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An accurate Linear Regression Kalman Filter (LRKF) for non-

linear systems called Smart Sampling Kalman Filter (S2KF) is in-

troduced. In order to get a better understanding of this new filter,

a general introduction to Nonlinear Kalman Filters based on sta-

tistical linearization and LRKFs is given. The S2KF is based on

a new low-discrepancy Dirac mixture approximation of Gaussian

densities. This approximation comprises an arbitrary number of

optimally and deterministically placed samples in the relevant re-

gions of the state space, so that the filter resolution can be adapted

to either achieve high-quality results or to meet computational con-

straints. The S2KF contains the UKF with equally weighted samples

as a special case when using the same amount of samples. With

an increasing number of samples, the new filter converges to the

(typically unfeasible) exact analytic statistical linearization. Hence,

the S2KF can be seen as the ultimate generalization of all LRKFs

such as the UKF, sigma-point filters, higher-order variants etc., as

it homogeneously covers the state space with a freely chosen num-

ber of samples. It is evaluated against state-of-the-art LRKFs by

performing nonlinear prediction and extended target tracking.
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I. INTRODUCTION

We consider estimating the hidden state of a discrete-

time stochastic nonlinear dynamic system based on

noisy measurements through Bayesian inference. This is

an important problem in many fields of current research

such as (extended) object and group tracking [1]—[6],

human motion tracking [7], object shape estimation [5],

[8], [9], robotics [10], or estimation of extrinsic camera

parameters [11].

Bayesian inference is a versatile approach for per-

forming state estimation, but in general one has to cope

with complex, e.g., multi-modal or non-Gaussian, state

and noise probability density functions, which prohibits

almost always the derivation of closed-form solutions.

Particle Filters [12], [13] are elaborate Bayesian estima-

tion techniques that try to deal with and maintain par-

ticle approximations of such complex densities. How-

ever, their main drawbacks are the high computational

effort due to large sample sets, the problem of sample

degeneration, non-reproducible results, and the need for

explicit likelihood functions.

Therefore, simplifications are required in order to

derive more efficient but still powerful estimators. A

common first step of simplification is to get rid of main-

taining the true complex state density by approximating

it as a single Gaussian. Estimators using this approxi-

mation are grouped into the class of Gaussian Filters.

But even with this convenient state density, closed-form

solutions for state prediction, and especially for incor-

porating newly received measurements into the state es-

timate, are rarely available. Hence, specific Gaussian

Filters are needed that try to overcome this problem

by delivering approximative solutions for the state pre-

diction and measurement updates. Such filters are for

example the Gaussian Particle Filter (GPF) [14] or the

Progressive Gaussian Filter (PGF) [15], [16] that make

use of sample representations of the occurring Gaussian

densities. Nevertheless, these filters, and in particular

their measurement updates, are still costly.

For that reason, a further common step is to simplify

the measurement update by computing linear approxi-

mations of the nonlinear mapping between the hidden

system state and the noisy measurements, that is, ob-

taining a linear relationship between them. Such lin-

earizations can be computed in several ways, e.g., using

Taylor series, as will be discussed below. A key result

of this obtained linear relationship is the possibility to

perform backward inference without an explicit likeli-

hood function. Instead, the well-known Kalman Filter

formulas can be used [17]. Consequently, these estima-

tors are referred to as Nonlinear Kalman Filters, as the

Kalman Filter is applied to nonlinear systems [18].

In case of an already linear system corrupted by

additive Gaussian noise, no linearization is required and

the resulting filter is identical to the Kalman Filter [17],

which yields optimal estimation results in the sense of

a Minimum Mean Square Error (MMSE) [2]. However,
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Fig. 1. Sampling of a two-dimensional standard normal distribution by the new S2KF (orange points) and state-of-the-art LRKFs (blue

points). Covariance matrices with confidence interval of 95% (black circles). (a) New S2KF with 12 samples. (b) UKF with equal weights.

(c) GF with 13 samples. (d) RUKF with 13 samples.

in case of nonlinear systems linearization is required

which might be a strong simplification depending on

the degree of the nonlinearity. The consequence is a

diminished estimation performance compared to the

more general Gaussian Filters not making use of such

linearization. An option to mitigate linearization errors

and therefore improve the estimation quality is to reduce

the degree of nonlinearity by augmenting the actual

nonlinear measurement model with additional, properly

chosen mappings as proposed in [19].

One way to perform such linearization is statistical

linearization [20], [21]. Basically, implementing a Non-

linear Kalman Filter based on statistical linearization

only amounts to calculating the first- and second-order

moments of (nonlinear) transformed densities, depend-

ing on the given system and measurement equations. For

some equations, including polynomials, trigonometric

functions, and their combinations, these moments can

be calculated analytically [22]. Hence, this provides the

filter based on statistical linearization with the best pos-

sible estimation quality and is referred to as analytic sta-

tistical linearization. However, this approach requires an

individual treatment of each occurring equation which

is time-consuming, error-prone, and prevents a generic

filter applicable to any system and measurement equa-

tion, regardless of its complexity.

Awidespread solution for these problems are sample-

based approaches, where the occurring state and noise

densities are represented as a set of samples, selected in

a random or deterministic way. This allows to perform

statistical linearization in the form of statistical linear

regression [21], [23]. Nonlinear Kalman Filters making

use of statistical linear regression are called Linear Re-

gression Kalman Filters (LRKFs) [23], [24]. As a conse-

quence of using samples instead of continuous densities,

time and measurement updates have to be adapted in

order to handle this density representation. On the one

hand, the samples are propagated individually through

the given system and measurement equations. On the

other hand, occurring analytic moment calculations are

turned into their sample-based counterparts, i.e., sam-

ple mean and sample covariance. Of course, this intro-

duces a further approximation step (compared to the

analytic statistical linearization) that may negatively af-

fect the estimation performance. Nevertheless, employ-

ing an LRKF offers several advantages. First, due to the

lack of an explicit use of a likelihood, the problem of

sample degeneration is avoided,1 and second, we obtain

a generic filter that allows us to work with black box

systems, e.g., systems given as (binary) programs, or

to switch easily between different system and measure-

ment models without any additional effort. Moreover,

this facilitates filter design in the sense of rapid pro-

totyping, as a newly designed system or measurement

model can be tried out immediately.

Despite all these advantages of LRKFs, in order

to improve overall estimation quality of filters based

on statistical linearization, a mixture of analytic and

sample-based moment calculation (semi-analytic ap-

proach) [22], [25] should be used whenever possible.

A. Contribution

In this paper, we introduce a new LRKF called the

Smart Sampling Kalman Filter (S2KF), which can be

seen as the ultimate generalization of all LRKFs. For

that purpose, we compute deterministic approximations

of multivariate standard normal distributions compris-

ing a predefined arbitrary number of optimally placed

samples in the relevant regions of the state space (see

Fig. 1(a)). These sets of deterministically chosen sam-

ples serve as the fundamental basis for the new filter.

In contrast to approaches using non-deterministic sam-

pling, this lets the filter compute reproducible results

and is more efficient, as a much smaller amount of sam-

ples has to be employed.

By simply increasing the number of employed sam-

ples, the new filter converges to the analytic statisti-

1This is in contrast to filters explicitly using a likelihood, where back-

ward inference implies a sample re-weighting that typically leads to

a significantly reduced amount of samples contributing to the com-

putation of the posterior moments, and consequently, to inaccurate

results.
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cal linearization as the resulting approximation of the

standard normal distribution becomes more accurate.

Moreover, this approach requires only a single and intu-

itive optimization parameter, i.e., the number of utilized

samples. This makes filter fine-tuning simple, even for

people not very familiar with sample-based Kalman fil-

tering. Moreover, as opposed to state-of-the-art LRKFs,

the number of samples are completely independent of

the concrete dimension of the normal distribution and,

hence, can be chosen freely. There are no restrictions

such as a linear or exponential increase. This offers the

possibility to (automatically) adapt the number of uti-

lized samples for each time step individually depending

on the concrete filtering problem, e.g., use less samples

in situations of mild nonlinearities and more samples in

case of high nonlinearities.

B. Related Work

One of the most popular LRKFs is the Unscented

Kalman Filter (UKF) [26], [27]. It employs 2N +1 sys-
tematically chosen, axis-aligned samples, where N de-

notes the dimension of the standard normal distribution

required for the time and measurement updates (see

Fig. 1(b)). One of its greatest advantages is the ease

with which the sample set can be created as well as

the low computational effort due to the small and fixed

amount of used samples. However, this property is also

its main drawback. First, it is not possible to increase

the number of samples for a concrete dimension N in

order to improve the estimation quality. A consequence

is that the even moments of a Gaussian greater than the

second-order cannot precisely matched [27]. Second,

the state space coverage suffers from the fact that the

samples are placed solely on some principal axes.2 Both

of these factors have a negative impact on the estimation

quality. And third, the small amount of employed sam-

ples makes it possible to compute non-positive definite

covariance matrices and, thus, makes it hard for filtering

applications to work reliably. For example, consider the

nonlinear transformation of a Gaussian density using

a sine-shaped function. If all samples of the Gaussian

fall onto the zeros, the transformed Gaussian will be a

density with zero variance [28].

Another drawback of the UKF is a rather unintuitive

parameter that controls the sample spread and weight-

ing. Besides the use of heuristics, maximum likelihood

estimators can also be employed for determining these

parameters. In [29], the authors select a limited set of

possible values for the scaling parameter. During a fil-

ter step they perform an update for all selected scaling

values individually and then choose the update that best

matches the given measurement. Instead of simply try-

ing various parameters during a filter step, the authors

2Depending on the matrix square root method used for transforming

the sample set to a non-standard Gaussian, i.e., the matrix factoriza-

tion of the involved covariance matrices. For example, the Cholesky

decomposition or the eigendecomposition.

in [28] propose a parameter determination based on

a Gaussian process optimization. Both approaches can

improve the estimation quality, but also introduce new

parameters (the possible scaling values and parameters

controlling the optimization) that have to be determined

in some way. Moreover, despite the additional compu-

tational effort due to the several computed updates for

one filter step, the number of samples remains the same

and, hence, the problems of insufficient state space cov-

erage and non-positive definite covariance matrices are

left unchanged.

A first step to improve the situation is done by the

Gaussian Filter (GF) [30]. It enhances the sampling

by deterministically placing an arbitrary number of

samples on each principal axis (see Fig. 1(c)). Although

the number of samples can easily be adjusted, which

solves the problem of a fixed amount of samples and

makes the covariance computation more reliable, the

state space coverage still remains sparse due to the axes-

only sample placement.

In order to overcome the problem of a sparse state

space coverage, a non-deterministic sampling approach

called Randomized Unscented Kalman Filter (RUKF) is

introduced in [31]. Here, the moments for the time and

measurement updates are calculated with the aid of an

iterative stochastic integration rule, where each iteration

uses an additional UKF sample set with random scaling

and rotation (see Fig. 1(d)). In contrast to simple Gaus-

sian random sampling, this guarantees that mean and

covariance are always captured correctly. Furthermore,

it is possible to create sample sets of arbitrary size with

samples not only placed on the principal axes of the

state space. Hence, the entire state space is covered in an

adjustable manner. However, even though no complex

parameters are required and the state space coverage is

improved, this approach relies on the law of large num-

bers. Therefore, a large amount of samples is required

to produce satisfying estimation results, particularly in

larger state spaces. In addition, estimation results are not

reproducible due to its non-deterministic nature. This is

based on the fact that during each time and measurement

update an individual set of samples is drawn randomly,

which makes the filter outcome unpredictable.3

Table I summarizes the advantages and disadvan-

tages of these state-of-the-art LRKFs and the new S2KF.

We emphasize that only the S2KF is capable of produc-

ing reproducible results by using an arbitrary amount

of samples placed in the entire state space (not only on

the axes).

A completely different approach to compute the mo-

ments required by statistical linearization is to approx-

imate the nonlinear system and measurement models

with the aid of polynomials. That is, instead of the Gaus-

3An option would be to reuse a single randomly generated sample set

for all updates. However, this would conflict with the idea of random

sampling, where sample sets representing the Gaussian distribution

unfavorably are averaged out over time.
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TABLE I

Comparison of important filter properties between state-of-the-art LRKFs and the new Smart Sampling Kalman Filter.

Fig. 2. Taxonomy of the discussed Nonlinear Kalman Filters relying on statistical linearization (solid blue), including the new S2KF

(dashed orange), and explicit linearization (dash-dotted gray).

sian distributions, the nonlinear models themselves get

approximated. By doing so, formulas can be obtained

that allow derivative-free and closed-form moment cal-

culations which require only multiple evaluations of

the nonlinear models. One option is to use polynomial

interpolations for approximating the nonlinear models.

Such filters are for example the Central Difference Fil-

ter (CDF) [32] and the Divided Difference Filter (DDF)

[33]. Although these filters evaluate the nonlinear mod-

els at the same points as the UKF does, the filter results

are different due to their different ways of computing the

desired moments [21]. Another option is to approximate

the nonlinear models by means of Chebyshev polyno-

mials series expansion which results in the Chebyshev

Polynomial Kalman Filter (CPKF) as proposed in [34].

Here, the actual polynomial approximation is obtained

by using discrete cosine transformations. However, the

proposed approach only works for a one-dimensional

state space.

In contrast to statistical linearization, an explicit lin-

earization of the system and measurement models based

on Taylor series approximation is also possible. That is,

the Kalman Filter formulas are still being used, only the

type of linearization is changing. The Extended Kalman

Filter (EKF) uses first-order Taylor expansions at the

prior state mean for system and measurement model

linearization, whereas its iterated version, the Iterated

Extended Kalman Filter (IEKF), tries to improve esti-

mation quality by finding a better point for lineariza-

tion to take a given measurement into account [18].

Second-order variants of the EKF exist [18], [35], but

the additional complexity has prohibited its widespread

use [13]. One problem of this type of linearization is

the need for explicit derivatives. In the best case, these

can be taken analytically which unfortunately entails the

same problems occurring in case of analytic statistical

linearization: no easy exchange between different sys-

tem and measurement models is possible, and it is time-

consuming and error-prone. In all other cases, approx-

imations of the derivatives will be inevitable. Another

problem is that the linearization is only performed at a

single point, that is, not the entire statistical information

of the prior state estimate is taken into account during

linearization. This typically leads to inferior estimation

results compared to statistical linearization [22]. More-

over, this makes the filter also sensitive to the specific

point used for the linearization, that is, to the prior state

mean.

Fig. 2 shows a taxonomy of the above discussed

Nonlinear Kalman Filters including the new S2KF

(dashed orange). It underlines the important difference

between those filters relying on statistical linearization

(solid blue) and the EKF variants using explicit lin-

earization (dash-dotted gray). Additionally, all the fil-
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ters in the bottom row try to achieve results as close as

possible to the analytic statistical linearization.

C. Overview

The remainder of this paper is structured as follows.

In Sec. II, we give a detailed formulation of the gen-

eral Gaussian filtering problem using Bayesian infer-

ence. Then, in Sec. III, the class of Nonlinear Kalman

Filters based on statistical linearization is presented.

Sec. IV describes the transition from analytic statistical

linearization to statistical linear regression in the form

of the general LRKF approach. After that, in Sec. V,

we describe how to compute optimal standard normal

approximations using the idea of Localized Cumula-

tive Distributions. Based on this, we introduce the new

S2KF. Extensive evaluation of the new filter is per-

formed in Sec. VI. Finally, the conclusions are presented

in Sec. VII.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a
discrete-time stochastic nonlinear dynamic system based

on noisy measurements ỹ
k
.4 The dynamic system is

modeled by the system equation

xk = ak(xk¡1,wk) (1)

and the measurement equation

y
k
= hk(xk,vk), (2)

where y
k
denotes the measurement random variable

from which the measurements ỹ
k
originate, and wk as

well as vk Gaussian white noise. It is assumed that
both noise processes are mutually independent and also

independent of the system state. The system equation

(1) models the temporal evolution of the system state,

whereas the measurement equation (2) models the re-

lation between the received noisy measurements ỹ
k
and

the not direct observable system state xk.
We denote the probability density function (pdf) of

the state at time step k conditioned on the k received
measurements ỹ

1
, : : : , ỹ

k¡1, ỹk as

fek (xk) = f(xk j ỹk, ỹk¡1, : : : , ỹ1) = f(xk j ỹk:1), (3)

and the predicted state density, i.e., the pdf of the state

at time step k conditioned only on the measurements
ỹ
1
, : : : , ỹ

k¡2, ỹk¡1, as

fpk (xk) = f(xk j ỹk¡1, ỹk¡2, : : : , ỹ1) = f(xk j ỹk¡1:1): (4)

The noise pdfs are given by

fwk (wk) =N (wk; ŵk,Cwk )
and

fvk (vk) =N (vk; v̂k,Cvk),

4Vectors are underlined, matrices are printed in bold face, and the

subscript k denotes the discrete time step.

with means ŵk and v̂k, and covariance matrices C
w
k and

Cvk, respectively.
As computing the true conditional state pdfs (3)

and (4) is intractable, our goal is to maintain Gaussian

approximations of (3) and (4) recursively over time and

incorporate new measurements by exploiting Bayes’

rule. Such a recursive Bayesian estimator consists of

two alternating steps, namely the time update and the

measurement update.

A. Time Update

The objective of the time update, also called predic-

tion step, is to propagate the last known Gaussian state

estimate fek¡1(xk¡1) (from the past) to the present by ex-
ploiting the given system model (1) in the form of its

state-transition density fak (xk j xk¡1). This yields the pre-
dicted state estimate fpk (xk) according to the Chapman-
Kolomogorov equation [2]

fpk (xk) =

Z
fak (xk j xk¡1) ¢fek¡1(xk¡1)dxk¡1

=

Z Z
±(xk ¡ ak(xk¡1,wk))

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk,
where ±(¢) denotes the Dirac delta function.
However, even though the state density fek¡1(xk¡1) is

Gaussian, this in general does not hold for the predicted

state density fpk (xk). Therefore, we have to perform a

subsequent moment matching in order to fulfill our

forced Gaussian state approximation. This is done by

computing the predicted state mean

x̂
p
k =

Z
xk ¢fpk (xk)dxk

=

Z Z
ak(xk¡1,wk)

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk, (5)

and the predicted state covariance

C
p
k =

Z
(xk ¡ x̂pk ) ¢ (xk ¡ x̂pk )T ¢fpk (xk)dxk

=

Z Z
ak(xk¡1,wk) ¢ ak(xk¡1,wk)T

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk ¡ x̂pk ¢ (x̂pk )T (6)

of fpk (xk), and finally approximating the predicted state
density according to

fpk (xk)¼N (xk; x̂pk ,Cpk ): (7)

This Gaussian state distribution will serve as basis for

the measurement update.

B. Measurement Update

The measurement update or filter step incorporates a

given measurement ỹ
k
at time step k into the predicted
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state estimate (7) to correct it. This is done by using

Bayes’ rule. However, this requires that the measure-

ment model (2) is turned into its corresponding like-

lihood function fhk (ỹk j xk) by assuming that the cur-
rent measurement ỹ

k
is conditionally independent of the

already processed measurements ỹ
k¡1:1 given the pre-

dicted state estimate. Then, the corrected state estimate

can be obtained according to

fek (xk) =
fhk (ỹk j xk) ¢f

p
k (xk)

fyk (ỹk j ỹk¡1:1)
, (8)

where fyk (ỹk j ỹk¡1:1) is only a normalization constant.
More precisely, the measurement distribution fyk (yk j
ỹ
k¡1:1) encodes how probable a distinct measurement is,
given all prior received measurements ỹ

k¡1:1. A concrete
measurement ỹ

k
in turn is a realization of this distribu-

tion.

Equation (8) can be rewritten in the form of the joint

density fx,yk (xk,yk j ỹk¡1:1) of prior state and measure-
ment as

fek (xk) =
fx,yk (xk, ỹk j ỹk¡1:1)
fyk (ỹk j ỹk¡1:1)

: (9)

Thus, the Bayesian measurement update can be inter-

preted as a given measurement ỹ
k
determining where to

slice the joint density fx,yk (xk,yk j ỹk¡1:1) in order to get
the posterior state density fek (xk).
As with the predicted state density, the obtained pos-

terior state density fek (xk) is not necessarily Gaussian.
Consequently, the posterior state density also has to

be reapproximated as a Gaussian by means of moment

matching afterwards.

C. Bayesian Estimator

The alternating use of the introduced time and mea-

surement updates, together with a given initial state es-

timate

fe0 (x0)¼N (x0; x̂e0,Ce0)
with initial mean x̂

e
0 and initial covariance C

e
0, yields the

desired recursive state estimation in form of a Bayesian

estimator. It is important to note that this estimator is a

restricted variant of the general recursive Bayesian esti-

mator, as we force the state distribution to be Gaussian

all the time.

III. NONLINEAR KALMAN FILTERING BASED ON
STATISTICAL LINEARIZATION

Although the estimator introduced in Sec. II is a

much simpler variant of the general Bayesian estima-

tor, its measurement update is still demanding. First, an

explicit likelihood function is required, which is hard

to derive in case of non-additive measurement noise.

Second, even if one is at hand, it is still almost always

impossible to compute the measurement update analyt-

ically.

However, as we already force the posterior state

density fek (xk) to be Gaussian, the measurement update
can be strongly simplified by additional approximating

the joint density of prior state and measurement in (9)

as a Gaussian, that is,

fx,yk (xk,yk j ỹk¡1:1)

¼N
μ·
xk

y
k

¸
;

·
x̂
p
k

ŷ
k

¸
,

·
C
p
k C

x,y
k

(C
x,y
k )

T C
y
k

¸¶
, (10)

where ŷ
k
and C

y
k denote the measurement mean and

covariance, and C
x,y
k the cross-covariance matrix of

state and measurement. As a direct consequence of this

simplification, the posterior state density becomes also

Gaussian [2]

fek (xk)¼
N
μ·
xk

ỹ
k

¸
;

·
x̂
p
k

ŷ
k

¸
,

·
C
p
k C

x,y
k

(C
x,y
k )

T C
y
k

¸¶
fyk (ỹk j ỹk¡1:1)

=N (xk; x̂ek,Cek), (11)

with posterior mean

x̂
e
k = x̂

p
k +C

x,y
k ¢ (Cyk)¡1 ¢ (ỹk ¡ ŷk) (12)

and covariance

Cek =C
p
k ¡Cx,yk ¢ (Cyk)¡1 ¢ (Cx,yk )T, (13)

which in fact are the well-known Kalman Filter formu-

las [17]. Hence, an estimator that uses this measurement

update is called Nonlinear Kalman Filter.

Fig. 3 illustrates the Nonlinear Kalman Filter mea-

surement update in case of a scalar state and measure-

ment. The exemplary Gaussian joint density of state and

measurement fx,y(x,y) is depicted in Fig. 3(a) and is
sliced by the given measurement ỹ in Fig. 3(b) to obtain
the posterior state density fe(x). It should be noted that
the variance of the state density fe(x), i.e., the uncer-
tainty of the posterior state estimate, is smaller than the

one of the prior state density fp(x) due to the existing
correlation between prior state and measurement, that

is, Cx,y 6= 0 (a non-axis-aligned Gaussian joint density).
Furthermore, the state mean also changes due to the ad-

ditional difference between the expected measurement

ŷ and the given measurement ỹ.
As a result of (10), the measurement distribution

fyk (yk j ỹk¡1:1) becomes a Gaussian, too (see Fig. 3(a)).
By this means, the relation between prior state and

measurement, i.e., the measurement model (2), gets

implicitly linearized. This is a direct consequence of

the fact that there exists always an equivalent linear

transformation from the prior Gaussian state distribution

to this Gaussian measurement distribution.

In order to obtain the posterior Gaussian density

(11), that is, perform the measurement update, the three

moments ŷ
k
, C

y
k , and C

x,y
k are required. Based on the

given measurement model hk(xk,vk), measurement noise
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Fig. 3. Linearized measurement update in case of a scalar state x and measurement y. For readability, the time index k is omitted here.

(a) Prior state density (red), measurement density (yellow), and Gaussian joint density (orange) of prior state and measurement.

(b) The given measurement ỹ slices the joint density (green line) to obtain the posterior state density (blue).

density fvk (vk), and predicted state density f
p
k (xk), we

can compute the measurement mean according to

ŷ
k
=

Z
y
k
¢fyk (yk)dyk

=

Z Z
hk(xk,vk) ¢fpk (xk) ¢fvk (vk)dxkdvk, (14)

the measurement covariance according to

C
y
k =

Z
(y
k
¡ ŷ

k
) ¢ (y

k
¡ ŷ

k
)T ¢fyk (yk)dyk

=

Z Z
hk(xk,vk) ¢ hk(xk,vk)T

¢fpk (xk) ¢fvk (vk)dxkdvk ¡ ŷk ¢ ŷ
T

k
, (15)

and the state measurement cross-covariance accord-

ing to

C
x,y
k =

Z Z
(xk ¡ x̂pk ) ¢ (yk ¡ ŷk)T

¢fx,yk (xk,yk)dxkdyk

=

Z Z
xk ¢ hk(xk,vk)T

¢fpk (xk) ¢fvk (vk)dxkdvk ¡ x̂pk ¢ ŷTk , (16)

respectively. This moment calculation approach yields

the so-called statistical linearization, as the implicit lin-

earization of the measurement model takes the entire

statistical information of the prior state estimate and the

measurement noise into account. The result is a Nonlin-

ear Kalman Filter based on statistical linearization. Such

implicit linearization can be obtained in several ways,

for example, by computing all the moments analytically

or by computing them approximatively using samples.

One should keep in mind that this simplified mea-

surement update comes at the expense of a dimin-

ished state estimation quality, depending on the de-

gree of the concrete measurement model nonlinearity.

In other words, the implicit linearization of a measure-

ment model that is highly nonlinear around the prior

state estimate can lead to large errors in the posterior

state estimate compared to the unmodified measurement

update introduced in Sec. II-B.

IV. THE LINEAR REGRESSION KALMAN FILTER

The Nonlinear Kalman Filter introduced in Sec. III

requires the calculation of certain moments to perform

time and measurement updates. Doing this analytically

provides the Nonlinear Kalman Filter based on statisti-

cal linearization with the best possible estimation qual-

ity, and should be the means of choice whenever feasi-

ble. But, in case of non-existent closed-form solutions,

or complicated system and measurement equations, ap-

proximative moment calculations have to be performed.

One way to achieve this is to replace the occurring

state and noise densities with proper Dirac mixture den-

sities, that is, sample-based density representations. This

turns the statistical linearization into an approximate

statistical linear regression. Consequently, all Nonlin-

ear Kalman Filters using this technique, regardless of

whether random or deterministic sampling is used, fall

in the class of Linear Regression Kalman Filters.

As only a limited number of samples can be used,

this approach always entails a density approximation.

Therefore, Linear Regression Kalman Filters possess

an, in general, inferior estimation quality compared to

Nonlinear Kalman Filters based on analytic statistical

linearization. Nevertheless, these filters are still efficient

and, as no analytic moment calculation is required, are

much easier to use.
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A. Dirac Mixtures

A Dirac mixture approximation of an arbitrary den-

sity function fk(sk) of an N-dimensional random vector

sk, encompassing L samples, has the form of

LX
i=1

®k,i ¢ ±(sk ¡ sk,i), (17)

with sample positions sk,i and positive scalar sample
weights ®k,i, for which

LX
i=1

®k,i = 1

holds [22], [36]. Therefore, the information of the true

density fk(sk) is lossy encoded in the L ¢ (N +1) Dirac
mixture parameters. These parameters can be deter-

mined in a random fashion by drawing samples ran-

domly according to the true density fk(sk), or in a deter-
ministic fashion by systematically minimizing a certain

distance measure between the true density fk(sk) and its
Dirac mixture approximation (17). Moreover, a combi-

nation of both techniques is also possible.

B. Time Update

Our goal is to compute the necessary moments (5)

and (6) for the Nonlinear Kalman Filter time update

based on Dirac mixtures. Therefore, we have to replace

the density product fek¡1(xk¡1) ¢fwk (wk) with an appro-
priate Dirac mixture. Of course, each density could be

approximated separately and the product of the result-

ing Dirac mixtures built afterwards. However, the result

of this density product would be the Cartesian product

of the employed state and noise Dirac mixtures, i.e., a

Dirac mixture with L ¢M samples, where L and M de-

note the respective number of samples of the state and

noise Dirac mixtures. This approach would not scale

efficiently with an increasing number of employed sam-

ples. Fig. 4 illustrates this problem in case of scalar state

xk¡1 and system noise wk. The state density is approx-
imated with L= 9 samples whereas the Dirac mixture
for the system noise employs M = 5 samples.

Nevertheless, we can do better by exploiting the

fact that the state xk¡1 as well as the system noise

wk are independent of each other and their respective
densities, fek¡1(xk¡1) and f

w
k (wk), are Gaussian. That

is, the product is equivalent to their, also Gaussian,

joint density fx,wk (xk¡1,wk) with a zero cross-covariance
matrix Cx,wk . Hence, we can avoid the Cartesian product

by directly approximating the joint density

fx,wk (xk¡1,wk) = f
e
k¡1(xk¡1) ¢fwk (wk)

=N
μ·
xk¡1
wk

¸
;

·
x̂
e
k¡1
ŵk

¸
,

·
Cek¡1 0

0 Cwk

¸¶
using Lpk samples according to

Lp
kX

i=1

®pk,i ¢ ±
μ·
xk¡1
wk

¸
¡
·
xk¡1,i
wk,i

¸¶
, (18)

Fig. 4. Cartesian product of separate scalar state and system noise

Dirac mixture approximations (blue dots). Covariance matrix (black

ellipse) of the true Gaussian joint density fx,w
k
(xk¡1,wk) with

confidence interval of 95%.

where ®pk,i denotes the sample weights and [x
T
k¡1,i,w

T
k,i]

T

the sample positions in the joint space of state and sys-

tem noise. Plugging this into (5) and (6), and exploiting

the Dirac sifting property, we obtain the desired pre-

dicted state sample mean

x̂
p
k ¼

Lp
kX

i=1

®pk,i ¢ ak(xk¡1,i,wk,i), (19)

and predicted state sample covariance

C
p
k ¼

Lp
kX

i=1

®pk,i ¢ ak(xk¡1,i,wk,i)

¢ ak(xk¡1,i,wk,i)T¡ x̂pk ¢ (x̂pk )T, (20)

respectively.

C. Measurement Update

The LRKF measurement update can be computed in

the same manner. First, we approximate the joint density

fx,vk (xk,vk) = f
p
k (xk) ¢fvk (vk)

=N
μ·
xk

vk

¸
;

·
x̂
p
k

v̂k

¸
,

·
C
p
k 0

0 Cvk

¸¶
of prior state and measurement noise with the Dirac

mixture
Le
kX

i=1

®ek,i ¢ ±
μ·
xk

vk

¸
¡
·
xk,i

vk,i

¸¶
(21)

encompassing Lek samples with weights ®
e
k,i and posi-

tions [xTk,i,v
T
k,i]

T. Second, plugging this into (14), (15),

and (16) yields the measurement sample mean

ŷ
k
¼

Le
kX

i=1

®ek,i ¢ hk(xk,i,vk,i), (22)

measurement sample covariance

C
y
k ¼

Le
kX

i=1

®ek,i ¢ hk(xk,i,vk,i)

¢ hk(xk,i,vk,i)T¡ ŷk ¢ ŷ
T

k
, (23)
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and state measurement sample cross-covariance

C
x,y
k ¼

Le
kX

i=1

®ek,i ¢ xk,i ¢ hk(xk,i,vk,i)T¡ x̂pk ¢ ŷTk , (24)

respectively. Finally, the desired posterior state mean

and covariance are computed by using the Kalman Filter

formulas (12) and (13).

D. The LRKF

Algorithm 1 summarizes the general procedure of

a Linear Regression Kalman Filter. It is important to

note that the Dirac mixture approximations (18) and

(21) can be determined in completely different ways

(although this is usually not the case) and do not have

to utilize the same number of samples. Moreover, in

case of pure additive system or measurement noise,

the moment calculation can be simplified so that only

the state distribution has to be sampled. This reduces

the computational burden and improves the estimation

quality of the LRKF.

ALGORITHM 1 Linear Regression Kalman Filter

1: Set fe0 (x0) =N (x0, x̂0,C0)
2: for k = 1,2, : : : do

Time Update:

3: Compute Dirac mixture approximation (18)

4: Compute predicted state moments x̂
p
k and C

p
k

according to (19) and (20)

5: Set fpk (xk) =N (xk; x̂pk ,Cpk )
6: if measurement ỹ

k
is available then

Measurement Update:

7: Compute Dirac mixture approximation (21)

8: Compute measurement moments ŷ
k
, C

y
k , and

C
x,y
k according to (22), (23), and (24)

9: Compute posterior state moments x̂
e
k and C

e
k

according to (12) and (13)

10: Set fek (xk) =N (xk; x̂ek,Cek)
11: else

12: Set fek (xk) = f
p
k (xk)

13: end if
14: end for

V. THE SMART SAMPLING KALMAN FILTER

Sec. IV dealt with the general Linear Regression

Kalman Filter. In order to use it, appropriate Dirac

mixture approximations of the non-standard Gaussian

joint densities (18) and (21) have to be determined,

i.e., sets of samples with their respective positions and

weights.

Our goal is to create sample sets in a deterministic

manner encompassing an arbitrary number of equally

weighted samples placed in the entire relevant regions

of the state space, i.e., not only on the principal axes. For

that reason, we turn this density approximation problem

into an optimization problem by utilizing a Dirac mix-

ture approximation procedure based on a combination

of the Localized Cumulative Distribution (LCD) and

a modified Cramér-von Mises distance as described in

[37], [38].

Even though the LCD approach can approximate

any non-standard Gaussian, it is computationally expen-

sive due to its costly optimization procedure and, thus,

is not well suited for online filter execution. But thanks

to the deterministic manner of the LCD approach, we

can reuse a single computed Dirac mixture approxima-

tion for every time and measurement update. By this

means, we circumvent the costly online optimization of

a non-standard Gaussian by computing a Dirac mixture

approximation of a standard normal distribution offline

and only transforming it online (during time and mea-

surement updates) to any non-standard Gaussian using

the Mahalanobis transformation [39]. In the following,

we recapitulate this optimization problem and its main

definitions from [38].

A. The LCD Approach

The considered problem is to determine the optimal

sample positions si of an equally weighted Dirac mix-
ture approximation

1

L

LX
i=1

±(s¡ si) (25)

of an N-dimensional standard normal distribution

N (s;0,I). We denote the L samples, that is, the N ¢L
sampling parameters, as the set

S := fs1, : : : ,sLg:
In order to determine S in an optimal way, we have to
assess the quality of the Dirac mixture approximation

(25) by defining some distance measure between both

densities. Unfortunately, the classical Cumulative Dis-

tribution Function (CDF), which is often used for one-

dimensional distributions, cannot be used for the mul-

tivariate case due to its non-uniqueness and asymmetry

[37]. A solution is to use the Localized Cumulative Dis-

tribution, which considers the probability mass around

each point of the distribution in a certain manner.

DEFINITION V.1 (Localized Cumulative Distribution)

Let f(s) be an N-dimensional density function. The
corresponding Localized Cumulative Distribution is de-

fined as

F(m,b) =

Z
RN
f(s) ¢K(s¡m,b)ds,

with b 2 R+ and the symmetric and integrable kernel

K(s¡m,b) =
NY
k=1

exp

μ
¡1
2

(s(k)¡m(k))2
b2

¶
:

Here, m characterizes the location of the kernel and b
its size.
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Fig. 5. LCD sampling of a two-dimensional standard normal distribution. Covariance matrices with confidence interval of 95% (black

circles). The excellent state space coverage can be clearly seen. (a) LCD approach with 15 samples. Random Dirac mixture initialization on

the left and optimization result (final Dirac mixture) on the right. (b) An optimization result in case of 10 samples.

Using the Dirac sifting property, the LCD of the

Dirac mixture (25) can be obtained according to

FDM(S,m,b) =
1

L

LX
i=1

NY
k=1

exp

Ã
¡1
2

(s(k)i ¡m(k))2
b2

!
,

whereas the LCD of an N-dimensional standard Gaus-
sian is given as

FN (m,b) =
bN³p
1+b2

´N NY
k=1

exp

μ
¡1
2

(m(k))2

(1+ b2)

¶
:

Now, we can compare both densities by comparing

their respective LCDs using a modified Cramér-von

Mises distance defined as follows.

DEFINITION V.2 (Modified Cramér-von Mises Distance)

The modified Cramér-von Mises distance D between

two LCDs F(m,b) and F̃(m,b) is given by

D =

Z
R+
w(b)

Z
RN
(F(m,b)¡ F̃(m,b))2dmdb

with weighting function

w(b) =

( 1

bN¡1
, b 2 (0,bmax]

0, elsewhere:

The modified Cramér-von Mises distance between

the LCDs FDM(¢, ¢, ¢) and FN (¢, ¢) is given by

D(S) =D1¡ 2D2(S) +D3(S) with Di =

Z
R+
Pidb,

(26)

and the sample-independent part

P1 =
¼N=2bN+1³p
1+ b2

´N ,
as well as the sample-dependent parts

P2(S) =
(2¼)N=2bN+1

L
³p
1+2b2

´N ¢ LX
i=1

exp

Ã
¡1
2

NX
k=1

(s(k)i )
2

1+2b2

!

and

P3(S) =
¼N=2b

L2
¢
LX
i=1

LX
j=1

exp

Ã
¡1
2

NX
k=1

(s(k)i ¡ s(k)j )2
2b2

!
:

Given this distance measure, the optimal sample po-

sitions si are computed as follows. One starts by ran-
domly choosing initial sampling parameters S, i.e., plac-
ing L N-dimensional samples randomly in state space,
where L is the cardinality of the desired optimal Dirac
mixture approximation and N the dimension of the con-
sidered standard normal distribution. Then, an optimiza-

tion procedure, e.g., a quasi-Newton method (L-BFGS)

[40], [41], changes these initial sampling parameters S,
i.e., moves the samples in state space, such that the dis-

tance measure (26) between the standard normal and its

Dirac mixture approximation is minimized. Thus, we

perform a global optimization as all sample positions

si are optimized at once. Another solution would be to
use greedy optimizations such as [42], where an existent

Dirac mixture is extended by simply adding additional

samples and leaving the existing samples unchanged.

Unfortunately, this leads to suboptimal approximation

results and, hence, is not considered here.

Fig. 5(a) illustrates the proposed LCD approach for

the case of a two-dimensional standard normal distri-

bution and L= 15 samples. The random initialization is
shown on the left, whereas the final optimal approxi-

mation is shown on the right. Fig. 5(b) depicts another

optimization result with L= 10 samples.
Now, given a non-standard Gaussian distribution

N (z; ẑ,Cz) (27)

during filter execution, i.e., the joint densities

fx,wk (xk¡1,wk) and f
x,v
k (xk,vk), we compute the matrix

square root
p
Cz of Cz using the Cholesky decomposi-

tion,5 and individually translate, rotate, and scale each

5Other matrix square root operations, such as the eigendecomposition,

are also possible.
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Fig. 6. Difference between the direct LCD approximation (a) and the standard normal LCD approximation (same samples as depicted in

Fig. 5(b)) with subsequent transformation using a Cholesky decomposition (b). For comparison, we transformed sample sets from the GF

and the RUKF (same samples as depicted in Fig. 1) as well. (a) Direct approximation. (b) Suboptimal approximation. (c) GF approximation.

(d) RUKF approximation.

sample of (25) according to

zi =
p
Cz ¢ si+ ẑ 8i 2 f1, : : : ,Lg, (28)

so that the new sample set

Z := fz1, : : : ,zLg
forms the Dirac mixture approximation

1

L

LX
i=1

±(z¡ zi)

of the non-standard Gaussian (27). Note that these non-

standard Gaussian samples are still equally weighted.

It is important to note that this combination of stan-

dard normal approximation with subsequent transfor-

mation delivers only suboptimal results compared to a

direct LCD-based approximation of the non-standard

Gaussian. Fig. 6 exemplifies this problem for a two-

dimensional non-standard, i.e., rotated and scaled, Gaus-

sian distribution and Dirac mixtures with 10 samples.

The direct LCD approximation of the considered Gaus-

sian is depicted in Fig. 6(a). One can see an optimal,

regular placement of the samples, covering the relevant

state space regions homogeneously. In contrast to this, a

suboptimal solution is shown in Fig. 6(b). Here, larger

regions of the relevant state space are uncovered, e.g.,

the top-left region of the Gaussian or its middle part.

Nevertheless, all state-of-the-art LRKFs suffer from the

problem of a suboptimal non-standard Gaussian approx-

imation, as they rely on the online Mahalanobis transfor-

mation, too. To demonstrate this, we transformed sam-

ple sets from the GF and the RUKF as well (see Fig. 6(c)

and Fig. 6(d)).

B. The New LRKF

By using offline computed LCD-based Dirac mix-

ture approximations of standard normal distributions

(25) in combination with online transformations (28)

during the LRKF time and measurement updates, we in-

troduce the new Smart Sampling Kalman Filter (S2KF),

with its powerful feature of using an arbitrary number of

optimally placed samples in the entire state space. There

exist no sampling constraints such as axis-aligned sam-

ples or that the number of samples must be a multiple

of the state dimension as with the UKF, GF, or RUKF.

As will be shown in the evaluation, with an increas-

ing number of used samples in (25) the S2KF converges

to the analytic statistical linearization as the resulting

Dirac mixture approximation of the standard normal

distribution becomes more accurate. In contrast to the

UKF with its fixed-size sample set, this allows an ex-

tensive evaluation of the given system and measurement

models, as more and more samples become available in

the relevant regions of the state space. Moreover, this

makes a non-positive definite state covariance matrix

very unlikely and the filter more reliable. As a conse-

quence, the estimation quality can be easily improved

by simply increasing the number of employed sam-

ples, which offers an intuitive optimization parameter.

Of course, this effect is also true for filters relying on

random sampling. But, due to the optimal sample place-

ment, the S2KF converges much faster, so that already a

small number of samples provides an excellent estima-

tion quality. Regarding the filter complexity, assuming

that the Dirac mixture approximations of the required

standard normal distributions are already computed, the

computational complexity of the S2KF grows only lin-

early with the number of used samples L for a fixed
dimension N.
One should keep in mind that the LCD approach

cannot create unique Dirac mixture approximations for

a given dimension N and number of samples L as the
standard normal distribution is rotation-invariant and

the optimization procedure is initialized with random

samples. However, due to the reuse of offline computed

Dirac mixture approximations, the S2KF results still be-

come reproducible. In other words, executing the S2KF
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with the same inputs multiple times, i.e., model param-

eters, initial state, and measurements, will always pro-

duce the same results as the same sample approxima-

tions are used for each execution.

C. The Sample Cache

The proposed S2KF needs several LCD-based Dirac

mixture approximations of standard normal distribu-

tions, one for each required combination of dimension

N and number of employed samples L, depending on the
concrete filtering problem (state dimension, noise di-

mension, and selected filter accuracy). An option to ob-

tain these approximations would be to recompute all re-

quired approximations before each program start. How-

ever, for large dimensions and/or number of samples,

this can be very time-consuming. Moreover, the estima-

tion results from different program executions would be

different as always new sample sets would be used.

For that reason, we introduce a sample storage called

Sample Cache. Whenever a requested sample set for

a given combination of dimension N and number of

samples L is not available during S2KF execution, it is
computed on demand,6 that is, transparent for the user,

and subsequently stored persistently in the file system

for later reuse. Over time, the Sample Cache grows

and the necessity for time-consuming sample generation

becomes more unlikely. Of course, if the user knows all

the needed approximations before filter execution, all

of them can be computed and stored in Sample Cache

in advance so that no sample computation is required at

all during filter execution.

VI. EVALUATION

In this section, we compare the new S2KF with state-

of-the-art LRKFs by performing recursive state estima-

tion using various nonlinear system and measurement

equations. In the first evaluation, the focus lies on non-

linear prediction, whereas in the second evaluation the

filters have to cope with nonlinear measurement up-

dates.

As every LRKF is an approximation of the Kalman

Filter based on analytic statistical linearization, an

LRKF estimate should be as close as possible to the

this estimate. A considerable difference between both

estimates can only result from inaccurate moment cal-

culations by the LRKF and, hence, its utilized Gaussian

sampling technique. Consequently, in order to assess the

investigated LRKFs and their used sampling techniques

properly, the state estimates obtained by analytic statis-

tical linearization will serve in both evaluations as ref-

erence (ground truth) here. Using another ground truth,

for example the true system state, would be unfavorable

to detect such inaccurate moment calculations. The rea-

son is that an LRKF estimate that is close to the true

system state does not indicate whether the moments

6As a consequence, in such a case the filter execution stalls until the

sample set is computed.

were calculated correctly, as the estimate obtained by

analytic statistical linearization might be quite different

from the true system state.

A. Batch Reactor

We consider the gas-phase reaction proposed in

[43], resulting in the estimation problem consisting of a

two-dimensional state xk = [xa,k,xb,k]
T, which obeys the

time-invariant nonlinear system model

xk = a(xk¡1,¢t,w)

= xk¡1 +¢t ¢
"¡0:32 ¢ x2a,k¡1
0:16 ¢ x2a,k¡1

#
+w, (29)

with input ¢t= 0:1 and time-invariant, additive, and
zero-mean Gaussian white noise w with covariance

Cw = diag(10¡5,10¡5):

Over time, we receive scalar measurements ỹk according
to the time-invariant linear mapping

yk = h(xk,v) = [1 1] ¢ xk + v, (30)

where v denotes time-invariant, additive, and zero-mean
Gaussian white noise with variance Cv = 0:1.
We compare the following estimators:

² exact, analytic statistical linearization using [44], for
which closed-form expressions are given in the Ap-

pendix,

² the UKF with equally weighted samples,
² the GF with 25 samples on each principal axis,
² the RUKF with 12 iterations, and finally
² the new S2KF with 10, 20, 50, 100, and 150 samples,
respectively, in order to demonstrate the convergence

of the S2KF towards the analytic statistical lineariza-

tion.

As the measurement equation is linear in this simula-

tion, we can accurately evaluate the nonlinear prediction

performance of the investigated filters. More precisely,

the measurement update is calculated in closed-form by

all filters, i.e., the optimal closed-form Kalman Filter

update is used. Additionally, due to the fact that the

system model (29) is corrupted by pure additive noise,

sampling is reduced to the two-dimensional state space

(see Sec. IV-D). Table II summarizes the resulting num-

bers of samples used by each LRKF for the prediction

step.

The simulation consists of R = 1000 Monte Carlo
runs. For each Monte Carlo run, the true system state

is obtained by initializing it with x0 = [3,1]
T and re-

cursively propagating it 50 times, together with noise

realizations of w, through the system model (29), re-

sulting in a simulation with 50 time steps. Additionally,

we simulate one noisy measurement each time step by

using (30) together with a noise realization of v. All
filters are initialized with mean x̂

e
0 = [0:5,3:5]

T and co-

variance Ce0 = diag(10,10).
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Fig. 7. Batch reactor simulation over 50 time steps. (a) State mean RMSE x̄k . (b) State covariance RMSE C̄k .

TABLE II

Employed LRKFs and their respective sampling settings for the

batch reactor simulation.

LRKF Number of samples Sample placement

UKF 2 ¢ 2+1 = 5 Axes only

GF 24 ¢ 2+1 = 49 Axes only

RUKF 12 ¢ (2 ¢ 2)+1 = 49 Entire state space

S2KF 10 Entire state space

S2KF 20 Entire state space

S2KF 50 Entire state space

S2KF 100 Entire state space

S2KF 150 Entire state space

In order to assess the estimation quality of each

LRKF, we compute the Root Mean Square Error

(RMSE) of their posterior state mean over all simulation

runs with respect to the analytic statistical linearization

posterior state mean, that is,

x̄k =

vuut 1

R

RX
r=1

kx̂(r)k ¡ x̂(r)a,kk22,

where x̂
(r)
k denotes the respective LRKF state mean and

x̂
(r)
a,k the state mean of the analytic statistical lineariza-

tion. The results are depicted in Fig. 7(a). Here, the GF

shows a very high RMSE at the beginning. Over time,

the RMSE decreases but remains at a relatively high

level. The RUKF does not possess such extreme RMSE

but it is constantly at a higher level compared to the

UKF and S2KF estimates. As opposed to this, the UKF

delivers quite good results although the GF uses much

more samples per axis. Moreover, all S2KF instances

are also much better than the GF and RUKF, and the

S2KF instances using 50 or more samples deliver the

best posterior state means of all investigated LRKFs.

The expected convergence of the S2KF with an increas-

ing number of samples towards the analytic statistical

linearization can be clearly seen.

Fig. 8. Axis-aligned extended rectangular target with position ck ,

extent lk , and a target surface point zk .

Moreover, we compute the RMSE for their posterior

state covariance in a similar manner according to

C̄k =

vuut 1

R

RX
r=1

kC(r)k ¡C(r)a,kk2,

where k ¢ k denotes the Frobenius norm, C(r)k the respec-

tive LRKF state covariance, and C(r)a,k the state covariance

of the analytic statistical linearization. When looking at

the results shown in Fig. 7(b), one should notice that the

GF as well as the RUKF estimate themselves much too

uncertain compared to the analytic moment calculation.

Both errors increase quickly and decrease only at a slow

pace over time. In contrast, the covariance of the UKF is

much closer to the analytic statistical linearization than

these filters. However, as with the state mean, the S2KF

instances can outperform the UKF and its convergence

towards analytic statistical linearization is as expected.

B. Extended Target Tracking

In this section, we evaluate the S2KF by means

of tracking an extended target modeled as multiplica-

tive noise. Our goal is to estimate the position ck =
[cxk ,c

y
k ]
T and extent lk = [l

x
k , l

y
k ]
T of a two-dimensional

axis-aligned rectangular target (see Fig. 8). The hidden

system state is given by xk = [l
T
k ,c

T
k ]
T.

In order to incorporate target information into our

state estimate, we assume uniformly distributed, noisy

measurements stemming from the surface of the target.
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Fig. 9. Extended target tracking evaluation results. (a) RMSE for the target position. (b) RMSE for the target area.

For this purpose, we extend the approach proposed in

[6]. The basic idea is that each point of the target surface

can be reached by scaling the axis lengths lxk and l
y
k

individually and adding the center ck, i.e.,

zk =H ¢ lk + ck,
with uncorrelated state independent multiplicative noise

H= diag(hx,hy):

As the measurements are uniformly distributed, hx and
hy also have to be uniformly distributed in the interval
[¡1,1] (see Fig. 8). Taking the measurement noise into
account yields the preliminary nonlinear measurement

equation
mk = zk +w =H ¢ lk + ck +w, (31)

where w denotes additive, zero-mean Gaussian white

noise with unit covariance.

Unfortunately, as mentioned in [6], linear estimators,

including the S2KF as well, are unsuitable for tracking

extended targets modeled this way. To overcome this

issue, we pick up on the author’s suggestion and ex-

tend the measurement equation (31) to match the best

quadratic estimator according to

y
k
=

·
mk

m2k

¸
=

·
H ¢ lk + ck +w
(H ¢ lk + ck +w)2

¸
:

To keep things simple, this evaluation uses a static

target with extent l = [4,2]T located at c= [3,5]T. Thus,
the temporal evolution of xk is modeled as random walk,
i.e., employing the linear system equation

xpk = x
e
k¡1 + v,

where v is an additive, zero-mean Gaussian white noise
with covariance

Cv = diag(10¡4,10¡4,10¡3,10¡3):

We compare the following estimators:

² exact, analytic statistical linearization using [44],
² the UKF with 2 ¢ 8+1 = 17 equally weighted sam-
ples,

² the RUKF with 10 iterations (resulting in 10 ¢ (2 ¢8)+
1 = 161 samples), and

² two S2KF instances with 25 and 50 samples, respec-
tively, in order to demonstrate the convergence of the

S2KF towards the analytic statistical linearization.

Due to the fact that the S2KF and the RUKF require

a measurement noise described in terms of a Gaussian

distribution,7 and while the UKF only considers the first

two moments of the measurement noise, we approxi-

mate the uniformly distributed multiplicative noise H

as Gaussian distribution by means of moment matching.

The simulation consists of R = 100 Monte Carlo runs.
For each Monte Carlo run, the initial state estimate is

set to x̂
e
0 = [1,1,0,0]

T and Ce0 = I4, and at each time step

we receive a single noisy measurement from the target

surface.

Similar to the batch reactor simulation, we assess

the estimation quality of each LRKF by computing

the RMSE of their target position estimate over all

simulation runs with respect to the analytic statistical

linearization target position estimate, that is,

c̄k =

vuut 1

R

RX
r=1

kĉ(r)k ¡ ĉ(r)a,kk22,

where ĉ
(r)
k denotes the respective LRKF position esti-

mate and ĉ
(r)
a,k the analytic statistical linearization posi-

tion estimate. The results of the target position RMSE

are depicted in Fig. 9(a). Here, all LRKFs quickly de-

crease their RMSE over time. However, the UKF con-

verges to a little higher RMSE than the other LRKFs.

The S2KF using 50 samples converges quickly to an

error nearly zero and yields the best estimation result of

all LRKFs.

Additionally, we compare their target extent estimate

by computing the RMSE of the estimated target area in

7This is a consequence of the fact that these filters rely on explicit

sampling a Gaussian distribution.
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a similar manner according to

Āk =

vuut 1

R

RX
r=1

(4 ¢ (l̂xk)(r) ¢ (l̂yk )(r)¡ 4 ¢ (l̂xa,k)(r) ¢ (l̂ya,k)(r))2,

where [l̂xk , l̂
y
k ]
(r) denotes the respective LRKF target ex-

tent estimate and [l̂xa,k, l̂
y
a,k]

(r) the analytic statistical lin-

earization target extent estimate. Fig. 9(b) shows the

RMSE for the estimated target area. The 50 sample

S2KF is the only filter that directly converges to a small

error, whereas the UKF and the RUKF quickly increase

to a high RMSE and decrease only at a very low rate.

The UKF area estimate is clearly incorrect, as its area

error converges to approximately 28 m2. As opposed to

this, the S2KF using 25 samples corrects its estimate

relatively fast.

Fig. 10 shows a representative simulation run after

incorporating 75 measurements. One can see that the

UKF leaves its initial state estimate of a target of 4 m2

completely unchanged which coincides with its area

RMSE of approximately 28 m2, and that the RUKF es-

timates the target much too small. In contrast to this, the

S2KF using 50 samples is almost identical to the ana-

lytic statistical linearization estimate. The general S2KF

convergence towards the analytic statistical linearization

concerning both target position and extent is evident as

the 50 sample instance yields the much better tracking

results than the S2KF using 25 samples.

C. Summary

The performed evaluations showed a general prob-

lem of sample-based filtering: not only the amount of

samples and their placement are important for the esti-

mation results, but also their interaction with the under-

lying system and measurement models. This was seen

in the two following cases. On the one hand, the axis-

aligned placement of the UKF samples deliver quite

good results with the batch reactor model, but com-

pletely failed during the extended object tracking. On

the other hand, the RUKF had problems in both evalua-

tions although it places its samples not only the axes. In

contrast, with the ability to use an arbitrary amount of

samples with optimal placement in the relevant regions

of the state space, the new S2KF can easily be tuned to

perform well in both filtering problems.

VII. CONCLUSIONS

In this paper, we introduced a new accurate LRKF

called Smart Sampling Kalman Filter (S2KF). It is based

on LCD-based Dirac mixture approximations of stan-

dard normal distributions comprising an arbitrary num-

ber of samples, which are placed optimally in the rel-

evant regions of the state space, that is, not only on

the principal axes. Hence, the S2KF can be seen as the

ultimate generalization of all sample-based Nonlinear

Kalman Filters.

Fig. 10. Representative simulation run with extended target (gray

rectangle), randomly generated noisy measurements (magenta dots),

analytic statistical linearization estimate (black dashed line), 50

sample S2KF estimate (blue line), UKF estimate (green line), and

RUKF estimate (red line).

First, we gave a general introduction to Gaussian

estimators and Nonlinear Kalman Filters. We explained

the idea of analytic statistical linearization and its ap-

proximation in form of the Linear Regression Kalman

Filter. After that, we described the optimal Gaussian

sampling using the LCD approach and based on this in-

troduced the S2KF. Moreover, we proposed the idea of

a Sample Cache that stores computed Dirac mixture ap-

proximations of standard normal distributions persistent

in the file system for later reuse. Finally, we evaluated

the S2KF by means a nonlinear prediction scenario and

extended target tracking against state-of-the-art LRKFs.

The new filter showed the expected convergence to-

wards the analytic statistical linearization and outper-

formed state-of-the-art LRKFs including the UKF and

RUKF.

As the S2KF encompasses the same structure as the

UKF, the S2KF can easily replace it in order to enhance

existing and future filtering applications. Morever, the

S2KF can be directly used in Gaussian mixture LRKFs

[25], [45] and LRKF square root implementations such

as described in [46].
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APPENDIX

Our goal is to calculate the predicted state mean and

covariance of the nonlinear dynamic system considered

in Sec. VI-A in closed-form. Given the state mean

x̂
e
k¡1 = [x̂a,k¡1, x̂b,k¡1]

T

and state covariance

Cek¡1 =
·
cxaa,k¡1 cxab,k¡1
cxab,k¡1 cxbb,k¡1

¸
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from the last time step k¡1, and the system noise

statistics

ŵk = [x̂a,k, x̂b,k]
T

and

Cwk =

·
cwaa,k 0

0 cwbb,k

¸
from the current time step k, we obtain the moments

E[x2a,k¡1] = x̂
2
a,k¡1 + c

x
aa,k¡1,

E[x3a,k¡1] = x̂
3
a,k¡1 +3 ¢ x̂a,k¡1 ¢ cxaa,k¡1,

E[x4a,k¡1] = x̂
4
a,k¡1 +6 ¢ x̂2a,k¡1 ¢ cxaa,k¡1
+3 ¢ (cxaa,k¡1)2,

E[x2b,k¡1] = x̂
2
b,k¡1 + c

x
bb,k¡1,

E[xa,k¡1xb,k¡1] = x̂a,k¡1x̂b,k¡1 + c
x
ab,k¡1,

E[x2a,k¡1xb,k¡1] = x̂
2
a,k¡1x̂b,k¡1 + c

x
aa,k¡1 ¢ x̂b,k¡1

+2 ¢ cxab,k¡1 ¢ x̂a,k¡1,
E[w2a,k] = x̂

2
a,k + c

w
aa,k,

E[w2b,k] = x̂
2
b,k + c

w
bb,k,

respectively. Using these moments together with p=

¡0:32 and q= 0:16, we obtain the predicted state mean
according to

x̂
p
k =

"
x̂a,k¡1 +p ¢¢t ¢E[x2a,k¡1]
x̂b,k¡1 + q ¢¢t ¢E[x2a,k¡1]

#
+ ŵk,

and the predicted state covariance matrix according to

C
p
k =

·
maa,k mab,k

mab,k mbb,k

¸
¡ x̂pk ¢ (x̂pk )T,

with

maa,k = E[x
2
a,k¡1]+ (p ¢¢t)2 ¢E[x4a,k¡1]+E[w2a,k]

+2 ¢ (p ¢¢t ¢E[x3a,k¡1]+ x̂a,k¡1 ¢ x̂a,k
+p ¢¢t ¢E[x2a,k¡1] ¢ x̂a,k),

mbb,k = E[x
2
b,k¡1]+ (q ¢¢t)2 ¢E[x4a,k¡1]+E[w2b,k]

+2 ¢ (q ¢¢t ¢E[x2a,k¡1xb,k¡1]+ x̂b,k¡1 ¢ x̂b,k
+ q ¢¢t ¢E[x2a,k¡1] ¢ x̂b,k),

mab,k = E[xa,k¡1xb,k¡1]+ q ¢¢t ¢E[x3a,k¡1]
+ x̂a,k¡1 ¢ x̂b,k +p ¢¢t ¢E[x2a,k¡1xb,k¡1]
+p ¢ q ¢¢t2 ¢E[x4a,k¡1]
+p ¢¢t ¢E[x2a,k¡1] ¢ x̂b,k
+ x̂a,k ¢ (x̂b,k¡1 + q ¢¢t ¢E[x2a,k¡1]+ x̂b,k):
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