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Abstract—Many modern approaches to nonlinear filtering em-
ploy sample-based density approximations. These approximations
are generated via random (Monte Carlo methods) or determin-
istic sampling (say, the UKF). The advantages of deterministic
techniques are their reproducibility and that they require fewer
samples. While the UKF is designed for real vector spaces, we
present an approach for deterministic sampling applicable to
two-dimensional periodic manifolds. This approach employs five
weighted samples and matches trigonometric moments and a
circular-circular correlation coefficient.

I. INTRODUCTION
Estimation of angles and other periodic quantities is a

widespread problem in many areas. When more than one angle
is to be considered, it becomes necessary to take the dependence
between the angles into account. While a single angle can be
represented by a value on the unit circle, two or more angles
can be seen as a value on the torus or hypertorus, respectively.
In this paper, we focus on the two-dimensional case, i.e., on
bivariate circular problems.

Bivariate circular estimation is of great importance in
a number of applications in the fields of aerospace, signal
processing, and robotics. Consider for example the heading of
two aircraft in proximity. Even though the headings of two
separate aircraft may seem independent at first glance, they
are affected by common noise (e.g., the wind or variations
in the Earth’s magnetic field influencing the navigation of
both aircraft) and may thus be correlated. Another example
is the orientation of a humanoid robot’s head and its torso,
which can be moved independently but are subject to correlated
disturbances that affect the entire robot. Other examples include
the phase of two received signals as well as bearings-only
measurements obtained from two different locations that are
affected by the common environment.

There has been some research on probability distributions
on the torus in the field of directional statistics [16]. Probability
distributions on the torus have to be distinguished from
distributions on the unit (hyper)sphere (see, e.g., [3]) because
they consider a different underlying topology. The torus is
useful when considering multiple quantities, where each of
them is periodic on its own, whereas the sphere is useful
when considering unit vectors or angles that correspond to
(hyper)spherical coordinates. On the torus, the bivariate von
Mises [15, Sec. 2.4], [18] and the bivariate wrapped normal
distributions [6], [4] have been considered in literature. Some
further investigations of these densities can be found in
[17], [13]. In the past years, we have published a recursive
filtering algorithm based on the bivariate wrapped normal
distribution [8]. However, this algorithm is limited to very
simple system and measurement models, because there was no
easy way to propagate the uncertainty on the torus through an
arbitrary nonlinear function.

To address this deficiency, a technique called deterministic

Figure 1: Uncorrelated (left) and correlated (right) bivariate
wrapped normal distributions with the samples obtained using
the proposed sampling scheme. The samples are depicted as
red dots and their weight is indicated by their size. Note that
both x1 and x2 are 2π-periodic.

sampling can be employed. Deterministic sampling is an
approach used by various nonlinear filters on vector spaces such
as the unscented Kalman filter (UKF) [7], the Smart Sampling
Kalman filter (S2KF) [19], the cubature Kalman filter [1],
[5], and others. The key advantage of deterministic sampling
compared with stochastic sampling is that a much smaller
number of carefully chosen samples can closely represent a
probability density. We have previously published several papers
about deterministic sampling on periodic manifolds, e.g., the
unit circle [9], [10], the hypersphere [3], and the group of rigid
body motions in the plane SE(2) [2].

In this paper, we propose a novel deterministic sampling
scheme for bivariate circular densities (see Fig. 1). For this
purpose, we generalize ideas based on trigonometric moment
matching that were previously used in the circular case [9].
However, it is not straightforward to ensure that not only the
uncertainty in each dimension but also the circular correlation
between the dimensions is accurately represented. To solve this
problem, we use an intelligent choice of the sample weights
to match a circular correlation coefficient [4]. Thus, we obtain
a deterministic sample set by computing both suitable sample
positions and sample weights.

II. PREREQUISITES
The Bivariate Wrapped Normal (BWN) distribution has the

probability density function (pdf)

BWN (x;µ,C) =

∞∑
j=−∞

∞∑
k=−∞

N (x+ 2π[j, k]T ;µ,C) ,

where x = [x1, x2]
T ∈ [0, 2π)2, µ ∈ [0, 2π)2, and C ∈ R2×2

symmetric positive definite. A bivariate (wrapped) Dirac
mixture on the torus [0, 2π)2 is given by∑L

j=1
wjδ(βj

− xj) , (1)
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Figure 2: Idea of the proposed sampling scheme.

where w1, . . . , wL > 0 are weights with
∑L

j=1 wj = 1

and β
1
, . . . , β

L
∈ [0, 2π)d are the positions of the Dirac

components.
We define the trigonometric moments for the bivariate case

as the componentwise trigonometric moments (see [8])

mn =

[
mn,1

mn,2

]
=

[
E(exp(inx1))
E(exp(inx2))

]
∈ C2 . (2)

It is possible to obtain the circular mean of each dimension
as the complex argument of m1,1 and m1,2, respectively. The
trigonometric moments can be calculated in closed form for
the BWN distribution [8, Lemma 1].

In order to quantify the correlation between two circular
random variables x1 and x2, a number of different correlation
coefficients has been proposed. In the following, we use the
correlation coefficient by Jammalamadaka and Sarma [4], which
is given by

rc =
E(sin(x1 − µ1) sin(x2 − µ2))

E(sin2(x1 − µ1))E(sin2(x2 − µ2))
,

where µ1 and µ2 are the circular means in each dimension. A
closed-form solution for the BWN distribution can be found
in [4, eq. (3.3)], [8, Lemma 2].

Remark 1. The following sampling scheme is not limited to the
BWN distribution but can be applied to any toroidal distribu-
tion, where the trigonometric moments and Jammalamadaka’s
correlation coefficient can be computed either analytically
or numerically, e.g., various versions of the bivariate von
Mises distribution [17]. A more thorough discussion of such
distributions can be found in [18], [17], [14].

III. DETERMINISTIC SAMPLING
In this section, we show how to deterministically sample

from a bivariate circular density with known first trigonometric
moment m1 and known circular correlation coefficient rc. To
simplify the derivations, we consider the special case where
µ1 = µ2 = 0. In this case, all entries of the first trigonometric
moment m1 are real numbers. Later, we can shift the locations
by µ to obtain the samples for the general case.

The samples are chosen symmetrically around [0, 0]T with
positions

β1 = [β1,1, β1,2]
T = [−a,−b]T ,

β2 = [β2,1, β2,2]
T = [a, b]T ,

β3 = [β3,1, β3,2]
T = [−a, b]T ,

β4 = [β4,1, β4,2]
T = [a,−b]T ,

β5 = [β5,1, β5,2]
T = [0, 0]T ,

where a, b ∈ (0, π) and weights w1 = w2 > 0, w3 = w4 > 0,
and w5 = 1 − 2w1 − 2w3 > 0 (see Fig. 2). This choice
is motivated by using the Cartesian product of samples at
−a, 0, a and −b, 0, b in each dimension similar to [9] and
setting four of the weights to zero, which effectively reduces
the number of samples from nine to five1. The weights are
chosen such that the Dirac mixture is point symmetric with
respect to the origin. Thus, it holds that the imaginary part of
the first trigonometric moment is always 0, i.e., the circular
mean µ1 = µ2 = 0 is preserved. The idea is that for densities
with positive correlation, the weights w1 = w2 are large and the
weights w3 = w4 are small, whereas for densities with negative
correlation the opposite is true. For uncorrelated densities, the
weights w1, w2, w3, w4 are all identical.

A. Obtain a and b from the First Trigonometric Moment
For convenience, we define the abbreviation w̃ = w1 +w3.

The first component of m1 is given by the real part of (2)

m1,1 =
∑5

n=1
wi cos(βn,1)

=w1 cos(−a) + w1 cos(a)

+ w3 cos(−a) + w3 cos(a) + w5 cos(0)

=2w1 cos(a) + 2w3 cos(a) + w5

=2w̃ cos(a) + w5 ,

and the second component of m1 is analogously given by

m1,2 =
∑5

n=1
wi cos(βn,2) = 2w̃ cos(b) + w5 .

For known weights, we can easily solve these equations for a
and b, which results in

a = arccos

(
m1,1 − w5

2w̃

)
, b = arccos

(
m1,2 − w5

2w̃

)
.

Notice that these equations only depend on w̃ but not on the
relation between the weights w1 and w3, which determines
the correlation. Furthermore, we can obtain w5 = 1− 2w̃, i.e.,
only w̃ needs to be chosen. Hence, we get

a = arccos

(
m1,1 − 1 + 2w̃

2w̃

)
= arccos

(
m1,1 − 1

2w̃
+ 1

)
,

b = arccos

(
m1,2 − 1 + 2w̃

2w̃

)
= arccos

(
m1,2 − 1

2w̃
+ 1

)
.

We need to ensure that real-valued solutions for a and b exist,
i.e., the argument of arccos(·) must be in [−1, 1]. We consider
the equation for a and obtain

m1,1 − 1

2w̃
+ 1 < 1⇔ m1,1 − 1

2w̃
< 0⇔ m1,1 < 1 ,

which always holds because m1,1 ∈ [0, 1). Furthermore,

m1,1 − 1

2w̃
+ 1 > −1⇔ m1,1 − 1

2w̃
> −2

⇔ m1,1 − 1 > −4w̃ ⇔ 1−m1,1

4
< w̃ ,

which gives a lower bound for w̃. We observe that because of
m1,1 ∈ [0, 1), any w̃ > 1/4 fulfills this condition. The same
results are obtained by considering the equation for b.

1Unlike the UKF [7], the proposed approach uses samples on the diagonals
rather than samples on the axes, which allows adjusting the correlation by
varying the weights. By doing so, we avoid the need for rotating the samples
to match the correlation, which is nontrivial on the torus.



B. Choose Weights w1 and w3 to Match Correlation
Jammalamadaka’s correlation coefficient of the Dirac mix-

ture (1) is given by

rc =

∑5
n=1 wn sin(βn,1) sin(βn,2)√(∑5

n=1 wn sin
2(βn,1)

)(∑5
n=1 wn sin

2(βn,2)
) .

(3)

We can derive the term in the numerator according to∑5

n=1
wn sin(βn,1) sin(βn,2)

=w1 sin(−a) sin(−b) + w1 sin(a) sin(b) + w3 sin(−a) sin(b)
+ w3 sin(a) sin(−b) + w5 sin(0) sin(0)

=2w1 sin(a) sin(b)− 2w3 sin(a) sin(b)

=2(w1 − w3) sin(a) sin(b)

=2(w̃ − 2w3) sin(a) sin(b) .

The terms in the denominator are given by∑5

n=1
wn sin

2(βn,1)

=w1 sin
2(−a) + w1 sin

2(a)

+ w3 sin
2(−a) + w3 sin

2(a) + w5 sin
2(0)

=2w1 sin
2(a) + 2w3 sin

2(a)

=2w̃ sin2(a) ,

and analogously∑5

n=1
wn sin

2(βn,2) = 2w̃ sin2(b) .

Now, we can solve (3) for w3 assuming a fixed w̃

rc =
2(w̃ − 2w3) sin(a) sin(b)√

4w̃2 sin2(a) sin2(b)

⇔ rc · 2|w̃ sin(a) sin(b)| = 2(w̃ − 2w3) sin(a) sin(b)

⇔ rc · |w̃| = w̃ − 2w3

⇔ w3 = (w̃ − rc|w̃|) /2 ,
where we use sin(a) > 0, sin(b) > 0. The value w1 = w̃−w3

can then be calculated as well. To obtain a valid Dirac mixture,
we need to ensure that w1, w3 ≥ 0.

From w3 ≥ 0, we get

(w̃ − rc · |w̃|) /2 ≥ 0

⇔ w̃ ≥ rc · |w̃| ⇔ sign w̃ ≥ rc
and from w1 ≥ 0, we obtain

w̃ − (w̃ − rc · |w̃|) /2 ≥ 0

⇔ 2w̃ − (w̃ − rc · |w̃|) ≥ 0

⇔ w̃ ≥ −rc · |w̃| ≥ 0

⇔ sign w̃ ≥ −rc .
Thus, we just need to ensure that w̃ ≥ 0.

We suggest the choice w5 = 1
5 , which implies w̃ = 2

5 (i.e.,
w̃ > 1

4 also holds). This choice has the advantage that the
Dirac mixture has uniform weights in the case of uncorrelated
random variables, i.e., rc = 0.

Pseudocode of the resulting procedure is given in Algo-
rithm 1. It can be seen that the algorithm does not require any
numerical methods. It is very easy to implement and fast to
execute.

Algorithm 1: Deterministic Sampling
Input: first trigonometric moment m1,

Jammalamadaka’s correlation coefficient rc
Output: Dirac positions β1, . . . , β5 and weights

w1, . . . , w5

/* Reduce to the case with circular
mean zero */

µ← [atan2(=m1,1,<m1,1), atan2(=m1,2,<m1,2)]
T ;

m1 ← [|m1,1|, |m1,2|]T ;
/* Compute Dirac weights */
w̃ ← 2

5 ;
w5 ← 1− 2w̃ ;
w3 ← 1

2 (w̃ − rc|w̃|);
w1 ← w̃ − w3;
/* Compute Dirac locations */
a← arccos ((m1,1 − 1/(2w̃) + 1) ;
b← arccos ((m1,2 − 1)/(2w̃) + 1) ;
β1 ← µ+ [−a,−b]T ;
β2 ← µ+ [a, b]T ;
β3 ← µ+ [−a, b]T ;
β4 ← µ+ [a,−b]T ;
β5 ← µ+ [0, 0]T ;
return (β1, . . . , β5, w1, . . . , w5);

IV. EVALUATION
To evaluate the proposed deterministic sampling scheme,

we apply it to the problem of propagating a bivariate wrapped
normal density through a nonlinear function. This function is
given by

fc(x) = (x+ c · [cos(x2), sin(x1)]T ) mod 2π ,

where c ∈ R is a parameter that influences the nonlinearity.
The evaluation consists of the following steps:

1) Sample from

BWN
(
x;µ =

[
0
0

]
,C =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
.

2) Propagate all samples through fc(·).
3) Estimate parameters of a BWN density from propa-

gated samples using the Mixed-MLE method proposed
in [13].

4) Compare µ and C of the resulting BWN density to
the ground truth.

The ground truth is obtained by performing the step 1–3 with
10 000 Monte Carlo samples. In the evaluation, we compare
the proposed sampling scheme to the UKF samples and to 50
Monte Carlo samples (averaged over 100 runs). We use the
parameters σ1 = 0.8, σ2 = 1.3 and different values of ρ.

The error measure for µ is given by the mean angular error
across both dimensions

1

2

∑2

k=1
min(|µk − µtrue

k |, 2π − |µk − µtrue
k |) .

For the matrix C, we use the mean absolute error given by
1
4‖C−Ctrue‖1.

The results are shown in Figure 3. It can be seen that the
proposed method significantly outperforms the UKF and the
Monte Carlo solution with 50 samples even though it only uses
five samples.
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Figure 3: Evaluation results for different values of the correlation parameter ρ.

V. CONCLUSION
In this paper, we have presented a novel deterministic

sampling algorithm for bivariate circular distributions. The
proposed algorithm preserves the first trigonometric moment
as well as Jammalamadaka’s circular correlation coefficient. It
is easy to implement and can be calculated very efficiently.

In the future, we plan to develop nonlinear recursive
Bayesian filtering algorithms based on the proposed sampling
scheme. The resulting filter will constitute a bivariate gener-
alization of the circular filtering algorithms presented in [11].
Furthermore, a thorough comparison to the toroidal versions
of the EKF, UKF, and the particle filter will be performed.

An implementation of the proposed method can be found in
libDirectional [12], a MATLAB library for directional
statistics and directional estimation.
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