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Confocal laser scanning microscopy (CLSM) is a preferred method for obtaining optical 

images with submicron resolution. Replacing the pinhole and detector of a CLSM with a digital 

camera (CCD or CMOS) has the potential to simplify the design and reduce cost. However, the 

relatively slow speed of a typical camera results in long scans. To address this issue, in the 

present investigation a microlens array (MLA) was used to split the laser beam into 48 beamlets 

that are focused onto the sample. In essence, 48 pinhole-detector measurements were performed 

in parallel. Images obtained from the 48 laser spots were stitched together into a final image. 

Photoluminescence (PL) spectroscopy is a non-destructive optical method that is widely 

used to characterize semiconductors. In the PL process, a substance absorbs photons and emits 

light with longer wavelengths. This paper discusses a method for identifying substances from 

their PL spectra using machine learning, a technique that is efficient in making classifications. 

Neural networks were constructed by taking simulated PL spectra as the input and the identity of 

the substance as the output. Six different semiconductors were chosen as categories: gallium 
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oxide (Ga2O3), zinc oxide (ZnO), gallium nitride (GaN), cadmium sulfide (CdS), tungsten 

disulfide (WS2) and cesium lead bromide (CsPbBr3). The developed algorithm has a high 

accuracy (>90%) for assigning a substance to one of these six categories from its PL spectrum. 

With an XY stage, a CLSM can scan a large area on a sample. Adjusting the height of the 

objective is necessary which made the laser beam could focus on the sample surface. However, if 

the surface of the sample is not flat, the laser spot will go in and out of focus, causing bad 

scanning results. Deep learning especially convolutional neural networks is an efficient way to 

treat images. It shows its success in the field of object detection, image classification, face 

recognition, etc. The deep learning techniques were used to design a model that predicts the out-

of-focus distance with the image of laser spot. The model can develop to a system that could 

automatically focusing the CLSM in real time. 
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CHAPTER ONE: INTRODUCTION TO DEEP LEARNING 

Deep learning with neural networks has become an efficient solution for problems such 

as computer vision, natural language processing, and speech recognition1. It simulates how 

human brain makes decisions. In this chapter, I discuss the development of deep learning and 

introduce the main concepts. 

 

Artificial Neural Networks 

In 1943, McCulloch and Pitts2 introduced a neuron model in which, given a weighted 

input, the neuron can be activated or inactivated (Fig. 1.1). 

 

Fig. 1.1. McCulloch and Pitts model. After the dot product is taken of the 

input x and weight parameter vector w, the result passes through an activation 

function 𝑓. 
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The model is expressed as: 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖)                                                         (1.1) 

The activation function 𝑓 is a threshold function. If the input is greater than the threshold, the 

output equals 1; otherwise, it equals 0. From the threshold back to the input vector space, a 

boundary is formed, which is called a hyperplane. The model can only solve classification 

problems which are linearly separable. 

 To solve the nonlinear separable problem, hidden layers are introduced. Instead of 

directly pointing to the output, each dot product is treated as one cell of the next layer. Fig. 1.2 

shows a two hidden layer neural network.  

 

Fig. 1.2. Graphic representation of a two hidden layer neural network. The 

input is a 4-element vector, while the first and second hidden layers are 4-element 

and 3-element vectors respectively. 
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An element in each layer is a linear combination of all elements in the previous layer, followed 

by passing through a nonlinear activation function. The nonlinear activation function, discussed 

in the next section, is necessary to break the linearity.  

In neural networks, each layer is treated as a vector. Therefore, the weighted parameters 

between two layers can be treated as a matrix. The propagation between two layers is shown in 

Eq. (1.2) and Eq. (1.3): 

𝑧𝑙 = 𝑊𝑙 ∙ 𝑎𝑙−1 + 𝑏𝑙                                                        (1.2) 

𝑎𝑙 = 𝜎(𝑧𝑙)                                                        (1.3) 

where 𝑎𝑙 is the vector of the lth layer, 𝑊𝑙 is a parameter matrix with rows equal to the number of 

elements in layer l and columns equal to the number in layer l–1, and 𝑏𝑙 is a bias vector with 

same number of elements as layer l. 𝜎 is the nonlinear activation function, which will be 

discussed later. Without the activation function, no matter how many hidden layers, the final cell 

is still a linear combination of the original input. For example, if there is no activation function, 

then we have 𝑎𝑙 = 𝑧𝑙, thus we can get: 

𝑎𝑙 = 𝑊𝑙 ∙ 𝑎𝑙−1 + 𝑏𝑙                                                      (1.4) 

𝑎𝑙+1 = 𝑊𝑙+1 ∙ 𝑎𝑙 + 𝑏𝑙+1                                               (1.5) 

Substitute Eq. (1.4) into Eq. (1.5): 

                                                      𝑎𝑙+1 = 𝑊𝑙+1 ∙ (𝑊𝑙 ∙ 𝑎𝑙−1 + 𝑏𝑙) + 𝑏𝑙+1     

= (𝑊𝑙+1𝑊𝑙) ∙ 𝑎𝑙−1 + (𝑊𝑙+1 ∙ 𝑏𝑙 + 𝑏𝑙+1)                   (1.6) 
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From Eq. (1.6), the two layers are combined as one where the weighted matrix is 𝑊𝑙+1𝑊𝑙 and 

bias vector is 𝑊𝑙+1 ∙ 𝑏𝑙 + 𝑏𝑙+1. 

 

Activation Function 

Traditionally, the two main nonlinear activation functions are sigmoid function [Eq. 

(1.7)] and hyperbolic tangent function [Eq. (1.8)]. 

𝑓(𝑥) =
1

1+𝑒−𝑥                                                   (1.7) 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                  (1.8) 

 
     (a)                                                                        (b) 

Fig. 1.3. (a) Plot of the sigmoid function. (b) Plot of the hyperbolic tangent 

function. 

 

The sigmoid function has a value between 0 to 1, which is useful in representing probability. 

Meanwhile the hyperbolic tangent function has a value between -1 to 1. It is easier to train and 
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often has a better performance compared to the sigmoid function. However, a problem is that 

both functions have only a limited sensitive range. When the input of the function is either too 

small or too large, the function will have a very small gradient value. With the development of 

hardware, computers could train deeper and deeper networks, which caused the gradient at the 

earlier layers to vanish and thus failed to update the weighted parameters3. 

In order to train deep neural networks, an activation function should be nonlinear but 

perform similar as a linear function. The rectified linear activation unit (ReLU) [Eq. (1.9)] was 

introduced4:  

𝑓(𝑥) = {
𝑥   if 𝑥 > 0
0    if 𝑥 ≤ 0

                                                  (1.9) 

The ReLU function is a linear function for positive inputs, with a gradient equal 1. It 

neglects negative inputs, breaking the linearity. Therefore, ReLU makes it possible to train very 

deep neural networks. 

 The output layer is varied depending on the task type. For a regression problem, there is 

usually no need for an activation function. For a classification problem, if the class number is 

two, the output layer is usually a single value, and the sigmoid function is used. The result is 

always between 0 to 1, which can represent the probability of the instance of data belonging to 

the first class. If there is more than one class, the output layer should have same number of 

elements as the number of classes, and the softmax function is used as the activation function: 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

                                              (1.10) 
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where the K is the number of classes. Each element of the output vector represents the 

probability belonging to the corresponding class.  

 

Loss Function 

After the result is outputted by the neural networks, a function is needed to describe the 

difference between the estimated and true value of the input data. This function is called the loss 

function. If the task is a regression problem, which should predict a certain value or vector, then 

the loss function typically used is the mean absolute error (L1) [Eq. (1.11)] or mean squared 

error (L2) [Eq. (1.12)]. 

L1 =
1

𝑚
∑ |𝑦𝑖 − 𝑦̃𝑖|

𝑚
𝑖=1                                                (1.11) 

L2 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑚
𝑖=1                                             (1.12) 

where 𝑦𝑖 represents the true value and 𝑦̃𝑖 is the output value of the networks. The value m is the 

total number of training examples in the batch. 

Cross-entropy loss is used in classification tasks. For a binary classification task, the 

cross-entropy loss is given by Eq. (1.13): 

𝑙 = −[𝑦𝑙𝑛(𝑦̃) + (1 − 𝑦) ln(1 − 𝑦̃)]                           (1.13) 

The value of 𝑦 is either be 0 or 1, and the 𝑦̃ is between 0 to 1. If 𝑦 = 𝑦̃, the prediction is perfect, 

and the loss will be 0. If 𝑦̃ is different from 𝑦, the loss increases rapidly.  
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Fig. 1.4. The loss value for a true label equal 1 instance as a function of the 

predicted probability from 0 to 1. 

 

If the number of classes is more than two, the loss function is in form of Eq. (1.14): 

𝑙 = − ∑ 𝑦𝑐ln (# class
𝑐=1 𝑦̃𝑐)                                       (1.14) 

where the superscript c stands for the vector’s cth element. The binary cross-entropy loss is 

equivalent to the Eq. (1.14) when class number equals 2. Taking average of the whole training 

batch, the two loss functions will become Eq. (1.15) and Eq. (1.16): 

𝐿 = −
1

𝑚
∑ [𝑦𝑖𝑙𝑛(𝑦̃𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑦̃𝑖)]𝑚

𝑖=1                            (1.15) 

𝐿 = −
1

𝑚
∑ ∑ 𝑦𝑖

𝑐ln (# class
𝑐=1 𝑦̃𝑖

𝑐)𝑚
𝑖=1                                        (1.16) 

 

Backward Propagation 
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 David Rumelhart et al.5 in 1986 developed a backward propagation algorithm that works 

fast in neural networks learning. As discussed in the previous section, the input passes through 

all the weighted matrices, which gives an estimated value. As all the parameters in the weighted 

matrices are randomly initialized, there is no expectation for a good approximation in the 

beginning, and the loss is large. The learning process tries to minimize the loss by updating the 

parameters. In general, the method is to find the gradient of the loss function over the parameter 

space. Each parameter is updated simultaneously by subtracting a value proportional to the 

gradient: 

𝜃: = 𝜃 − 𝛼 ∙ ∇𝜃𝐿                                                    (1.17) 

where 𝛼 is the learning rate, which needs to be set to an appropriately small number, and 𝜃 

represents parameters (weighted matrices, bias values, etc.).  

I will use 𝑊𝑙
𝑖𝑗

 to denote the element in the ith column, jth row of the weight matrix 

between the (l-1)th and lth layer. It connects the ith element in the (l-1)th layer to the jth element in 

the lth layer; 𝑏𝑙
𝑗
 denotes the bias value used to get the jth element in the lth layer; 𝑎𝑙

𝑘 denotes the kth 

element of the lth layer; 𝑧𝑙
𝑘 represent the value before applying the activation function of 𝑎𝑙

𝑘. 

Using the network in Fig. 1.2 as an example, we assume the loss function is a cross-entropy loss. 

The activation function for the output layer is sigmoid and for the hidden layers is ReLU. 
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Fig. 1.5. Illustration of the steps that determine how the input’s first 

element affects the output result. Some of the parameters and layers are labeled.  

 

𝑦̃ is the output, and the true value is y. From the cross-entropy loss function, we calculate 

the partial derivative of the loss over 𝑦̃: 

𝜕𝑙

𝜕𝑦̃
= −[𝑦

𝜕 ln(𝑦̃)

𝜕𝑦̃
+ (1 − 𝑦)

𝜕 ln(1 − 𝑦̃)

𝜕𝑦̃
] 

= −[𝑦
1

𝑦̃
+ (1 − 𝑦)

−1

1−𝑦̃
]                                                          (1.18) 

Since 𝑦̃ is equal to the sigmoid of 𝑧4
1, then by the chain rule: 

                                                   
𝜕𝑙

𝜕𝑧4
=

𝜕𝑙

𝜕𝑦̃

𝜕𝑦̃

𝜕𝑧4
 

                                                          = −[𝑦
1

𝑦̃
+ (1 − 𝑦)

−1

1−𝑦̃
][𝑦̃(1 − 𝑦̃)] 

= 𝑦̃ − 𝑦                                                                           (1.19) 
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As all the 𝑧𝑙
𝑗
 are linear combinations of 𝑎𝑙−1

𝑖  (𝑧𝑙
𝑗

= ∑ 𝑊𝑙
𝑖𝑗

𝑎𝑙−1
𝑖

𝑖 + 𝑏𝑙
𝑗
), we obtain: 

𝜕𝑧𝑙
𝑗

𝜕𝑎𝑙−1
𝑖 = 𝑊𝑙

𝑖𝑗
                                                       (1.20) 

𝜕𝑧𝑙
𝑗

𝜕𝑊
𝑙
𝑖𝑗 = 𝑎𝑙−1

𝑖                                                       (1.21) 

𝜕𝑧𝑙
𝑗

𝜕𝑏𝑙
𝑗 = 1                                                           (1.22) 

Since the activation function used are ReLU, if the 𝑎𝑙
𝑖 > 0, 

𝜕𝑎𝑙
𝑖

𝜕𝑧𝑙
𝑖 = 1, else 

𝜕𝑎𝑙
𝑖

𝜕𝑧𝑙
𝑖 = 0. 

Let 𝑑𝑊𝑙, 𝑑𝑎𝑙 and 𝑑𝑧𝑙 represent the matrix or vector, in which each element is the partial 

derivative of the loss over the corresponding element of 𝑊𝑙, 𝑎𝑙 and 𝑧𝑙. Then we obtain: 

𝑑𝑧4 = 𝑦̃ − 𝑦                                                                         (1.23) 

  𝑑𝑧𝑙
𝑖 = {

𝑑𝑎𝑙
𝑖        if  𝑎𝑙

𝑖 > 0 

0           if 𝑎𝑙
𝑖 ≤ 0

       𝑙 = 2,3                                 (1.24) 

   𝑑𝑏𝑙
𝑖 = 𝑑𝑧𝑙

𝑖                                    𝑙 = 2, 3, 4                             (1.25) 

𝑑𝑎𝑙
𝑖 = ∑ 𝑊𝑙+1

𝑖𝑗
× 𝑑𝑧𝑙+1

𝑗
           𝑙 = 2, 3𝑗                                  (1.26) 

𝑑𝑊𝑙
𝑖𝑗

= 𝑎𝑙−1
𝑖 × 𝑑𝑧𝑙

𝑗
                  𝑙 = 2, 3, 4                             (1.27) 

Expressing Eq. (1.25), Eq. (1.26) and Eq. (1.27) in the matrix and vector form,  

𝑑𝑏𝑙 = 𝑑𝑧𝑙                                𝑙 = 2, 3, 4                             (1.28) 

𝑑𝑎𝑙 = 𝑊𝑙+1
𝑇 𝑑𝑧𝑙+1                𝑙 = 2, 3                                (1.29) 
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𝑑𝑊𝑙 = 𝑎𝑙−1𝑑𝑧𝑙
𝑇                     𝑙 = 2, 3, 4                            (1.30) 

Backward propagating from the loss all the way to the first layer, all the gradient values 

can be calculated. Then, applying Eq. (1.17), the learning parameters are updated. A combination 

of a forward propagation and a backward propagation is called one iteration. With enough 

iterations, the parameters will converge to the values that fit the training data very well. The 

parameters can be used to make predictions on new data. 

 

Initialization 

 Before starting to train a neural network model with any data, the weighted parameters 

are given initial values. If all the parameters are set to the same number, then every unit will have 

same influence on the loss, causing the parameters to have identical gradients. Therefore, 

parameters should be initialized with different values. Another problem is if all the weight 

matrices are slightly larger than the identity matrix, then the values of a hidden layer vector 𝑎𝑙 

will increase exponentially as l gets larger, which will cause the gradient to explode. At the 

opposite extreme, if all the matrices are slightly smaller than the identity matrix, as the network 

gets deeper, the gradient will vanish. 

 In 2010, Xavier et al.6 introduced Xavier initialization. The weights are set following the 

normal distribution 𝐺(0,
1

𝑛𝑙−1
), where the mean is set at 0, and the variance is one over the 

number of elements in the previous layer. Xavier initialization works well when the nonlinear 

activation functions are hyperbolic tangent and sigmoid, but not if the activation functions are 

ReLU. In 2015, He et al.7 introduced He initialization, which is similar with Xavier initialization. 
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The difference is that the variance is 
2

𝑛𝑙−1
. Xavier initialization works well with ReLU 

activations. 

 

Optimization Method 

 The way parameters update themselves with iterations affects the learning efficiency. The 

method shown in Eq. (1.17) is called gradient descent optimization. Gradient descent 

optimization has three forms. If the entire dataset is taken to calculate the loss and update the 

parameters, the optimization is called batch gradient descent. Batch gradient descent always 

converge to the global minimum or a local minimum for a non-convex surface. However, if the 

training dataset is large, the batch gradient will exhaust the computational resources and be very 

slow even when propagating a single iteration. In contrast, propagating an iteration with only one 

training example is called Stochastic Gradient Descent (SGD): 

𝜃: = 𝜃 − 𝛼 ∙ ∇𝜃𝐿(𝜃, 𝑥𝑖 , 𝑦𝑖)                                        (1.31) 

SGD is much faster than batch gradient descent, but the learning curve is not as stable as the 

latter one. In between batch gradient descent and SGD there is the mini-batch gradient descent. 

The training set is separated into mini-batches, and each mini-batch has the same amount of 

training examples. The parameters will update one iteration with one mini-batch. In general, the 

larger the mini-batch, the more stable it is, but the learning process will be slower.  

 In low dimensional space, besides the global minimum, functions usually have many 

local minima. When it hits the local minimum, the gradient can no longer escape. However, in 

deep learning algorithms, there usually are thousands of parameters. Let’s assume when a 



13 

 

gradient of the loss over a parameter is 0, the probability that it hit a convex point or concave 

point is half-half. When the gradient of the loss over all parameters is 0, the chance that it is a 

local minimum is: 

𝑝 =
1

2𝑁                                                                 (1.32) 

where N is the number of parameters. With thousands of parameters, the probability hitting a 

local minimum can be neglected. Instead, part of the dimensions are at convex point and part of 

the dimensions are at a concave point. This kind of position is called a “saddle point” (Fig. 1.6).  

 

Fig. 1.6. Plot of a saddle point in a 2D function8. 

 

As all gradients near the saddle point are near 0. When the learning process hits the saddle point, 

it will take a very long time to escape. 

 There are many optimization algorithms developed from gradient descent. The default 

algorithm used in this work is called Adaptive Moment Estimation (Adam)9. Instead of only 



14 

 

using the gradient in the current stage to update the parameters, Adam keeps an exponentially 

decaying average of the gradients and the squared gradients in the past iterations (𝑚𝑡 and 𝑣𝑡). 𝑚𝑡 

and 𝑣𝑡 are also called first moment and second moment. If we define 𝑑𝜃𝑡 as 
𝜕𝐿

𝜕𝜃
 at the tth iteration, 

𝑚𝑡 and 𝑣𝑡 are given by: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑑𝜃𝑡                                        (1.33) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑑𝜃𝑡
2
                                        (1.34) 

where 𝛽1 and 𝛽2 are constant set close to 1. By default, 𝛽1 set to 0.9 and 𝛽2 set to 0.999. After 

𝑚𝑡 and 𝑣𝑡 are calculated, there is a step called bias correction: 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡                                                        (1.35) 

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡                                                        (1.36) 

Then the parameters are updated following the rule: 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼
𝑚̂𝑡

√𝑣̂𝑡+𝜀
                                          (1.37) 

The constant 𝜀 is a small number that prevents the denominator being 0, 10−8 by default. 

Optimizers like Adam help escape from saddle points and usually coverage faster. When using 

mini-batches, Adam can also increase the stability of the learning process, since the previous 

gradients contribute to the moments.  

 

Cross Validation 
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 Cross validation is a method in which the researcher can observe the learning process and 

help it make decisions on choosing parameters10. There is a small dataset called the cross-

validation set, which differs from the training dataset. During the iterations, the loss of the cross-

validation set is also calculated. When the loss of cross-validation set starts to increase, or no 

longer decreases, the training should be stopped. The parameters resulting in the minimum loss 

of the cross-validation set should be accepted for the current model.  

 

Fig. 1.7. A plot showing how the cross-validation loss may start to increase 

as the training loss keeps decreasing. An early stop is suggested by the cross-

validation. 

 

There are many untrainable parameters in the model such as number of layers, number of 

elements in each layer, and learning rate. These kinds of parameters are called hyper parameters. 
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The cross-validation set also helps to determine the most suitable combinations of hyper 

parameters. The group of hyper parameters that yields the least cross-validation loss is chosen. 

 

Regularization 

When the number of parameters is large, the function has enough degrees of freedom that 

the fitting line can correctly separate all the training examples. The performance on the training 

data might be almost perfect. However, when the function turns to additional unseen data, the 

prediction may be far from the truth. This phenomenon is called over-fitting, and the fitting 

function is said to have a high variance (Fig. 1.8c). At the opposite extreme, if the function 

cannot describe the training data very well, it is under-fitting or has a high bias (Fig. 1.8a). 

 

Fig. 1.8. Schematic plots showing different situations for a binary 

classification task. (a) Under fitting. (b) Appropriate fitting. (c) Over fitting. The red 

circles and blue squares are training examples in categories. The solid line describes 

the function that trying to separate the training examples into two classes. 
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Regularization is a technique that can reduce the error caused by over-fitting. There are 

three commonly used regularization methods: L1 regularization, L2 regularization and dropout 

regularization11. L1 regularization adds a term proportional to the sum of absolute value of all the 

weight parameters to the loss function [Eq. (1.38)]. L2 regularization adds a term proportional to 

the sum of squared weight parameters to the loss function [Eq. (1.39)]. 

𝐿𝑟𝑒𝑔_𝐿1 = 𝐿𝑜 + 𝜆 ∑ |𝑤𝑖|𝑖                                             (1.38) 

𝐿𝑟𝑒𝑔_𝐿2 = 𝐿𝑜 + 𝜆 ∑ 𝑤𝑖
2

𝑖                                             (1.39) 

𝐿𝑜 is the original loss described in the previous section, and 𝜆 is a hyper parameter called the 

regularization constant. 𝜆 is a small number greater than 0.  

 Drop-out regularization is a different method. In each iteration during the training, some 

randomly picked elements in each layer and their relevant connections are removed. Then the 

network after the drop-out is used for a forward propagation to get the loss and a backward 

propagation to update the parameters. After one iteration, the neural networks are restored, and a 

new random drop-out takes place and trains another iteration. This process repeats until the 

training process is finished.  
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Fig. 1.9. Schematic of drop-out regularization. The red elements are the 

neurons left. The drop-out ratio in the first and second layers is 1/2, and in the third 

layer is 1/3.  

 

By temporarily dropping neurons, it tends to average the effect of different combinations of 

thinned networks on the prediction. Therefore, using the full network after trained with drop-out 

to make predictions have less over-fitting. In addition, the drop-out regularization reduces the 

number of parameters used in each iteration. This reduces the computation resources needed, 

increasing the efficiency of training the network12. 

 

Convolutional Neural Networks 

As discussed in the previous section, deep learning has been shown to be successful in 

classification and regression tasks. In general, tasks related to images are an important part of 

this field. The classical way to process images is to expand all pixel values and put them into a 

column vector. Then the column vector is used as an input that passes through the normal neural 
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networks to get a prediction. Since 2012, convolution neural networks have quickly shown an 

overwhelming advantage in the field related to images. A convolutional neural network usually 

contains convolutional layers, pooling layers, and fully connected layers, which will be discussed 

in the following sections. 

 

Convolutional Layer 

 A convolutional layer is made from several convolutional filters that scan the whole 

image. The output of a convolutional layer is called the feature map. Each filter in the same layer 

should have the same size: 𝐹 × 𝐹 × 𝐶. F is the filter width, which is usually a small odd number 

such as 3 or 5, and C is the channel number of the image. For example, a gray scale image has 

only one channel, while an RGB color image has 3 channels. At each position, the sum of the 

product of each element in the filter and the corresponding pixel value in the image is calculated, 

then activated by an activation function (usually ReLU) [Eq. (1.40)]. 

𝑣 = 𝑅𝑒𝐿𝑈(∑ 𝑤𝑖𝑝𝑖𝑖 + 𝑏)                                                 (1.40) 

When one filter finishes scanning the image, all the output values will form one channel of a new 

feature map, shown as Fig. 1.10. 
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Fig. 1.10. Diagram showing convolution of a 4 × 4 × 1 image with a 

3 × 3 × 1 filter. 

 

In Fig. 1.10 the output channel is calculated by: 

𝑣11 = ReLU(𝑤1𝑝11 + 𝑤2𝑝12 + 𝑤3𝑝13 + 𝑤4𝑝21 + 𝑤5𝑝22 + 𝑤6𝑝23 + 𝑤7𝑝31 + 𝑤8𝑝32 + 𝑤9𝑝33 +

𝑏)  

𝑣12 = ReLU(𝑤1𝑝12 + 𝑤2𝑝13 + 𝑤3𝑝14 + 𝑤4𝑝22 + 𝑤5𝑝23 + 𝑤6𝑝24 + 𝑤7𝑝32 + 𝑤8𝑝33 + 𝑤9𝑝34 +

𝑏)  

𝑣21 = ReLU(𝑤1𝑝21 + 𝑤2𝑝22 + 𝑤3𝑝23 + 𝑤4𝑝31 + 𝑤5𝑝32 + 𝑤6𝑝33 + 𝑤7𝑝41 + 𝑤8𝑝42 + 𝑤9𝑝43 +

𝑏)  

𝑣22 = ReLU(𝑤1𝑝22 + 𝑤2𝑝23 + 𝑤3𝑝24 + 𝑤4𝑝32 + 𝑤5𝑝33 + 𝑤6𝑝34 + 𝑤7𝑝42 + 𝑤8𝑝43 + 𝑤9𝑝44 +

𝑏)  

Each additional filter will get a new channel in the output map, increasing the thickness. Fig. 

1.11 shows a 3D view of a convolutional layer. 
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Fig. 1.11 A convolutional layer with two filters. The red filter and blue 

filter both scan the image with 3 channels on the left side, and each of them will 

form a channel. The two channels stack together to form the new feature map. 

 

Besides the filter width F and number of filters N, there are two other hyper parameters in 

a convolutional layer: the stride size and padding size. The stride is the step size when a filter 

scans the image. It defines how many pixels shift in the input image as the filter moves, to get a 

pair of neighboring cells in the output channel. In Fig. 1.10, the stride equals 1. 

In the output channel, the height and width are always few pixels smaller than the input 

image. The number could add up as more convolutional layers succeed each other. Padding is a 

solution by adding extra pixels (usually with values equal to 0) around the boundary of the input 

image. The padding size is always an even number, since left and right, top and bottom occur in 

pairs (Fig. 1.12). 
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Fig. 1.12. A 4 × 4 × 1 image padded with 0. The padding size equals two. 

 

From all the information above we calculate that for an input image size 𝐻𝐼 × 𝑊𝐼 × 𝐶 

convoluted by N 𝐹 × 𝐹 × 𝐶 filters, the output feature map size is: 

(
𝐻𝐼 − 𝐹 + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1) × (

𝑊𝐼 − 𝐹 + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1) × 𝑁 

The new feature map could be treated as an image which could be put into another convolutional 

layer. Beside the convolutional layers, the convolution neural networks usually also contain 

pooling layers and fully connected layers, discussed next. 

 

Pooling Layer 

A pooling layer (or subsampling layer) is a layer usually put after a convolutional layer, 

that shrinks the height and width of an image or feature map by a factor of 2. The most common 

pooling layers are average pooling and max pooling. For every channel of the image or feature 
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map, the pooling layer separates them into non-overlapping 2 by 2 pixel grids. Average pooling 

calculates the average value of the 4 values in the grid, while max pooling chooses the maximum 

value in the grid. Fig. 1.13 shows average pooling and max pooling of a 4 × 4 × 1 feature map. 

 

Fig. 1.13. The results of a 4 × 4 × 1 image passing through an average 

pooling layer and a max pooling layer. 

 

The pooling layer reduces the number of parameters to learn by factor of 4. It essentially plays a 

role in summarizing the feature maps. Besides saving the computational resources, the pooling 

layer also helps to reduce the chance of over-fitting. In some situations, the pooling cell can be 

larger than 2 × 2. The stride and padding techniques can also apply to pooling layers. 

 

Fully Connected Layer 

Fully connected layers are usually put at the last step to get the prediction of the whole 

neural network. After passing through the convolutional layers and pooling layers, the input 
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image will become a feature map, which is a 3-dimensional matrix. If there are no convolutional 

or pooling layers anymore, the feature map will be expanded into a column vector. The column 

vector is treated as the input of the fully connected layer. Fig. 1.14 shows a simple example of 

how the fully connected layers work. 

 

Fig. 1.14. A diagram shows a 2 × 2 × 2 feature map expanded into an 8-

element column vector, which then feeds into a fully connected layer and output the 

prediction. The fully connected layer has 3 elements.  

 

Fully connected layers work exactly the same as traditional neural networks mentioned in the 

previous section. Thus, the loss function will be determined based on the task type, such as mean 

squared error for regression tasks, cross-entropy loss for binary classification tasks, etc. 

 

Convolutional Neural Network Models 
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Starting in 2010, there is an annual international competition called the ImageNet Large 

Scale Visual Classification Challenge (ILSVRC)13. ILSVRC uses the subset of ImageNet14, 

which contains 1.2 million training images, 50,000 validation images and 150,000 testing 

images. The images are separated into 1000 categories. The two main metrics used in the 

competition are the top-5 error and top-1 error. The top-5 error is the fraction of predictions that 

failed to include the true label of the image among the top 5 guesses. The top-1 error is the 

fraction of the predictions that do not give the true label as the highest guess. The ILSVRC has 

become the standard benchmark of convolutional neural networks in image classification. The 

main milestones in the development of convolutional neural networks are presented here. 

AlexNet15 was the winner of the LSVRC-2012. It achieved 17.0% top-5 error and 37.5% 

top-1 error. By contrast, the best top-5 grade of networks without convolutional neural networks 

was 26.1%. AlexNet used 2 GPUs to train the images with two groups of convolutional layers 

going parallel. The 1 GPU version of AlexNet is called CaffeNet. Fig. 1.15 shows the 

architecture of AlexNet and CaffeNet. 
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Fig. 1.15. The architecture of (a) AlexNet, (b) CaffeNet.  

 

VGG net won the LSVRC-201416. It achieved 6.8% top-5 error and 23.7% top-1 error. The 

VGG net only used the smallest filter (3 × 3), since the group believed that the larger filters are 

equivalent to stacking 3 × 3 filters which contains less parameters. Fig. 1.16 shows the 

architecture of the VGG net. 
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Fig.1.16. The architecture of the VGG net. 
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CHAPTER TWO: SEMICONDUCTORS AND PHOTOLUMINESCENCE 

Band Structure and Semiconductors 

Nuclei in a crystal form a periodic potential. To simplify the structure, Kronig and Penny 

introduced a model17 which treated an electron in a linear array of positive nuclei as periodic 

square wells (Fig. 2.1). 

 

Fig. 2.1. The periodic square well potential function. 𝑉 = 0 when 

𝑛(𝑎 + 𝑏) < 𝑥 < 𝑛(𝑎 + 𝑏) + 𝑎, and  𝑉 = 𝑉0 when 𝑛(𝑎 + 𝑏) − 𝑏 < 𝑥 < 𝑛(𝑎 + 𝑏), 

where 𝑛 is an integer. 

 

Applying the Schrödinger equation, 

𝑑2𝜓

𝑑𝑥2 + 𝛼2𝜓 = 0       when 𝑛(𝑎 + 𝑏) < 𝑥 < 𝑛(𝑎 + 𝑏) + 𝑎          (2.1) 

𝑑2𝜓

𝑑𝑥2 + 𝛽2𝜓 = 0        when 𝑛(𝑎 + 𝑏) − 𝑏 < 𝑥 < 𝑛(𝑎 + 𝑏)         (2.2) 

where 𝛼2 =  
2𝑚𝐸

ℏ2  and 𝛽2 =
2𝑚

ℏ2 (𝑉0 − 𝐸). If 𝑉0 > 𝐸, 𝛼 and 𝛽 are real. 
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From these equations, Kronig and Penny obtained the relationship: 

𝛽2 −
𝛼2

2𝛼𝛽
− sinh 𝛽𝑏 sin 𝛼𝑎 + cosh 𝛽𝑏 cos 𝛼𝑎 = cos 𝑘(𝑎 + 𝑏)             (2.3) 

To simplify the relation, they assumed the potential to be delta functions, 𝑉 = 𝛿(𝑥 − 𝑛𝑎). Thus 

𝑉0 goes to infinity and 𝑏 goes to 0, but the product 𝑉0𝑏 remains a finite value. Then Eq. (2.3) 

becomes: 

𝑃
sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎                                          (2.4) 

where 𝑃 =
𝛽2𝑎𝑏

2
=

𝑚𝑉0𝑎𝑏

ℏ2 . Since 𝛼 = √
2𝑚𝐸

ℏ2 , Eq. (2.4) represents the relationship between energy 

and k-vector (crystal momentum). The E vs. k function is a discontinuous function (Fig. 2.2).  

 

Fig. 2.2. The left side is the plot of energy in momentum space, and the 

right side is the plot in the reduced vector zone. 
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The intervals between the energy states are called forbidden bands. From the Pauli exclusion 

principle, each energy state can only hold a limited number of electrons. At zero temperature, 

electrons occupy the lower energy bands. The highest energy band which has been fully 

occupied is called the valence band, and the next higher band is the conduction band. The energy 

difference between the maximum point of the valence band (VBM) and the minimum point of 

the conduction band (CBM) is called the band gap. If the VBM and CBM occur at the same k, 

the band gap is called a direct gap; otherwise, an indirect gap. The transition of an electron from 

VBM to CBM in a direct gap semiconductor needs a photon that has an energy greater than or 

equal to the band gap. However, for an indirect gap, to conserve the momentum, the transition 

requires a phonon to participate. Usually, semiconductors have band gaps between 0 to 4 eV, but 

it is not a strict rule18.  

 

Fig. 2.3. Plots of E versus k function. The left side is a direct gap, and the 

right side is an indirect gap. 
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Vibrational Properties and Phonons 

In solid, the atoms will oscillate about their equilibrium positions. These vibrational 

excitations are called lattice waves and quantized into phonons. A simple model is a linear chain 

with two different atoms. Let’s assume there are two different atoms with mass M1 and M2 

(𝑀1 > 𝑀2) in a chain one by one. The forces between them are spring forces with spring 

constant C. The displacements of the sth pair of atoms from their equilibria are 𝑢𝑠 and 𝑣𝑠 (Fig. 

2.4). 

 

Fig. 2.4. Illustration of a two-atom chain model. 

 

The waves are expressed in terms of complex exponentials: 

𝑢𝑠 = 𝑢𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡)                                                    (2.5) 

𝑣𝑠 = 𝑣𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡)                                                    (2.6) 

where 𝑢 and 𝑣 are amplitudes, and 𝐾 is the phonon momentum. With 𝐾 > 0, the wave travels to 

the right, and with 𝐾 < 0, the wave travels to the left. From the displacement and spring 

constant, we get the force applied on the two atoms: 
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𝐹𝑀1
= 𝐶(𝑣𝑠 − 𝑢𝑠) + 𝐶(𝑣𝑠−1 − 𝑢𝑠) = 𝐶(𝑣𝑠 + 𝑣𝑠−1 − 2𝑢𝑠)             (2.7) 

𝐹𝑀2
= 𝐶(𝑢𝑠+1 − 𝑣𝑠) + 𝐶(𝑢𝑠−1 − 𝑣𝑠) = 𝐶(𝑢𝑠+1 + 𝑢𝑠 − 2𝑣𝑠)          (2.8) 

Here 𝑢𝑠+1 = 𝑢𝑒𝑖(𝐾(𝑠+1)𝑎−𝜔𝑡) = 𝑒𝑖𝐾𝑎𝑢𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡), and 𝑣𝑠−1 = 𝑣𝑒𝑖(𝐾(𝑠−1)𝑎−𝜔𝑡) =

𝑒−𝑖𝐾𝑎𝑣𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡). From Newton’s second law and Eq. (2.5) and Eq. (2.6), we get: 

 𝐹𝑀1
= 𝑀1

𝑑2𝑢𝑠

𝑑𝑡2 = −𝑀1𝜔2𝑢𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡)                                       (2.9) 

𝐹𝑀2
= 𝑀2

𝑑2𝑣𝑠

𝑑𝑡2 = −𝑀2𝜔2𝑣𝑒𝑖(𝐾𝑠𝑎−𝜔𝑡)                                      (2.10) 

Combining the equations above yields: 

−𝑀1𝜔2𝑢 = 𝐶[𝑣(1 + 𝑒−𝑖𝐾𝑎) − 2𝑢]                            (2.11) 

−𝑀2𝜔2𝑣 = 𝐶[𝑢(1 + 𝑒𝑖𝐾𝑎) − 2𝑣]                            (2.12) 

Then the solution for 𝜔 is: 

𝜔2 = 𝐶(
1

𝑀1
+

1

𝑀2
) ± 𝐶√(

1

𝑀1
+

1

𝑀2
)2 −

2

𝑀1𝑀2
(1 − cos 𝐾𝑎)        (2.13) 

Eq. (2.13) shows the vibration has two modes. In the low frequency mode, two atoms move with 

the same phase, and the branch is called the acoustical branch. In the high frequency mode, 

atoms move with the opposite phase, and the branch is called the optical branch. At the Brillouin 

zone center (𝐾 = 0), the acoustical branch frequency 𝜔 equals 0, and the optical branch 

frequency equals √2𝐶(
1

𝑀1
+

1

𝑀2
). At the Brillouin zone edge (𝐾 = ±

𝜋

𝑎
), the acoustical branch 
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frequency equals √
2𝐶

𝑀1
, and the optical branch frequency equals √

2𝐶

𝑀2
. The dispersion relation is 

shown in Fig. 2.5. 

 

Fig. 2.5. Dispersion relation of the two-atom linear chain. 

 

Between the branches, there is a region of frequencies that the wave cannot propagate, 

which is called forbidden gap. Besides longitudinal waves, the atoms can also move 

perpendicular to the wave propagation direction resulting a transverse wave. As each 

longitudinal mode has two transverse modes, there are four vibrational modes: one longitudinal 

acoustical (LA) branch, two transverse acoustical (TA) branches, one longitudinal optical (LO) 

branch, and two transverse optical (TO) branches19. 

 

Electrons and Holes 
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At zero temperature in an intrinsic semiconductor, the valence band is full, and the 

conduction band is empty. Therefore, the semiconductor is insulating. When the temperature 

increases, the electrons are excited from the valence band to the conduction band. The previously 

occupied positions in the valence band are left with electron “holes”. When applying an electric 

field, a nearby electron could move into a hole, which can be seen as a hole with positive charge 

that is moving. An electron in the conduction band and a hole in the valence band have effective 

masses20: 

𝑚𝑒 = ℏ2 (
𝜕2𝐸

𝜕𝑘2)
−1

                                                  (2.14) 

𝑚ℎ = ℏ2 (
𝜕2𝐸ℎ

𝜕𝑘2 )
−1

                                               (2.15) 

where 𝐸ℎ is the hole energy and is equal to −𝐸. Both 𝑚𝑒 and 𝑚ℎ depend on the curvature of the 

band. Near the CBM and VBM, the band structure can be approximated as a parabolic function, 

expressed as: 

𝐸 =
ℏ2𝑘2

2𝑚𝑒(ℎ)
                                                        (2.16) 

The product of the electron density 𝑛 and hole density 𝑝 in a semiconductor is: 

𝑛𝑝 = 𝑁𝑐𝑁𝑣𝑒
−𝐸𝑔

𝑘𝐵𝑇                                                (2.17) 

where 𝐸𝑔 is the band gap energy and 𝑘𝐵 is the Boltzmann constant. 𝑁𝑐 and 𝑁𝑣 are the density of 

states in the conduction band and valence band, which are given by: 

𝑁𝑐 =
1

√2
(

𝑚𝑒𝑘𝐵𝑇

𝜋ℏ2 )
3/2

                                       (2.18) 
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𝑁𝑣 =
1

√2
(

𝑚ℎ𝑘𝐵𝑇

𝜋ℏ2 )
3/2

                                      (2.19) 

From Eq. (2.17), the free carrier density is related to the band gap. 

The Fermi energy 𝐸𝑓 represents the energy where the probability of an electron 

occupying a state is 50%. In an intrinsic semiconductor, the Fermi energy is near the middle of 

the band gap. The Fermi-Dirac distribution gives the probability that an energy level E is 

occupied18: 

𝑓(𝐸) =
1

𝑒
(𝐸−𝐸𝑓)/𝑘𝐵𝑇

+1
                                          (2.20) 

Within a range of 𝑘𝐵𝑇 around 𝐸𝑓, the electron probability distribution drops from nearly 1 to 

almost 0 (Fig. 2.6).  

 

Fig. 2.6. Plot of Fermi-Dirac distribution.  
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At room temperature (300 K), 𝑘𝐵𝑇 is about 0.026 eV. It is very unlikely that an electron will be 

thermally excited to the conduction band in a wide band gap intrinsic semiconductor. 

An electron and a hole can attract each other by the coulomb force, forming an electron-

hole pair. This electron-hole pair quasi-particle is called an exciton. Frenkel in 1931 first gave a 

model to describe the exciton21. In Frenkel excitons, the electron-hole pair is tightly bound 

together, and the particle size is small. It happens in materials with a small dielectric constant. In 

semiconductors, the dielectric constant is large, and the coulomb interaction between the 

electron-hole pair is weaker. Wannier in 1937 developed exciton theory and introduced the 

Wannier-Mott model22. In this model, the electron-hole pair is loosely coupled, which describes 

the excitons in semiconductors more appropriately. The exciton can absorb energy and dissociate 

into a free electron and a hole. Therefore, the binding energy of an exciton is smaller than the 

band gap. There are other many-particle states in semiconductors. Biexcitons are formed by van 

der Waals binding of two excitons. More excitons can also bind into other excitonic molecules.  

 

Point Defects 

Point defects change the properties of a semiconductor. Point defects are classified into 

different groups such as vacancy, interstitial and substitutional. Point defects can lead to extra 

electron energy states inside the band gap. If the defect can easily contribute free electrons, it is 

called a donor. At the opposite extreme, if the defect easily binds electrons, thus leaving free 

holes, it is called an acceptor. The extra energy state created by donors (acceptors) are called 

donor (acceptor) levels. If the donor (acceptor) level is close to conduction (valence) band edge, 

the donor (acceptor) is called shallow.  
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In silicon, the fifth group elements (P, As, Sb, Bi) have one more valence electron needed 

to form a Lewis octet. They become shallow donors when substituting a host atom. The third 

group elements (B, Al, Ga, In, Tl) need one more electron to form a Lewis octet23. They become 

shallow acceptors when substituting a host atom. The electron or hole orbit the defect like a 

hydrogen atom. The binding energy is weak, such that thermal energy causes the bound electron 

or hole to become free electron or hole. Fig. 2.7 shows examples of a shallow donor and 

acceptor. 

 
                                                    (a)                                                               (b) 

Fig. 2.7 (a) Phosphorus substitutes a silicon atom donating an electron, and 

the electron is weakly bound to P+, forming a shallow donor. (b) Boron substitutes a 

silicon atom and grabs an electron, and the hole is weakly bound to B-, forming a 

shallow acceptor. 

 

Fig. 2.7 gives examples of a single donor and acceptor. They both have a single level in the band 

gap. Some defects have more levels. For example, selenium in germanium is a double donor, and 

copper in germanium is a triple acceptor. 
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If the energy states are far from the band edges, they are deep levels. The electrons or 

holes are strongly bound at the impurity cores, and their wave functions are localized. For 

example, nitrogen substitutes oxygen in zinc oxide. The acceptor level is 1.5 eV higher than the 

valence band. An oxygen vacancy in zinc oxide is a deep double donor since it can bind two 

electrons tightly in the impurity core. A zinc vacancy is a deep double acceptor18. 

The type of major charge carriers puts semiconductors into two classes. If the main 

charge carriers are electrons, it is called n-type. If holes, it is called p-type. In semiconductors 

with mixed donors and acceptors, the minority could compensate the majority. Majority donors 

make a semiconductor n-type, while majority acceptors make it p-type. 

 

Transitions and Photoluminescence 

When semiconductors absorb energy, electrons may transition higher energy levels, 

generating electron-hole pairs. Inversely, electron-hole pairs could recombine and emit energy, 

which is called recombination. If the emitted energy is in form of photons, the process is called 

radiative recombination. Furthermore, if the energy that generated the electron-hole pairs is in 

form of photons, the radiative recombination is called photoluminescence (PL). PL is very 

interesting since it is easily observable and may contain energy level and defect information24. 

Many transitions can cause PL, five of which are shown in Fig. 2.8.  
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Fig. 2.8. Illustration of five observed transitions in PL. (a) Band-to-band, 

(b) Free exciton, (c) Donor-to-valence, (d) Free-to-acceptor, (e) Donor-acceptor 

pair. 

 

The transition in Fig. 2.8(a) is the band-to-band transition. It refers to free electrons in 

conduction band dropping into the holes in valence band and emitting photons. When the light 

source has energy greater than or equal to the band gap, electrons in valence band are excited 

into the conduction band. The density of electrons and holes will be greater than the equilibrium. 

The recombination rate is proportional to the ratio of the product of electron and hole density to 

the equilibrium25 [Eq. (2.21)]. 

𝑅 ∝
𝑛𝑝

𝑛0𝑝0
=

(𝑛0+∆𝑛)(𝑝0+∆𝑝)

𝑛0𝑝0
= 1 +

∆𝑛

𝑛0
+

∆𝑝

𝑝0
+

∆𝑛∆𝑝

𝑛0𝑝0
                        (2.21) 

As the non-equilibrium carrier densities are small, the term of ∆𝑛∆𝑝 can be neglected. The 

recombination rate coming from the non-equilibrium carrier densities is: 

∆𝑅 ∝
∆𝑛

𝑛0
+

∆𝑝

𝑝0
                                                           (2.22) 
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From Eq. (2.22), the recombination is dominated by the minority charge carrier type. In an n-

type semiconductor where 𝑛0 ≫ 𝑝0, the recombination is controlled by non-equilibrium holes. 

At the opposite side, a p-type semiconductor’s band-to-band recombination is controlled by the 

non-equilibrium electrons. In the indirect gap semiconductors band-to-band transitions must 

simultaneously emit phonons in order to conserve momentum. 

The transition in Fig. 2.8(b) is a free exciton recombination. Free excitons have the 

ability to move though the crystal. The energy of a free exciton includes the coulomb interaction 

energy and its kinetic energy. When a radiative recombination of an exciton happens, the exciton 

annihilates, and the emitted photon has the same momentum as the exciton25. 

Fig. 2.8 (c) and (d) are both referred as free-to-bound transitions. Fig. 2.8(c) illustrates 

recombination of an electron localized at a donor with a hole in valence band, and Fig. 2.8(d) 

shows the recombination of a free electron and a hole localized at an acceptor. 

The transition in Fig. 2.8(e) is a donor-acceptor pair (DAP) transition. DAPs behave as 

stationary molecules in the semiconductor. The Coulomb interaction lowers their binding 

energies. The recombination energy of a DAP is given by25: 

ℏ𝜔 = 𝐸𝑔 − (𝐸𝐴 + 𝐸𝐷) +
𝑒2

𝜖𝑅
                                              (2.23) 

where 𝐸𝐴 and 𝐸𝐷 are the acceptor and donor binding energies, and R is the distance between the 

donor and acceptor. If the distance is very large, the last term of Eq. (2.23) can be neglected. If 

the donor and acceptor are very close to each other, the 
𝑒2

𝜖𝑅
 gets larger and the recombination 

energy may exceed the band gap energy. 
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PL Spectroscopy 

In the previous section, we mentioned that radiative recombination in a semiconductor 

could yield photoluminescence. Because there are many different radiative recombination 

processes happening simultaneously, the emitted photons have different energies. PL 

spectroscopy is a technique that excites the sample with a fixed wavelength light source and 

collects a spectrum of emitted photons. The resulting PL spectrum is usually represented in two 

forms. The first one plots the luminescence intensity versus the photon’s wavelength, while the 

second one plots the intensity versus the photon energy.  

The relationship between the photon energy 𝐸 and the photon’s wavelength 𝜆 is: 

𝐸 =
ℎ𝑐

𝜆
                                                                   (2.24) 

where ℎ is Planck’s constant and 𝑐 is the light speed. The photon energy in eV and wavelength in 

nm can be converted by: 

𝐸(eV) =
1239.8

𝜆(nm)
                                                         (2.25) 

From Eq. (2.25), the two types of PL spectra can be converted to each other, but it will result 

some resolution unbalance. For example, suppose a PL spectrum is collected as luminescence 

versus wavelength with 1 nm intervals, and is converted to luminescence versus photon energy. 

If energy is linear on the x-axis, the higher energy part tends to have fewer data points. 

An example of a PL spectrum of gallium nitride (GaN) sample is shown in Fig. 2.9. 
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Fig. 2.9. A PL spectrum of gallium nitride plotted as intensity as a function 

of the emitted photon’s wavelength. The excitation light source has a wavelength of 

320 nm. 

 

In Fig. 2.9 the peak near 362 nm is due to the band-to-band transition, the small peak near 382 

nm is due to free electrons recombining with holes in acceptors, and the peak near 545 nm is due 

to carbon related defects. 

While PL spectroscopy measures the emission spectrum with a fixed light source, 

photoluminescence excitation (PLE) spectroscopy measures the intensity of emitted light at a 

fixed wavelength with variable exciting light. Therefore, PLE needs a light source that can sweep 
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across a broad wavelength range. Fig. 2.10 shows a PLE spectrum of a gallium oxide (Ga2O3) 

sample. 

 

Fig. 2.10. PLE spectrum of Ga2O3 sample. The measured PL light is fixed 

at 378 nm. 

 

Fig. 2.10 shows that PL is maximized for an excitation wavelength of 260 nm, which is about the 

band gap of Ga2O3. 

 

PL Instrument 

The spectra in Figs. 2.9 and 2.10 were collected on a Horiba Fluorolog spectrometer. The 

Fluorolog uses a 450 W xenon lamp and monochromator as the excitation source, and a R928P 
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PMT as the detector. A scanning monochromator and PMT collect the intensity of emitted light 

at different wavelengths one at a time. A schematic is shown in Fig. 2.11. 

 

Fig. 2.11. Schematic of Horiba Fluorolog spectrometer. The image is from 

the Fluorolog Brochure26.  

 

Another kind of PL system uses a laser as excitation source and array device such as 

charge-coupled device (CCD) as detector. With a diffraction grating, the emitted light spreads 

into beams with different wavelengths that excite the CCD’s different pixels. The advantage of 

this kind of device is speed. Instead of scanning the light energy range, it can acquire the whole 

PL spectrum instantly. However, it has less sensitivity and more noise than the PMT detector. 

  



45 

 

CHAPTER THREE: OPTICS AND CONFOCAL LASER MICROSCOPY 

Lenses and Linear Optics 

Light propagates following a straight line in a homogeneous medium. When light travels 

from one medium to a different medium, its trajectory will be bent. This phenomenon is called 

refraction. Refraction follows Snell’s law27: 

sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
                                                           (3.1) 

where 𝜃1 is the angle of incidence and 𝜃2 is the angle of refraction; 𝑛1 and 𝑛2 are the refractive 

index of two media, equal to the ratio of speed of light in vacuum over the speed of light in each 

medium. The process is shown in Fig. 3.1.  

 

 Fig. 3.1. Illustration of light refraction between two media with refractive 

indices 𝑛1 and 𝑛2. 
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A lens is a transmissive optical device that uses refraction to change the direction of light. 

The material’s refractive index and the lens’ shape will determine how the light rays converge or 

diverge after transiting the lens. A simple lens, which contains only a single piece of transparent 

material, can be classified into two types: convex and concave. A convex lens will focus an 

incident collimated light beam while a concave lens will disperse the incident collimated light 

beam. Fig. 3.2 shows a schematic of the convex lens and concave lens.  

 

Fig. 3.2. Schematic of convex and concave lenses. The convex lens focuses 

the collimated light beam into a point. The concave lens will disperse the light 

beam; extrapolating the refracted light rays will converge to a point (green dashed 

lines). 

 

To simplify the ray diagram, a lens can be treated as a plane with zero thickness. We use 

notations shown in Fig. 3.3 to represent convex and concave lenses. 
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Fig. 3.3. Ray diagrams of a collimated beam passing through a convex and 

concave lens. 

 

The line perpendicular to the lens and across the center of the lens is called the principal 

axis. When a collimated light beam is incident along the principal axis, the refracted beam or its 

opposite extension will focus on a point on the principal axis, and this point is called principal 

focus. The plane perpendicular to the principal axis and that contains the principal focus is called 

the focal plane, and the distance between the focal plane to the lens is called focal length. All the 

collimated incident light rays will have a focal point on the focal plane. An example of three 

collimated light beams through a convex lens is shown in Fig. 3.4. 
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Fig. 3.4. Three collimated light beams incident from different directions 

passing through a convex lens. All of them focus on the focal plane. 

 

When light emitted by object passes through a lens, an image can be formed. If the image 

can be projected onto a screen, it is a real image; otherwise, it is a virtual image. The 

displacement from the lens to the object is called the object distance 𝑠, and the displacement 

from the lens to the image is called image distance 𝑠′. The relationship between 𝑠 and 𝑠′ is: 

1

𝑠
+

1

𝑠′
=

1

𝑓
                                                           (3.2) 

where  𝑓 is the focal length and is positive for a convex lens and negative for a concave lens. Fig. 

3.5 shows how the images form from an object through the lenses. 
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Fig. 3.5. (a) Real image formed by a convex lens. (b) Virtual image formed 

by a convex lens. (c) Virtual image formed by a concave lens. 

 

The image formed by one lens can be treated as a new object and forms a new image by 

another lens, which is in sequence and shares the common principal axis with the first lens. 

Therefore, a couple of simple lenses in sequence along the principal axis can form a compound 

lens. A common usage of compound lens is the beam expander28. The simplest types of beam 

expander are Keplerian and Galilean, both of which contain two simple lenses. The Keplerian 

beam expander contains two convex lenses with different focal lengths, and these lenses are 

placed with a distance equal to sum of the focal lengths. The Galilean beam expander contains a 

concave lens with a smaller focal length and a convex lens with a larger focal length. A 

schematic of the two beam expanders is shown in Fig. 3.6. 
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Fig. 3.6. Schematic of (a) Keplerian and (b) Galilean beam expander. 

 

Gaussian Beam 

A gaussian beam is a beam whose intensity in the transverse plane follows a gaussian 

distribution29. Usually, a laser beam is assumed to be gaussian. The beam intensity as a function 

of the radius from the beam center is: 

𝐼(𝑟) = 𝐼0𝑒
−

2𝑟2

𝑤(𝑧)2                                                           (3.3) 

where 𝐼0 is the intensity at the beam center. From Eq. (3.3), 𝑤(𝑧) is the radius where the beam 

intensity is 1/𝑒2 of 𝐼0. Therefore 𝑤(𝑧) is a quantity that represents the size of the beam. The 𝑧-

axis is along the direction of the beam propagation. An illustration of a gaussian beam in 

transverse plane is shown in Fig. 3.7.  
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Fig. 3.7. Illustration of a gaussian beam in the transverse plane. The 

intensity follows a gaussian distribution, and at w, the intensity is 1
𝑒2⁄  of the 

intensity at the beam center. 

 

The gaussian beam diameter reaches a minimum value at 𝑧 = 0, where 𝑤(𝑧) is denoted 

as 𝑤0, the beam waist. In the previous section, we assumed light can focus on a point. However, 

in gaussian beam, the beam is not linear. Near the beam waist, the rules in linear optics do not 

apply, but the linear approximation does apply when 𝑧 is large. If the far field approximation of 

the beam divergence angle is 𝜃, the size of beam waist is given by30: 
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𝑤0 =
𝜆

𝜋𝑛𝜃
                                                        (3.4) 

where  𝜆 is the wavelength and 𝑛 is the index of refraction. An illustration of a gaussian beam 

near the beam waist is given in Fig. 3.8. 

 

Fig. 3.8. Illustration of Gaussian beam with beam waist 𝑤0 and divergence 

angle 𝜃. 

 

Both sides of the beam waist have the same rate of divergence or convergence. The beam size 

increases as a function of beam propagation axis 𝑧31: 

𝑤(𝑧) = 𝑤0√1 + (
𝜆𝑧

𝜋𝑛𝑤0
2)2                                         (3.5) 

The radius of the curvature of the wavefront is given by: 

𝑅(𝑧) = 𝑧[1 + (
𝜋𝑛𝑤0

2

𝜆𝑧
)2]                                           (3.6) 
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When 𝑧 is large, the beam is almost linear, 𝑅(𝑧) ≈ 𝑧. At the area near the beam waist, the 

wavefront is nearly planar and 𝑅(𝑧) goes to infinity at the beam waist. 𝑧𝑅 is defined as the point 

at which 𝑅(𝑧) is at its minimum. From Eq. (3.6), we get: 

𝑧𝑅 =
𝜋𝑛𝑤0

2

𝜆
                                                               (3.7) 

Substituting into Eq. (3.5), we obtain 𝑤(𝑧𝑅) = √2𝑤0. The range of 𝑧 = ±𝑧𝑅 is called Rayleigh 

range, also known as depth of focus of the beam. Using this value, 𝑤(𝑧) can be represented as: 

𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧𝑅
)2                                                   (3.8) 

A gaussian beam passing through a perfect thin lens is still gaussian. With a gaussian 

beam refocused by a convex lens, the beam waist of the incident beam 𝑤0  can be treated as the 

object, and the beam waist of the refocused beam 𝑤0′ can be treated as the image, shown in Fig. 

3.9.  

 

Fig. 3.9. Gaussian beam refocused by a thin convex lens. 
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From Fig. 3.9, the beam size at the lens should be same on both sides, and the magnification 𝑚 is 

defined by 
𝑤0′

𝑤0
. The magnification is given by32: 

𝑚 =
𝑓

√(|𝑠|−𝑓)2+𝑧𝑅
2
                                                              (3.9) 

The relationship between the magnification and the beam waist location is given by32: 

𝑚2 =
𝑤0′2

𝑤0
2 =

𝑠′−𝑓

|𝑠|−𝑓
                                                            (3.10) 

From Eq. (3.9) and Eq. (3.10) we have: 

 𝑠′ = 𝑓 + 𝑚2(|𝑠| − 𝑓) = 𝑓 +
(|𝑠|−𝑓)𝑓2

(|𝑠|−𝑓)2+𝑧𝑅
2                              (3.11) 

If |𝑠| − 𝑓 ≪ 𝑧𝑅 and 𝑓 ≪ 𝑧𝑅, from Eq. (3.11) we get 𝑠′ ≈ 𝑓. If |𝑠| − 𝑓 ≫ 𝑧𝑅 and |𝑠| − 𝑓 ≫ 𝑓, 

Eq. (3.11) still gives 𝑠′ ≈ 𝑓. This is because either at the position very far away from the beam 

waist, or very close to the beam waist, the curvature of the wave is near 0. The modified version 

of Eq. (3.2) for a gaussian beam is given by Self: 

1

𝑠′
=

1

𝑠+
𝑧𝑅

2

𝑠+𝑓

+
1

𝑓
                                                         (3.12) 

A truly collimated beam with zero divergence is impossible to achieve. If the beam is 

collimated along the z axis, the photon momentum in the x and y directions is 0. According to 

Heisenberg Uncertainty Principle, the photon’s position in the x and y directions is completely 

unknown. In this situation, only a beam with infinite width can be perfectly collimated. An 

approximately collimated beam can be achieved by making the distance between the lens and 

beam waist equal to the focal length.  
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Microscope 

A microscope is an optical instrument that contains lenses and can enlarge the image of 

the sample placed in the focal plane. The two main components of a microscope are the objective 

and eyepiece33. The objective, made of compound lenses, is located closest to the sample under 

observation and forms a real image for the eyepiece. The eyepiece projects the image to the 

detector. If the light beam which emits from the object and passes through the objective directly 

forms a real image, then the design is called finite conjugate. If the light beam is collimated after 

passing through the objective, then it is an infinite conjugate optical design. To form a real 

image, the infinite conjugate microscope needs an extra tube lens between the objective and 

eyepiece. The infinite conjugate design is more convenient to add other optical components such 

as beam splitters, polarizers, and filters into the optical path. 

 

Fig. 3.10. (a) Finite conjugate and (b) infinite conjugate microscopes. 
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The magnification of the microscope system is equal to the product of the magnifications 

of the objective and eyepiece [Eq. (3.13)]. 

𝑚𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑚𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 × 𝑚𝑒𝑦𝑒𝑝𝑖𝑒𝑐𝑒                              (3.13) 

For an infinite conjugate microscope, the magnification of the objective is given by: 

𝑚𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
𝑓𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑠

𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
                                             (3.14) 

where the 𝑓𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑠 and 𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 are the focal lengths of the tube lens and the objective. 

A digital camera such as charge-coupled device (CCD) or complementary metal-oxide 

semiconductor (CMOS) camera can be used as the detector, and the eyepiece is not necessary. 

The camera sensor panel is located at the focal plane of the tube lens where the real image of the 

object is formed. 

 

Fig. 3.11. Schematic of a microscope with digital camera as detector. 

 

The resolving power 𝑅 is defined as the minimum distance between two points which are 

separated and can still been recognized distinctly. The equation for 𝑅 is given by: 

𝑅 =
1.22𝜆

2 NA
                                                         (3.15) 
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where 𝜆 is the wavelength of the incident light and NA is the numerical aperture. The value of 

NA is given by33: 

NA = 𝑛 sin 𝜃                                                         (3.16) 

where 𝑛 is the index of refraction, and 𝜃 is half of the vertical angle of the light cone. 

 

Confocal Laser Scanning Microscope 

As discussed in the last section, a microscope should have the object under observation 

placed in the focal plane of objective. However, for a thick sample, the light from above and 

below the focal plane will also been detected. This kind of light will blur the image. Confocal 

microscopy is a technique to reject the out-of-focus light and increase the image resolution. The 

idea was first introduced by Marvin Minsky34, who designed a confocal microscope by adding 

two pinhole apertures before the light source and the detector. The detector can thus only detect 

the light from the focusing point. 

Confocal laser scanning microscopy (CLSM)35 is the most common type in commercial 

usage. It plays an important role in life sciences such as cell imaging36 and tissue imaging37. 

CLSM is also useful in physical science areas such as point defects in semiconductors38. The 

light source is a laser, and usually the detector is a photomultiplier tube (PMT). With the pinhole 

in front of the detector, only the photons coming from the focal point will be detected. By 

moving the stage in the (x, y) plane, a resulting image can be formed. A schematic of the CLSM 

is shown in Fig. 3.12.  
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Fig. 3.12. Schematic of a CLSM. Light from the focal plane is detected by 

the PMT, while the light from above and below the focal plane is rejected by the 

pinhole. 

 

The CLSM can form images with high resolution. However, to achieve this, the pinhole 

aperture should be tiny, which makes the alignment of the optical components difficult. In 

addition, the PMT requires a high-voltage power supply. 

Ye and McCluskey39 proposed a modular CLSM design which uses an off-the-shelf 

digital camera (CCD or CMOS) to replace the physical pinhole and PMT. In their design, the 

light emitted from the focal plane refocuses on the CCD sensor panel. A virtual pinhole can be 
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created by selecting the region of the interest on the recorded image. In a 𝑁 × 𝑁 pixel area 

cropped around the focusing center, the image moment is calculated to analyze the image. The 

equation of the image moment is given by40: 

𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑞𝑦𝑝𝐼(𝑥, 𝑦)𝑦𝑥                                    (3.17) 

where  𝐼(𝑥, 𝑦) is the intensity of the pixel at (𝑥, 𝑦). The CLSM with digital camera does not 

require precise alignment, as the position of virtual pinhole could be decided after the data are 

collected. 

 

Fig. 3.13. A virtual pinhole is created by selecting certain pixels on the 

camera panel. 
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Abstract 

Confocal laser scanning microscopy (CLSM) is a preferred method for obtaining optical 

images with submicron resolution. Replacing the pinhole and detector of a CLSM with a digital 

camera (CCD or CMOS) has the potential to simplify the design and reduce cost. However, the 

relatively slow speed of a typical camera results in long scans. To address this issue, in the 

present investigation a microlens array (MLA) was used to split the laser beam into 48 beamlets 

that are focused onto the sample. In essence, 48 pinhole-detector measurements were performed 

in parallel. Images obtained from the 48 laser spots were stitched together into a final image. 

 

Introduction 

Confocal microscopy34 and multiphoton microscopy42 are among the most popular 

imaging modalities because of their superior optical sectioning capability43. These microscopies 

have found their way into a wide range of life science37, 44, 45 ,46, 47 and materials science35, 48, 49, 50, 
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51 applications. The ability to detect single-molecule fluorescence has provided a wealth of 

information and high-resolution images52,53,54,55. Multiphoton microscopy, despite its advantages 

(deeper penetration depth and better signal to noise ratio), is expensive due to its requirement of 

a high-intensity laser source56. A basic confocal microscopy system uses a relatively inexpensive 

continuous wave laser57. However, a precise scanning/de-scanning system is required to guide 

the emitted light through the pinhole, increasing alignment requirements and cost. 

Confocal laser scanning microscopy (CLSM) can operate in fluorescent mode, where the 

collected light has a longer wavelength than the laser, or reflection mode, where the laser light 

itself is detected. The microscope in the present study operates in reflection mode. Ye and 

McCluskey39,58 proposed a modular CLSM design which uses an off-the-shelf digital camera 

(CCD or CMOS) to replace the physical pinhole and photomultiplier tube. The confocal 

microscope, as a popular base platform, can have other functionalities added to expand its 

versatility. For example, a spectroscopic imaging module enables the scanning confocal 

microscope to do photoluminescence mapping of two-dimensional nanomaterials59.  

Prior work showed that image moment analysis of properly cropped wide-field images in 

CCD confocal microscopy can yield comparable performance to conventional confocal 

microscopy39, including optical sectioning60. Subtractive imaging together with Gaussian fits 

provide further enhancement to the imaging quality61. A major drawback of this method is the 

fairly slow scanning speed. In this work, we introduce a microlens array (MLA) into the incident 

beam path. This splits the laser into a grid of beamlets, significantly shortening the scanning 

time.  
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MLAs have been used in wavefront sensors62, light field microscopy63, multifocal 

multiphoton microscopy64, vibrational spectroscopy microscopy65, and confocal 

microscopy66,67,68. In our work, the MLA is inserted into the incident beam path as an 

intermediate optical element of the CMOS confocal system, which uses a standard microscope 

objective and is (physical) pinhole-free. The entire area of the CMOS array is utilized. 

Spinning-disk methods use an array of pinholes, rather than a single pinhole, and a 

detector records the light intensities from the various pinholes69. Favro et al.70 and the Yokogawa 

Electrical Corporation71 disclosed a microlens array disk coupled to a pinhole array disk in order 

to improve light collection efficiency. A similar approach to focus light through a pinhole array 

was described by Hell et al72. Our method dispenses with pinholes entirely and is thus distinct 

from these approaches. The lack of a spinning disk has the potential to reduce cost. 

 

Experiment 

The system is a modification of the confocal microscope described in Ref. 42. The 

apparatus was built with the Thorlabs 30 mm cage system. The light source is a 4.5 mW power, 

532 nm wavelength collimated laser. A Keplerian style beam expander is placed after the light 

source to expand the beam in order to overfill the microlens array. The microlens array (Thorlabs 

MLA150-5C) consists of a 10 mm × 10 mm square grid of plano-convex lenses on a fused silica 

substrate. The distance between microlenses, or pitch, is 150 μm, and the focal length of each 

microlens is 5.6 mm. The MLA splits the beam into a grid of beamlets and a 200 mm focal 
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length lens is used to collimate these beamlets. The beamlets are then focused on the sample by 

an 8.2 mm focal length objective lens (20×, numerical aperture = 0.4). 

 After reflection by the sample, the laser beams are guided by beam splitter cubes into the 

camera detection module. There are two cameras, an Imaging Source DMK 33UP1300 

monochrome camera (Camera1) placed on the vertical arm to collect the reflected laser spots, 

and a DFK 23U274 color camera (Camera2) on the horizontal arm for sample inspection. The 

sample is moved by the motion module, which contains a piezoelectric position stage controlling 

the x-axis and y-axis, a piezoelectric objective scanner controlling the z-axis, and a 3-axis 

manual stage for initial position control. 
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Fig. 4.1 Schematic diagram of the microscope system. A laser beam passes 

through the microlens array (MLA) and lens (LL). A beam splitter (BS1) directs the 

beamlets to the objective lens (OBJ), which focuses them on the sample. Camera2 

is a color camera for widefield microscopy. Along with the light-emitting diode 

(LED), it is used for sample inspection; i.e., choosing the region of interest. 

Camera1 is a monochrome camera for acquiring images of reflected laser spots. 

 

The sample was a US Air Force resolution target (USAF Ready Optics, California, up to 

group 11). Data acquisition and scanning processes are controlled by a program written in C++. 

λ/2: half wave plate
 

BS: beam splitter
 

BE: beam expander
 

LF: line filter 

LL: laser lens
 

M: mirror
 

MLA: microlens array
 

ND: neutral density filter
 

NF: notch filter
 

PH: pinhole 

PL: polarizer 

PZT: piezo stage

 

TL: tube lens 
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The exposure time was set as 1/500 s and the scanning step was 0.05 µm. The number of steps 

was 200×200, or 10×10 µm. On Camera1, an image of 48 reflected laser spots is collected (Fig. 

4.2). 

The first step is to find the correct Z position where the sample is in the focal plane of the 

microscope. This is done by turning on the light-emitting diode (LED), observing the sample 

with Camera2, and adjusting the objective Z height until the sample surface is in-focus. The 

manual stage is used to select the region of interest. Next, the laser is turned on and the sample is 

scanned. The scanning time depends on the setting of the camera frequency. In our experiment 

the frequency was set as 30 frames per second (fps), which resulted in a total scanning time of 

approximately 20 min. 

 

Fig. 4.2 Reflected laser spots imaged on Camera1. 
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Image Processing 

Scanning and image moment 

Before scanning the sample, a high-quality mirror was used to normalize the intensity of 

each laser spot. The distance between two lenses (pitch) on the microlens array is dl = 150 μm. 

The distance between two laser spots on the sample is given by 

               
l

o

ls
f

f
dd =                                                           (4.1) 

Here, fl is the focal length of the laser lens and fo is the focal length of the objective lens. For fl = 

200 mm and fo = 8.2 mm, Eq. (4.1) yields a distance of ds = 6.15 μm. 

Since the step size is 0.05 µm, we need 123×123 steps for each laser spot to cover the 

whole picture. Because some overlap is required for stitching, however, we need to scan 

additional steps. In practice, 200×200 steps provide sufficient overlap between adjacent pieces. 

After scanning, each camera image is cropped evenly into forty-eight pieces, each of which is 

160×160 pixels. 

The image moment is defined as 

( )=
x y

qp

pq yxIyxM ,     (4.2) 

where I(x,y) is the intensity at pixel (x, y). The sum is performed over a 60×60 pixel region 

around the laser spot. From Eq. (4.2), the 0th order image moment M00 is the irradiance. By 

calculating each spot’s 0th order image moment, forty-eight 200×200 matrices, or graphs, are 

formed.  
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Fig. 4.3 Graph formed by one of the laser spots. Each pixel on the graph is 

determined by the value of 0th order image moment. The image shows part of the 

USAF target group 10. 

 

Gaussian fits 

An alternative analysis was performed by fitting the laser spots to Gaussian functions. 

The equation for a 2D Gaussian is: 

( )
( ) ( )
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
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−
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yx

yyxx
Ayxg


   (4.3)                                      

where A is the peak intensity and (𝑥, 𝑦) gives the spot’s central position. An example of a fit to 

one laser spot is shown in Fig. 4.4. The difference between the experimental and simulated 

images, normalized to the maximum of the experimental image, is shown in Fig. 4.4(c). 
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(a) (b) (c) 

 

Fig. 4.4 (a) Laser spot obtained by Camera1. (b) 2D Gaussian fit. (c) False-

color image of the normalized difference between the experimental spot and the fit. 

 

 

Fig. 4.5 Graph of the A value of the Gaussian fit. Each pixel on the graph is 

determined by the A value (amplitude) of a 2D Gaussian function. The scanning 

region is the same as Fig. 4.3.  
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This fit is performed for each step, and the A value (amplitude) is plotted in a graph. Fig. 

4.5 shows a graph of the A value of the Gaussian fit, for the same scanning region as Fig. 4.3. 

Comparing Fig. 4.3 and Fig. 4.5, it is apparent that the graph of A is sharper than that of M00. A 

1-D slice of the image is plotted in Fig. 4.6. The highlighted region is the intensity of a line 

across three stripes from USAF group 10, element 2. These rectangular stripes and the gaps 

between them are each 0.435 μm wide73. A qualitative assessment of Fig. 4.6 indicates that the 

plot of the A value has lower noise and higher contrast. 

 

Fig. 4.6 Comparison of graphs made by the A value of the Gaussian fit and 

the 0th order image moment. The rectangular region is group 10, element 2. 
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Stitching Algorithm 

The lenses on the microlens array are not perfectly uniform, which causes the laser spots 

to have position and intensity deviations. Simply combining 48 pieces will cause boundary 

discontinuities. To correct this artifact, an algorithm was introduced to smoothly join, or stitch, 

the 48 images. Each image was first multiplied by a normalization constant obtained from the 

mirror scan. For two neighboring pieces, rectangular portions were selected that should overlap 

(40×160 pixels for a vertical boundary, as shown in Fig. 4.7, 160×40 pixels for a horizontal 

boundary). 

Plotting values of each pixel of one rectangular portion versus the values of the 

neighbor’s portion, a linear regression was constructed [Fig. 4.8(a)]. The rectangular portion on 

the neighboring graph was moved until the best linearity was found, which returned a maximized 

r-squared value74. This relative position indicates how the neighboring piece should be 

translated. The r-squared value itself is a statistical measure of the quality of the linear 

regression. 
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                                                            (a)                                                                                 (b) 

Fig. 4.7 Rectangular portions on two neighboring pieces. One of the 

portions is moved until the best overlap is achieved. 

 

   

(a)                                                                                   (b) 

Fig. 4.8 (a) Linear fit with r-squared value closest to 1. (b) Result of 

combining the two neighboring pieces based on the result. 
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Repeating this procedure for the boundaries of all 48 pieces, the whole graph is formed 

piece by piece, like a puzzle. In order to combine all pieces into a whole graph with minimum 

discontinuity and highest position accuracy, the piece that yields the highest r-squared value is 

added first. For example, consider the 1st piece, which is in the upper-left corner. There are two 

neighboring pieces, below and to the right. The linear regression procedure is performed for both 

of these neighboring pieces. Whichever one yields the highest r-squared value is added to the 

board. This procedure is repeated until the 48th piece is added. 

Finally, boundary discontinuities are smoothed by adding a gradient value across a width 

of 20 pixels. The smoothing equation is: 

( )
102

1
0 1 xDII −+=      (4.4) 

where I is the adjusted intensity, I0 is the original intensity, D is the difference between the 

intensity of two pixels on each side of the boundary, and x is the number of pixels away from the 

boundary. The graph of Fig. 4.8(b) after smoothing is shown in Fig. 4.9. The whole graph is 

shown in Fig. 4.10. 
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Fig. 4.9 The same graph as Fig. 4.8(b), with the boundary smoothed via Eq. 

(4.4). 

 

 

Fig. 4.10 The whole graph formed by the stitching method. 
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Conclusions 

We have demonstrated that a microlens array confocal microscope produces images with 

submicron spatial resolution. In principle, using a microlens array could reduce scanning times 

arbitrarily, limited only by the camera frame rate and number of laser spots in the field of view. 

In our experiment, graphs made by Gaussian fits have higher contrast than those obtained using 

M00 (irradiance). Rectangular stripes separated by 0.4 μm can be resolved via the Gaussian-fit 

method. Stitching methods were used to minimize the boundary discontinuities. This method can 

be applied to fluorescence microscopy by placing an appropriate filter in front of the camera. 
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Abstract 

Photoluminescence (PL) spectroscopy is a non-destructive optical method that is widely 

used to characterize semiconductors. In the PL process, a substance absorbs photons and emits 

light with longer wavelengths. This paper discusses a method for identifying substances from 

their PL spectra using machine learning, a technique that is efficient in making classifications. 

Neural networks were constructed by taking simulated PL spectra as the input and the identity of 

the substance as the output. In this paper, six different semiconductors were chosen as categories: 

gallium oxide (Ga2O3), zinc oxide (ZnO), gallium nitride (GaN), cadmium sulfide (CdS), 

tungsten disulfide (WS2) and cesium lead bromide (CsPbBr3). The developed algorithm has a 

high accuracy (>90%) for assigning a substance to one of these six categories from its PL 

spectrum. 

 

Introduction 

Optical spectroscopy is a fast, nondestructive method for analyzing chemical compounds. 

Absorption or emission spectra provide a “fingerprint” of the material as well as its defects. 
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Typical wavelengths range from the UV to near-IR (200 to 1100 nm). When coupled with a 

microscope, spectra can be obtained with high spatial resolution. Types of optical spectroscopy 

include transmission, reflection, fluorescence, and Raman scattering76.  

The interpretation of spectra traditionally relies on the user’s experience. A senior 

researcher might say, “This fluorescence spectrum has a broad green band and a sharp peak in 

the near-UV. That looks like zinc oxide, or maybe titania.” That statement contains several 

concepts, including “spectrum,” “green band,” and “UV peak.” These concepts led the researcher 

to assign high probabilities to zinc oxide and titania. Students or postdoctoral researchers operate 

in an apprentice mode and gradually become familiar with a set of spectral features relevant to 

their research. 

In contrast to mass spectrometry and Raman spectroscopy databases77, there are few tools 

available to identify fluorescence (or photoluminescence, PL) spectra of inorganic compounds. 

The main problem is that room-temperature PL spectra typically consist of broad, overlapping 

bands. The intensity and peak positions depend on excitation intensity, wavelength, and defects 

in the sample. Peak fitting or principal component analysis (PCA)78 may not be optimal for such 

spectra. Machine learning (ML), which can readily group images or other datasets into general 

categories79, has the potential to speed up identification of unknown substances. It can also 

provide a way to organize large collections of spectra, a valuable aid for researchers in chemistry 

and chemical engineering. 

In the present work, a neural network was developed to identify PL spectra. Hornik80 

showed that multilayer feed-forward architecture gives neural networks the potential of being 
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universal approximators. Yarotsky81 proved that deep Rectified Linear Unit (ReLU)4 networks 

are more efficiently approximate functions than shallow networks. We may assume there is a 

function for which the input is the PL spectrum and the output is the substance category. Then 

the task is to build a deep ReLU neural networks to provide this function. 

 

Methods 

Simulated PL Spectra 

 The ML algorithm needs a large amount of data to get trained. To provide enough 

training data, simulated PL spectra were used. In general, the PL spectrum of substance has 

several emission bands, some of which are intrinsic features while others are caused by defects. 

To generate simulated PL data, the emission band wavelengths, and their relative strength and 

width, need to be described. In this work, the bi-gaussian function is used to describe each 

emission peak: 

𝐼 = {
𝐴 exp (

−(𝑥−𝑥0)2

2𝜎1
2 )              𝑥 < 𝑥0

𝐴 exp (
−(𝑥−𝑥0)2

2𝜎2
2 )              𝑥 > 𝑥0

                                  (5.1) 

where 𝐴 is the relative peak height, 𝑥0 is the peak center position, 𝜎1 and 𝜎2 are the left and right 

standard deviations that describe the asymmetric width of the peak. 

An important example is gallium oxide (β-Ga2O3), an emerging material for power 

applications82.  The PL of β-Ga2O3 typically has broad peaks that fall into four categories. The 

first one is the UV band, which is caused by recombination of an electron with a self-trapped 
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hole (STH). The peak center is located near 360 nm. A second peak near 400 nm (UV’) and a 

third peak near 430 nm (blue) are due to donor-acceptor pair (DAP) transitions. The last peak at 

about 520 nm (green), also assigned to a DAP transition, is correlated with high O2 pressure 

during the growth. From these peak positions, and randomized peak intensities and widths, 

simulated Ga2O3 PL spectra were generated. Four examples are shown in Fig. 5.1. Gaussian 

noise (mean 0, standard deviation 0.01) was included in the simulated spectra. 

 

Fig. 5.1 Simulated PL spectra of Ga2O3 with randomized peak intensity and 

width. 
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The same idea was applied to other semiconductors with known emission properties. We 

restricted the data to PL spectra collected at room temperature. For ZnO, there is usually a UV 

peak at 378 nm due to free-exciton recombination and a broad green band near 530 nm due to 

defects83. GaN typically has a peak near 365 nm due to a band–to–band transition, and a small 

peak near 382 nm due to recombination of an electron in the conduction band with a hole bound 

to an acceptor84. Two broad yellow peaks near 482 nm and 525 nm caused by carbon-related 

defects are also observed85. The main peak of CdS86, WS2
87 and CsPbBr3

88, at 508 nm, 630 nm, 

and 523 nm respectively, are due to exciton recombination. 

Machine learning Algorithm 

 Simulated and real PL spectra are represented by column vectors. We focused on the PL 

spectrum between 250 nm to 649 nm with 1 nm as the interval, resulting in an 𝑛 = 400 element 

vector. For spectra with less range, zero padding was used, where the intensity to was set 0 

where values were not reported. To normalize the spectra, the vector was divided by its 

magnitude. 

                                                     𝑥 =
𝑣

‖𝑣‖
                                                           (5.2)                                                      

where 𝑥 is the unit vector and provides the input for the training networks.  

The output 𝑦 is a vector, the dimension of which is the number of classes of substance 

used. The value of the element at the position of the known substance index is 1, and the rest are 

all 0. When 𝑚 PL spectra are stacked one by one, a 𝑛 × 𝑚 matrix 𝑋 is formed. Since the output 

target is already known, this ML approach is supervised learning, and a neural network is 

applied. There are two hidden layers. Each element in a layer is calculated by a linear 
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combination of all elements in the previous layer plus a bias value, followed by a nonlinear 

activation function 𝜎:  

𝑍𝑙 = 𝑊𝑙 ∙ 𝑎𝑙−1 + 𝑏𝑙                                                         (5.3) 

𝑎𝑙 = 𝜎(𝑍𝑙)                                                        (5.4) 

where 𝑎𝑙 is the vector of the lth layer, 𝑊𝑙 is a parameter matrix with rows equal to the number of 

elements in layer l and columns equal to the number in layer l–1, and 𝑏𝑙 is a bias vector with 

same number of elements as layer l. 

 

Fig. 5.2. Schematic diagram of neural networks used in this project. 

 

The ReLU function is used as the activation function of the first two layers and a 

SoftMax function is used as the activation function for the final layer: 

ReLU:  σ(𝑥) = max (0, 𝑥)                                                 (5.5) 

SoftMax: σ(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

   for 𝑖 = 1, 2, 3, … , 𝑘                         (5.6) 
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The final layer is treated as the probability of the input belonging to each class; i.e., a prediction. 

For a known substance, the ideal output layer should be 1 on the corresponding class element 

and 0 for all other elements. We denote the output layer vector 𝑦̃ and the vector that represents 

the real class 𝑦. Both 𝑦̃ and 𝑦 are vectors, the dimension of which is equal to the total number of 

classes. The Loss function describes how close the prediction 𝑦̃ is to the target 𝑦: 

𝐿 = − ∑ (𝑦𝑖ln (𝑦̃𝑖
𝑘
𝑖=1 )                                                      (5.7) 

A small 𝐿 value indicates a good prediction, with a perfect prediction giving 𝐿 = 0. Averaging 

over all 𝑚 training data, the total cost is 

𝐽 =
1

𝑚
∑ 𝐿𝑗

𝑚
𝑗=1                                                               (5.8) 

All 𝑊 and 𝑏 parameters are randomly generated at the beginning, so the predictions are 

far from the target and the cost is high. The method of gradient decent89  is applied to push the 

Cost to 0. All parameters 𝜃 (𝑊, 𝑏) are updated at the same time following the equation: 

𝜃: = 𝜃 − 𝛼 ∙ ∇𝜃𝐽                                                          (5.9) 

where 𝛼 is the learning rate and needs to be set to an appropriately small value. Generating the 

Cost from the most recent parameters is a forward propagation. Updating all parameters from the 

most recent Cost is a backward propagation. One forward and backward propagation is one 

iteration of the training process. After enough iterations, the Cost converges to a constant, small 

value, and the parameters can be used to predict the class of a substance.  

 

Results and Discussion 
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Each substance was represented by 1000 simulated spectra using bi-gaussian functions 

with the parameters shown in Table 5.1. The learning rate was set to be 0.01, the first hidden 

layer contained 50 elements, and second hidden layer contained 20 elements. After 20,000 

iterations, the parameters were trained and could be used in predictions. A plot of the Cost as the 

function of number of iterations is shown in Fig. 5.3. 

Substance Peak Position (nm) Relative Intensity Width (nm) 

Ga2O3 360 

400 

430 

520 

0 – 5 

0 – 5 

0 – 5 

0 – 1 

30 – 50 

40 – 60 

50 – 100 

25 - 100 

ZnO 378 

530 

4 – 12 

1 – 12 

5 – 10 

30 – 60 

GaN 365 

382 

525 

6 – 16 

1 – 2 

1 – 12 

5 - 10 

6 – 15 

25 – 50 

CdS 508 1 5 – 10 

WS2 630 1 8 - 9 

CsPbBr3 523 1 10 – 30 
 

Table 5.1. Parameters used in generating simulated PL spectra. 
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Fig. 5.3. Plot of the Cost as a function of iterations. The learning rate is 0.01 

and 20,000 iterations were processed.  

 

After the training process, the next task is to test how these parameters predict a new, unknown 

PL spectrum. The test is separated into two parts. The first part is to test with the PL spectra 

taken from literature, and the second part is to test with the PL collected in our lab using a 

Horiba Fluorolog spectrometer. By searching for papers with PL spectra, then digitalizing the PL 

with the GetData Graph90 program, the PL data were collected. Applying the parameters 

obtained from the training process, the prediction of the PL spectra collected from literature 

approached 100% accuracy. Figs. 5.4-5.9 show the PL spectra collected from the literature.  
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Fig. 5.4. PL spectra of Ga2O3 from McCluskey82, Liu et al.91, Kumar92, and 

Hou et al.93 

 

 

Fig. 5.5. PL spectra of ZnO from Lyu et al.94, Rui Zhang et al.83 ,and X. T. 

Zhang et al.95 
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Fig. 5.6. PL spectra of GaN from Balkas et al.96, Chen et al.97, Chakrapani et 

al.98, and Freitas et al.84 

 

 

Fig. 5.7. PL spectra of CdS from Hoang et al.86, Hu et al.99, and Ravindran 

et al.100 
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Fig. 5.8. PL spectra of WS2 from Gutierrez et al.87, Shi et al.101, and He et 

al.102 

 

 

Fig. 5.9. PL spectra of CsPbBr3 from Pourdavoud et al.88 and Li et al.103 
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Category Ga2O3 ZnO GaN CdS WS2 CsPbBr3 

 

 

 

98.91% 

 

 

0.09% 

 

 

0.96% 

 

 

0.02% 

 

 

0.00% 

 

 

0.02% 

 

 

 

0.63% 

 

 

99.29% 

 

 

0.00% 

 

 

0.00% 

 

 

0.00% 

 

 

0.07% 

 

 

 

0.19% 

 

 

92.03% 

 

 

7.18% 

 

 

0.00% 

 

 

0.55% 

 

 

0.04% 

 

 

 

0.02% 

 

 

4.15% 

 

 

95.59% 

 

 

0.00% 

 

 

0.24% 

 

 

0.00% 
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0.13% 

 

 

0.02% 

 

 

0.00% 

 

 

99.33% 

 

 

0.01% 

 

 

0.51% 

 

Table 5.2. PL collected from Horiba Fluorolog spectrometer and 

predictions given by the ML algorithm. 

 

The second part was to use machine learning to identify semiconductors measured in our 

lab. The following excitation wavelengths were used: 270 nm (Ga2O3), 320 nm (ZnO #1 and 

GaN), 310 nm (ZnO #2), and 370 nm (CdS). Table 5.2 shows the plots of the PL spectra and the 

suggestions (predictions) given by the ML algorithm. The predictions include the percentage for 

the sample belonging to each category. As shown in bold, the percentages for correct categories 

exceeded 90%. To further test the ML algorithm, we performed a PL measurement on a Zn-

doped Ga2O3 sample. The PL spectrum has signatures from Ga2O3 and ZnO.  
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Ga2O3 ZnO GaN CdS WS2 CsPbBr3 

61.09% 26.09% 12.42% 0.05% 0.05% 0.30% 

 

Table 5.3. PL of Zn doped Ga2O3 collected from Horiba Fluorolog 

spectrometer and the prediction given by the neural networks.  

 

From Table 5.3, we can see that for an unknown PL spectrum, the predictions for the 

categories which contribute to the combined PL are higher than others. The prediction shows the 

probability of Ga2O3 is 61.09%, which is the highest. This make sense because the main 

constituent of the sample is Ga2O3. The probability for ZnO is 26.09%, which is the second 

highest. This result is sensible because the Zn-doped sample also shows the PL signature of 

phase-separated ZnO (the 378 nm peak). 

 

Conclusions 
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 PL spectroscopy combined with machine learning is a potential method for identifying 

unknown substances or providing an organization scheme for a large number of spectra. The 

forward network approach enables the user to assign probabilities to a substance belonging to 

different categories depending on its PL spectrum. Due to the relative lack of PL spectra in the 

literature, simulated PL spectra must be used to train the ML algorithm. Although only six 

categories were used in this preliminary study, the number of categories can be readily scaled up 

to provide suggestions for more substances and differentiate between substances with very 

similar PL spectra. 
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CHAPTER SIX: AUTOFOCUSING OF A CONFOCAL LASER MICROSCOPE USING 

CONVOLUTIONAL NEURAL NETWORKS 

Abstract 

Confocal laser scanning microscopy (CLSM) with a digital camera is a useful method for 

characterizing material surfaces. With a XY stage, a CLSM can scan a large area on a sample. 

Adjusting the height of the objective is necessary which made the laser beam could focus on the 

sample surface. However, if the surface of the sample is not flat, the laser spot will go in and out 

of focus, causing bad scanning results. Deep learning especially convolutional neural networks is 

an efficient way to treat images. It shows its success in the field of object detection104, image 

classification105, face recognition106, etc. This chapter discusses using the deep learning 

techniques to design a model that predicts the out-of-focus distance with the image of laser spot. 

The model can develop to a system that could automatically focusing the CLSM in real time. 

 

Introduction 

The CLSM increases the image resolution by rejecting the light from above and below 

the focal plane. Therefore, maintaining the region of interest on the focal plane is important. Pre-

adjusting the height of the objective is required to make the sample surface on the focal plane. 

During the scan, if the sample surface is not flat, and the changing height is larger than the depth 

of focus of the objective, the resulting image will be blurred. With a large scanning area and 

small scan step size, a whole scanning process could take hours or even days. Thus, an automatic 

system to adjust the objective height to maintain the sample on the focal plane is necessary. With 
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an off-the-shelf digital camera as detector, the CLSM could acquire the image of the laser spot 

continuously during the scan. Therefore, designing a method to predict the distance from the 

sample surface to the focal plane with the image of laser spot can solve this problem. 

 Some sample contains materials with different reflectivity locating at different area. At 

the position of height change, or boundary of different materials, the laser spot is affected and 

not in the shape of a circle. In such cases, a simple method such as using the intensity or 

calculating the image momentum may not work well. Deep learning with convolutional neural 

networks handles tasks with image as input very well. A model could be constructed with the 

image of laser spot as input and prediction of the out-of-focus distance as output. 

 

Apparatus Setup and Sample 

The system is a modification of the confocal microscope described in chapter 4 by 

removing the microlens array. The images of laser spot are collected by an Imaging Source 

DMK 33UP1300 monochrome camera (Camera 1), and there is a DFK 23U274 color camera 

(Camera2) for sample inspection. The light source is a 4.5 mW power, 532 nm wavelength 

collimated laser. The laser beams are focused on the sample by an 8.2 mm focal length objective 

lens (20×, numerical aperture = 0.4). The sample is placed on a piezoelectric position stage 

which has a x-y position control. The schematic diagram is shown in Fig. 6.1. 
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Fig. 6.1 Schematic diagram of the microscope system. It is modified of the 

system in Fig. 4.1 by removing the microlens array. 

 

The sample we use is a semiconductor chip carrier that has gold patterns on silicon. Two areas 

with “cross” patterns were chosen, one used for training and one use for cross-validation10 and 

testing (Fig. 6.2). 

λ/2: half wave plate
 

BS: beam splitter
 

BE: beam expander
 

LF: line filter 

M: mirror
 

ND: neutral density filter
 

NF: notch filter
 

PH: pinhole 

PL: polarizer 

PZT: piezo stage
 

TL: tube lens 
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   (a)                                       (b)                                        (c) 

Fig. 6.2. (a) Photograph of the sample. (b) and (c) Images of two Golden 

“cross” patterns at different positions on the sample collected by Camera 2. 

 

Image Collection 

 The manual stage was adjusted until the surface of the sample was near the focal plane of 

the objective. The piezoelectric position stage scanned 300 steps in each direction on the X and 

Y axis, with a step size of 0.5 μm. The objective height was increased from -10 μm to 10 μm 

about the focusing plane on the Z axis, with a step size of 0.1 μm for the training set and 0.5 μm 

for the testing set. Therefore, there are 900 total (x, y) positions in a 15 μm by 15μm region on 

the sample surface. On each (x, y) position, 200 images were taken for the training set and 20 

images were taken for testing set. The horizontal steps were small such that the dataset included 

laser spots reflecting on edges between the two materials. Examples of different laser spots are 

shown in Fig. 6.3. Images of one laser spot at different heights are shown in Fig. 6.4. 
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        (a)                               (b)                             (c)                              (d)     

Fig. 6.3 Images of laser spots during the scan. (a) Laser reflected from gold. 

(b) Laser spot reflected from silicon. (c) and (d) Laser spots reflected from an edge 

between the two substances. 

 

     
                   (a)                         (b)                       (c)                        (d)                       (e) 

Fig.6. 4 Images of laser spots at different Z heights. They are (a) -6 μm, (b) 

-3 μm, (c) 0 μm, (d) 3 μm, (e) 6 μm from the focal plane. 

 

Learning Model 

 In order to make an autofocusing system, the model needs to read an image of the laser 

spot and give a prediction of how far the sample surface is from the focal plane. The input of the 

model is a 400 by 400 pixel laser spot image, and the output is the distance from the focusing 

plane. As discussed in Chapter 1, the convolutional (conv) neural network is formed by layers 

including convolutional layers, max pooling layers and fully connected layers. In this model, 
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there are 4 groups of conv layers, and each group is followed by a max pooling layer. At the end 

of the model, there are two fully connected layers which propagate the feature map to the output. 

All convolutional layers are activated by the rectified linear unit (ReLU)4 activation function. 

Each convolution layer contains N  3 × 3 × 𝑛 size conv filters. The value n is the number of 

channels of the previous feature map (or image), and the number of conv filters N determines the 

number of channels in the resulting feature map. 

 

Fig. 6.5 Diagram of the convoulutional neural network model. There are 4 

groups of convolutional layers (conv), 4 Max Pooling layers, and 2 fully connected 

layers (FC).  The number of conv layers in each group is 𝑙1, 𝑙2, 𝑙3, 𝑙4 and 𝑙5. 

 

In the first conv layers group, each convo layer contains 16 conv filters; second group 

conv layer contains 32 conv filters; third group conv layer contains 64 conv filters; fourth group 

conv layer contains 128 conv filters; fifth group conv layer contains 256 conv filters. The 

numbers of conv layers in each group are hyperparameters which will decided after comparing 

using cross-validation set. Padding size are all set as 2 and stride sizes are all 1. With this setup 
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and according to chapter 1, the conv layers will not change the size of the feature map. Max 

polling layers are put between every conv filter groups, such that the feature map will reduce the 

height and width by 2 after each group of conv layers. The number of elements of the two fully 

connected layers both set as 1024. The diagram of the neural network is shown in Fig. 6.5. 

 

Training and Test 

When applying the neural network mode to the image, an output 𝑦̃ could be used as the 

prediction of the distance from the focusing plane. To train the model efficiently, the images are 

divided into mini batches, each mini batch contains 64 images. The mean square error function 

[Eq. (6.1)] is used as loss function of the model. 

𝐿 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̃𝑖)2𝑚

𝑖=1                                                        (6.1) 

Where m is the total number of images in the batch and 𝑦 is the real value of the distance from 

the focusing plane. From the loss calculated for a mini batch, the derivative of the loss over all 

parameters could be found, then all the trainable parameters 𝜃 could be updated to a new value 

[Eq. (6.2)]. 

𝜃: = 𝜃 − 𝛼 ∙ ∇𝜃𝐽                                                            (6.2) 

𝛼 is the learning rate and the value is set to 0.0001. When all mini batches been used once, the 

training process has finished one epoch. The task of cross validation set is to figure the best 

combination of the hyper parameters. By monitoring the cross-validation loss, the model will be 
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saved when cross-validation loss improves. After 200 epochs training progress, result of best 

cross-validation losses for all combinations are shown in Table. 6.1. 

Model 𝑙1 𝑙1 𝑙1 𝑙1 𝑙1 Train loss CV loss 

a 1 1 1 1 1 1.10 × 10−3 0.2197 

b 2 1 1 1 1 1.25 × 10−3 0.2171 

c 2 2 1 1 1 2.91 × 10−3 0.2083 

d 2 2 2 1 1 8.20 × 10−4 0.2265 

e 2 2 2 2 1 1.58 × 10−3 0.2316 

f 2 2 2 2 2 2.16 × 10−3 0.1610 

g 1 2 2 2 2 7.27 × 10−3 0.1933 

h 1 1 2 2 2 5.47 × 10−4 0.2032 

i 1 1 1 2 2 4.66 × 10−3 0.174 

j 1 1 1 1 2 8.60 × 10−4 0.2000 

 

Table 6.1. The mean squared loss of tranning dataset and cross validation 

dataset for different hyper parameters combination. The result is evaluated after 

100 epochs trainning progress with learning rate  𝛼 = 0.001. 

 

From Table 1, the combination of hyper parameters in model f is the most accurate one. It 

is also the one which contains the most layer numbers. By applying the parameters learned from 

the training process in this model, the loss of the test dataset is 0.2076. The average time cost for 

predicting one image is 14 ms. Model a is the simplest model, only contains one layer in each 
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convo layer group, the test loss with model a is 0.2318. Depends on the trade-off between the 

accuracy and computing time, different models can be selected. 

The 14 ms time consumption for predicting the out-of-focus distance is short enough for 

the camera in CLSM work with 60 fps. With this model, an autofocusing system, which has an 

accuracy in microns with a mean squared error near 0.2, could be developed.  
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CHAPTER SEVEN: CONCLUSION AND FUTURE WORKS 

 Chapter 4 shows that CLSM with a microlens array could reduce the scanning time. 

Chapter 5 shows the deep learning can apply to the PL spectrum and suggests the material’s 

identity. In chapter 6, using the convolution neural networks could really predict the out-of-focus 

distance of the CLSM with a mean squared error near 0.2. The time consumption per prediction 

makes it possible to program the CLSM moving the objective during the scanning in real time.  

The auto focusing algorithm gives the height information of the sample, which could also 

be used to produce the 3D map of the scanning region. Applying the algorithm in the CLSM with 

microlens array, each laser spot scanning its own region and collect the height information on the 

sample surface. By stitching method, a full 3D map can be formed.  

  Adding a PL spectrometer to the CLSM could makes the system collect the PL spectra 

during the scanning. Combined with the technique discussed in chapter 5, an image of sample 

surface can be formed with suggestions of material type at every point. The future work is to 

design a CLSM with PL spectrometer, that keep focusing the laser spot during the scan, analyze 

the PL spectrum from the sample scanning point, and predict the material’s identity 

simultaneously. 
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APPENDIX 

Python code for chapter 5 

Background Functions 

 

""" 

Classification of Semiconductors by Photoluminescence Spectroscopy and Machine Learning 

Yinchuan Yu 

Washington State University 

""" 

import numpy as np 

import math 

import os 

import matplotlib.pyplot as plt 

import random 

 

ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) #define the root of folders 

 

#some useful mathmatic functions  

def sigmoid(x): 

    s=1/(1+np.exp(-x)) 

    return s 

 

def tanh(x): 

    t=(np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x)) 

    return t 

 

def relu(x): 

    r=np.maximum(0,x) 
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    return r 

 

def softmax(x): 

    expx=np.exp(x-np.max(x)) 

    return expx/expx.sum(axis=0, keepdims=True) 

 

def bi_gaussian(x, x0, Cm,theta1, theta2): 

    if x==x0: 

        return Cm 

    if x<x0: 

        C=Cm*math.exp(-(x-x0)**2/(2*(theta1**2))) 

    else: 

        C=Cm*math.exp(-(x-x0)**2/(2*(theta2**2))) 

    return C 

 

class PL_generate(): 

    #The methods for generating a simulated Photoluminescent spectrum, including adding a peak, adding 

a base line and adding noise 

    def __init__(self, start, end): 

        self.start=start 

        self.end=end 

        self.spectrum={} 

        if end<start: 

            print("impossible") 

        for i in range(start,end): 

            self.spectrum[i]=0 

 

    def add_peak(self, peakcenter, height, leftwidth, rightwidth): 

        #adding peak using bi-gaussian method 
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        for wavelength in self.spectrum: 

            self.spectrum[wavelength]+=bi_gaussian(wavelength, peakcenter, height, leftwidth, rightwidth) 

 

    def add_noise(self, noise_type="normal",noise_level=0.01): 

        #adding some gaussian noise 

        if noise_type=="normal": 

            for wavelength in self.spectrum: 

                self.spectrum[wavelength]+=random.uniform(-noise_level, noise_level) 

        else: 

            for wavelength in self.spectrum: 

                self.spectrum[wavelength]+=random.uniform(-noise_level, 

noise_level)*self.spectrum[wavelength] 

 

    def add_baseline(self, base): 

        #adding base line to the PL 

        for wavelength in self.spectrum: 

            self.spectrum[wavelength]+=base 

 

    def vectorize(self): 

        #normalize the spectrum and store as an numpy vector 

        vec=[] 

        for i in range(self.start, self.end): 

            vec.append(self.spectrum[i]) 

        vec=np.array(vec) 

        vec=np.reshape(vec, ((self.end-self.start),1)) 

        normlized_vec=vec/(sum(np.square(vec)))**0.5 

        return normlized_vec 
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class Handmade: 

    # The simulated photoluminscent spectra, including the method of made generate PL of 

"Ga2O3","ZnO","GaN","CdS","WS2","CsPbBr3". 

    def __init__(self, classes_number=6, repeat_number=500, start=240, end= 700): 

        self.X="init" 

        self.Y=0 

        self.pl={} 

        substances=[] 

        substances=["Ga2O3", "ZnO", "GaN","CdS","CsPbBr3","WS2"] 

        for i, substance in enumerate(substances): 

            for index in range(repeat_number): 

                x = self.get_pl(substance, start, end) 

                self.pl[substance+str(index)]=x 

                y = [0]*i+[1]+[0]*(classes_number-1-i) 

                y = np.array(y) 

                y=np.reshape(y,(classes_number,1)) 

                if self.X=="init": 

                    self.X=x 

                    self.Y=y 

                else: 

                    self.X=np.hstack((self.X, x)) 

                    self.Y=np.hstack((self.Y, y)) 

 

 

    def get_pl(self, substance, start, end): 

        #the method to get a new random generated pl spectrum for a certain substance  

        PL=PL_generate(start, end) 

 

        if substance == "Ga2O3": 
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            #Makeing the "Ga2O3" PL spectrum, with 360 nm, 400 nm, 430 nm, 520 nm peaks. 

            peak1_center=random.gauss(360,3) 

            peak1_height=random.uniform(0.01,0.5) 

            peak1_left=random.uniform(30,50) 

            peak1_right=random.uniform(30,50) 

 

            peak2_center=random.gauss(400,5) 

            peak2_height=random.uniform(0.01,0.5) 

            peak2_left=random.uniform(40,60) 

            peak2_right=random.uniform(40,60) 

 

            peak3_center=random.gauss(430,10) 

            peak3_height=random.uniform(0.01,0.5) 

            peak3_left=random.uniform(50,100) 

            peak3_right=random.uniform(50,100) 

 

            peak4_center=random.gauss(520,10) 

            peak4_height=random.uniform(0,0.1) 

            peak4_left=random.uniform(25,100) 

            peak4_right=random.uniform(25,100) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_peak(peak2_center,peak2_height,peak2_left,peak2_right) 

            PL.add_peak(peak3_center,peak3_height,peak3_left,peak3_right) 

            PL.add_peak(peak4_center,peak4_height,peak4_left,peak4_right) 

            PL.add_noise(noise_level=0.01) 

 

        if substance == "ZnO": 

            ##Makeing the "ZnO" PL spectrum, with 378 nm, 530 nm peaks. 
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            peak1_center=random.gauss(378,3) 

            peak1_height=random.uniform(0.2,0.6) 

            peak1_left=random.uniform(5,10) 

            peak1_right=random.uniform(5,10) 

 

            peak2_center=random.gauss(530,20) 

            peak2_height=random.uniform(0.05,0.6) 

            peak2_left=random.uniform(25,50) 

            peak2_right=random.uniform(30,60) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_peak(peak2_center,peak2_height,peak2_left,peak2_right) 

            PL.add_noise(noise_level=0.01) 

 

        if substance == "GaN": 

            #Makeing the "Ga2O3" PL spectrum, with 365 nm, 382 nm, 430 nm, 525 nm peaks. 

            peak1_center=random.gauss(365,3) 

            peak1_height=random.uniform(0.3,0.8) 

            peak1_left=random.uniform(5,10) 

            peak1_right=random.uniform(5,10) 

 

            peak2_center=random.gauss(382,3) 

            peak2_height=random.uniform(0.05,0.1) 

            peak2_left=random.uniform(6,15) 

            peak2_right=random.uniform(6,15) 

 

 

            peak3_center=random.gauss(525,10) 

            peak3_height=random.uniform(0.05,0.6) 
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            peak3_left=random.uniform(25,50) 

            peak3_right=random.uniform(25,50) 

 

 

            peak4_center=random.gauss(400,3) 

            peak4_height=random.uniform(0.05,0.1) 

            peak4_left=random.uniform(6,15) 

            peak4_right=random.uniform(6,15) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_peak(peak2_center,peak2_height,peak2_left,peak2_right) 

            PL.add_peak(peak3_center,peak3_height,peak3_left,peak3_right) 

            PL.add_peak(peak4_center,peak4_height,peak4_left,peak4_right) 

            PL.add_noise(noise_level=0.01) 

 

        if substance =="CdS": 

            #Makeing the "CdS" PL spectrum, with a 508 nm peak. 

            peak1_center=random.gauss(508,3) 

            peak1_height=random.uniform(0.4,1) 

            peak1_left=random.uniform(5,10) 

            peak1_right=random.uniform(5,10) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_noise(noise_level=0.01) 

 

        if substance =="CsPbBr3": 

            #Makeing the "CsPbBr3" PL spectrum, with a 523 nm peak. 

            peak1_center=random.gauss(523,3) 

            peak1_height=random.uniform(0.4,1) 
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            peak1_left=random.uniform(8,9) 

            peak1_right=random.uniform(8,9) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_noise(noise_level=0.01) 

 

 

        if substance =="WS2": 

            #Makeing the "WS2" PL spectrum, with a 630 nm peak. 

            peak1_center=random.gauss(630,10) 

            peak1_height=random.uniform(0.4,1) 

            peak1_left=random.uniform(10,25) 

            peak1_right=random.uniform(15,30) 

 

            PL.add_peak(peak1_center,peak1_height,peak1_left,peak1_right) 

            PL.add_noise(noise_level=0.01) 

 

        return PL.vectorize() 

 

class Literature: 

    #The object class used to read pl spectrum digitalized from literature by "GetData Graph", and 

combined them into a dataset. 

    def __init__(self, classes_number=6, start=240, end=700): 

        self.X="init" 

        self.Y="init" 

        self.pl={} 

        substances=["Ga2O3","ZnO","GaN","CdS","CsPbBr3","WS2"] 

        k=0 

        for i, substance in enumerate(substances): 
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            index=1 

            while True: 

                try: 

                    readPATH = os.path.join(ROOT_DIR,"Raw_data", "Literature",substance) 

                    os.chdir(readPATH) 

                    open(str(index)+".txt","r") 

                except: 

                    break 

 

                x = self.get_pl(substance, index, start, end) 

                self.pl[substance+str(index)]=x 

                y = [0]*i+[1]+[0]*(classes_number-1-i) 

                y = np.array(y) 

                y=np.reshape(y,(classes_number,1)) 

 

                if self.X=="init": 

                    self.X=x 

                    self.Y=y 

                else: 

                    self.X=np.hstack((self.X, x)) 

                    self.Y=np.hstack((self.Y, y)) 

                index+=1 

                k+=1 

 

    def get_pl(self, substance, index, start, end): 

        raw=[] 

        readPATH = os.path.join(ROOT_DIR,"Raw_data", "Literature",substance) 

        os.chdir(readPATH) 

        File=open(str(index)+".txt","r") 
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        pairs=File.readlines() 

        checkpoint=pairs[0].split() 

        if float(checkpoint[0])>100: 

            for pair in pairs: 

                pair=pair.split() 

                raw.append([float(pair[0]),float(pair[1])]) 

            raw=sorted(raw, key=lambda x: x[0]) 

        else: 

            for pair in pairs: 

                pair=pair.split() 

                raw.append([1242.18/float(pair[0]),float(pair[1])]) 

            raw=sorted(raw, key=lambda x: x[0]) 

 

        spectrum=[0]*(end-start) 

        wavelength=start 

        i=0 

        while wavelength<end: 

            if wavelength<raw[0][0]: 

                wavelength+=1 

                continue 

            if wavelength>raw[-1][0]: 

                break 

            while i<=len(raw) and raw[i][0]<wavelength: 

                i+=1 

            if wavelength==raw[i][0]: 

                spectrum[wavelength-start]=(raw[i][1]) 

            else: 

                V=(raw[i][1]-raw[i-1][1])*(wavelength-raw[i-1][0])/(raw[i][0]-raw[i-1][0])+raw[i-1][1] 

                spectrum[wavelength-start]=V 
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            wavelength+=1 

 

 

        spectrum = np.array(spectrum) 

        normlized_spectrum=spectrum/(sum(np.square(spectrum)))**0.5 

        normlized_spectrum=np.reshape(normlized_spectrum,(end-start,1)) 

        return normlized_spectrum 

 

 

class SingleHorriba: 

    # Make a unknown single PL spectrum into a vector, can use algrithm to predict its category. 

    def __init__(self, class_name, index, start=240, end=700 ): 

        self.X = self.get_pl(class_name, index, start, end) 

 

    def get_pl(self, substance, index, start, end): 

        PATH=os.path.join(ROOT_DIR,"Raw_data", "Single_Horriba", substance) 

        os.chdir(PATH) 

        spectrum=[0]*(end-start) 

        filename=index+".txt" 

        d=np.loadtxt(filename) 

 

        for i in range(len(spectrum)): 

            if i>=len(d) or d[i][0]>=end: 

                break 

            if d[i][0]<start: 

                continue 

 

            spectrum[int(d[i][0]-start)]=d[i][1] 

        spectrum=np.array(spectrum) 
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        spectrum=spectrum/sum((np.square(spectrum)))**0.5 

        spectrum=np.reshape(spectrum,(start-end,1)) 

        return spectrum 

 

class Parameter_SL: 

    #save and Load the parameters trained by the algrithm into a txt file 

    def save(self, parameters, version): 

        PATH = os.path.join(ROOT_DIR,"Parameters",version) 

        os.mkdir(PATH) 

        os.chdir(PATH) 

        W1 = parameters["W1"] 

        b1 = parameters["b1"] 

        W2 = parameters["W2"] 

        b2 = parameters["b2"] 

        W3 = parameters["W3"] 

        b3 = parameters["b3"] 

 

        np.savetxt('W1.txt', W1) 

        np.savetxt('W2.txt', W2) 

        np.savetxt('W3.txt', W3) 

        np.savetxt('b1.txt', b1) 

        np.savetxt('b2.txt', b2) 

        np.savetxt('b3.txt', b3) 

 

 

    def load(self, version): 

        PATH = os.path.join(ROOT_DIR,"Parameters",version) 

        os.chdir(PATH) 

        parameters={} 
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        parameters["W1"] = np.loadtxt('W1.txt', dtype=float) 

        parameters["W2"] = np.loadtxt('W2.txt', dtype=float) 

        parameters["W3"] = np.loadtxt('W3.txt', dtype=float) 

        parameters["b1"] = np.loadtxt('b1.txt', dtype=float).reshape(-1,1) 

        parameters["b2"] = np.loadtxt('b2.txt', dtype=float).reshape(-1,1) 

        parameters["b3"] = np.loadtxt('b3.txt', dtype=float).reshape(-1,1) 

 

        return parameters 

 

 

class Learn: 

    def initialize_with_zero(self, layer_dims): 

        #initialize the parameters all Zeros 

        parameters={} 

        L=len(layer_dims) 

 

        for l in range(1,L): 

            parameters["W"+str(l)]=np.zeros((layer_dims[l],layer_dims[l-1])) 

            parameters["b"+str(l)]=np.zeros((layer_dims[l],1)) 

 

        return parameters 

 

    def initialize_with_random(self,layer_dims): 

        #initialize the parameters with random values 

        parameters={} 

        L=len(layer_dims) 

 

        for l in range(1,L): 

            parameters["W"+str(l)]=0.01 * np.random.randn(layer_dims[l],layer_dims[l-1]) 
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            parameters["b"+str(l)]=np.zeros((layer_dims[l],1)) 

 

        return parameters 

 

    def initialize_with_he(self, layer_dims): 

        #initialize the parameters with HE method 

        parameters={} 

        L=len(layer_dims) 

 

        for l in range(1,L): 

            parameters["W"+str(l)]= np.random.randn(layer_dims[l],layer_dims[l-1]) * 

np.sqrt(2/layer_dims[l-1]) 

            parameters["b"+str(l)]=np.zeros((layer_dims[l],1)) 

            print("W"+str(l)+"shape: " , parameters["W"+str(l)].shape) 

        return parameters 

 

    def forward_propagation(self, X, parameters): 

        #The forward propagation, from the input PL vector to a softmax categorical output 

        W1 = parameters["W1"] 

        b1 = parameters["b1"] 

        W2 = parameters["W2"] 

        b2 = parameters["b2"] 

        W3 = parameters["W3"] 

        b3 = parameters["b3"] 

 

        #First Layer, activated by ReLU 

        Z1=np.dot(W1, X) + b1 

        A1=relu(Z1) 

        #Second Layer, activated by ReLU 
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        Z2=np.dot(W2, A1) + b2 

        A2=relu(Z2) 

        #Output layer, activated by softmax 

        Z3=np.dot(W3,A2) + b3 

        A3=softmax(Z3) 

 

        cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) 

        return A3, cache 

 

    def backward_propagation(self, X, Y, cache): 

        #if no regulization, this function will be used 

        #Backward propagation to calculate the gradient of all parameters 

        m=X.shape[1] 

        (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)=cache 

 

        dZ3=A3-Y 

        dW3=1./m*np.dot(dZ3,A2.T) 

        db3=1./m*np.sum(dZ3, axis=1,keepdims=True) 

 

        dA2 = np.dot(W3.T, dZ3) 

        dZ2 = np.multiply(dA2, np.int64(A2 > 0)) 

        dW2 = 1./m * np.dot(dZ2, A1.T) 

        db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) 

 

        dA1 = np.dot(W2.T, dZ2) 

        dZ1 = np.multiply(dA1, np.int64(A1 > 0)) 

        dW1 = 1./m * np.dot(dZ1, X.T) 

        db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) 
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        gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, 

                    "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, 

                    "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} 

 

        return gradients 

 

    def backward_propagation_L2(self, X, Y, cache, lamb): 

        #if there are regulization term used, this function will be used 

        #Backward propagation to calculate the gradient of all parameters 

        m=X.shape[1] 

        (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)=cache 

 

        dZ3=A3-Y 

        dW3=1./m*(np.dot(dZ3,A2.T)+lamb*W3) 

        db3=1./m*np.sum(dZ3, axis=1,keepdims=True) 

 

        dA2 = np.dot(W3.T, dZ3) 

        dZ2 = np.multiply(dA2, np.int64(A2 > 0)) 

        dW2 = 1./m * (np.dot(dZ2, A1.T)+lamb*W2) 

        db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) 

 

        dA1 = np.dot(W2.T, dZ2) 

        dZ1 = np.multiply(dA1, np.int64(A1 > 0)) 

        dW1 = 1./m * (np.dot(dZ1, X.T)+lamb*W1) 

        db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) 

 

        gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, 

                    "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, 

                    "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} 
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        return gradients 

 

    def update_parameters(self, parameters,grads,learning_rate): 

        #update the parameters from the gradient getting from Backward propagation 

        for i in range(len(parameters)//2): 

            parameters["W"+str(i+1)]=parameters["W"+str(i+1)]-learning_rate * grads["dW"+str(i+1)] 

            parameters["b"+str(i+1)]=parameters["b"+str(i+1)]-learning_rate * grads["db"+str(i+1)] 

        return parameters 

 

    def predict(self, X, Y, parameters): 

        #predict all the testing samples 

        m = X.shape[1] 

        a3, caches = self.forward_propagation(X, parameters) 

        p= np.argmax(a3, axis=0) 

        Y = np.argmax(Y, axis=0) 

        for i in range(len(p)): 

            if p[i]!=Y[i]: 

                print(i," Substance ",Y[i]," prediction ",p[i]) 

        print("Accuracy: "  + str((p == Y).mean()) ) 

        return p 

 

    def predict_single(self,X,parameters): 

        #predict a single vector, will show the probability in all categories 

        a3, caches = self.forward_propagation(X, parameters) 

        print("Ga2O3 :   ", a3[0]) 

        print("ZnO :     ", a3[1]) 

        print("GaN :     ", a3[2]) 

        print("CdS :     ", a3[3]) 
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        print("CsPbBr3 : ", a3[4]) 

        print("WS2 :     ", a3[5]) 

 

 

 

    def compute_cost(self, a3, Y): 

        #calculate the cost, used to display in each training iteration 

        cost = -np.mean(Y * np.log(a3+1e-8)) 

        return cost 

 

    def compute_cost_with_regularization(self, A3, Y, parameters, lambd): 

        #calculate the cost with regularization terms 

        m = Y.shape[1] 

        W1 = parameters["W1"] 

        W2 = parameters["W2"] 

        W3 = parameters["W3"] 

 

        cross_entropy_cost = self.compute_cost(A3, Y) 

        L2_regularization_cost = (1. / m)*(lambd / 2) * (np.sum(np.square(W1)) + np.sum(np.square(W2)) 

+ np.sum(np.square(W3))) 

        cost = cross_entropy_cost + L2_regularization_cost 

        return cost 

 

 

    def model(self, X, Y, learning_rate = 0.01, num_iterations = 30000, print_cost = True, lambd = 0): 

        #The training model with input X, 50 elements hidden layer 1, 20 elements hidden layer 2, and the 

output 

        grads = {} 

        costs = []                           

        m = X.shape[1]     #find the amount number of training samples                    
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        layer_dims = [X.shape[0], 50, 20, 6]   # The dimension of each layer, [the input vector dim, 50 

elements, 20 elements, 6 classes]        

        parameters = self.initialize_with_he(layer_dims) #Initialize the trainning parameters with HE 

method 

        for i in range(0, num_iterations): 

            #trainning with numbers of iterations set 

            a3, cache = self.forward_propagation(X, parameters) 

            if lambd == 0: #if not regulization term 

                cost = self.compute_cost(a3, Y) 

            else: # with regulization 

                cost = self.compute_cost_with_regularization(a3, Y, parameters, lambd)                                             

            if lambd == 0: 

                grads = self.backward_propagation(X, Y, cache) 

            else: 

                grads = self.backward_propagation_L2(X, Y, cache, lambd) 

            parameters = self.update_parameters(parameters, grads, learning_rate) 

            if print_cost and i % 100 == 0: 

                print("Cost after iteration {}: {}".format(i, cost)) 

            if print_cost and i % 100 == 0: 

                costs.append(cost) 

 

        #plot the cost during train, cost vs. iterations 

        plt.plot(costs) 

        plt.ylabel('cost') 

        plt.xlabel('iterations (x100)') 

        plt.title("Learning rate =" + str(learning_rate)) 

        plt.show() 

        return parameters 

 

Training 
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""" 

Classification of Semiconductors by Photoluminescence Spectroscopy and Machine Learning 

Yinchuan Yu 

Washington State University 

""" 

 

from PLcode import * 

 

# Set the training set as the simulated PL, each substances generate 1000 spectra 

Train=Handmade(6,10) 

# first test sets as the PL from literature 

Test=Literature(6) 

learn=Learn() 

 

#change the version number for yourself 

previous_trained_version = 1 

new_trained_version = 2 

 

#if you have pre-trained parameters, uncommon next line 

#parameters=sl.load("Version"+ str(previous_trained_version)) 

 

#training with 10000 iterations and learning rate as 0.01 

parameters=learn.model(Train.X, Train.Y, learning_rate = 0.01, num_iterations = 20000, print_cost = 

True, lambd = 0.1) 

sl=Parameter_SL() 

sl.save(parameters,"Version"+str(new_trained_version)) 

 

print("train") 

learn.predict(Train.X, Train.Y, parameters) 
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print("test") 

learn.predict(Test.X, Test.Y, parameters) 

 

Prediction 

""" 

Classification of Semiconductors by Photoluminescence Spectroscopy and Machine Learning 

Yinchuan Yu 

Washington State University 

""" 

 

import matplotlib.pyplot as plt 

import os 

import numpy as np 

from PLcode import * 

 

learn=Learn() 

sl=Parameter_SL() 

parameters=sl.load("Version1") 

 

substance, index="test", "1" #the subfolder in Single_Horriba, and the spectrum file name in txt format 

Test=SingleHorriba(substance,index).X 

Axis=[] 

for i in range(410): 

    Axis.append(i+240) 

plt.plot(Axis,Test[0:410,0]) 

plt.ylabel('Intensity') 

plt.xlabel('wavelength (nm)') 

plt.show() 
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print("Test of ", substance) 

learn.predict_single(Test, parameters) 

 

 

Python code for chapter 6 

Learning Model  

""" 

Autofocusing of a Confocal Laser Microscope using Convolutional Neural Networks 

Yinchuan Yu 

Washington State University 

""" 

 

import tensorflow as tf 

from tensorflow.keras import datasets, layers, models, activations, regularizers 

 

def my_model(pix_len, regularizer, layerNumbers): 

    inputs = tf.keras.Input(shape=(pix_len, pix_len, 1)) 

    x = inputs 

    #first convo layer group  

    for _ in range(layerNumbers[0]): 

        x = layers.Conv2D(16, 3, padding='same', kernel_regularizer=regularizers.l2(regularizer))(x) 

        x = activations.relu(x) 

    #max pooling     

    x = layers.MaxPooling2D()(x)   

     

    #second convo layer group 

    for _ in range(layerNumbers[1]): 

        x = layers.Conv2D(32, 3, padding='same', kernel_regularizer=regularizers.l2(regularizer))(x)      

        x = activations.relu(x) 
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    #max pooling     

    x = layers.MaxPooling2D()(x) 

 

    # third convo layer group 

    for _ in range(layerNumbers[2]): 

        x = layers.Conv2D(64, 3, padding='same', kernel_regularizer=regularizers.l2(regularizer))(x)   

        x = activations.relu(x) 

    # max pooling  

    x = layers.MaxPooling2D()(x) 

 

    # forth convo layer group 

    for _ in range(layerNumbers[3]): 

        x = layers.Conv2D(128, 3, padding='same', kernel_regularizer=regularizers.l2(regularizer))(x) 

        x = activations.relu(x) 

    # max pooling  

    x = layers.MaxPooling2D()(x) 

 

    # fifth convo layer group 

    for _ in range(layerNumbers[4]): 

        x = layers.Conv2D(256, 3, padding='same', kernel_regularizer=regularizers.l2(regularizer))(x) 

        x = activations.relu(x) 

    # max pooling  

    x = layers.MaxPooling2D()(x)  # 12 

     

    #Fully connected layers 

    x = layers.Flatten()(x) 

    x = layers.Dense(1024, activation='relu', kernel_regularizer=regularizers.l2(regularizer))(x) 

    x = layers.Dense(1024, activation='relu', kernel_regularizer=regularizers.l2(regularizer))(x) 

    outputs = layers.Dense(1)(x) 
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    model = tf.keras.Model(inputs=inputs, outputs=outputs) 

    return model 

 

 

Training 

""" 

Autofocusing of a Confocal Laser Microscope using Convolutional Neural Networks 

Yinchuan Yu 

Washington State University 

""" 

import tensorflow as tf 

from root import * 

from model import * 

 

 

#loading the training set 

train_path= os.path.join(ROOT_DIR, "DataSet","small_random","train.npz") 

with np.load(train_path) as data: 

    train_images = data['images'] 

    train_labels = data['labels'] 

 

#loading the cross-validation set 

cv_path = os.path.join(ROOT_DIR, "DataSet","small_random","cross_val.npz") 

with np.load(cv_path) as data: 

    cv_images = data['images'] 

    cv_labels = data['labels'] 

 

train_images = train_images / 255.0 

cv_images = cv_images / 255.0 
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os.chdir(ROOT_DIR) 

 

#define the number of layers in each convo group 

layerNumbers=[2,2,2,2,2] 

folderName="model" 

for num in layerNumbers: 

    folderName+="_"+str(num) 

folderName+="/" 

print(folderName) 

 

save_path= "saved_model/sythesis/"+folderName 

checkpoint_path = save_path 

checkpoint_dir = os.path.dirname(checkpoint_path) 

 

# Create a callback that saves the model's weights 

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, 

                                                 monitor= 'val_loss', 

                                                 save_weights_only=True, 

                                                 save_best_only=True, 

                                                 verbose=1) 

 

model = my_model(400, 0, layerNumbers) 

model.summary() 

model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.0001), loss='mean_squared_error') 

#train the model 

history = model.fit(x=train_images, y=train_labels, 

                    batch_size=64, 

                    shuffle=True, 
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                    epochs=200, 

                    verbose=1, 

                    validation_data= (cv_images, cv_labels), 

                    callbacks=[cp_callback]) 

 

 

 

loss = np.array(history.history["loss"]) 

val_loss = np.array(history.history["val_loss"]) 

 

np.savetxt(save_path+"/loss.txt", loss) 

np.savetxt(save_path+"/val_loss.txt", val_loss) 

 

Testing 

""" 

Autofocusing of a Confocal Laser Microscope using Convolutional Neural Networks 

Yinchuan Yu 

Washington State University 

""" 

 

import tensorflow as tf 

from root import * 

from model import * 

import time 

 

#loading testing set 

test_path = os.path.join(ROOT_DIR, "DataSet","small_random","test.npz") 

with np.load(test_path) as data: 

    test_images = data['images'] 
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    test_labels = data['labels'] 

 

test_images = test_images / 255.0 

 

os.chdir(ROOT_DIR) 

 

#define the model used for testing 

layerNumbers=[2,2,2,2,1] 

folderName="model" 

for num in layerNumbers: 

    folderName+="_"+str(num) 

folderName+="/" 

print(folderName) 

 

model = my_model(400, 0, layerNumbers) 

model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.0001), loss='mean_squared_error') 

model.load_weights("saved_model/sythesis/"+folderName) 

 

test_loss = model.evaluate(test_images, test_labels, batch_size=64) 

print('\nTest loss:', test_loss) 
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