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Abstract— State-of-the-art sensor-based sorting systems pro-
vide solutions to sort various products according to quality
aspects. Such systems face the challenge of an existing delay
between perception and separation of the material. To reliably
predict an object’s position when reaching the separation
stage, information regarding its movement needs to be derived.
Multitarget tracking offers approaches through which this
can be achieved. However, processing time is typically limited
since the sorting decision for each object needs to be derived
sufficiently early before it reaches the separation stage. In this
paper, an approach for multitarget tracking in sensor-based
sorting is proposed which supports establishing an upper bound
regarding processing time required for solving the measurement
to track association problem. To demonstrate the success of
the proposed method, experiments are conducted for data-
sets obtained via simulation of a sorting system. This way, it
is possible to not only demonstrate the impact on required
runtime but also on the quality of the association.

I. INTRODUCTION

Sensor-based sorting provides solutions for sorting various
products, for instance according to quality aspects [1]. Typi-
cal fields of application are found in food processing [2], [3],
recycling [4], [5], and handling of industrial minerals [6], [7].
In many cases, a sorting task aims at separating low-quality
objects from high-quality objects and hence results in an
accept or reject task. Corresponding systems usually include
components for transportation of the material, sensors for
perception thereof, and a separation mechanism. Selection
of an appropriate sensor or several thereof is typically based
on the product to be handled as well as the sorting task
itself. Applied sensors include RGB cameras in the visible
spectrum, near-infrared and ultraviolet spectra, X-ray and
hyper-spectral cameras. In many cases, information retrieved
by the sensor may be represented in terms of an image.
Hence, image evaluation is applied in order to classify
perceived objects and derive an according sorting decision.

Typically, the material to be sorted is perceived while
being transported. Scanning sensors, such as line-scan cam-
eras, are usually utilized and provide advantages for instance
regarding necessary illumination. As can be seen from Fig. 1,
a delay exists between perception and separation of the
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material. This delay is mainly due to required processing
time of the evaluation system. Also, sensors and separation
mechanisms are usually mounted at different stages of the
system. Consequently, only information extracted at the time
of perception can be utilized to predict an object’s position
when reaching the separation stage. This does not allow for
any assumptions regarding its movement.

Due to vast advances in area-scan camera technology,
application of sensors of this kind becomes feasible in
sensor-based sorting. An advantage lies in the chance to
observe objects at multiple time points instead of only once.
Performing multitarget tracking then enables evaluation of
an object’s movement. In the course of sensor-based sorting,
such information is crucial for reliable triggering of the
separation mechanism, for example compressed air nozzles.
Compared with static approaches, an enormous increase in
precision of separation may be achieved.

In this work, including multitarget tracking into an evalua-
tion system for sensor-based sorting is considered. Due to the
movement of the material towards the separation mechanism,
a deadline exists before which a sorting decision needs to
be derived. Therefore, strict deadlines are to be met by
algorithms employed. This challenge is addressed by pro-
viding a mechanism which selects an algorithm for solving
the association problem, which poses a high computational
burden upon the multitarget tracking system, in accordance
to a present situation in terms of estimated system load.
Contributions of this paper lie in demonstrating how sensor-
based sorting systems can benefit from multitarget tracking
and which steps can be taken to implement approaches which
support that deadlines for deriving a sorting decision for each
object are met.

This paper is organized as follows. Following this brief
introduction, related work from the field of sensor-based
sorting is revised in Sec. II. Sec. III starts by demonstrating
the drawbacks of only utilizing static information to predict
an object’s position at the stage of separation. Also, it is
shown how multitarget tracking approaches can be integrated
into evaluation systems in sensor-based sorting. An approach
to support meeting the real-time requirement for multitarget
tracking is presented in Sec. IV. Following that, experimental
results are presented in Sec. V. Sec. VI concludes the paper
and presents promising directions for future research.

II. RELATED WORK

Sensor-based sorting systems consist of several hardware
components to handle material feeding, transportation and
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Fig. 1. Basic workflow in sensor-based sorting.

flow control, sensors, illumination, evaluation systems and
separation mechanisms, see Fig. 1. Therefore, the design of
high-quality systems stimulates research in various fields.

Material feeding heavily depends on the entire processing
pipeline. Considering recycling applications, sensor-based
sorting often is one step of many to achieve the processing
task which also consists of other sorting schemes such as
magnetic sorting [5]. Regarding transportation, it is desired
to support flow control of the material as good as possible.
Examples include conveyor belts [4] and chutes [8], whereas
the choice is often based on the product at hand. This is also
the case for selection of an appropriate sensor [9], [10], [11],
[12], [13]. Using several sensors to improve classification
performance for recycling sorting tasks is discussed in [14].
Choosing an illumination is crucial for creating an ideal
situation to extract information from the sensor data [15].
Due to the already discussed real-time criterion, speed is of
great importance in processing the sensor data. Therefore,
implementations in hardware are sometimes favoured over
software solutions [16], [17]. Methods for object classifica-
tion range from SVMs [17], [18] to Fuzzy Logic [4], [16] and
also neural networks [16]. For sorting of cohesive, granular
materials, compressed air nozzles provide a suitable separa-
tion mechanism [13], [19]. Considering an accept or reject
sorting task, separation is achieved by either activating a
nozzle or not. Alternative separation mechanisms for instance
include robot arms [20].

Recently, application of multitarget tracking in the context
of sensor-based sorting has been proposed [21]. Deriving
enhanced motion models using simulations based on the Dis-
crete Element Method (DEM) has been introduced in [22].

III. MULTITARGET TRACKING IN
SENSOR-BASED SORTING

Multitarget tracking is a well-studied problem [23], [24]
that still receives a lot of scientific attention. In this section, it
is demonstrated how sensor-based sorting systems can benefit
from incorporating multitarget tracking in corresponding
evaluation systems. Also, details of a corresponding imple-
mentation are provided.

A. Necessity for Multitarget Tracking

As has been discussed, many state-of-the-art sensor-based
sorting systems make use of scanning sensors to retrieve

information about objects contained in the material stream.
Also, it has been mentioned that perception and separation
happen at different points in time. Therefore, systems alike
are making assumptions regarding the point in time as well
as the position of an object when reaching the separation
stage in case it is to be rejected. Basically, working with
such static information is based on the assumption of ideal
flow control. In more detail, it is assumed that:

1) Each object contained in the material stream is moving
at the same velocity in the transport direction.

2) No object has a velocity perpendicular to the transport
direction.

Obviously, whether truth holds to these assumptions heav-
ily depends on the quality of flow control. For instance, in
case of a conveyor belt, the material of the belt as well
as its length are crucial. For certain products, designing
ideal conditions in terms of flow control is a very hard
problem and, in the worst case, may be infeasible. In order
to compensate for deviations from the above mentioned
assumptions, systems utilizing compressed air nozzles as a
separation mechanism deliberately expand the activation time
window as well as the area for which nozzles are to be
activated, to ensure rejecting the desired object. This comes
at the cost of producing by-catch, i.e. falsely co-ejected
objects located nearby the targeted object, and eventually
increases loss of the product to be accepted.

Furthermore, even if achieving ideal flow control for a
specific product may be possible, the same system setup may
fail when changing the product. Intuitively, one would expect
that the geometric shape of the product under inspection
has a significant impact on its motion. More precisely,
it might be assumed that plates and spheres would show
rather different behavior in this regard. This assumption is
supported by experiments presented in [25]. To provide for
systems with a high degree of flexibility towards the products
to be processed, it is crucial to respect the motion of the
objects. By using predictive tracking, more precise triggering
of the nozzles can be performed, thus reducing by-catch and
eventually resulting in economic benefits.

B. Tracking Objects during Evaluation

In the course of this work, integration of multitarget
tracking into a software evaluation system used for sensor-
based sorting is considered. Furthermore, it is assumed that



information retrieved from the sensor can be represented
as an image. For the purpose of detection of measure-
ments, subsequent to image pre-processing and segmenta-
tion, connected component analysis is performed to identify
individual objects in the image data. This yields a set of
unlabeled measurements, for instance represented by the
centroids of the extracted connected components. The main
remaining tasks of the multitarget tracking system can then
be summarized as:

• State estimation to predict the position of the next
measurement for each track

• Gating to subdivide the search space for subsequent
association (optional)

• Association between current measurements and predic-
tions

• Internal state management to update existing tracks,
create new tracks and delete disappeared tracks

A standard Kalman filter with a constant velocity model
is used for the task of estimation. State variables are given
by the x and y coordinate of the centroid of the object
as obtained from connected component analysis as well as
velocities in x and y direction, vx and vy , respectively. Its
complexity lies in O(n) where n denotes the number of
current target tracks, which is expected to be close to the
number of extracted measurements.

Solving the association problem, which is also required for
each frame, typically yields higher complexity. The task is to
associate each extracted measurement with an existing track
or declare it to potentially belong to a new track. Various
algorithms exist to solve this problem which differ in terms
of computational complexity and whether they guarantee
optimal results. In the remainder, local nearest neighbor
(LNN) as well as global nearest neighbor (GNN) are consid-
ered for this purpose. To solve the association problem for
GNN, the shortest augmenting path algorithm LAPJV [26]
is considered. In terms of performance, it is important to
note that LNN does not yield optimal solutions but has a
comparably low complexity of O(n2), while LAPJV does
guarantee optimal solutions at the cost of a complexity of
O(n3). Further information regarding the handling of newly
discovered objects as well as those disappearing from the
observable area is provided in [21].

IV. HANDLING THE REAL-TIME REQUIREMENT

In Sec. III-B, core components of a multitarget tracking
system for sensor-based sorting were discussed. State esti-
mation, in this case implemented by means of a Kalman
filter, has linear complexity with respect to the number of
update and filter steps. However, algorithms for solving the
association problem differ in complexity which generally is
higher compared with state estimation. Also, corresponding
algorithms differ in terms of the quality of their results. In
the course of this work, exactly these properties are exploited
to support fast multitarget tracking and hence increase the
chance of meeting the deadlines to derive a sorting decision
for each object. More precisely, the proposed system consists
of several algorithms capable of solving the association
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Fig. 2. Architecture of the proposed system to support meeting the real-
time requirement.

problem. The system further implements a decision making
function which selects the appropriate algorithm for each
frame. The architecture of the system is illustrated in Fig. 2.

The purpose of the decision making function as depicted
in Fig. 2 is to estimate the expected workload of the system
for each frame. Based upon this estimation, the association
strategy controller is configured to select an appropriate
strategy. It should be noted that this on the one hand, as is
the case in the remainder of this work, can imply selection of
a solver algorithm, but on the other hand may also activate a
gating to be performed prior to association problem solving.
The implemented system, for which experimental results are
presented in the next section, derives this decision by means
of the number of measurements extracted per frame as well
as the number of active tracks. Although the scheme is rather
simple, it hence is based upon the key figures having a
significant impact on the required time.

V. EXPERIMENTAL RESULTS

In this section, results for a multitarget tracking system
switching between two association strategies, namely GNN
with LAPJV and LNN, are presented. Switching occurs
whenever the number of measurements obtained from a
frame and / or the number of active tracks reaches a prede-
fined threshold. More precisely, the LAPJV algorithm which
is supposed to yield superior results in terms of association
quality is only used whenever load is expected to be low.
For the LNN solver, only assignments of measurements to
predictions with a distance that does not exceed the expected
average distance between two frames are considered valid.

A. Test methodology

Two key figures are of particular interest, namely the time
required to solve the association problem and the correctness
of its results. Regarding the first, the time elapsed during
solving the association problem is taken for each frame. This
also allows determining the overall time spent on solving
the problem for the entire data-set. With respect to the



correctness of results, a ground truth needs to be available
to draw any conclusion which typically is not available
when using real-world data obtained from a sorting system.
Therefore, results are presented for two simulated data-sets
which were obtained using the simulation approach described
in [22]. In this regard, the Discrete Element Method (DEM)
is used to model the sorting system and calculate the particle
movement, also respecting particle–particle and particle–wall
interactions. As a measure of performance, it was evaluated
how many actual objects existed according to the performed
tracking in more than one track. More precisely, each result-
ing track was saved including the associated measurements
and their label as was assigned during simulation. Then, for
each object, the number of tracks including the correspond-
ing label is counted. Whenever this yields a result greater 1,
an object could either not be tracked without interruption, or
it has been falsely associated to a different track. Equation (1)
depicts the calculation of this error assuming a data-set
containing actual objects O = {o1, . . . , on}, resulting in
tracks T = {t1, . . . , tm}.

e =

n∑
i=1

1 (
m∑
j=1

{
1 oi ∈ tj

0 otherwise
) > 1

0 otherwise

(1)

All experiments were run on an Intel Core i7-3770 with
8 GB RAM.

B. Trade-off between Runtime and Association Quality

The first data-set was generated by simulating the sorting
process with 3713 wooden spheres. Fig. 3 illustrates the
time required to solve the association problem when using
the LAPJV and the LNN algorithm. As can be seen, the
LNN algorithm does not exceed 122 µs while the LAPJV
algorithm requires up to 543 µs for certain frames. Assuming
a camera operating at 200Hz, this means that solving the
association problem may take up to ∼ 11% of available
processing time which also includes image processing and
classification tasks, while LNN has its peak at ∼ 2%. Using
the LNN algorithm, 75 objects existed in more than one
track. Employing the LAPJV algorithm, this number drops
to 2. In a second step, the system was configured to switch
from LAPJV to LNN whenever more than 80 measurements
were obtained and / or more than 80 tracks were active. The
results are presented in Fig. 4. The maximum time spent per
frame in this case is ∼ 217 µs which corresponds to ∼ 4%
of available processing time under described conditions.
Furthermore, 46 objects were contained in more than one
track.

The same experiment was conducted using a data-set with
4412 simulated wooden cylinders. The required processing
time when using either the LAPJV or the LNN algorithm is
presented in Fig. 5. Assuming a camera running at 200Hz,
solving of the association problem takes up to ∼ 17% using
LAPJV and ∼ 5% with LNN. Regarding the assessment of
the association quality, the number of objects contained in
more than one track is significantly higher compared with

the previously discussed data-set. This is most likely to be
explained by the rather irregular movement of the cylinders
resulting in a harder tracking problem. Using the LAPJV
algorithm, 10 objects were found in more than one track,
and using the LNN algorithm in 189. A run switching the
strategy whenever more than 80 measurements were obtained
and / or more than 80 tracks were active was also performed.
Results are illustrated in Fig. 6. The number of objects that
were contained in more than one track resulted in 166 while
taking at most ∼ 5% of available processing time.

For both data-sets, experiments were conducted to for-
mulate a performance profile in terms of required time
and errors made. Results for wooden spheres are presented
in Fig. 7 and for wooden cylinders in Fig. 8, respectively.
As a reference, the time required by exclusively using LNN
and the corresponding occurring errors were used. Fig. 7
and Fig. 8 hence illustrate the ratio of required time and
errors avoided for different thresholds for strategy switching.
For this purpose, simulations for thresholds ranging from
0, i.e. using exclusively LNN, to the maximum number of
occurring measurements per frame were performed. As can
be seen, granting the system twice the time required by LNN
results in avoiding ∼ 65%−70% of the errors for the wooden
spheres data-set and avoiding ∼ 38% − 39% of the errors
for the wooden cylinders data-set.

VI. CONCLUSION

In this paper, multitarget tracking in sensor-based sort-
ing was discussed. Having demonstrated how systems can
benefit, it was shown how tracking can be included into a
software-based evaluation framework. Emphasis was given
to the limited computation time available. To tackle this
challenge, a system including a decision making function
to dynamically select an appropriate strategy for solving
the association problem for each frame was introduced. By
providing an example implementation of this function it
was demonstrated that the trade-off between time spent and
quality of predictions can effectively be steered. Eventually,
this enables limiting the computation time spent on solving
the problem and consequently supports real-time capabilities
of an evaluation system for sensor-based sorting.

Intended next steps of our research include further uti-
lization of performance profiles as have been presented.
For instance, such profiles can be used to develop contract
algorithms which guarantee termination for a given deadline
while providing a known quality. Also, the scenario vice
versa is promising, namely to require a minimum quality
under the constraint to use as little computation time as
possible. Another approach to make sensor-based sorting
systems benefit even more from multitarget tracking is to
exploit information made available by multitarget tracking
for classification of objects. As objects are observed at
several time points, features, for instance geometric or color-
based, can also be determined for several observations.
Furthermore, motion-based features, such as velocity, can
be calculated and utilized during classification. Also, it is
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Fig. 3. Required processing time of the LNN and LAPJV algorithm per
frame for a simulated data-set with wooden spheres.
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Fig. 4. Results when switching the association problem solving strategy
for the simulated wooden spheres data-set.
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Fig. 5. Required processing time of the LNN and LAPJV algorithm per
frame for a simulated data-set with wooden cylinders.
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Fig. 6. Results when switching the association problem solving strategy
for the simulated wooden cylinders data-set.
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Fig. 7. Performance profile for the data-set with simulated wooden spheres.
Results using exclusively LNN serve as the reference.
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Fig. 8. Performance profile for the data-set with simulated wooden
cylinders. Results using exclusively LNN serve as the reference.

intended to extend the pool of association solving strategies,
for example by approaches utilizing accelerators, e.g. GPUs.
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