
CoCPN – Towards Flexible and Adaptive
Cyber-Physical Systems Through Cooperation

Florian Rosenthal∗, Markus Jung†, Martina Zitterbart†, and Uwe D. Hanebeck∗

Abstract—This work is concerned with our ongoing research
project CoCPN: Cooperative Cyber Physical Networking that
has the goal to allow cooperation between control applications
and the communication system that constitute cyber-physical
systems. We describe the envisioned architecture of CoCPN and
outline how it improves the flexibility of cyber-physical systems
by cooperatively sharing a common network infrastructure. We
also present our simulation tool CoCPN-Sim that we developed
as a method to thoroughly investigate the interaction between
control applications and the communication system. By providing
the results of selected simulations using the well-known inverted
pendulum, we identify potential aspects that can be exploited
for cooperation and hence serve as starting points towards more
flexible and adaptive cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems (CPS), such as smart grid, smart
factory and smart city, are becoming key components of our
future, largely digitalized world [1], [2]. From an abstract
technical point of view, they consist of control loops for
applications in, e.g., industrial process control, robotics or
surveillance [3], that sit on top of a communication system
that comes with its own internal control loops (cf. Fig. 1). Typ-
ically, both types of control loops are designed independently
from each other. Very commonly, the control application has
strict requirements, for instance with respect to timely and
failure-free delivery of control information, and demands very
specific networking support with pre-reserved resources.

The vision of our research project CoCPN: Cooperative
Cyber Physical Networking is to enable cooperation between
the control application and the network-internal control loops
and, thus, to i) pave the way for the usage of standard
networking equipment being able work with less strict net-
work requirements and ii) to harness potential flexibility in
the control application, e.g., through adaptable event-based
systems. Consequently, this should make a more dynamic and
autonomic operation of future cyber-physical systems possible.

The contribution of this paper is threefold. First and fore-
most, we outline the goals and concepts of CoCPN. Sec-
ond, we introduce CoCPN-Sim [4], the simulation tool we
developed in the course of this project, which combines
MATLAB with the event-driven network simulator OMNeT++
and allows us to investigate the cooperation between control

∗Florian Rosenthal and Uwe D. Hanebeck are with the Insti-
tute for Anthropomatics and Robotics, Karlsruhe Institute of Technol-
ogy (KIT), Germany. Email: florian.rosenthal@kit.edu,
uwe.hanebeck@ieee.org
†Markus Jung and Martina Zitterbart are with the Institute of

Telematics, Karlsruhe Institute of Technology (KIT), Germany. Email:
markus.jung@kit.edu, zitterbart@kit.edu

Control
Loop 1Other

Traffic

Control System

Control
Loop n

Communication System

…

Fig. 1: Abstract view of a cyber-physical system.

applications and communication system in detail. Finally, we
present and discuss results that show the interplay between
control application and communication system.

Outline: The remainder of this paper is organized as
follows. First, we review some recent research concerned
with simulating and benchmarking cyber-physical systems
in Section II. Then, in Section III, we outline the basic ideas
and goals of CoCPN and describe its envisioned architecture.
Subsequently, we introduce the associated simulation frame-
work CoCPN-Sim in Section IV. In Section V, we provide
experimental results and a discussion of these before we
conclude this work in Section VI.

II. RELATED WORK

Since simulation-based benchmarking is an easy and repeat-
able method to investigate the behavior of different influencing
factors in CPS, plenty of work has been carried out recently
with regards to simulation and benchmarking. Simulation-
based benchmarking is particularly suited when the focus is
on higher-level protocols and quantities, such as end-to-end
delays or jitter, are of interest [5]. Consequently, the majority
of the existing approaches focuses on certain aspects of a CPS
only, which renders them impractical for our holistic view of
such systems.

For instance, in [6] a framework is presented that captures
both the processing and network nodes of a CPS, while [7], [8]
are concerned with designing interfaces for co-simulation of
the physical and the computational components. However, [7]
focuses on the interaction between the control software and the
physical plant to be controlled itself and does not explicitly
take the underlying network into account. On the other hand,
the work [8] employs the IEEE High Level Architecture stan-
dard and hence utilizes a relatively high degree of abstraction.
In [9], the authors propose a set of performance indicators
from both network and control domain that should be used

Fig. 2: Implicit coupling of two control applications, each consisting of a
sensor (S), a controller (C) and an actuator (A), due to a shared link.

for benchmarking, yet without introducing a corresponding
evaluation platform. For wireless CPS, such a platform that
integrates simulated systems into a real-world testbed has been
presented recently in [10]. A summary of other co-simulation
and modeling approaches can be found in [3], [11], [12].

III. COCPN ARCHITECTURE

The goal of our research project CoCPN is to improve the
flexibility of control applications and communication systems
in CPS. Thus, instead of specialized networks, we presume a
communication system based on standard networking equip-
ment as an adaptable foundation for networked applications.
This approach however induces three main challenges that
have to be addressed. First, applications may have very dif-
ferent requirements regarding latencies, data rate, reliability
and priorities. Second, access to limited resources must be
balanced between applications such that high performance
of the overall CPS is ensured. Finally, sharing a common
network infrastructure can cause unwanted side effects since
applications may interfere with each other.

Consider the situation in Fig. 2, where two control appli-
cations C1 and C2 share a common link within the network.
Sharing this link establishes an implicit coupling between the
two control loops. We call control applications that are subject
to the coupling effect at a shared link adjacent applications.
Any over-utilization of the shared link, which, e.g., may occur
when C1 increases its data rate, leads to larger delays or even
packet losses. As this affects all adjacent applications, the
quality of control (QoC) that can be achieved by C2 is thus
degraded, despite the fact that C2 has a much higher priority
within the CPS.

CoCPN seeks to address the challenges mentioned before-
hand by a cooperative use of communication resources. Our
approach relies on cooperation i) between control applica-
tions and communication system and ii) between applications
themselves. Both domains, control and communication, strive
for a common goal: a high overall QoC across the whole
CPS without imbalances or displacements between adjacent
applications.

Cooperation between control applications and communica-
tion system is enabled by exchanging information about their

Fig. 3: Data flow of a CoCPN control application. The translator (T) as
key component of CoCPN enables the cooperation between communication
system and control application (C).

current state, individual requirements and additional meta-data.
In the CoCPN architecture, the so called translator facilitates
this exchange. It acts as a mediator between applications and
the underlying communication system. Fig. 3 illustrates the
data flow of a CoCPN control application (C) and its inter-
action with the translator (T). Control data is is processed by
the control application. Accompanying monitoring feedback
is collected within the communication system. The translator
processes this feedback to provide network models, which
describe the actual state of the communication system, to the
control application and translates communication requirements
to matching networking primitives.

For control applications, we leverage paradigms such as
model predictive and sequence-based control [13], [14], and
employ an event-driven information exchange. This furnishes
us both the robustness to operate without hard real-time
guarantees and the ability to adapt to varying communi-
cation resources and control demands. The communication
system in turn adapts to application specific communication
requirements. Supported by the CoCPN translator, it chooses
suitable mechanisms and strategies to, for instance, maintain
sufficiently low latencies.

The previously discussed mechanisms pave the way for
cooperation between control applications and communication
system. This improves their adaptivity and robustness, but is
not yet sufficient to prevent negative side effects due to implicit
coupling between control applications. Hence, CoCPN also
introduces a cooperation mechanism among applications to
support a cooperative use of shared communication resources.
Key idea behind this mechanism is to cope with the inevitable
coupling between applications by making it explicitly visible
to applications and communication system. Supported by both
communication system and translator, each control application
locally adjusts its communication behavior by incorporating
information about the actual state of the communication sys-
tem. Cooperatively, they balance the available resources within
the communication system fairly between adjacent control
applications to arrive at an evenly distributed QoC.

Roughly speaking, the CoCPN mechanism for coopera-
tive resource sharing works by weighting the urgency to
communicate of adjacent control applications. Here, urgency

is reciprocal to the QoC of a control application. Based
on monitoring feedback, an estimation of the actual state
of the communication system and of the QoC of adjacent
control applications is deduced. The local control applica-
tion provides data about the actual QoC, which is also sent
alongside outgoing control data. Thus, it is incorporated into
the monitoring feedback for all adjacent control applications.
Considering this information, CoCPN aims to balance the
available communication resources between adjacent control
applications by locally computing a suitable reference QoC.
Provided that it is possible to vary the communication behavior
of control applications by adjusting their QoC, this mechanism
permits a dynamical sharing of the communication resources
without over-utilization. It is the task of the translator to
provide a mapping between the two domains, between QoC
and communication behavior, and to actually perform suitable
QoC adjustments.

Our approach of explicit coupling enables a CPS to dy-
namically adapt to varying configurations, requirements and
available resources. The translator enables control applications
to share communication resources in fair and cooperative
manner by adjusting their local QoC. However, this requires
the translator to have knowledge about the control applica-
tion and its interplay with the communication system. As a
means to investigate this interplay and, subsequently, to iden-
tify opportunities for collaborative approaches, we developed
CoCPN-Sim, a simulation and evaluation framework that is
briefly introduced in the next section.1

IV. COCPN-SIM AT A GLANCE

CoCPN-Sim integrates the event-driven simulation frame-
work OMNeT++ and the numerical computing platform
MATLAB. While MATLAB is widely used in the control
community, for instance for design and analysis of control
algorithms, OMNeT++ and its accompanying model suite
INET are often used for network analyses.

In CoCPN-Sim, MATLAB thus provides the mathemat-
ical toolbox for control-related tasks within the CPS and
OMNeT++ and INET are used to model the network. Con-
sequently, with CoCPN-Sim more sophisticated and realistic
network scenarios can be provided so that cyber-physical
systems can be analyzed on a more fine-grained level. To
realize the communication between the components of control
applications – for instance, sensor data must be transmitted to
the controller and control inputs are sent to the plant – in the
simulation, data must be exchanged between MATLAB and
OMNeT++ and then translated into an equivalent represen-
tation in OMNeT++. Additionally, the communication must
be integrated into the event-driven workflow of OMNeT++
because the individual components communicate in a clock-
controlled manner.

Both MATLAB and OMNeT++ are interfaced by compo-
nents that are located at either side of CoCPN-Sim, as illus-
trated in Fig. 4, where the key components are sketched out.

1CoCPN-Sim is open source software and available on github [15].

∆t
Polling
Event

 NcsContext

handleMessage();

NcsPacket

t = k ∙ ∆t

NcsPacket

NcsPacket

t = ?

Sensor

Controller

Actuator

Plant ∑ DataPacket[]

poll(k);

DataPacket[]

DataPacket[]

Packet
Buffer

t = k ∙ ∆t

Control
Loop

Fig. 4: Overview of the data flow between MATLAB and OMNeT++/INET
within CoCPN-Sim.

Major component is the NcsContext that resides inside the
OMNeT++ part of the simulation and represents an application
control loop within OMNeT++. It offers a periodic polling
event that is used by the simulation kernel of OMNeT++
to drive the clock-based models within MATLAB and hence
displaces the main loop of a pure MATLAB simulation.

As shown in the figure, the NcsContext polls a hook
function at every time step that in turn prompts MATLAB to
perform all necessary computations within the control loop.
As a result of this call, a number of DataPackets, that
is, unified and serializable representations of messages to be
exchanged between the components of the control loop, are
handed back to OMNeT++. In a typical control application,
these DataPackets would contain the sensor data to be
transmitted to the controller and the control inputs computed
by the controller that shall be sent to the plant.

After being transformed into an INET-compatible represen-
tation, the data is passed to the network model. From this point
on, all further processing steps are carried out asynchronously
with respect to the time domain of the control loop. Once
a message arrives at a network node corresponding to a
component of the application control loop, the NcsContext
immediately forwards it to the MATLAB side. There, it is
either buffered for clock-synchronous processing or directly
processed. In any case, responses, such as application layer ac-
knowledgments, can be issued and handed back to OMNeT++.
When the next polling event is triggered, the next control
cycle is started at the MATLAB side of the simulation and
the buffered messages are processed as described above.

After having described the internal data flow of
CoCPN-Sim, we outline the simulation workflow, which
essentially comprises three steps, in the remainder of this
section. First, MATLAB models of the components of
the application control loop are implemented. A shared
library containing all the required MATLAB functionality
is subsequently created using the the MATLAB Compiler
SDK [16]. Second, the desired network setup is then specified
in OMNeT++. This can either be done by implementing
custom models for, e.g., applications, hosts, or routers,
or by using any of the models that are already provided
by INET. Finally, the simulation can be run after it has
been configured by parameterizing all components within
OMNeT++ according to the desired scenario.

V. SELECTED EXPERIMENTS

In this section, we present and discuss some experimen-
tal results that we have gathered to date with the help of
CoCPN-Sim. More precisely, we utilize the well-known task of
stabilizing an inverted pendulum on a moving cart to assess the
performance characteristics of an event-based control strategy
w.r.t. different event trigger configurations. Knowledge of
these characteristics will be necessary to enable the translator
to conduct purposeful adjustments of control parameters. We
use the norm of the control error to evaluate the control
performance. Additionally, we evaluate the data rate required
by the control strategy, or more precisely, the number of
transmitted data packets per second.

In the following, we will first give a detailed description
of the control task and the implemented controller in Sec-
tion V-A. Then, in Section V-B and Section V-C, we describe
the topology and characteristics of the underlying network,
and the overall setup of the simulation, respectively. Finally,
results will be presented and discussed in Section V-D.

A. Description of the Control Task

As mentioned in the introduction of this section, the control
task we are concerned with is to stabilize an inverted pendulum
on a cart operating in a transient state, that is, frequent setpoint
changes of the cart’s position occur. To that end, consider the
state of the pendulum at time step k given by

xk =
[
sk ṡk φk φ̇k

]
,

with sk denoting the position of the cart (in m) and φk the
angle of the pendulum (in rad), chosen such that φk = π
corresponds to the unstable upward equilibrium. The discrete-
time, nonlinear dynamics of the pendulum xk+1 = f(xk, uk),
where uk is the input force applied to the cart (in N), is
obtained by discretizing the continuous-time dynamics with
a sampling rate of ta = 0.01 s.

To control the pendulum, we implement a sequence-based
controller as in [17] based on a usual infinite-horizon, linear-
quadratic regulator. For the computation of the regulator gain
and the feedforward, the continuous-time pendulum dynamics
is first linearized around the upward equilibrium and then
discretized using ta. The state xk is not measured directly,
but only observations of the position and the deviation of the
pendulum from the upward equilibrium are available to the
controller, both of which corrupted by zero mean Gaussian
noise. Hence, a state estimate is required for the computation
of the control inputs. For this purpose, we utilize the estimator
proposed in [18].

Additionally, the controller does not transmit control inputs
every time step, but only when a certain event is triggered. This
is achieved by implementing a strategy similar to what has
been proposed in [19]. More precisely, new control inputs are
only transmitted if the controller detects a significant increase
of its underlying cost function, computed based on its current
state estimate. Here, the maximum allowed increase is a tuning
parameter to be provided by the designer in order to trade off
the number of data transmissions against the achievable control

Sensor

Controller

Actuator

A B

A

C

Fig. 5: Network topology used for the experiments.

TABLE I: Link parameters used for the network topology in Fig. 5.

Link type Bitrate Delay
A 100Mbit/s 50 ns
B 10Mbit/s 50 ns
C 100Mbit/s 50 ns . . . 50ms

performance. Inspired by the notion in [19], we refer to this
parameter as deadband, denoted by δ, in the following.

B. Description of the Network Parameters

To investigate the interplay between communication sys-
tem and control system, we model a simplified network as
illustrated in Fig. 5. Sensor and actuator are physically co-
located and thus connected to the same router. The controller
is connected to this network by a second router. Three different
link types A, B, and C are configured using the parameters
listed in Table I. Each link is assumed to be ideal, that is,
without bit errors. Note that the delay of link type C can
be varied in order to assess the impact of latencies within the
network on the control task. Henceforth, this parameter will be
denoted as controller-actuator delay and abbreviated by tCA.

All components of the control loop utilize an UDP/IP
network stack so that the reception of data packets is generally
not acknowledged by the receiver. However, application-level
acknowledgments are sent back from the actuator to the con-
troller upon reception of applicable control inputs. As detailed
in [18], the reception of these acknowledgments enables the
controller to infer control inputs that where applied in the past
and to thus improve the quality of the state estimate.

C. Simulation Setup

We configured the previously described scenario within
CoCPN-Sim to conduct two experiments. The first experiment
focuses on the effect of the deadband parameter on control
performance and communication behavior. The second exper-
iment briefly studies the interplay between both the deadband
and controller-actuator delay. The parameters are chosen to
cover a reasonable range w.r.t. control performance and real-
istic network states. More precisely, in the first experiment the
deadband increases exponentially from δ = 0.1 to δ = 204.8
and the controller-actuator delay is set to tCA = 50ns. In the
second experiment, we use the same deadband values but also
vary tCA within the range given in Table I. For comparison,
we also include the case δ = 0.0 in both experiments, which
corresponds to a controller that is not event-based but always
transmits control inputs.

To alleviate the influence of the random number generators
in CoCPN-Sim, we carried out several simulation runs per
parameter configuration in each experiment, namely 25 in the

Fig. 6: Average norm of control error and number of packets sent by the
controller for each employed deadband δ and tCA = 50ns.

first one and 5 in the second one. In each run, the simulation
time was set to tmax = 30 s. To avoid disruptions due to the
initialization of the network, the control task, and in particular
the movement of the cart, does not start until t1 = 3 s. The
true benchmark phase then commences at t2 = 12 s and ends
at tmax.

Among other metrics, CoCPN-Sim records the actual con-
trol error at each sampling instant. Likewise, the number
of data packets sent out by the components of the control
loop is recorded. To assess the control performance in each
experiment, we compute the average norm of the control error
for every parameter configuration, where we average over
the complete benchmark phase (t2 ≤ t ≤ tmax) and all
simulation runs. Similarly, we compute the average data rate
employed by the controller, expressed in terms of the number
of transmitted packets per second, for both experiments to
evaluate the communication behavior.

D. Results

The results of the first experiment are visualized in Fig. 6,
where the average norm of the control error (orange curve,
primary y-axis on the left) and the controller’s packet rate (blue
curve, secondary y-axis on the right) are plotted for each value
of δ. Both metrics were computed as described above and we
also plotted error bars to indicate minimum and maximum
values.

We get from the curves that the control error grows with
increasing values of δ, or, to put it another way, the achieved
QoC decreases the more δ increases. This is an expected
behavior because large deadband values at the same time
reduce the rate at which data packets are sent to the actuator.
Moreover, the results exhibit that the control error also varies
to a greater extent for larger values of δ. For the packet rate,
the biggest variations are observed for mid-range deadband
values.

Two conclusions can be drawn from this experiment. First,
the event-based control approach provides a manageable way
to influence the control performance. The deadband values
we used in the simulations correspond to angle deviations of

Fig. 7: Average norm of control error for each employed deadband δ and
different values of the controller-actuator delay tCA.

the pendulum growing from approx. ±0.2° to ±3°. A higher
variance of the control performance at high deadband values
is most likely the result of a delayed control response, which
makes the control loop more susceptible to noise and other
disturbances. This motivates further research towards more
sophisticated predictive event triggers. Second, there appears
to be a connection between δ, the achievable QoC and the
packet rate actually employed by the controller. Hence, it
should be possible to derive a model of the control task that is
suitable to support the computations of the CoCPN translator
component.

The results of the second experiment, depicted in Fig. 7,
show that delays induced by the network also affect the
achievable control performance. In essence, they reveal that
increasing delays also lead to larger control errors, which
correspond to angle deviations of up to ±15°. It is worth to
mention that the curves for tCA = 50ns and tCA = 5ms
are equal. This is reasonable since the sampling rate of the
control system is ta = 10ms so that these small delays
cannot be perceived by the application. Similarly, the curves
for tCA = 10ms and tCA = 15ms are equal because in both
cases the data packets are processed by the application at the
same sampling instant.

For 0.0 ≤ δ ≤ 12.8, all runs except tCA = 50ms
exhibit a very similar behavior with a steadily increasing
control error. For lager deadband values, i.e., δ ≥ 25.6, the
graphs can be differentiated into two groups, depending on
the values of tCA. While the control error further increases
for tCA ≤ 15ms, it either remains constant or even decreases
for tCA ≥ 20ms. Interestingly, the curves also exhibit that
in case of large delays, that is, tCA ≥ 40ms, the control
performance achieved with large deadband values was superior
to the control performance with δ = 0.0.

Our findings from this experiment are threefold. First, the
results suggest that presence of relatively large delays, large
deadband values and, consequently low data rates, do not
necessarily lead to reduced control performance. Second, our
simulations also indicate that delays within the network matter.
However, it should be possible incorporate the influence of

them into translator models by parameterizing them appropri-
ately. The same applies to the outgoing packet rate (not shown
here), which did not differ much across all parameter config-
urations. Third, the experiment allows to draw conclusions on
possible trade-offs to be leveraged for cooperation in CoCPN.
Consider the results for tCA = 50ns and tCA = 40ms. They
indicate that a similar control error is obtained for δ = 25.6
and the base case δ = 0.0. However, for the former the
required packet rate is about 90% lower.

Hence, we can conclude that, in particular in the presence
of high delays due to, e.g., an over-utilized link, adapting
the desired QoC of the application by the CoCPN transla-
tor component is a viable method to drastically reduce the
communication rate. This allows for lower delays within the
communication system, which in turn enables the control
application to reach a higher QoC than before.

VI. SUMMARY AND OUTLOOK

In this work, we introduced our ongoing research project
CoCPN: Cooperative Cyber Physical Networking that aims at
enabling cooperation between applications and the underlying
network in cyber-physical systems. Likewise, we presented the
simulation tool CoCPN-Sim, which combines MATLAB and
OMNeT++, that we developed to investigate the interaction
between the control loops in the applications and the network-
internal control loops in detail. Moreover, we provided the
results of an experiment that we conducted to study the effect
of different transmission rates employed by the event-based
controller on both control performance and communication
behavior. In a second experiment, we also investigated the in-
terplay between the employed transmission rates and different
delays in the network.

The results demonstrated a significant interdependence be-
tween the achievable quality of control and network-induced
delays. They also highlighted possible trade-offs that can be
leveraged in future research and consequently be used as start-
ing points towards more flexible and adaptive cyber-physical
systems. In particular they point out that aiming at a lower than
optimal QoC can lead to a higher actual control performance
as this reduces the utilization of the communication system.
Thus, they strongly indicate the feasibility of our cooperative
approach.

Additional prospective research will aim at deriving models
for the communication behavior of control applications that
can be utilized by the cooperation mechanisms of CoCPN. To
that end, the impact of further parameters, such as varying
delays in the communication of sensor data to the controller,
latencies, jitter, or packet losses due to cross-traffic, has to be
investigated.

ACKNOWLEDGMENT

This work is supported by the German Science Foun-
dation (DFG) within the Priority Programme 1914 “Cyber-
Physical Networking”.

REFERENCES

[1] S. Karnouskos, “Cyber-Physical Systems in the SmartGrid,” in 2011 9th
IEEE International Conference on Industrial Informatics, July 2011, pp.
20–23.

[2] L. Ribeiro, “Cyber-physical Production Systems’ Design Challenges,”
in 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), June 2017, pp. 1189–1194.

[3] S. K. Khaitan and J. D. McCalley, “Design Techniques and Applications
of Cyberphysical Systems: A Survey,” IEEE Systems Journal, vol. 9,
no. 2, pp. 350–365, June 2015.

[4] M. Jung, F. Rosenthal, and M. Zitterbart, “Poster Abstract: CoCPN-Sim:
An Integrated Simulation Environment for Cyber-Physical Systems,” in
2018 IEEE/ACM Third International Conference on Internet-of-Things
Design and Implementation (IoTDI), April 2018, pp. 281–282.

[5] C. A. Boano, S. Duquennoy, A. Förster, O. Gnawali, R. Jacob, H. Kim,
O. Landsiedel, R. Marfievici, L. Mottola, G. P. Picco, X. Vilajosana,
T. Watteyne, and M. Zimmerling, “IoTBench: Towards a Benchmark
for Low-power Wireless Networking,” in 2018 IEEE Workshop on
Benchmarking Cyber-Physical Networks and Systems (CPSBench), April
2018, pp. 36–41.

[6] A. Brokalakis, N. Tampouratzis, A. Nikitakis, S. Andrianakis, I. Pa-
paefstathiou, and A. Dollas, “An Open-Source Extendable, Highly-
Accurate and Security Aware CPS Simulator,” in 2017 13th International
Conference on Distributed Computing in Sensor Systems (DCOSS), June
2017, pp. 81–88.

[7] Y. Zhang, Y. Dong, W. Feng, and M. Huang, “A Co-Simulation Interface
for Cyber-Physical Systems,” in 2016 13th International Conference on
Embedded Software and Systems (ICESS), Aug 2016, pp. 176–181.

[8] T. Roth and M. Burns, “A Gateway to Easily Integrate Simulation
Platforms for Co-Simulation of Cyber-Physical Systems,” in 2018 Work-
shop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), April 2018, pp. 1–6.

[9] S. Gallenmüller, S. Günther, M. Leclaire, S. Zoppi, F. Molinari,
R. Schöffauer, W. Kellerer, and G. Carle, “Benchmarking Networked
Control Systems,” in 2018 IEEE Workshop on Benchmarking Cyber-
Physical Networks and Systems (CPSBench), April 2018, pp. 7–12.

[10] D. Baumann, F. Mager, H. Singh, M. Zimmerling, and S. Trimpe,
“Evaluating Low-Power Wireless Cyber-Physical Systems,” in 2018
IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems
(CPSBench), April 2018, pp. 13–18.

[11] A. T. Al-Hammouri, M. S. Branicky, and V. Liberatore, “Co-simulation
Tools for Networked Control Systems,” in Hybrid Systems: Computation
and Control, M. Egerstedt and B. Mishra, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 16–29.

[12] W. Li, X. Zhang, and H. Li, “Co-simulation platforms for co-design
of networked control systems: An overview,” Control Engineering
Practice, vol. 23, pp. 44 – 56, 2014.

[13] A. Bemporad, “Predictive Control of Teleoperated Constrained Systems
with Unbounded Communication Delays,” in Proceedings of the 37th
IEEE Conference on Decision and Control, vol. 2, Dec. 1998, pp. 2133–
2138.

[14] J. Fischer, A. Hekler, M. Dolgov, and U. D. Hanebeck, “Optimal
Sequence-Based LQG Control over TCP-like Networks Subject to
Random Transmission Delays and Packet Losses,” in Proceedings of
the 2013 American Control Conference (ACC 2013), Washington D.C.,
USA, Jun. 2013.

[15] M. Jung and F. Rosenthal, “CoCPN-Sim,” 2018. [Online]. Available:
https://github.com/spp1914-cocpn/cocpn-sim

[16] The MathWorks, Inc, “MATLAB Compiler SDK.” [Online]. Available:
https://www.mathworks.com/products/matlab-compiler-sdk.html

[17] G. Liu, “Predictive Controller Design of Networked Systems With
Communication Delays and Data Loss,” IEEE Transactions on Circuits
and Systems—Part II: Express Briefs, vol. 57, no. 6, pp. 481–485, 2010.

[18] F. Rosenthal, B. Noack, and U. D. Hanebeck, “State Estimation in Net-
worked Control Systems with Delayed and Lossy Acknowledgments,”
in Multisensor Fusion and Integration in the Wake of Big Data, Deep
Learning and Cyber Physical System, S. Lee, H. Ko, and S. Oh, Eds.
Cham: Springer International Publishing, 2018, pp. 22–38.

[19] Y. Zhao, G. Liu, and D. Rees, “Packet-Based Deadband Control for
Internet-Based Networked Control Systems,” IEEE Transactions on
Control Systems Technology, vol. 18, no. 5, pp. 1057–1067, Sept 2010.

