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Abstract—In this work, we develop a recursive filter to estimate
orientation in 3D, represented by quaternions, using directional distribu-
tions. Many closed-form orientation estimation algorithms are based on
traditional nonlinear filtering techniques, such as the extended Kalman
filter (EKF) or the unscented Kalman filter (UKF). These approaches
assume the uncertainties in the system state and measurements to be
Gaussian-distributed. However, Gaussians cannot account for the periodic
nature of the manifold of orientations and thus small angular errors
have to be assumed and ad hoc fixes must be used. In this work,
we develop computationally efficient recursive estimators that use the
Bingham distribution. This distribution is defined on the hypersphere
and is inherently more suitable for periodic problems. As a result,
these algorithms are able to consistently estimate orientation even in the
presence of large angular errors. Furthermore, handling of nontrivial
system functions is performed using an entirely deterministic method
which avoids any random sampling. A scheme reminiscent of the UKF
is proposed for the nonlinear manifold of orientations. It is the first
deterministic sampling scheme that truly reflects the nonlinear manifold
of orientations.

Keywords—Directional Statistics, Nonlinear Filtering, Deterministic Sam-
pling, Quaternions

I. INTRODUCTION

Accurate estimation of orientation is fundamental for many mobile
systems, where precise orientation is required for tracking and control.
High performance can be achieved in environments with an expensive
sensor infrastructure. However, in many applications such as emergency
response management or UAVs, systems must be low cost, lightweight,
and thus tend to use sensors with higher noise and greater levels of
dropout. Therefore, there is a need to perform orientation estimation
in the presence of significant uncertainties.

In this work, we consider a stochastic filter that does not use
the Gaussian distribution for describing the uncertain system state
and uncertain measurements. Instead, it uses directional statistics
for a better description of uncertainty in data defined on periodic
domains such as the circle or the (hyper-)sphere. This promises better
results because certain assumptions motivating Gaussian distribution
based filtering approaches do not hold in a periodic setting. First, the
Gaussian distribution is defined in the Euclidean space and thus does
not consider periodicity. Second, Gaussians are preserved under linear
operations. Unfortunately, there is no equivalent of a linear function
on the manifold of orientations. Third, the central limit theorem
usually motivates the use of Gaussians but it does not apply to certain
manifolds such as the hypersphere Sd. Consequently, Gaussians are
not a good approximation for uncertain quantities defined on periodic
domains in the case of strong noise [1]. On a circle, for instance, the

true limit distribution might be the wrapped normal distribution which
arises by wrapping the density of a normal distribution around an
interval of length 2π. Thus, it differs in its shape from the classical
Gaussian distribution.

A. Orientation Estimation using Directional Statistics

There has been a lot of work on orientation estimation but almost
all methods are based on the assumption that the uncertainty can
be adequately represented by a Gaussian distribution. Thus, they are
usually using the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) [2]. Although three parameters are sufficient to
represent orientation, they often suffer from an ambiguity problem
known as “gimbal lock”. Therefore, many applications use quaternions
[3], [4]. These represent uncertainty as a point on the surface of
a four dimensional hypersphere. Moreover, current approaches use
nonlinear projection [5] or other ad hoc approaches to push the state
estimate back onto the surface of the hypersphere of unit quaternions.
For properly representing uncertain orientations, we need to use
an antipodally symmetric probability distribution defined on this
hypersphere reflecting the fact that the unit quaternions q and −q
represent the same rotation.

Thus, rather than using Gaussians with projection operations, we
use a distribution that explicitly considers the structure of the nonlinear
manifold. Specifically, we develop recursive estimators that use the
Bingham Distribution (BD). The BD is an antipodally symmetric
distribution defined on an d-dimensional hypersphere [6] and thus the
proposed approach takes the periodicity of orientation into account.
Therefore, BDs can be used to describe uncertainty on the group of
rotations SO(3) parametrized by quaternions.

Other directional distributions defined on the Hypersphere include
the von Mises-Fisher distribution [7], which is a multi-dimensional
generalization of the von Mises distribution. This unimodal distribution
is particularly suitable for estimating directions in R3. However,
the lack of antipodal symmetry makes quaternion-based orientation
estimation infeasible. The (Dimroth-Scheidegger-)Watson distribution,
independently introduced in [8], [9], introduces antipodal symmetry.
However, this distribution is a special case of the more general BD
considered in this work. The BD itself is generalized by the Fisher-
Bingham distribution, which is not necessarily antipodally symmetric
and thus not of interest in the considered scenario. Furthermore, the
angular central Gaussian distribution [10] can also be considered for
representing uncertain orientations.

The use of directional statistics in recursive filtering has recently
been discussed for the estimation of angles [11]–[14]. A Monte Carlo
pose estimation approach was presented in [15], where a BD was
used for representing uncertainties. However, this possibly requires
costly random sampling. In [13], we proposed a recursive Bingham
filter on the circle. Our original filter considers system functions
performing a predefined change of orientation, which is performed
by choosing a suitable mode for the Bingham distributed noise term.
This can be thought of as an equivalent to an identity system function
in Rn with additive (possibly non-zero mean) stochastic noise. A
quaternion equivalent to our Bingham-based estimation approach was
independently developed in [16], where precomputed lookup tables are
used for handling complicated computations involving the Bingham
normalization constant. That approach also considers system models
performing a predefined shift of orientation and additionally considers
a model with variable velocities using a second-order Bingham filter.
In most practical applications, system functions are usually more
complicated than a predefined shift of orientation. Thus, it is important
to efficiently consider these complex system models.
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B. Main Contribution

In order to take non-trivial system functions into account, we
extend the existing work on Bingham filtering by proposing an
equivalent of the unscented Kalman filter (UKF) for orientations
based on the Bingham distribution. Thus, the system state is an
orientation represented directly in terms of quaternions. The new filter
consists of two consecutive steps. The prediction step, is performed by
deterministically sampling the current system state and propagating the
samples through the system function. Compared to random sampling,
our propagation approach ensures reproducible results with a relatively
small number of samples. After the propagation, system noise is
imposed and a corresponding BD is found by moment matching. In
the measurement update step, we assume noisy measurements of the
system state. It makes use of the fact that the product of two BD
densities is itself a rescaled BD density. Thus, the measurement update
step can be performed in closed form.

The remainder of the paper is structured as follows. In Sec. II,
we review the Bingham distribution and then propose a method for
deterministic sampling in Sec. III. The presented approach can easily
be generalized to higher dimensions. Our filter is presented in Sec. IV,
where we make use of moment matching for quaternion multiplication
in the prediction step and present a closed-form measurement update
step. The proposed filter is compared to the UKF and the particle
filter in Sec. V. Our work is concluded in Sec. VI.

II. BINGHAM DISTRIBUTION

The Bingham distribution (BD) naturally arises when conditioning a
d-dimensional Gaussian distribution to the d-dimensional unit sphere
(denoted by Sd−1). This distribution is of particular interest due to the
following two facts. First, it offers a very natural way to characterize
uncertainty over unit quaternions and can easily be used to describe
uncertain orientations. Second, it is closed under Bayesian inference
(i.e., the product of two BD densities is itself a rescaled BD density),
making efficient algorithms for recursive filtering possible.

Definition 1. The Bingham distribution is defined by its probability
density function

f(x;M,Z) =
1

N(Z)
exp(x>MZM>x) ,

where Z is a diagonal matrix with increasing entries z1 ≤ z2 ≤
.. ≤ zd, M is an orthonormal matrix, and N(Z) is a normalization
constant. The notation y ∼ Bingham(M,Z) is used to indicate that
y is a Bingham distributed random vector with parameters M and Z.

Antipodal symmetry, i.e., f(x) = f(−x), follows immediately.
Examples of BD densities are visualized in Fig. 1. Furthermore, the
normalization constant is

N(Z) =

∫
Sd−1

exp
(
x>Zx

)
dx .

The matrix M is not a part of the normalization constant, because
N(Z) = N(MZM>) can be shown by choosing y = Mx and
applying the transformation theorem. It is also possible to represent
the normalization constant in terms of a hypergeometric function of
matrix argument 1F1(·, ·, ·) [17], that is

N(Z) = |Sd−1| · 1F1

(
1

2
,
d

2
,Z

)
,

where |Sd−1| is the surface area of the unit ball in Rd. Computing the
normalization constant is difficult and usually gets harder as the density
becomes more peaked. Approaches to solve this problem include series
expansions [18], saddle point approximations [19], holonomic gradient
descent [20], and precomputed lookup tables [21]. The latter approach
is used in this work, because it offers a fast evaluation and thus, makes
an efficient implementation of the filter possible. This approach is

Fig. 1: Probability density functions for BDs on the circle and on the
sphere.

also chosen for computing derivatives of the normalization constant,
which will be needed in parameter estimation.

The product of two BDs is again a (rescaled) BD. The proof is
similar to the Gaussian case and presented in [13]. Furthermore, for
a Bingham(M,Z) distribution, the identity matrix I, and all c ∈ R,

Bingham(M,Z) = Bingham(M,Z + cI) , (1)

which is a consequence of the facts that M is orthogonal, every
possible value x has unit length, and N(Z + cI) = N(Z) · exp(c).
Even though a Bingham distributed random vector y only takes values
on the unit sphere, it is still possible to compute a classical (i.e.,
non-spherical) covariance matrix in Rd, which is given by

Cov(y) = E(y2)− (E(y))2︸ ︷︷ ︸
0

=M · diag

(
∂

∂z1
N(Z)

N(Z)
, . . . ,

∂
∂zd

N(Z)

N(Z)

)
·M>

according to [6]. An equivalent characterization of a Bingham dis-
tributed random vector is describing it as a zero-mean Gaussian random
vector conditioned on unit length. Thus, Cov(y) = Cov(x| ||x|| = 1)

with x ∼ Nd(0,−0.5(M(Z + cI)M>)−1), where c ∈ R can be
chosen arbitrarily as long as M(Z + cI)M> is negative definite.

For estimating parameters of a Bingham distribution based on
moment matching, we consider a given covariance matrix C from
a spherical distribution with mean 0. Let M · diag(ω1, . . . ωd) ·M>
be the eigendecomposition of C. Then, the columns of M consist of
orthogonal eigenvectors. Solving

∂
∂zi

N(Z)

N(Z)
= ωi , i = 1, . . . , d (2)

yields Z = diag(z1, . . . , zd). From (1), one of the parameters zd
can be chosen arbitrarily (for computational reasons, the matrix Z
is usually chosen so that zd = 0). The resulting Bingham(M,Z)
distribution has a covariance matrix C. In order to obtain a unique
estimate, the original covariance matrix must not be degenerate, that
is, none of its eigenvalues must be 0 (otherwise one or more entries of
Z diverge to −∞). This parameter estimation procedure is discussed
in more depth in [1], [6].

Typically, orientations can be represented by unit quaternions [22].
A clockwise rotation of θ degrees around the unit length axis a =
(ax, ay, az)> is represented by the quaternion

q = cos

(
θ

2

)
+ (axi+ ayj + azk) sin

(
θ

2

)
.

This representation can also be used to define the power of a unit
quaternion raised to c ∈ R by

qc = cos

(
c · θ

2

)
+ (axi+ ayj + azk) sin

(
c · θ

2

)
.
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The orientations represented by the quaternions q and −q are identical.
Thus, a BD on S3 is suitable for representing uncertainty of the
quaternion q = q1 + q2i+ q3j + q4k, which will be represented by
the Bingham distributed random vector y = (q2, q3, q4, q1)>. Putting
the real part of the quaternion q1 at the last position of our vector is
motivated by the fact that the BD has its maxima at ±M>[0, 0, 0, 1]>.
The advantage of this notation is the fact that choosing M = I
corresponds to an orientation equivalent of zero-mean.

Another advantage of the quaternion representation is the fact that
a composition of two rotations can be represented by a quaternion
multiplication (Hamilton product). We denote this operation by ⊕
which, for two Bingham random vectors x and y, is given by

x1
x2
x3
x4

⊕

y1
y2
y3
y4

 :=


x4y1 + x1y4 + x2y3 − x3y2
x4y2 − x1y3 + x2y4 + x3y1
x4y3 + x1y2 − x2y1 + x3y4
x4y4 − x1y1 − x2y2 − x3y3

 .

Unfortunately, this product of two Bingham distributed random vectors
is not itself a Bingham distributed random vector. A proof that the
Bingham distribution is not closed under this composition is given
in [16]. Thus, moment matching is used to approximate x ⊕ y by
a Bingham distribution, i.e., we obtain a new Bingham distributed
random vector ẑ with Cov(ẑ) = Cov(x⊕ y). The covariance matrix
of the quaternion product can be computed directly as in [13], [16]
and the parameters for the BD of ẑ are found by computing an
eigendecomposition of this covariance matrix and then solving (2).
Here, precomputation can also be used for speed-up.

III.DETERMINISTIC SAMPLING OF UNCERTAIN ORIENTATION

Our use of the Bingham distribution is motivated by its ability
to characterize uncertainty over orientations parametrized by unit
quaternions. Only simple transformations of such uncertain quaternions
preserve the Bingham distribution, for example changing of the current
orientation in a predefined direction without introducing any further
noise.

Computing the transformation g(y) of a Bingham(M,Z) dis-
tributed random variable y is not possible in closed form for arbitrary
functions g(·). Thus, we propose a technique to approximate a
Bingham distribution on Sd−1 by 4d − 2 deterministically placed
samples adapting the basic idea of the Unscented Transform [2] to
the manifold of orientations. With regard to quaternions, we consider
the case d = 4. Thus, each sample can be considered as a quaternion
describing an orientation. One sample is placed at the pole (0, 0, 0, 1)>,
which can be thought of as a mode on the sphere. Furthermore, six
samples 

± sin(α1)
0
0

cos(α1)

 ,


0

± sin(α2)
0

cos(α2)

 ,


0
0

± sin(α3)
cos(α3)


are placed around this pole. Negation yields samples around the pole
(0, 0, 0,−1) to account for antipodal symmetry. That is, we obtain
another seven samples which are mirror images of the first set. For
actual computation considered in this paper, it is sufficient to consider
the samples placed around one pole. However, the full sample set
is necessary in this theoretical derivation for correctly matching the
covariance, because otherwise the mean of the sample set would not be
zero. Each pole is assigned the probability mass p0/2 and each sample
corresponding to the angle αi is assigned the probability mass pi/4.
Each sample is multiplied by M. Thus, the sample based probability
distribution generated by this method has covariance MCM> where

M stems from the original Bingham distribution and C is given by

C = diag

(
p1 sin(α1)2, p2 sin(α2)2, p3 sin(α3)2,

p0 +

3∑
i=1

pi cos(αi)
2

)
.

In the next step, we use moment matching to find αi and pi so that
our samples have the same uncertainty as the approximated Bingham
distribution. This is achieved by solving

C = diag(ω1, . . . , ω4) , (3)

with ωi as defined in (2), which gives

αi = arcsin

(√
ωi

pi

)
, i = 1, 2, 3 .

Thus, we require ωi ≤ pi for i = 1, 2, 3. Choosing

p0 = λω4 ,

pi = ωi + (1− λ)
ω4

3
, i = 1, 2, 3

gives a feasible solution to (3) for every λ ∈ [0, 1). Fi-
nally, our deterministically sampled distribution has covariance
M · diag(ω1, . . . , ω4) ·M>, which corresponds to the covariance
of our Bingham distribution and completes the approximation.

IV.QUATERNION BASED FILTERING OF ORIENTATION

The recursive filter is separated into a prediction step and a measure-
ment update step. The prediction step makes use of the proposed
deterministic sampling scheme. Thus, it can be seen as an orientation
counterpart to the prediction step in the UKF. The measurement update
step is implemented as in [13], [16] and thus considers noisy but
direct measurements of the true system state.

A. Prediction Step

We consider system models given by

xt+1 = g(xt)⊕ wt ,

where wt ∼ Bingham(Mw
t ,Z

w
t ) and g : S3 7→ S3 satisfies g(x) =

−g(−x) in order to respect antipodal symmetry. We use deterministic
sampling as described in the preceding section to approximate our
current system state xt ∼ Bingham(Me

t ,Z
e
t ):

1) Approximate Bingham(Me
t ,Z

e
t ) using deterministic sampling.

2) Propagate each sample through the system function g(·).
3) Compute approximation of Cov(g(xt)) by computing the

sample covariance after propagation.
4) Use this approximated covariance and Cov(wt) to compute

Cov(g(xt)⊕ wt). This is possible in closed form according
to the formula given in Appendix A.9 of [16].

5) Obtain Mp
t+1 and Zp

t+1 from Cov(g(xt) ⊕ wt) by moment
matching.

The true distribution of g(xt) ⊕ wt is also antipodally symmetric,
as g(·) and ⊕ preserve this property. This is one of the motivating
reasons for the approximation made in step 4). For more general
system models, such as xt+1 = g(xt, wt) one would replace steps 3)
and 4) by deterministic sampling of xt and wt, and approximating
Cov(g(xt, wt)) by the sample covariance. After this procedure our
predicted system state is described by a Bingham(Mp

t+1,Z
p
t+1)

distribution and the corresponding maximum likelihood estimate
±x̂pt+1 of the orientation is described by the last column of ±Mp

t+1

(because the order of the entries in Zp
t+1 was chosen to be increasing

and zd = 0).

B. Measurement Update Step

The measurement equation is assumed to be given by

zt = xt ⊕ vt ,
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Fig. 2: Error evaluation after 100 Monte Carlo runs in the case involving high measurement noise. The typical run is given as the Rodrigues
angle between the orientation represented by the true system state and the orientation represented by the quaternion [0, 0, 0, 1]>. The error is
given as the angle between the true system state and the estimates of the considered filters.

where vt ∼ Bingham(Mv
t ,Z

v
t ). Choosing the identity matrix as the

first parameter of the Bingham distribution, i.e., Mv
t = I, corresponds

to the concept of zero-mean noise in the Euclidean space. Furthermore,
this can also be used to consider certain measurements that involve
only information about one or two orientation axes (rather than all
three fully describing the orientation). This is done by a suitable
choice of Mv

t and by choosing the last two (respectively three) entries
of Zv

t to be zero. Then, any quaternion representing the measured
axes correctly can be used as measurement in this step.

The proposed measurement model results in the Bayesian estimator

f(xt|ẑt) = c · f(ẑt|xt) · f(xt) ,

where c is a normalization constant. Here, f(xt) is the pdf of
a Bingham(Mp

t ,Z
p
t ) distribution. For obtaining f(ẑt|xt) we first

observe that the considered measurement model implies f(ẑt|xt) =
f(x−1

t ⊕ẑt;M
v
t ,Z

v
t ). Furthermore, the quaternion inverse a−1 (which

can also be thought of as the inverse rotation) of a Bingham distributed
random quaternion a ∼ Bingham(M,Z) also follows a Bingham
distribution, because inversion of a unit quaternion is simply the
quaternion conjugation. That is a−1 = diag(−1,−1,−1, 1) · a and
thus a−1 ∼ Bingham(M̄,Z) where M̄ = diag(−1,−1,−1, 1) ·M.
We also make use of the fact that quaternion multiplication a ⊕ b
can be expressed as a matrix vector multiplication A · b, where A
depends on a. Bringing all together yields

f(ẑt|xt) =f(x−1
t ⊕ ẑt;M

v
t ,Z

v
t ) = f(xt; M̄

v
t ⊕ ẑt,Z

v
t ) .

As already mentioned in the preceding section, we make use of the
fact that the product of two Bingham pdfs is again a rescaled Bingham
pdf and thus the measurement update yields

f(xt|ẑt) ∝
exp(x>t ((ẑt ⊕ M̄v

t )Zv
t (ẑt ⊕ M̄v

t )> + Mp
tZ

p
t (Mp

t )>︸ ︷︷ ︸
A:=

)xt) .

Applying an eigendecomposition to A yields the parameters (Me
t ,

Ze
t ) describing our posterior Bingham distribution. Thus, the whole

measurement update is performed by computing the matrix A and its
eigendecomposition.

V. EVALUATION

We consider a stabilization scenario of a robotic ball joint in order
to evaluate the proposed filtering approach. This problem arises in
servoing a sensor on a moving platform to always point in a given
direction. Thus, in this scenario, the true system state is stabilized
towards a predefined goal state y. In the considered scenario the impact
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Fig. 3: The proposed filter performs better for strong noise by taking
its periodic nature into account.

of the stabilization system directly depends on the deviation from the
goal state. For implementing a simple function satisfying these criteria,
we can now make use of quaternion multiplication and quaternion
exponentiation. The proposed functionality can be represented by the
following function

g(x) = x⊕ (x−1 ⊕ y)a ,

for ||x − y|| ≤ || − x − y|| and g(x) = −g(−x) otherwise. Here,
computation of x−1 and (x−1y)u is performed by interpreting the
vectors as quaternions. The magnitude of stabilization feedback
imposed by g is controlled by a ∈ (0, 1). The considered system
function also appears in the context of spherical interpolation [23].

Based on this setup, we perform two different simulations. First, we
apply our proposed sampling scheme in a filtering scenario. Second,
we evaluate the propagation of a Bingham random variable using the
proposed sampling scheme.

A. Filtering

The considered system and measurement models are given by

xt+1 = xt ⊕ (x−1
t ⊕ y)a ⊕ wt

||wt||
,

zt = xt ⊕
vt
||vt||

,
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Fig. 4: Absolute mean error (in degrees) of propagation when computing E(g(x)).

where wt ∼ N (µ
w
,Cw), vt ∼ N (µ

v
,Cv), and the parameter a

controls the magnitude of the system model. Here, the use of Gaussian
noise is motivated by avoiding an unfair advantage of the Bingham
filter. This advantage would arise in a scenario, where the Bingham
filter handles Bingham distributed noise, while being compared to
filters making a Gaussian noise assumption.

The proposed filter was compared with a modified UKF and a
modified particle filter with importance resampling after each update
step. In order to further help the UKF and the particle filter to
handle antipodal symmetry, the measurement is checked and, if
necessary, multiplied by −1 to ensure ||zt − x

p
t || < ||−zt − x

p
t ||

before performing the measurement update step. For the particle filter,
this check needs to be done for each particle. In order to ensure
feasible results of the UKF, the estimate is projected to the unit
sphere at the end of the measurement update step. Furthermore, the
measurement likelihood in the particle filter is approximated by a
Gaussian distribution according to

p(zt|xt) ≈ fv(x−1
t ⊕ zt) ,

where fv(·) denotes the Gaussian pdf of vt and x−1
t is the vector

representing the inverse quaternion of xt. On the one hand, this
approximation reduces the quality of the particle fiter. On the other
hand, use of the true likelihood would be computationally burdensome.
Three instances of the particle filter (with 30, 300, and 104 particles)
were used.

The proposed filter assumes wt/ ||wt|| and vt/ ||vt|| to be Bingham
distributed (which is an approximation, because a Gaussian vector
renormalized to unit length does not follow the Bingham distribution,
i.e., the distribution of a Gaussian vector conditioned to unit length).
Thus, the parameters (Zw,Mw) and (Zv,Mv) need to be matched
to our system model. This can be done by generating random samples
for each Gaussian distribution involved (we used 10 000 samples).
Afterwards, these samples are normalized to length 1 and the Bingham
distribution parameters are matched as described in Sec. II.

Using the classical RMSE as an error measure would be misleading
in several ways. First, it does not sufficiently consider the spherical
nature of the Bingham distribution. Second, it does not consider
antipodal symmetry and would consider q to be a wrong estimate of
−q even though both represent the same orientation. Both problems
are tackled by introducing an angular error

α(xt, x
e
t ) := 2 ·min(acos(x>t · x

e
t ), π − acos(x>t · x

e
t )) . (4)

Here, the minimization procedure accounts for antipodal symmetry.
This definition is used for computing the mean angular error and the
angular RMSE. The angular error corresponds to the angle in the
Rodrigues rotation formula [24] for a rotation from xt to xet , which can
be seen by considering two arbitrary quaternions a,b ∈ H. We know,
that the Rodrigues angle describing a transformation from orientation
a into orientation b is given by θ := 2 · cos

(
Re
(
b⊕ a−1

))
, where

⊕ once again denotes the classical quaternion multiplication, i.e., the
Hamilton product. Using a and b as vector representations for the

quaternions a, b, it follows

θ/2 = acos
(
Re
(
b⊕ a−1))

= acos(b4a4 − b1(−a1)− b2(−a2)− b3(−a3))

= acos(b>a) .

The proposed angular notion is also used to plot the true system
state evolution as the angular deviation from [0, 0, 0, 1]>. This vector
is chosen, because it represents the identity in the skew-field of
quaternions and, thus, stands for no change in orientation.

The initial parameters used to generate the ground truth were µ
0

=

µ
w

= µ
v

= [0, 0, 0, 1]>, C0 = 0.01 · I, and Cw = 0.001 · I
which corresponds to an expected angular deviation of 18.2◦ and 5.8◦

respectively. The covariance of measurement noise was Cv = 0.003·I
for a low noise scenario and Cv = 0.3 · I for a high noise scenario
(corresponding to an expected angular deviation of 10.0◦ and 85.8◦

respectively). Here, I once again denotes the identity matrix. The goal
region was chosen as y = [0.5, 0.5, 0.5, 0.5]> and the exponent u
was chosen as 0.1. An initial estimate was given by µ

e
= [1, 0, 0, 0]>

and Ce = I. The corresponding Bingham distribution parameters for
the initial estimate were found in the same way as described above.
Expected angular deviations have been obtained by approximating
E
(
α
(
µ, x · ||x||−1)) using 107 random samples. For deterministic

sampling in the prediction step of the proposed filter, we used λ = 0.5.
Using this setup, 100 Monte Carlo runs were performed for both

measurement noise scenarios described above. In each run 100 time
steps were simulated. The mean angular error in each time step and
ground truth of a typical run (in the high noise scenario) are shown
in Fig. 2. Evaluations of the angular RMSE are shown in Fig. 3.
Depending on the noise levels, the proposed approach has either
similar performance or outperforms the UKF and the particle filters.

We compared the computation time using Matlab 2014a on a
system using an Intel i7-2620M processor. In our setup, the average
computation time was 5.5ms for one Bingham filter step, 45ms for
one particle filter step (with 300 particles), and 3.3ms for the UKF.
The libbingham [21] statistics library was used for computing the
Bingham normalization constant and performing moment matching
based parameter estimation procedures.

B. Propagation

At this point, it might be argued that the superiority of the Bingham
filter based on the proposed deterministic sampling scheme might
result from using a wrong Gaussian assumption or a likelihood
approximation in the particle filter. Thus, it is of interest to evaluate
the proposed sampling scheme in comparison to the ground truth in a
pure propagation scenario. This is performed by computing the mode
of g(x), where x is a Bingham-distributed random vector and g(·) is
defined as in (4). Ground truth is obtained by propagating 107 random
samples (which are ensured to have a zero-mean in the spherical sense)
and then computing the spherical mean of the resulting propagated
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samples. For obtaining the result of our proposed method, we perform
one propagation step using the deterministically obtained samples and
the considered function g(·) and then reapproximate the result by a
Bingham distribution.

Similarly to the simulations above, the angular mean error is used
as an error measure. We choose y = [0.5, 0.5, 0.5, 0.5]> as the goal
region in this simulation. For our Bingham distribution we have chosen
M ∈ R4×4 to be the identity matrix and Z = −diag(b, b, b, 0) with
b = 25, b = 50, and b = 100. Furthermore, different values for
the deterministic sampling parameter λ and the magnitude parameter
a were used. The results are shown in Fig. 4. According to our
experiments, λ = 0.5 is a good choice in many cases.

VI.DISCUSSION AND CONCLUSIONS

In orientation estimation, use of directional statistics makes a cor-
rect consideration of the underlying domain possible. Particularly,
applications involving strong system and measurement noise benefit
from this development. In this work, we contribute to this line of
research by proposing a novel deterministic sampling scheme for the
Bingham distribution. This gives rise to a recursive filter for orientation
estimation based on uncertain quaternions represented by a Bingham
distributed random vector.

Use of the Bingham distribution has two important theoretical
advantages. First, the Bayesian measurement update can be performed
in closed form in a computationally efficient way. Second, the
underlying domain is considered correctly in this distributional
assumption. Particularly, for scenarios with strong noise, the proposed
approach outperforms classical filtering techniques based on the
Gaussian distribution. These scenarios are of particular interest when
using bad sensors such as magnetometers, handling weak features in
robotic perception applications, or dealing with combinations of high
and low uncertainties of different axes.

On the other hand, there are also two drawbacks. First, the consid-
ered composition (i.e., the quaternion multiplication) of two Bingham
distributed random vectors is not itself a Bingham distributed random
vector. Thus, even in simple scenarios, an approximation is used
based on moment matching. However, to the best of our knowledge
there is currently no filter avoiding this kind of approximation when
using a correct distribution assumption defined on the underlying
nonlinear domain. The second drawback is the computational burden
involved in evaluating the Bingham normalization constant. For most
applications, this does not present a problem because precomputed
lookup tables and approximate computation techniques can be applied
without harming the quality of the Bingham filter.

Finally, it is important to note that the proposed deterministic
sampling scheme can be easily adapted to other antipodally symmetric
distributions on the hypersphere. Furthermore, in future work we
may consider more efficient computational techniques, measurement
update algorithms for more complex measurement functions, and
using deterministic sampling for a combination of directional and non-
directional quantities including platform position or inertial sensor
measurement biases.
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