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Abstract—The Covariance Intersection algorithm linearly
combines estimates when the cross-correlations between their
errors are unknown. It provides a fused estimate and an upper
bound of the corresponding mean square error matrix. The
weights of the linear combination are designed in order to
minimise the upper bound. This paper analyses the optimal
weights in relation to state estimation of dynamical systems.
It is shown that the use of the optimal upper bound in a
standard recursive filtering does not lead to optimal upper bounds
in subsequent processing steps. Unlike the fusion under full
knowledge, the fusion under unknown cross-correlations can fuse
the same information differently, depending on the independent
information that will be available in the future.
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I. INTRODUCTION

If many sensors or sensor groups employ their own local
measurements to estimate the state of a common system [1],
[2], the information fusion problem arises. In distributed fusion
[3]–[8], the estimation problem is considered in a top–down
perspective, i.e. with one central filter and subordinate local
ones. The fusion performed in the central filter maximises the
quality of the fused estimator, while the problem structure
is usually fixed. The bottom–up perspective prevails in the
decentralised fusion. The local filters are self-sufficient and the
fusion is optional. This approach is better suited for complex
problems, where it is impractical to compute and store the
cross-correlations between errors of local estimates. However,
the missing knowledge prevents the derivation of the fused
estimator quality, likewise its maximisation.

Covariance Intersection [9]–[13] considers all admissible
cross-correlations and the fused estimator achieves the best
guaranteed quality. The actual quality of the fused estimator
is not decisive, the focal point is that it stays better than the
fusion-reported quality. The quality of estimators is measured
by mean square error matrices. The consideration of all (also
unknown) cross-correlations is substantially effectuated by the
proposition of matrices that are greater than the unknown
joint mean square error matrix, irrespective of the actual
value of the cross-correlation. The upper bounds are ordinar-
ily proposed as block-diagonal matrices, nevertheless, more
elaborated solutions are available [14]–[19]. The processing
[20] of the proposed upper bounds relies on properties of
matrix operations. The optimal fused estimator is the one that

guarantees the minimal upper bound of its mean square error
matrix. However, since no ordering that is meaningful in the
mean square error sense can be defined on arbitrary matrices,
a scalar criterion has to be optimised.

The criterion is usually chosen to be the determinant or
the trace of the upper bound. It is also possible to minimise
the trace of the product of the upper bound and a positive
semidefinite weighting matrix. Unlike in linear estimators
that operate under known cross-correlations, optimising the
fusion gains according to specific dimensions of the estimated
quantity yields different results than optimising the full upper
bound.

The Kalman filter minimises the mean square error matrix
of linear estimators. Starting with an initial minimum mean
square error estimate of the state, it combines estimates
with noisy measurements at the time the measurements are
observed. A virtue of the Kalman filter is that the optimal
estimator can be expressed recursively, i.e. there is no need to
store past measurements.

Replacing the initial optimal estimate by a Covariance
Intersection based estimate and the exact mean square error
matrix by an upper bound, state estimators in subsequent time
can be proposed by applying the Kalman filter formulas on
the estimate and the upper bound. In this case, the obtained
error matrices are upper bounds of the underlying mean square
error matrices. However, the optimality of such estimators
from the upper bound perspective has not been considered
in literature, it has not been discussed whether the optimal
estimators require to store the past measurements or not.

Therefore, the goal of this paper is to prospect the area.
The goal is to compare the recursive approach that combines
Covariance Intersection and the Kalman filter with a batch
approach to the fusion of estimates and subsequent measure-
ments.

The problem is formulated in Section II. Section III
performs an analysis of the thought to compute the optimal
solution recursively. Section IV provides numerical examples,
Section V concludes the paper.

II. PROBLEM SETTINGS

Let X0, Wk, Vk, k = 0, 1, . . . denote independent random
vectors. The matrix P0 = E{(X0− x̂0)(X0− x̂0)T} is defined,
where x̂0 is a known constant vector of dimension dim(X0).



Suppose that Q = E{WkWT
k } are known constant matrices.

Let the random vectors depict a linear stochastic system,

Xk+1 = FXk + GWk, (1)
Zk = HXk + Vk, (2)

where the matrices F, G and H are known and of appropriate
dimensions. Consider the following partition

Zk =

[
ZAk
ZBk

]
,H =

[
HA

HB

]
,Vk =

[
VAk
VBk

]
, (3)

with known measurement noise matrices RA = E{VAk (VAk )T}
and RB = E{VBk (VBk )T}.

Let ΩX denote the domain of a random vector X . Consider
functions,

x̂Ak : ΩZA0 × . . .× ΩZAk → ΩXk , (4)

with corresponding random vectors X̂Ak = x̂Ak (ZA0 , . . . ,ZAk ).
Then the matrices PAk = E{(Xk − X̂Ak )(Xk − X̂Ak )T} are
independent of realisations of Xk and X̂Ak . The functions x̂Ak
are called estimators, the random vectors X̂Ak will be referred
as estimates. The mean square error matrix PAk is given by
the expectation of a matrix term taken over Xk as well as
over ZA0 , . . . ,ZAk inhered in X̂Ak . The functions x̂Bk , random
vectors X̂Bk and matrices PBk are defined analogously.

The problem of fusion is to find a function

x̂Fk : ΩXk × ΩXk → ΩXk , (5)

such that the random vector X̂Fk = x̂Fk (X̂Ak , X̂Bk ) is close to Xk
in a predetermined sense. In this paper, only linear estimators
are considered. It is supposed that the cross-correlation matrix
PABk = E{(Xk − X̂Ak )(Xk − X̂Bk )T} is unknown. Let

�Fk − E{(Xk − X̂Fk )(Xk − X̂Fk )T} ≥ 0 (6)

be the constraint that defines upper bounds of mean square
error matrices, where the inequality ≥ 0 is to be understood in
a positive semidefinite sense. Then, the optimisation criterion
is some measure on matrices such as the determinant or trace.
Hence, x̂Fk is optimal when the bound �Fk is minimised.

The problem posed in this paper is to relate the fusion
operation and the dynamics of the considered system. More
precisely, upper bounds of mean square error matrices of
estimators are examined not only in the fusion, but also in
combination with subsequent filter steps. Let κ denote a time
horizon, κ = 1, 2, . . .. Then, the problem can be posed as
optimising the linear estimators

x̂A,B;A
k,k;κ : ΩXk ×ΩXk ×ΩZAk+1

× . . .×ΩZAk+κ → ΩXk+κ , (7)

X̂A,B;A
k,k;κ = x̂A,B;A

k,k;κ (X̂Ak , X̂Bk ,ZAk+1, . . . ,ZAk+κ) for all κ, in the
upper bound sense that has been discussed above. In particular,
it is investigated whether the linear estimator x̂A,B;A

k,k;κ that
minimises �A,B;A

k,k;κ can be computed recursively for all κ in
a single run. The recursive estimator is given by

x̂F ;A
k;κ : ΩXk+κ−1

× ΩZAk+κ → ΩXk+κ , (8)

X̂F ;A
k;κ = x̂F ;A

k;κ (X̂F ;A
k;κ−1,ZAk+κ), and initialised by X̂F ;A

k;0 = X̂Fk ,
while only the corresponding upper bound �Fk is available. The

Xk+1 Xk+2 Xk+3

ZAk+1 ZAk+2 ZAk+3X̂BkX̂Ak

Xk

?

x̂A,Bk,k

x̂A,B;A
k,k;1

x̂A,B;A
k,k;2

x̂A,B;A
k,k;3

Fig. 1. Batch approach for the fusion of estimates X̂A
k , X̂

B
k and the

measurements ZAk+1, . . . ,Z
A
k+κ.
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Fig. 2. Recursive approach for the fusion of estimates X̂A
k , X̂

B
k and the

measurements ZAk+1, . . . ,Z
A
k+κ.

batch and recursive approaches are illustrated in Fig. 1 and 2.
The circles denote random vectors, rectangles denote func-
tions, the dashed arrows indicate unknown cross-correlations.

The question is whether the (upper bound) optimal batch
estimator x̂A,B;A

k,k;κ can be obtained by concatenating the Covari-
ance Intersection estimator x̂Fk and the Kalman filter x̂F ;A

k;κ .
On a more general level, the question is whether fusion
methods that bound unknown correlations are invariant under
an increasing amount of information.

III. COMPARISON OF THE RECURSIVE ESTIMATOR WITH
THE BATCH ESTIMATOR

In this section, it is demonstrated that the optimal result
in the presence of unknown correlations cannot be obtained
by a recursive estimator. Although the estimators are linear,
the missing knowledge of cross-correlations leads to a non-
recursive solution. The optimal upper bound of the actual mean
square error matrix does not necessarily lead to an optimal
upper bound after further prediction and filtering steps. This
is shown in the following by considering the simple case with
κ = 1 and empty ZAk+1.

Recursive approach: First, the linear fusion of the local
estimates X̂Ak and X̂Bk is considered. The fused estimator x̂Fk
is given by

x̂Fk : X̂Fk = WA
k X̂Ak + WB

k X̂Bk , WA
k + WB

k = I, (9)

where the equality condition on the matrix weights WA
k and

WB
k is required in order to be able to express an upper bound



�Fk of the mean square error matrix PFk , see (6), in terms of
the available matrices. The matrix PFk is given by

PFk = W
{A,B}
k P{A,B}k (W

{A,B}
k )T, (10)

where the joint weight W
{A,B}
k and the joint mean square

error matrix P{A,B}k are given by

W
{A,B}
k =

[
WA

k WB
k

]
, P{A,B}k =

[
PAk PABk

(PABk )T PBk

]
.

(11)
The upper bound �Fk can be obtained by replacing the un-
known matrix P{A,B}k by its upper bound �{A,B}k . This results
in

�Fk = W
{A,B}
k �{A,B}k (W

{A,B}
k )T. (12)

The proposed upper bounds �{A,B}k are given by [15], [16],
[17] as

�{A,B}k (ω) =

[
1
ω�

A
k 0

0 1
1−ω�

B
k

]
, (13)

where ω, 0 ≤ ω ≤ 1, is a free parameter that is to be
determined with respect to the considered optimality criterion.
Under unknown correlations, it is not the mean square error
that is optimised, but the criterion is based on the upper bound
�Fk and is a function of ω and WA

k (the matrix weight WB
k

is given by (9)).

By completing the square, the upper bound �Fk is given by

�Fk = ∆F
k (ω)(

1

ω
�Ak +

1

1− ω
�Bk )(∆F

k (ω))T+

+
1

1− ω
�Bk −

1

1− ω
�Bk (

1

ω
�Ak +

1

1− ω
�Bk )−1

1

1− ω
�Bk =

=∆F
k (ω)(

1

ω
�Ak +

1

1− ω
�Bk )(∆F

k (ω))T+

+ (ω(�Ak )−1 + (1− ω)(�Bk )−1)−1, (14)

∆F
k (ω) = WA

k −
1

1− ω
�Bk (

1

ω
�Ak +

1

1− ω
�Bk )−1 =

=WA
k − (ω(�Ak )−1 + (1− ω)(�Bk )−1)−1ω(�Ak )−1, (15)

where the second equalities in (14) and (15) result from the
matrix inversion lemma. The optimal weight WA

k is given by
setting ∆F

k (ω) to be zero, where the parameter ω is the one
that minimises the constant term in the completion to square
(14) over the domain of ω, see also Covariance Intersection in
[9]–[20].

Having obtained the fused estimate X̂Fk with the optimal
upper bound �Fk of the related mean square error matrix,
a predicted estimate X̂F ;–

k;1 is subsequently computed. It is
supposed that, in retrospect, the fused estimate X̂Fk cannot be
improved any more. Then, the predictive estimator x̂F ;–

k;1 and
the corresponding upper bound �F ;–

k;1 are given by

x̂F ;–
k;1 : X̂F ;–

k;1 = FX̂Fk , �F ;–
k;1 = F�Fk FT + GQGT. (16)

In summary, the recursive approach to obtain an estimate
of Xk+1 is to fuse the local estimates X̂Ak and X̂Bk by (9) at
first, while WA

k is given such that the quadratic term in (14)
is zero and is a function of the parameter ω, that is chosen to
minimise the constant term in (14) in a predetermined sense.
Subsequently, the approach propagates the fused estimate X̂Fk
in time in the standard way (16).

Batch approach: In the considered simple case κ = 1 with
empty ZAk+1, the analysis is facilitated. Assuming an invertible
matrix F, the predictive estimator of Xk+1 is obtained by
inverting the order of time propagation and fusion without
loss of generality. Using the available knowledge, the analysis
assumes that the estimator x̂A,B;–

k,k;1 first propagates the local
estimates and the blocks of the joint upper bound �{A,B}k (13)
analogically to (16) as

X̂A;–
k;1 = FX̂Ak , X̂B;–

k;1 = FX̂Bk , (17)

�{A,B};–k;1 (ω) =

=

[
1
ωF�Ak FT + GQGT GQGT

GQGT 1
1−ωF�Bk FT + GQGT

]
. (18)

The instrumental random vectors (17) are subsequently linearly
fused. So, the fused estimator x̂A,B;–

k,k;1 is given by

x̂A,B;–
k,k;1 : X̂A,B;–

k,k;1 = WA;–
k;1 X̂

A;–
k;1 + WB;–

k;1 X̂
B;–
k;1 ,

WA;–
k;1 + WB;–

k;1 = I. (19)

The upper bound �A,B;–
k,k;1 of its mean square error matrix

is obtained by the same steps that have been used in the
derivation of �Fk . Completing the square leads to

�A,B;–
k,k;1 = ∆A,B;–

k,k;1 (ω)F(
�Ak
ω

+
�Bk

1− ω
)FT(∆A,B;–

k,k;1 (ω))T+

+ F
�Bk

1− ω
FT + GQGT−

− F
�Bk

1− ω
FT(F(

�Ak
ω

+
�Bk

1− ω
)FT)−1F

�Bk
1− ω

FT, (20)

∆A,B;–
k,k;1 (ω) =

= WA;–
k;1 −

1

1− ω
F�Bk FT(F(

�Ak
ω

+
�Bk

1− ω
)FT)−1. (21)

The optimal weighting matrix WA;–
k;1 is given by setting

∆A,B;–
k,k;1 (ω) to be zero, where the parameter ω is the one that

minimises the constant term in (20) over the domain of ω, see
also Split Covariance Intersection in [14], [16].

Comparison: The batch estimator x̂A,B;–
k,k;1 as well as the

recursive estimator x̂F ;–
k;1 linearly combine the local estimates

X̂Ak and X̂Bk . The matrix weights at X̂Ak are given by (17)
and (19) as WA;–

k;1 F and by (9) and (16) as FWA
k , while the

matrix weights at X̂Bk are given by WB;–
k;1 = (I−WA;–

k;1 )F and
WB

k = F(I −WA
k ) for the batch and recursive approaches,

respectively.

If the parameter ω is fixed at time k and the weight
terms W are obtained by setting the ∆ terms in (21) and
(15) to zero, then one can also compare (20) with (14) and
(16). For invertible matrices F and the fixed parameter ω,
one easily finds out that the weights at X̂Ak are the same,
as well as the upper bounds �A,B;–

k,k;1 (ω) and �F ;–
k;1 (ω), for the

batch and recursive approaches. Thus, the construction of the
instrumental estimates (17) is actually cancelled.

The recursive approach does require to fix ω at time k,
since the recursion cannot start with undetermined x̂Fk , see
Fig. 2. On the other side, the batch approach does not require



the hard decision on the value of ω at time k, see Fig. 1.
Instead, the optimal value of ω is searched afresh at each time
k+κ, and the criterion is different from that of time k. Thus,
the batch estimator differs from the recursive one in general.
Opposed to the estimation with full information, the recursive
approach does not maintain the optimality of the estimators
in the sense of the minimal upper bound of the mean square
error matrix. The best representation of ignorance of a cross-
correlation matrix at time k is dependent on the time k + κ
when the upper bounds are of the interest. Numerical examples
are given in the following section.

IV. EXAMPLES

To demonstrate the influence of the information obtained
in the future on the best representation of ignorance, a simple
static system is considered first. Subsequently, a dynamical
system will be used to discuss some asymptotic properties.

A. Simple static system

Let the linear stochastic system (1)–(3) be a static one, let
the dimension of X0 be 2 and consider no prior information,

F = I, G = [0, 0]T, Q = 0, P0 →∞ · I, (22)

while I denotes the identity matrix of order 2. Let both the
components of the state be measured by both filters A and B,
while the filter A measures the first component with a lower
error than the filter B and the second component with a greater
error than the filter B,

HA = I, RA =

[
1 0
0 2

]
, HB = I, RB =

[
2 0
0 1

]
. (23)

Further, let the local estimators x̂A0 , x̂B0 be given by the local
measurements directly, x̂A0 : X̂A0 = ZA0 , x̂B0 : X̂B0 = ZB0 . The
local upper bounds �A0 , �B0 are given directly by the mean
square error matrices PA0 , PB0 that are equal to RA and RB

respectively, �A0 = PA0 = RA, �B0 = PB0 = RB .

Considering a fixed value of ω in (13), the corresponding
optimal weight WA

0 and the corresponding upper bound �F0
are given by

WA
0 (ω) =

[
2ω
1+ω 0
0 ω

2−ω

]
, �F0 (ω) =

[ 2
1+ω 0

0 2
2−ω

]
. (24)

It is easy to see that both the determinant and the trace
of �F0 (ω) are minimised by ω = 1

2 . This result have been
expected, since the settings (23) as well as the criterion show
a symmetry. So, the parameter ω is chosen in such a way
that the components X0 are estimated with equal bounds of
uncertainty.

However, the fusion will be different, if it is known that
another measurement given by HA and RA will be available
in the future. This holds even under the assumption that the
measurement error of this new measurement is independent of
the measurement errors of the old measurements. In such a
case, the joint matrix R{A0,B0,A1} is given by

R{A0,B0,A1} =

 RA RAB 0
(RAB)T RB 0

0 0 RA

 , (25)

where RAB is unknown. An upper bound R{A0,B0,A1} of
R{A0,B0,A1} can be constructed as

R{A0,B0,A1}(ω) =

 1
ωRA 0 0

0 1
1−ωRB 0

0 0 RA

 , (26)

where 0 ≤ ω ≤ 1. Then, the joint weight W{A0,B0,A1} that
leads to the best upper bound �A,B;A

0,0;1 for a fixed value of the
parameter ω is given by

W{A0,B0,A1}(ω) = ((1 + ω)(RA)−1 + (1− ω)(RB)−1)−1·
· [ω(RA)−1, (1− ω)(RB)−1, (RA)−1] =

=

[
2ω
3+ω 0 1−ω

3+ω 0 2
3+ω 0

0 ω
3−ω 0 2(1−ω)

3−ω 0 1
3−ω

]
(27)

and it holds

�A,B;A
0,0;1 (ω) =((1 + ω)(RA)−1 + (1− ω)(RB)−1)−1 =

=

[ 2
3+ω 0

0 2
3−ω

]
. (28)

The determinant and the trace of �A,B;A
0,0;1 (ω) are minimised

by ω = 0. Because this is different from ω = 1
2 , the ratio

of the block components that correspond to A0 and B0 in
W{A0,B0,A1} is different from the ratio of WA

0 and I−WA
0 .

Thus, the optimal fusion cannot be achieved recursively.

The value ω = 0 is expectable. Because the measurement
errors of the measurements ZA0 and ZA1 have the same
stochastic properties, it is advantageous to combine the mea-
surement ZB0 with the measurement whose measurement error
is independent of the measurement error of ZB0 . So, knowing
that ZA1 will be available in the future, it is better to reject
ZA0 in time k = 0 and wait for ZA1 than to do the fusion with
ZA0 and proceed later with the fusion with ZA1 .

Exploiting the symmetry in (23), it is obvious that if the
fusion of X̂A0 , X̂B0 is done in filter B, the value ω = 1 will
be chosen. Therefore, the fusion under unknown dependence
differs from the fusion under full knowledge. Since there is a
free parameter ω that enters into the equations non-linearly, it
does not generally hold that the best processing of the estimates
with the best guaranteed quality lead to the estimates with the
best guaranteed quality. Consequently, the same information
can be fused differently, depending on the information that
will be available in the future.

B. Dynamical system

This example focuses on the dependence of the optimal
value of ω on the time κ. It shows that although the extreme
values of ω can often be optimal, e.g. as in the previous
example, they are not guaranteed to be optimal, neither asymp-
totically.

Let the linear stochastic system (1)– (3) be given by

F = 0.95I, G = I, Q =

[
1 0.95

0.95 1

]
, P0 = 10I, (29)

HA = [1 0] , HB = [0 1] , RA = 1, RB = 3 (30)



and let the local estimates X̂A0 , X̂B0 be the minimum mean
square error estimates. Take the exact mean square error
matrices PAk , PBk as their upper bounds �Ak , �Bk .

The optimal recursive estimation that starts with the fused
estimate is given by

x̂F ;A
k;κ : X̂F ;A

k;κ = (I−KF ;A
k;κ H)FX̂F ;A

k;κ−1 + KF ;A
k;κ Z

A
k+κ, (31)

where X̂F ;A
k;0 = X̂Fk ,

KF ;A
k;κ =(F�F ;A

k;κ−1F
T + GQGT)(HA)T·

·(HA(F�F ;A
k;κ−1F

T + GQGT)(HA)T + RA)−1, (32)

�F ;A
k;κ =(I−KF ;A

k;κ H)(F�F ;A
k;κ−1F

T + GQGT)·
· (I−KF ;A

k;κ H)T + KF ;A
k;κ RA(KF ;A

k;κ )T (33)

and �F ;A
k;0 = �Fk is used.

The batch approach uses nearly the same relations, the
difference is again that the parameter ω is not fixed, but it
is κ-dependent. So, �A,B;A

k,k;κ (ω,WA
k ,K

A,B;A
k,k;κ ) is optimised for

each κ individually. Because the ω-optimal values WA
k (ω) and

KA,B;A
k,k;κ (ω) follow from a completion to square for a given

parameter ω, it remains to optimise �A,B;A
k,k;κ only with respect

to ω. In the optimal batch approach, the recursive relation (31)
starts with X̂A,B;A

k,k;0 (ω) = X̂Fk (ω) and uses KA,B;A
k,k;κ (ω) from

(32), while (33) starts with �A,B;A
k,k;0 (ω) = �Fk (ω) and the κ-

dependent parameter ω is the one that optimises �A,B;A
k,k;κ (ω)

over the domain of ω.

In this example, the fusion of the local estimates X̂Ak , X̂Bk
is considered at the time k = 0 and in the steady state, k →∞.
The upper bound �F ;A

k;κ that is based on the fixed parameter
ω is compared with the upper bound �A,B;A

k,k;κ that uses a time
variant parameter ω. The determinant and the trace are used for
the comparison. Also, the upper bounds �F ;B

k;κ are compared
with the upper bounds �A,B;B

k,k;κ .

At k = 0, the fused upper bound is given by

�F0 (ω) =

[ 10
1+10ω 0

0 30
13−10ω

]
(34)

and so the fusion is given by ω = 0.6 if the criterion is the
determinant of �F0 and by ω ≈ 0.41, where the symbol ≈
means approximately equal, if the criterion is the trace of �F0 .

Fig. 3 shows the time evolution of the optimal value of
ω, if the determinants and traces of �A,B;A

0,0;κ and �A,B;B
0,0;κ are

minimised. It can be observed that for κ → ∞, the optimal
values approach some constant values. These values are the
same for the criterion given by the determinant and by the
trace, but differ for different future data. In the filter A, the
steady optimal value is ω ≈ 0.04. That means that although
it is optimal to combine X̂A0 with X̂B0 by comparable weights
at k = 0, the filter A may decide to almost ignore its own
estimate X̂A0 , because the measurements ZAκ will lead to
estimates X̂A,B;A

0,0;κ with better upper bounds of the mean square
error matrices in the future. In filter B, the steady optimal
value is ω ≈ 0.85. Similarly to the filter A, the filter B puts a
small weight on its own estimate X̂B0 , if a sufficient number
of measurements ZBκ is to come in the future.

κ

ω

Fig. 3. The optimal value of ω as a function of time κ for the fusion made
at k = 0. The optimisation of determinant in filters A and B (solid lines),
the optimisation of trace in filters A and B (dash-dotted lines).

κ κ

κ κ

Fig. 4. Upper bounds of the mean square error matrices as functions of time
κ for the fusion made at k = 0. Determinants – upper figures, traces – lower
figures, filter A – left figures, filter B – right figures, parameter ω fixed at
the fusion time k – dashed lines, parameter ω optimised for each κ – solid
lines, steady state values – dotted lines.

Fig. 4 compares the minimal values of determinants and
traces of �A,B;A

0,0;κ and �A,B;B
0,0;κ with the values of determinant

and traces of �F ;A
0;κ and �F ;B

0;κ , i.e. of the upper bounds of the
mean square error matrices of the estimators that are based
on the fixed parameter ω. It is evident that for κ → ∞, the
influence of the choice of ω on the upper bounds vanishes. In
the steady state, it holds �A,B;A

k,k;∞ = �A∞ and �A,B;B
k,k;∞ = �B∞,

where the steady state matrices are given by

�A∞ ≈
[
0.6076 0.5772
0.5772 1.5483

]
, �B∞ ≈

[
2.1216 1.1806
1.1806 1.2427

]
(35)

and are obtained from Riccati equations. Also, the difference
between the optimal and the fixed ω solution is small, if the
optimal ω is close to the fixed value ω, see the determinant
criterion in filter B.

Fig. 5 visualises the upper bound matrices. For two di-
mensional vector x̃, x̃ = [x̃1, x̃2]T, and �−1 representing an
upper bound, the set {x̃ : x̃T�−1x̃ = 1} forms an ellipse.
The ellipses corresponding to local and fused upper bounds
are shown, where the fused upper bounds �F0 use the optimal
values of ω for κ = 0 with determinant and trace criterion
and for κ → ∞ at filters A and B, see also Fig. 3. As it
was described above, filter A prefers �F0 that is close to �B0 ,
because the measurements ZAκ will be squeezing the ellipse
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Fig. 5. Ellipses given by x̃T�−1x̃ = 1, fusion at k = 0. Thin ellipses
– local bound �A0 (solid), local bound �B0 (dotted). Bold ellipses – fused
bounds �F0 optimal with respect to determinant (dashed), trace (dash-dotted)
and both measures in the steady state at the filter A (solid) and at the filter
B (dotted).

κ

ω

Fig. 6. The optimal value of ω as functions of time κ for the fusion made at
the steady state, k → ∞. The optimisation of determinant in filters A and B
(solid lines), the optimisation of trace in filters A and B (dash-dotted lines).

in the x̃1 direction. Similarly, filter B prefers �F0 that is close
to �A0 , because the measurements ZBκ will be squeezing the
ellipse in the x̃2 direction. The parameters ω optimal with
respect to κ = 0 lead to ellipses that are close to a circle,
because no further measurements are considered.

At k →∞, the fusion is given by ω ≈ 0.88 and ω ≈ 0.69,
if the criterion is the determinant and trace respectively of
�F∞. Now, the fusion clearly prefers the estimate X̂A∞ over the
estimate X̂B∞.

Fig. 6 shows the time evolution of the optimal value of
ω, if the determinants and traces of �A,B;A

∞,∞;κ and �A,B;B
∞,∞;κ

are minimised, while the upper bounds are given as limits,
�A,B;A
∞,∞;κ = limk→∞ �A,B;A

k,k;κ , �A,B;B
∞,∞;κ = limk→∞ �A,B;B

k,k;κ .
Again, for κ→∞, the optimal values approach some constant
values, that differ for different future data but do not differ for
the determinant and the criterion. The steady optimal values
is now given by ω ≈ 0.14 in the filter A and ω ≈ 0.69 in the
filter B. Comparing to the case k = 0, the fusion at a filter puts
larger weight on its own estimate, if the local measurements
are expected to be available.

Fig. 7 compares the minimal values of determinants and
traces of �A,B;A

∞,∞;κ and �A,B;B
∞,∞;κ with the values of determinant

and traces of �F ;A
∞;κ and �F ;B

∞;κ. Again, the influence of the

κ κ

κ κ

Fig. 7. Upper bounds of the mean square error matrices as a function of
time κ for the fusion made at the steady state, k → ∞. Determinants – upper
figures, traces – lower figures, filter A – left figures, filter B – right figures,
parameter ω fixed at the fusion time k – dashed lines, parameter ω optimised
for each κ – solid lines, steady state values – dotted lines.
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Fig. 8. Ellipses given by x̃T�−1x̃ = 1, fusion at the steady state, k →
∞. Thin ellipses – local bound �A∞ (solid), local bound �B∞ (dotted). Bold
ellipses – fused bounds �F∞ optimal with respect to determinant (dashed),
trace (dash-dotted) and both measures in the steady state at the filter A (solid)
and at the filter B (dotted, aliased with the bold dash-dotted ellipse).

choice of ω on the upper bounds vanishes for κ→∞. At the
filter B, the difference between the optimal and the fixed ω
solution is negligible, since the optimal ω is close to the fixed
value ω for both the determinant and trace criterion.

Fig. 8 visualises the upper bound matrices. The ellipses
corresponding to local and fused upper bounds are shown,
where the fused upper bounds �F∞ use the optimal values of
ω for κ → ∞ with determinant and trace criterion and for
κ → ∞ at filters A and B, see also Fig. 6. An observation
similar to that at Fig. 5 can be made here.

V. CONCLUSION

The paper has considered the connection of linear fusion
under unknown cross-correlations with the state estimation of
linear dynamical system. It has been shown that the estimator
with the minimal upper bound of the mean square error matrix
cannot be obtained recursively. The optimal parameter of the



upper bound is dependent on the amount of information that
will be available after the fusion is performed. Thus, two
filters with different sources of measurement can fuse the same
information differently. The best representation of ignorance
do depend on the way the future measurements are obtained.
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