. The size of the scheduling queue is measured in queue slots. It has 

a huge impact on the tail latency of paging requests as shown in Figure 1. Therefore, the latency 

control module periodically adjusts the queue size based on the latency requirements of 

processes. 

 Paging-in: When a STORE/LOAD instruction triggers a page fault to access a page in 

the swap space, NVSwap has two paths for serving the page-in request. We illustrate them in 

Figure 4(b). (1) If the page (e.g., Page(3) ) is stored in the regular-zone, NVSwap first issues a 

read request to read the page from the block device to a new DRAM page frame allocated for 
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serving the page fault. Then by updating the page table entry (PTE) of the process which 

references the page, it sets up the PTE mapping from the virtual address to the physical address 

in DRAM. Finally, the process can write/read the data to/from the page. This page-in path is the 

same as Linux. (2) If the page (e.g., Page(2) ) is stored in the persistent paging buffer, NVSwap 

allocates a page frame in the NV-zone. Then it sets up the PTE mapping from the virtual address 

to the physical address in NVMM. Finally, it copies the data from the persistent paging buffer to 

the NVMM page frame in the NV-zone. The existing buffer slot hosting the page is freed. This 

operation is called in-situ paging in NVSwap. In-situ paging replaces the operation of reading the 

regular-zone with the memory copy from the persistent paging buffer to the NV-zone. 

Consequently, it reduces the page-in latency of serving the page fault.  

 Resizing the persistent paging buffer: The size of the persistent paging buffer is 

periodically adjusted according to the ratio of the number of page-in requests and page-out 

requests. Specifically, let’s assume the size of NVMM is Cnvmm, the size of the persistent paging 

buffer is C buffer, and the size of the NV-zone is Cnvzone. We further assume the rate of page-in 

and page-out is Rate in and Rate out respectively. Then Cnvzone = Ratein ∗ Cnvmm / (Rateout + Ratein) 

and Cbuffer = Cnvmm − Cnvzone. To calculate Ratein and Rateout, NVSwap maintains a moving 

average of the total number of page-in and page-out requests being served in a 1-second time 

window. It does not induce additional overhead as Linux already tracks these metrics (e.g., the 

number of page faults). When the NV-zone is full, in-situ paging is disabled until the existing 

page frames are freed or more NVMM page frames are allocated for the zone.  

 The page layout of swap space and prefetching: When flushing occurs in the persistent 

paging buffer, NVSwap evicts pages from processes that have the highest latency bounds 

specified by users. For this purpose, it organizes the space of the persistent paging buffer into 
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multiple latency groups, each of which consists of 64 pages from processes having the same 

latency bound. When a latency group is full, it is split into two latency groups of the same 

latency requirement. Furthermore, it exploits the temporal locality by storing the pages in the 

same group in the order of eviction from DRAM. We schedule writing a group of pages from the 

persistent paging buffer to the regular-zone when the scheduling queue is not full. NVSwap 

manages page slots using a cluster-based approach like Linux for the regular-zone.  

 Serving the read requests from the regular-zone is in the critical path and may 

significantly increase the latency of page fault handling. Linux prefetches pages after a page fault 

to hide the latency [29]. However, the existing prefetching mechanism reads pages from the 

regular-zone into DRAM, which may cause memory thrashing under high memory pressure. In 

contrast, upon page fault to the regular-zone, NVSwap prefetches the pages from the regular-

zone to the persistent paging buffer in the unit of a latency group. Furthermore, it only prefetches 

the pages of latency-sensitive processes that are set to access NVMM according to the output of 

the latency control module. When page prefetching happens, NVSwap does not need to change 

the page table entry of its corresponding process. Instead, the new page frame ID of the 

prefetched pages in NVMM is recorded in the shadow mapping table. The incoming page-in 

requests to access the prefetched page will be served using the new NVMM page frame. Because 

our flushing and prefetching algorithm exploits applications’ semantics (e.g., latency bound) and 

temporal locality, the pages in the same cluster in the regular-zone will likely be accessed 

together. 
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                                                                                (a) Paging out; (b) Paging in. 

 

Figure 4: Illustration of NVSwap paging scheme. 



17 

CHAPTER 4: LATENCY CONTROL MODULE 

NVSwap supports storage QoS specified using Xth percentile page-in latency. These may 

be set for individual processes or collectively for a group of related processes. According to our 

observations, the paging latency is affected by the characteristics of both swap devices and 

workloads, e.g., read/write latency, disk scheduling queue size, and I/O arrival rate. NVSwap 

selects a host swap device for each latency-sensitive process according to its tail latency bound. 

Then according to the latency requirements of the processes accessing the regular-zone, it 

determines the disk scheduling queue size to control the queuing time. Finally, according to the 

size of the queue, it adjusts the rate of memory page reclaiming to control the I/O arrival rate. In 

this section, we describe the algorithm used in NVSwap to enforce the latency bounds.   

Selecting the host swap device and the queue size: The default host swap device is the 

regular-zone for processes. Then given the capacity of the regular-zone, NVSwap may select 

NVMM as the host swap device for latency-sensitive processes. We adopt a control strategy to 

estimate the capacity in terms of the scheduling queue size. The strategy is inspired by those 

used in Storage Resource Pools [16] and PARDA [15].  

Let’s assume that the paging latency is Lati for process Pi(1 ≤ i ≤ n). Then the latency 

goal to achieve using the scheduling queue Lat goal is min(Lat1,..., Latn) . The queue size is 

adjusted based on Lat goal and observed latency Lat observed using Equation 1, where S(t) 

denotes the size of the scheduling queue at time t and γ is a smoothing parameter between 0 and 

1. For measuring Lat observed, we instrumented the Linux kernel to collect the latency of paging 

requests.  

S(t +  1)  =  (1 −  γ)  ∗ S(t)  +  γ ∗  (S(t)  ∗
Latgoal

Latobserved
  )  (1)  
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 Using the control strategy, if the observed latency is higher than Latgoal, NVSwap will 

reduce the queue size. Otherwise, it will increase the queue size. If the queue size is too large, we 

are at risk of losing data in the queue upon system failures. Consequently, we set the maximum 

queue size to be no larger than Smax. If S(t + 1) >  𝑆max , S(t + 1) = 𝑆max. We set 𝑆𝑚𝑎𝑥 to be 

1024 in the thesis. Furthermore, we also set the minimum queue size to be no smaller than 𝑆𝑚𝑖𝑛. 

For example, 𝑆𝑚𝑖𝑛 can be set as the number of channels of SSDs to explore its I/O parallelism. If 

the queue size S(t + 1) is smaller than S min using Equation 1, NVSwap considers that the 

regular-zone is under-provisioned. It will serve the requests from the most latency-sensitive 

processes using the persistent write buffer to reduce the load on the regular-zone until S(t +  1) 

becomes no smaller than 𝑆𝑚𝑖𝑛. Algorithm 1 describes the algorithm for the assignment of host 

swap devices and the determination of queue size.  

 NVSwap reserves a fixed number of slots in the queue to serve other processes that are 

not latency-sensitive for solving the starvation issue in request scheduling (#L12). Finally, it is 

designed to reduce the write interference in the regular-zone. For this purpose, in the scheduling 

queue, we set read requests to have higher priority than write requests to avoid write interference. 

Latency-sensitive page reclaiming: Page replacement algorithm determines which 

pages should be swapped out. And SWAP_CLUSTER_MAX determines how many pages should 

be swapped out [14]. It is set to 32 in Linux [29], indicating that kswapd will swap out 32 pages 

from the list of inactive pages. For latency enforcement, instead of using 

SWAP_CLUSTER_MAX with a fixed value, NVSwap sets the maximum number of pages to 

swap out according to the size of the scheduling queue S(t). As a result, the rate of page 

scanning matches the capacity of the regular-zone given the latency bounds of processes. 
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Algorithm 1: Algorithm for the assignment of host swap devices and determination of queue size 

Input: 

𝐿𝑎𝑡𝑖: User-specified paging latency of process i, 1≤i≤n; 

Set LS: Ordered set {ls1, ls2, . . . , ls𝑛} of elements from set {Lat1, Lat2, . . . , Lat𝑛}; 

index[i]: equals k if 𝑙𝑠𝑖 is 𝐿𝑎𝑡𝑘; 

𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥: minimum and maximum size of the scheduling queue respectively; 

𝑆reserve: the reserved slots in the scheduling queue; 

Latobserved: observed latency of accessing the queue. 

Output: 

Set NS: the set of processes using the persistent paging 

buffer; 

Set RS: the set of processes using the regular-zone; 

S(t + 1): the size of the scheduling queue. 

1 NS =  {}, RS = {1, . . . , n}. 

2 for k in 1, ..., n do 

// Set the latency goal using the minimum latency 

3  𝐿𝑎𝑡𝑔𝑜𝑎𝑙 = 𝑙𝑠𝑘; 

// Update the scheduling queue size using user-specified latency 

4  S (t +  1)  =  (1 − γ )  ∗  S (t)  + γ ∗  (S (t)  ∗
𝐿𝑎𝑡𝑔𝑜𝑎𝑙

𝐿𝑎𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
); 

// Handle the case of under-provisioned regular-zone by serving latency-sensitive processes using persistent paging 

buffer 

5 if S (t +  1) <  𝑆𝑚𝑖𝑛 then 

6  NS =  NS ∪  index[k]; 

7   RS =  RS −  index[k]; 

8  else 

9   break; 

// Handle the case of extremely large queue size 

10 if S (t +  1)  >  𝑆𝑚𝑎𝑥  then 

11  S (t +  1)  =  𝑆𝑚𝑎𝑥; 

// Add reserved slots for processes that are not latency-sensitive 

12 𝑆 (𝑡 +  1) +=  𝑆𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ; 

 

 

Algorithm 1: Algorithm for the assignment of host swap devices and determination of queue size 

Input: 

𝐿𝑎𝑡𝑖: User-specified paging latency of process i, 1≤i≤n; 
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 The page replacement algorithm is modified to evict pages from latency-sensitive 

processes in NS to the persistent paging buffer and evict pages from not in NS to the regular-

zone. Specifically, for selecting a page to reclaim, the algorithm scans pages from the end of the 

inactive_list or until the list is empty. We use reverse mapping to map the page frame to its 

associated process indexed by the process ID. If the process is in NS, NVSwap directs the paging 

request to access the persistent write buffer. Otherwise, it directs the request to access the 

regular-zone. The scanning process in a loop is completed until the number of reclaimed pages 

from processes not in NS reaches S(t) or until the list is empty.  

 Tail latency monitoring and enforcement: In the Linux kernel, we implemented a 

monitor, which collects the rate of paging and the Xth percentile latency of paging processes for 

any time window k (k>0). Let’s assume that the Xth latency specified by users is Tail 𝑖
𝑘 for 

process 𝑃𝑖  (1 ≤  i ≤  n) at the time window k. If the observed tail latency is higher than Tail 𝑖
𝑘, 

all the page-out requests from 𝑃𝑖 at the next time window k + 1 will be served using the 

persistent write buffer. In addition, it will trigger prefetching the pages from Pi so that the page-

in requests issued at the time window k + 1 will be served using NVMM to reduce page-in 

latency Tail 𝑖
𝑘+1. 
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CHAPTER 5: IMPLEMENTATION ISSUES 

We discuss some of the implementation issues that we handled while building our 

prototype of NVSwap in this section.  

Admission control: A key question that arises in the implementation of NVSwap is how 

many latency-sensitive paging processes can we serve on a hybrid swap space using NVMM? 

We need to understand both the system capacity and the total I/O demand to answer the question. 

We use the following equation to provide a general understanding of I/O demand.  

DemandIOPS = ∑
1

𝐿𝑎𝑡𝑖

𝑛

𝑖=0

                (2) 

 For the capacity of the regular-zone, we suggest to compute its throughput (IOPS) using 

random I/O workloads. The request size should be equal to the page size in Linux, e.g., 4KB.The 

measurement should be conducted with an increased number of I/O concurrency. This can be 

done either during system installation or later by running micro-benchmarks, e.g., IOMETER 

[19]. NVSwap only copies the pages to the persistent write buffer. For measuring the capacity of 

the persistent write buffer, we develop a simple tool to measure the latency of copying pages 

from DRAM to the buffer. Then we convert it to throughput. Using this approach, we obtained 

the capacity of the regular-zone and persistent write buffer is 7,900 and 215,000 paging I/O 

operations per second respectively in our experiments. With the capacity being set, NVSwap can 

automatically determine whether to admit a process given the existing total I/O demand 

DemandIOPS and the latency bound of the incoming process.  

 Page reclaiming in NV-zone: Once a page frame of NVMM in the NV-zone is mapped 

to process address space, it is possible to reclaim the page under high memory pressure in 

NVMM. However, since we assume the capacity of NVMM is much larger than DRAM, the 
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page frames in the NV-zone is not subject to page reclaiming in the prototype of NVSwap. In its 

implementation, we set kswapd to simply skip the pages in the NVMM zones during page 

scanning for replacement. We wish to add the page reclaiming support of the NV-zone as the 

future work. Currently, all pages in the NV-zone are freed only after the exit of the processes 

which reference them. The freed pages are added back to the persistent write buffer for serving 

future paging requests.  

 Reducing writes to NVMM: Many existing approaches have been proposed to reduce 

the number of writes to NVMM during paging, thus increasing its lifetime [13, 38]. In NVSwap, 

we focus on the software design related to the enforcement of paging latency. However, we 

believe our idea can also benefit from those schemes. For example, without violating the latency 

requirement, NVSwap may swap out less-frequently accessed pages or read-only pages (e.g., 

those store program codes) to persistent write buffers.  

 Setting the user-perceived latency bounds: In this thesis, we focus on enforcing the 

page-in latency, which is directly correlated to user-perceived latency as shown in Figure 1. The 

relationship between the paging latency and user-perceived application-level latency can be 

captured either using classical mathematical models (e.g., linear regression modeling) or using 

machine-learning approaches (e.g., supervised learning). We experimentally demonstrate the 

relationship in Section 6.2.1. In a separate thesis, we will discuss our findings on these in detail. 
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CHAPTER 6: EVALUATION 

In this section, we present results from a comprehensive evaluation of our prototype 

implementation of NVSwap in the Linux kernel. Our experiments examine the following three 

questions: (1) How effective is the latency control module for latency enforcement? (2) Does the 

module provide performance isolation between paging processes? (3) How effective is the 

approach of in-situ paging compared to others? 

6.1    System Setup 

We implemented NVSwap in the Linux kernel-3.16.74, which is a longterm state version. 

We instrumented the Linux /proc file system to pass the value of Xth percentile latency bound 

specified by users for the corresponding processes to the kernel. By default, processes are not 

latency-sensitive. Other code modifications are in the virtual memory management system, for 

example in the do_swap_page() function for in-situ paging, and in the shrink_page_list() 

function to select reclaimed pages using the latency control module.  

 For the experiments, we used a server that is configured with 6-core Intel Xeon CPU 

X5670 2.93 GHz CPU, 32 GB DRAM, one 1TB hard disk (Seagate Barracuda 7200.12), and one 

128 GB SSD (OCZ-VERTEX 4). The hard disk is used to host the operating system. The SSD is 

used to host the regular-zone. In most of the experiments, we configured the computer so that the 

kernel can only address 5 GB DRAM as the main memory. A reserved DRAM space is used to 

emulate NVMM, which hosts the persistent write buffer and the NV-zone. The size of the 

emulated NVMM is 10 GB by default. 

 We model NVMM using DRAM on the server using an emulation-based approach. Our 

emulator is similar to those used in other projects [18, 26, 33, 34]. Specifically, our NVMM 
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emulator introduces extra latency for NVMM write and read in routines that write to or read 

from DRAM. The delay is determined using the worse-case read/write latency in published data 

in [2, 21, 30, 32]. We set the read and write latency of NVMM to be 100 ns and 150 ns 

respectively. We create delays using a software spin loop [26, 33] that uses the x86 RDTSP 

instruction to read the processor timestamp counter and spins until the counter reaches the 

intended delay. For sequential access, we also model NVMM bandwidth by inserting a proper 

delay after the request sequence completes to limit the effective bandwidth. Specifically, the 

bandwidth is limited to 10 GB/s for writes and 35 GB/s for reads in the experiments. A similar 

approach was used in Mnemosyne [34].  

 We used the YCSB [3] benchmark for benchmarking in our experiments. YCSB is a 

framework developed for benchmarking cloud system performance. It provides a YCSB client 

for workload generation and a variety of database backends. In the experiments, we use 

memcached, an in-memory keyvalue database, as the default backend [7]. Unless otherwise 

specified, we use Workload A with 50/50 read/update ratio by default. The database record size 

is 1 KB. Its request distribution is zipfian [10]. Both of the total recordcount and operationcount 

are set to 3 million. To demonstrate the practical effectiveness of NVSwap, we experimented 

with other Workloads including B, C, and F. We also varied the I/O characteristics of workloads, 

e.g., DB record size and operation types. We use both dedicated workloads and concurrent 

workloads to generate paging requests. Please find the configurations of the corresponding 

experiments in the following sections. 
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6.2    Latency Enforcement 

 In this section, we present several experiments based on the YCSB benchmark that show 

the effectiveness of NVSwap in enforcing the latency bounds with both single and concurrent 

workloads. 

6.2.1    Single Workloads 

 We study the effectiveness of latency control using NVSwap with a single memcached 

server accessing the swap space in the experiment. We compare NVSwap to the Linux swap 

system without latency control. For NVSwap, we set the 99th percentile latency bound to be 200 

us for page-in requests. Figure 5 shows the results. We have the following observations. First, 

from Figure 5(a), we observe that the 99th percentile latency is reduced from 345 us to 192 us, 

which is below the latency bound 200 us. The result shows the effectiveness of NVSwap in 

enforcing latency bounds. It achieves the QoS goal by synergistically managing the disk 

scheduling queue and NVMM allocation. For example, the memcached server wrote 418,577 

pages to the persistent paging buffer. The minimum latency of page-in requests is reduced from 

86 us to 0.08 us because serving the requests using NVMM has a smaller latency than using 

SSDs. Second, fromFigure5(b), we observe that the 95th and 99th percentile latency of page-out 

requests are reduced by 99.6% and 96.7% respectively. It shows that using the persistent paging 

buffer can significantly alleviate the write interference on SSDs and reduce the congestion in the 

disk scheduling queue while also exploring the locality of workloads. Third, the latency of 

application-level requests was reduced by up to 74%. And the 99th percentile latency of DB read 

and update is comparable to that of OS page-in requests.  

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2    Concurrent Homogeneous Workloads 

In this experiment, we study the effectiveness of NVSwap with three concurrent 

memcached servers accessing the workloads, which are named Workload A1, A2, and A3 for 

the convenience of discussion. We set the 99th percentile latency bounds for the three workloads  

as 1000 us, 500 us, and 300 us respectively. The results are shown in Figure 6. We can observe 

that the 99th percentile latency of page-in requests is 975 us, 498 us, and 291 us for Workload A1, 

A2, and A3 respectively. They all meet the latency requirements. In addition, the latency of DB 

     

  (a) OS Page In     (b) OS Page Out 

     

  (c) DB Update Records    (d) DB Read Records 

                                                                  (a), (b), (c), and (d) show the minimum, 95th percentile, and 

99th percentile latency of OS page-in, page-out, DB update, and DB read records respectively with 

one instance of memcached. We set the 99th percentile latency bound of page-in requests to be 200 us 

which is indicated by the green line. 

 

Figure 5: Single Workloads experiment. 
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operations is also enforced to the same level of page-in latency bounds. For example, the 99th 

percentile latency of DB update of Workload A3 is 334 us while its corresponding latency of 

page-in is 291 us. Another observation is that there is a long tail in the latency distribution as 

shown in Figure 6(a). This is because SSD writes incur long latency after the persistent paging 

buffer becomes full.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

   (a) CDF         (b) OS Page In 

     

  (c) DB Update Records    (d) DB Read Records 

                                                                                                 (a) shows the latency distribution with 

three instances of memcached workloads. The 99th percentile latency bounds are set to 1000 us, 500 

us, and 300 us for workload A1, A2, and A3 respectively. (b), (c), and (d) show the minimum, 95th 

percentile, and 99th percentile latency of OS page-in, DB update, and DB read operations.  

 

Figure 6: Concurrent Homogeneous Workloads experiment. 
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6.2.3 Concurrent Heterogeneous Workloads 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Workload Read% Update% 99% Latency Bound 

A 50% 50% 1000 us 

B 95% 5% 500 us 

C 100% 0% 300 us 

 

     

   (a) CDF          (b) OS Page In 

     

  (c) DB Update Records       (d) DB Read Records  

                                                                                                      (a) shows the latency distribution with 

three instances of memcached workloads. The 99th percentile latency bounds are set to 1000 us, 500 

us, and 300 us for workload A, B, and C respectively. (b), (c), and (d) show the minimum, 95th 

percentile, and 99th percentile latency of OS page-in, DB update, and DB read records. Workload C 

does not have DB update operations. 

Table 2：Configurations of heterogeneous Workload A, B, and C. 

Figure 7: Concurrent Heterogeneous Workloads experiment 1. 
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In this section, we study the effectiveness of NVSwap using concurrent heterogeneous 

workloads. In the first experiment we run three YCSB workloads A, B, and C. We show their 

configurations in Table 2. The DB record size is 1 KB. The results are shown in Figure 7. We 

observed that the 99th percentile latency of page-in requests is 737 us, 323 us, and 255 us for 

Workload A, B, and C respectively. They are smaller than their corresponding latency bounds, 

     

(a) OS Page In      (b) DB Update Records 

     

(c) DB Read Records   (d) DB Read-modify-write Records 

                                                                                                      (a), (b), (c), and (d) show the 

minimum, 95th percentile, and 99th percentile latency of OS page-in, DB update, DB read, and DB 

read-modify-write operations. Workload C does not have DB update operations. Only Workload F has 

read-modify-write operations. 

 

Figure 8: Concurrent Heterogeneous Workloads experiment 2. 
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indicating that the QoS requirements were met with the help of NVSwap. In addition, because of 

the larger ratio of DB read operations in the workloads leading to a higher cache hit ratio, the 

99th percentile latency of DB operations is on average 33% smaller than the respective latency 

bound.  

 

 

 

 

In the second experiment, we run Workload A, C, and F, whose configurations are shown 

in Table 3. The DB record sizeis1KB.WeshowtheresultsinFigure8. We did not show the latency 

CDF distribution because it is similar to the one observed in the first experiment. We have two 

observations. The 99th percentile latency of page-in requests is 956 us, 410 us, and 299 us for 

Workload A, C, and F respectively. They are smaller than their corresponding latency bounds. 

Another interesting observation is that the 99th percentile latency of DB read and update 

operations also meet latency requirements while that of read-modify-write operations is 370 us 

which is 23% higher than the latency bound 300 us. The reason is that the read-modify-write 

operation has two phases: read and write. As a result, serving the additional write request 

increased the 99th percentile latency of the read-modify-write operations. 

6. 3    Changing Latency Bounds Dynamically 

In this experiment, we show how the latency bounds set dynamically at the process level 

are respected. For this experiment, we ran two Workloads A and C sharing the swap space. Their 

initial 99th percentile latency bounds are set to 100 us and 1000 us for Workload A and C 

respectively. Then the latency bound of Workload C is changed from 1000 us to 800 us at t = 

Workload Read% Update% Read-modify-
write% 

99% Latency 
Bound 

A 50% 50% 0% 1000 us 

C 100% 0% 0% 500 us 

F 50% 0% 50% 300 us 

 Table 3：Configurations of heterogeneous Workload A, C, and F. 
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200 second and from 800 us to 600 us at t = 450 second. Figure 9(a) shows the tail latency of DB 

operations in each 1-second time window during the execution of the two workloads.  

At the start, the tail latency of the workloads matches the initial latency bounds as 

expected. Because of the latency bounds, the persistent paging buffer was used to serve 

Workload A and the regular-zone was used to serve Workload C. After the latency bound was 

reduced from 1000 us to 600 us for Workload C, more of its pages were directed to the persistent 

paging buffer to meet its QoS requirements. For example, after the tail latency became 600 us at 

t = 450 second, we see up to 90% of paging requests were served by the persistent paging buffer. 

The latency of the other workload Workload A was not affected showing the strong performance 

isolation between the two workloads. The overall paging performance is shown in Figure 9(b). 

We also observe that the measured 99th percentile latency of Workload A is smaller than 100 us. 

For Workload C, its 99th percentile latency is 748 us overall. This experiment shows the latency 

bound can be dynamically set and enforced by NVSwap during the execution of processes. 

Performance isolation is achieved between latency-sensitive paging processes.  

 

 

 

 

 

 

 

 

 

     

(a)        (b)  

                                                                             The 99th percentile latency bound of Workload C is 

changed from 1000 us to 800 us at t = 200 second and is changed from 800 us to 600 us at t = 450 

second. (a) shows the measured tail latency of DB operations in each 1-second time window. (b) 

shows the overall performance. 

 

Figure 9: Dynamic latency bounds experiment. 
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6. 4    Impact of DB Record Size 

 In this section, we study the impact of DB record size. We ran one instance of Workload 

A and set the 99th percentile latency bound of VM page-in requests to be 200 us. We increased 

the DB record size from 1 KB to 8 KB. From the results shown in Figure 10, we can observe that 

the 99th percentile latency of page-in requests is below 200 us, indicating the effectiveness of 

NVSwap for latency enforcement. Furthermore, we find the 99th percentile latency of DB read 

and update operations are directly correlated to the record size. When the record size is not larger 

than a page size, the DB read and update operations can be served with just one page-in request. 

Therefore, the tail latency of page-in requests is comparable to that of DB operations at the 

application level. When the record size is 8 KB, NVSwap needs to swap in two pages for serving 

a single DB read/update operation. This may almost double the 99th percentile latency from 243 

us to 455 us for DB reads and from 231 to 325 us for DB updates.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                        The 99th percentile latency of page-in requests, DB read and 

update operations as we increase the DB record size from 1 KB to 8 KB. We set the 99th percentile 

latency bound of page-in requests to be 200 us which is indicated by the green line. 

 

Figure 10: DB Record Size experiment. 
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6. 5    Impact of NVMM Size 

NVSwap uses NVMM to host both the persistent paging buffer and NV-zone. In this 

experiment, we show the impact of NVMM size on the tail latency of requests. Specifically, we 

run one instance of Workload A and use the default size of the Linux scheduling queue (128). 

We deactivated the function which adjusts the queue size in the latency control module. Then we 

measure the 99th percentile latency as the NVMM size is increased from 2.5 GB to 3.5 GB and 

4.5 GB. The results are shown in Figure 11. The 99th percentile latency of page-in requests is 

very sensitive to the NVMM size. For example, the latency is reduced by 70% as we increase the 

NVMM size from 2.5 GB to 4.5 GB. At the application level, the tail latency of DB read and 

update is reduced by 45% and 42% respectively. This is because of the software overhead of 

operations (e.g., slab management) in memcached does not change, leading to a smaller 

improvement ratio overall as the NVMM size is increased.  

 

 

 

 

 

 

 

 

 

 

 

 

                                               The 99th percentile latency of page-in requests, DB read and 

update operations as we increase the NVMM size from 2.5 GB to 4.5 GB. 

 

Figure 11: NVMM Size experiment. 
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6. 6    Comparison with Other Systems 

 We compared NVSwap with other state-of-the-art systems that support swapping using 

NVMM. Among them,we choose to implement Dr. swap as it is a page-level solution and 

provides direct read from NVMM, which is similar to the in-situ paging used in NVSwap. 

Because Dr. swap was not designed to provide latency enforcement, we only study the 

performance of NVSwap without using the latency control module. In the experiment, both Dr. 

swap and NVSwap only access NVMM for paging. No regular-zone is configured. We ran two 

instances of Workload A concurrently accessing NVMM. The 99th percentile latency of DB 

operations is shown in Figure 12. Since the kernel-level tracing is disabled, we did not show the 

latency of page-in requests for fairness of the study. The results show that the tail latency of 

NVSwap is 0.8% higher than that of Dr.swap. The reason is that NVSwap needs to copy the page 

from the persistent write buffer to the NV-zone, which is then mapped to process address spaces. 

In contrast, Dr. swap directly mapped it without the additional latency of memory copy. 

 

 

 

 

 

 

 

 

 

 

 
 Figure 12: Comparison of latency by NVSwap versus Dr. swap. 
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6.7    Experiments with Real NVMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further prove the effectiveness of latency control using NVSwap, we also did the 

same experiments on a server with real NVMM. The Optane DIMM Server is configured with 8-

core Intel Xeon Scalable Silver 4208 2.1 GHz CPU, 32GB DRAM, 2 Intel Optane DC Persistent 

Memory 128 GB Module and 240 GB SSD (Samsung PM883 Series 2.5" SATA 6Gb/s). To 

     

(a) OS Page In      (b) OS Page Out 

     

(a) DB Update       (b) DB Read 

                                                                                                          (a), (b), (c), and (d) show the minimum, 95th 

percentile, and 99th percentile latency of OS page-in, page-out, DB update, and DB read records 

respectively with one instance of memcached. We set the 99th percentile latency bound of page-in requests 

to be 200 us which is indicated by the green line. 

 

Figure 13: Single Workload experiment with Real NVMM. 
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guarantee the modified kernel to work well on the Optane DIMM Server, we implemented 

NVSwap in the Linux kernel-4.4.241 which offers support for NVMM. To avoid extra 

unexpected issues, we tried to keep consistency of the experiment configurations. We configured 

the Optane DIMM Server so that the kernel can only address 5 GB main memory, and we 

reserved 10 GB NVMM to host the persistent write buffer and the NV-zone.  

Single Workload Experiment with real NVMM. In the experiment, we set the 99th 

percentile latency bound to be 200 us for page-in requests. Figure 13 shows the results. From 

Figure 13(a), we observe that the 99th percentile latency is reduced from 527.2 us to 143.2 us, 

which is below the latency bound 200 us. The result indicates the effectiveness of NVSwap in 

enforcing latency bounds in a real NVMM environment. Besides, the minimum latency of page-

in requests is reduced from 27.1 us to 0.211 us. Moreover, Figure 13(b) shows that the 95th and 

99th percentile latency of page-out requests are reduced by 98.6% and 83.4% respectively. All 

the results accord with the experiments results and the analysis in the emulation environment.   

Concurrent Homogeneous Workloads. In this experiment, just like the concurrent 

homogeneous workloads experiment that we did in emulated environment, we run three YCSB 

workloads and use Workload A in YCSB for all the three workloads. We set the 99th percentile 

latency bounds for the three workloads as 1000 us, 500 us, and 300 us respectively. The results 

are shown in Figure 14.  

Concurrent Heterogeneous Workloads. In this experiment, we also reproduced the 

Concurrent Heterogeneous Workloads experiment in the new platform. We run three YCSB 

workloads A, B, and C and set the 99th percentile latency bounds for the three workloads as 1000 

us, 500 us, and 300 us respectively. The results are shown in Figure 15.  
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From the results of these experiments, we can find that although the data varies because 

of the difference of the hardware environments, the results of experiments with NVMM and 

experiments with emulated NVMM are similar and the latency bound is met in all experiments if 

specified. It proves the effectiveness of latency control using NVSwap working with real 

NVMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

        (a) OS Page In    (b) DB Update                     (b) DB Read 

                                                                                                                                             The 99th percentile 

latency bounds are set to 1000 us, 500 us, and 300 us for workload A1, A2, and A3 respectively. 

(a), (b), and (c) show the minimum, 95th percentile, and 99th percentile latency of OS page-in, DB 

update, and DB read operations. 

 

 

         

        (a) OS Page In    (b) DB Update                     (b) DB Read 

                                                                                                                                          The 99th percentile 

latency bounds are set to 1000 us, 500 us, and 300 us for workload A, B, and C respectively. (a), 

(b), and (c) show the minimum, 95th percentile, and 99th percentile latency of OS page-in, DB 

update, and DB read records. Workload C does not have DB update operations. 

 

Figure 14: Concurrent Homogeneous Workloads experiment with real NVMM. 

Figure 15: Concurrent Heterogeneous Workloads experiment with real NVMM. 
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CHAPTER 7: CONCLUSION 

In this thesis, we studied the problem of latency-aware paging in the virtual memory of 

operating systems. We propose a novel paging scheme called NVSwap which provides a cost-

effective and hybrid swap space using both NVMM and SSD. It allows the setting of Xth 

percentile page-in latency bound for a single process or a group of processes. NVSwap controls 

the host swap device, the memory page reclaim rate, the scheduling queue size in DRAM, and 

the allocation of persistent paging buffer in NVMM for paging processes. We implemented 

NVSwap in Linux kernel-3.16.74. Our evaluation with a diverse set of YCSB workloads shows 

that NVSwap can enforce the tail latency while providing strong performance isolation for 

latency-sensitive processes. As future work, we plan to design and implement page reclaiming in 

NV-zone and automate the setting of page-in latency bounds according to user-perceived 

application-level latency bounds
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