
A Cross-Disciplinary Language for Change Propagation Rules

Kiana Busch1, Dominik Werle1, Martin Löper1, Robert Heinrich1, Ralf Reussner1, Birgit Vogel-Heuser2

Abstract— Automated production systems are in operation
for a long time and are continuously being changed. Therefore,
for these systems it is important to have the ability to react
efficiently to changes. Change propagation analysis approaches
allow predicting the effects of changes before they are actually
implemented. Such approaches often use predefined change
propagation rules that indicate how the change propagates in
a system. However, the change propagation rules used by these
approaches are limited to a discipline such as information sys-
tems, to the structure of system elements in a discipline, or to a
programming language such as Java. In this paper, we present a
cross-disciplinary language to specify change propagation rules.
The proposed language is independent of a particular discipline,
structure of system elements, or programming languages. To
show the improvement of the readability and the coverage of
the change propagation rules with our language, we apply it
to two existing approaches to change propagation analysis for
the electronic and mechanical components, as well as control
software of automated production systems.

I. INTRODUCTION

One of the main characteristics of automated Production
Systems (aPS) is their longevity. Longevity requires contin-
uous changes to aPS in order to adapt to the changes in
requirements or environment [1]. The measure of the ease to
change a system is maintainability [2]. Thus, maintainability
is one of the most important quality attributes of aPS. As aPS
consist of electronic and mechanical components, as well
as software systems, the elements from different disciplines
influence each other during the evolution [1]. The mutual
dependencies between the elements from different disciplines
increase the complexity of the analysis of the aPS evolution.

To support evolution in aPS, change propagation ap-
proaches can be used to analyze the impact of a change at
design time and before the change is actually implemented in
the system. These approaches usually use a set of pre-defined
change propagation rules to predict the change in aPS [1]. A
change propagation rule specifies how the change propagates
between two structural elements of a system in a specific
discipline [3]. The possible types of structural elements and
their relations are usually described by modeling languages,
often also referred to as metamodels. A concrete system is
represented by an instantiation of the modeling language
(i.e., a model). Thus, a change propagation rule is most
commonly described for all systems in the discipline of
interest. Therefore, the change propagation rules depend

1The Authors are with Department of Informatics, Karlsruhe Institute of
Technology (KIT), 76131 Karlsruhe, Germany {kiana.busch, dominik.werle,
heinrich, reussner}@kit.edu, martin.loeper@student.kit.edu

2The Author is with Department of Mechanical Engineering, Tech-
nical University of Munich (TUM), 85748 Garching, Germany {vogel-
heuser}@tum.de

highly on the metamodel. In order to be able to define
the change propagation rules, the domain expert in aPS
requires not only information about the system under study,
but also information about the software architecture of the
change propagation approach and more general programming
skills. These factors make the change propagation analysis
in aPS more complex and time-consuming. It is preferable
to domain experts to focus only on the maintainability
relationships between the elements of aPS, while specifying
change propagation rules. Thus, it is desirable to have a
language to specify change propagation rules that can be
flexibly adapted to other systems, be reused, or adapted when
the aPS metamodel changes.

There are already model-based approaches that use a set
of pre-defined rules to predict the propagation of change
within requirements or from the requirement to architectural
elements at design time (e.g., [4], [5]). However, these
approaches are limited to the propagation of change within
the discipline of information systems. There are further
approaches (e.g., [6], [7]) that are based on Unified Modeling
Language (UML) and constraints. These approaches check
the constraints, after the model changes. If all constraints
are valid, the new model is in a consistent state. However,
these approaches are only applicable to systems that can
be modeled using certain UML diagram types. Further,
the previously described approaches use a set of change
propagation rules that cannot be flexibly adapted to other
systems or metamodels, as they are developed for a specific
metamodel. The approaches that define a flexible language
for change propagation analysis instead of constraints (e.g.,
[8]) are also limited to UML class diagrams and, thus, not
applicable to any aPS metamodels.

In this paper, we present a Domain-Specific Language
(DSL) for specifying change propagation rules, which can
be flexibly used in different disciplines. Thus, a DSL is
particularly relevant for the aPS discipline, as aPS consist
of further sub-disciplines, namely electronic and mechanical
components, as well as software systems. Using a DSL
for change propagation rules reduces code redundancy and
improves readability and maintainability. Further, our DSL
allows domain experts to describe the change propagation
rules in a discipline without knowledge of specific constructs
of a General Purpose Language (GPL) such as Java or
the software architecture of a change propagation approach.
Additionally, the change propagation rules specified in the
DSL can be easily and flexibly adapted to new or changing
aPS metamodels. The contributions of the paper are as fol-
lows: i) We present a DSL for specifying change propagation
rules that can be applied regardless of the discipline under

study, such as aPS or information systems. ii) We show
the applicability of the DSL for two previously existing
change propagation analysis approaches for the electronic
and mechanical components, as well as for the control soft-
ware for Programmable Logic Controllers (PLCs), which are
programmed according to the International Electrotechnical
Commission (IEC) 61131-3 standard [9]. Both approaches
are realized in Java.

The remainder of this paper is organized as follows: Sec. II
summarizes the state of the art. In Sec. III, we introduce our
cross-disciplinary language for change propagation rules. We
present the evaluation of our language in Sec. IV. Sec. V
concludes the paper and presents future work.

II. STATE OF THE ART

Rule-based approaches to change propagation analysis
are already used in many disciplines such as information
systems: In [4], the authors present an approach to change
propagation and consistency checking for requirements.
Their approach uses rules to perform change propagation
for different types of changes depending on the relation
(e.g., inclusion) between two requirements. Göknil et al. [5]
describe an approach to tracing changes between require-
ments and architectural elements. In context of embedded
real-time systems, the authors of [10] propose a rule-based
approach to the propagation of requirements change for Ar-
chitecture Analysis and Design Language (AADL) models.
The change propagation rules specify how the architecture
is to be changed after a change to requirements. Dam
et al. [6] present an approach to change propagation in
software systems at a very high abstraction level based on
rules in Object Constraint Language (OCL), which can be
violated by a change. In contrast to our language, the OCL
rules define constraints for a consistent state and can be
checked on changes. This requires a much more specific
description of dependencies in the models of interest as
opposed to giving a conservative estimate of the change
impact set. Another approach to identification of changes
between two versions of a UML model is presented in
[7]. The approach determines the affected model elements
based on change propagation rules in OCL. To this end, pre-
defined propagation rules for various UML diagrams and
their associated elements are provided. In contrast to our
approach, all of the introduced techniques implement rules
in imperative code and are tailored to a specific modeling
language, such as UML, without providing means to adapt
the analysis to other modeling languages or disciplines. In
[8], a rule-based approach to model-based change propaga-
tion analysis is presented. To do this, the authors define a
DSL to describe change propagation rules for UML class
diagrams. However, we provide a cross-disciplinary language
for change propagation rules regardless of the type of change.
Our DSL can be used to tailor rules to a specific metamodel
for describing the systems in a discipline.

In addition to the discipline of information systems, there
are rule-based approaches to change propagation in other
disciplines such as business processes: Sunkle et al. [11]

present an approach to change propagation in enterprise
architecture based on relationships between the architectural
elements. For this purpose, [12] introduces an approach that
defines change propagation rules based on the semantics of
relationships in a metamodel. However, the defined change
propagation rules depend on the discipline and the underlying
metamodel. Similar to approaches in information systems
domain experts cannot implement change propagation rules
without knowledge of the architecture of the approaches.

III. A LANGUAGE FOR CHANGE PROPAGATION RULES

First, we introduce a running example in the aPS context
consisting of simplified change propagation relationships and
how the relationships can be expressed in a GPL (i.e., Java).
We then present our language design and the application of
our language to the running example.

A. Running example

In order to illustrate our language, we use simplified
examples of a metamodel of aPS [1].

Sensor example – forward reference: A sensor has
physical interfaces, as shown in Fig. 1. By changing the
sensor, its physical interfaces may be affected. Thus, the
corresponding change propagation rule in Java searches
along the forward reference in the metamodel. The code for
this change propagation rule searches for the affected sensor
in all instances of the metamodel to identify the connected
physical interfaces, as presented in Listing 1.

PhysicalInterfaceSensor interface [1..*]

Fig. 1. Relationship between a sensor and its physical interface - An
excerpt from an aPS metamodel

Crane example – backward reference: In this example,
cranes are mounted on a physical table, as presented in
Fig. 2. By replacing the table, it is necessary to demount
the crane and mount it on the new table. The code of the
change propagation rule needs to search along the backward
reference to identify the affected crane. The code in Listing 2
searches for all cranes in all instances of the metamodel and
filters them for a connection to the affected table.

PhysicalTableCrane
mountedOn [1..*]

Fig. 2. Relationship between a crane and the physical table – An excerpt
from an aPS metamodel

Bus system example – composition of forward and
backward references: A change propagation rule can be
more complex, if we have to search along several forward
and backward references, as shown in an excerpt from a
bus system in Fig. 3. By changing a bus slave, the change
propagation rule in Listing 3 identifies all affected bus cables.

As the previous examples show, there are classes of change
propagation rules involving forward and backward references
that can be combined to complex change propagation rules.
The code for expressing these complex rules either contains

1 public static List<PhysicalInterface> lookUpPhysicalInterfaceWithSensor(APS aPSModel,Collection<Sensor> modifiedSensor){
2 List<PhysicalInterface> physicalInterfaces = new LinkedList<PhysicalInterface>();
3 for (Sensor sensor : modifiedSensor)
4 physicalInterfaces.addAll(sensor.getInterface());
5 return physicalInterfaces; }

Listing 1. Java code for the lookup corresponding to the Sensor Example

1 public static List<Crane> lookUpCraneWithPhysicalTable(APS aPSModel, Collection<PhysicalTable> modifiedPhysicalTable) {
2 List<Crane> cranes = new LinkedList<Crane>();
3 for (Crane crane : aPSModel.getContainedCranes())
4 for (PhysicalTable physicalTable : crane.getMountedOn())
5 if (modifiedPhysicalTable.contains(physicalTable))
6 cranes.add(crane);
7 return cranes; }

Listing 2. Java code for the lookup corresponding to the Crane Example

1 public static List<BusCable> lookUpBusCableWithBusSlave(APS aPSModel, Collection<BusSlave> modifiedBusSlave) {
2 List<BusCable> busCables = new LinkedList<BusCable>();
3 for (BusCable busCable : aPSModel.getContainedBusCables())
4 for (SignalPlug2 signalPlug : busCable.getPlug())
5 for (SignalInterface signalInterface : signalPlug.getUses())
6 for (SignalPlug1 modifiedSignalPlug : modifiedBusSlave.getPlug())
7 for (SignalInterface modifiedSignalInterface : modifiedSignalPlug.getUses())
8 if (modifiedSignalInterface.equals(signalInterface))
9 busCables.add(busCable);

10 return busCables; }

Listing 3. Java code for the lookup corresponding to the Bus System Example

BusSlaveSignalPlug1SignalInterface

BusCableSignalPlug2

plug [1..*]
plug [1..2]uses [1..1]

uses [1..1]

Fig. 3. Relationship between the elements of a bus system – An excerpt
from an aPS metamodel

redundant code or requires additional effort for factoring out
common code. Both options are error-prone.

B. Language Design

The main requirement for the Change Propagation Rule
Language (CPRL) is the separation of concerns between the
domain expert, who specifies the rules, and the framework
designer, who implements change propagation tools. Ad-
ditionally, we aim for a succinct and unambiguous syntax
to keep the work needed for creating and maintaining the
change propagation rules at a minimum.

The design of CPRL is motivated by scenarios built in
previous work on change propagation analysis, specifically
from information systems [13] and business processes [12]
disciplines. While analyzing these approaches, we found that
a large amount of change propagation rules can be expressed
by specifying references between model elements and the
direction that changes propagate along this reference. In
the sensor example in Fig. 1, the reference interface that
points from a Sensor to a PhysicalInterface is declared in a
propagation rule. Further, change propagation in the opposite
direction of a reference is also needed, as illustrated in Fig. 2.

CPRL is designed as a declarative language. The for-

ward and backward change propagation along references
illustrate a benefit of the declarative nature of the rule
language (i.e., describing what has to be done) as opposed
to implementing the change propagation in an imperative
language (i.e., describing how to do it). To illustrate this
benefit of declarative languages, let us consider the crane
example. There are different implementations for finding
model elements (i.e., Crane) that have a reference of a
given type (i.e., mountedOn) to another given model element
(i.e., PhysicalTable). For example, this could be implemented
by traversing all model elements when a change in the
PhysicalTable is detected. In a declarative language, the
concrete implementation of the change propagation is hidden
from the domain expert. The backward propagation along
references also shows a further benefit of a DSL with an
explicit parser and grammar: detecting all types of references
for which opposite elements need to be indexed is more
difficult for arbitrary GPL code whereas it can be trivially
done during the parsing of the DSL.

C. DSL implementation

In this section, we will first shortly introduce the language-
engineering framework that we chose for our approach. We
also explain central elements of the language grammar.

Xtext1 is a language engineering framework which allows
the design and implementation of editing tools for textual
DSLs based on a grammar of the language that is similar
to the Extended Backus–Naur Form (EBNF). In particular,

1https://www.eclipse.org/Xtext/

ForwardReference

«abstract»
Lookup

ChangePropagationRule

BackwardReference

1..*

Class

Reference
name String

1

source

1 0..1feature feature

source
1

Fig. 4. Reduced illustration of the syntax of the CPRL.

plug-ins for the Eclipse2 Integrated Development Environ-
ment (IDE) can be generated. We chose Xtext, as it is tightly
integrated with the Eclipse Modeling Framework (EMF)3 –
a modeling framework for code generation.

Fig. 4 shows a reduced model of a CPRL rule. Class
and Reference are not part of the language but types from
EMF. Each rule has a unique name. Changes on a model
element of the source type trigger the rule which results in
the evaluation of an ordered list of lookups for determining
the set of impacted model elements. Each lookup operates
on the currently relevant set of elements, which we call
the current-set in the following, and manipulates it in some
way. The current-set is initialized as the source element that
triggers the rule execution. In each step, the current-set is
manipulated by looking up further elements that are related
to the elements in the current set. Finally, the framework
creates change impact markers for all elements in the set.
The markers contain references to the source elements that
triggered the change, so called causing entities.

The textual syntax for describing the rules is as follows:
rule RULENAME: SOURCETYPE LOOKUPS

RULENAME is the name the rule is referenced as.
SOURCETYPE is the metaclass from which changes origi-
nate. LOOKUPS is a sequence of FORWARDREFERENCEs or
BACKWARDREFERENCEs. FORWARDREFERENCEs are expressed
as -> FEATURE. BACKWARDREFERENCEs are expressed as <-
SOURCE[FEATURE]. If the feature is omitted, all references
from the SOURCE type are analyzed.

The design of the language and the editor support provided
by Xtext allow for different kinds of validation for the
language, particularly type safety. For example, it is only
possible to declare references that originate from the type
of the current-set when specifying a forward propagation
rule. In the sensor example, it would not be possible to
declare a reference other that interface for a source type of
Sensor. After this forward propagation is declared (i.e., the
type of the current-set is subsequently PhysicalInterface),
only attributes and references of this type can be used for
further lookup methods. These type checks are supported by
the editing tools by only suggesting appropriate references
and types to the user.

The language supports further features, which we do not
further describe in more detail here: elimination of duplicates
in the current-set, changing the causing entities, filtering by a
specific type, and referencing other change propagation rules.

2https://www.eclipse.org/eclipse/
3https://www.eclipse.org/modeling/emf/

D. Application to the Running Example

Listing 4 illustrates the application of our approach to
the running example defined in subsection III-A. The rules
defined in lines 1, 2, and 3 correspond to the Sensor, Crane,
and Bus System examples, respectively. In comparison to
the code, the given rules are less verbose and act in the
domain of the modeling language, e.g., by referring to the
reference by the name interface (Listing 4, Line 1) instead
of using a call to the generated method getInterface()

(Listing 1, Line 4). Furthermore, there is no need to make
the cardinality of references explicit in the rule language,
as it is the case with GPL code. For example, there is
no syntactic difference between the reference from Crane

to PhyiscalTable in CPRL (i.e., mountedOn reference in
Listing 4, Line 1) and the reference from SignalPlug2 to
SignalInterface (i.e., uses reference in Listing 4, Line 3). In
GPL code, however, the domain expert needs to differentiate
between a method call that returns a collection that needs
further iteration (e.g., getMountedOn() in Listing 2, Line 4)
and a call that returns exactly one element (e.g., getUses() in
Listing 3, Line 5). Altogether, the description is lifted from
the generated GPL code to the modeling language level.

IV. EVALUATION

This section shows the applicability of our DSL. We apply
our DSL to two approaches to change propagation analysis.

A. Study Design

To evaluate CPRL, we follow a Goal Question Metric
(GQM) plan [14]. Goal 1 is to evaluate the coverage of
CPRL when specifying the change propagation rules in a
specific discipline. It is important to note, that the goal
of the evaluation is not to evaluate the change propaga-
tion approaches. Each approach [1], [15] has been already
evaluated. To evaluate the coverage of the language, we
define Question 1: How well can CPRL cover the change
propagation rules in a change propagation approach? In order
to answer this question, we define Metric 1 as the ratio of the
number of change propagation rules that can be expressed
with CPRL to the number of total change propagation rules
that exist in an existing change propagation approach.

We formulate a further goal, which addresses the well-
known benefits of DSL regarding less redundant code and
less technical code compared to a GPL. Goal 2 analyzes the
readability of the change propagation rules specified in Java
compared to CPRL. To evaluate this goal, we use Question
2: How can CPRL help domain experts understand existing
change propagation rules and formulate new ones. To answer
this question in a measurable way, we calculate Metric 2 as
the average lines of code for the existing change propagation
rules in Java and compare it to CPRL.

To evaluate CPRL we chose the aPS discipline. This
discipline contains heterogeneous elements such as electronic
and mechanical components, as well as software. Thus, it
covers several sub-disciplines [1]. We apply CPRL to two
existing rule-based approaches: i) an approach to analysis
of the change propagation in mechanical and electronic

1 rule SensorToInterface: aps::Sensor > interface;
2 rule PhysicalTableWithCrane: aps::PhysicalTable < aps::Crane[mountedOn];
3 rule BusCableFromBusSlave: aps::BusSlave > plug > uses < aps::SignalPlug2[uses] < aps::BusCable[plug];

Listing 4. CPRL rules for the running example.

TABLE I
OVERVIEW OF RULES FOR MECHANICAL AND ELECTRONIC PARTS:

CHANGE PROPAGATION FROM METACLASS A TO METACLASS B

Metaclass A Metaclass B
Component Structure, Module, Interface
Module Structure, Module, Component, Interface
Structure / Interface Module, Component

components of aPS [1] and ii) an approach to analysis of the
change propagation in PLC software [15] that is programmed
according to the IEC 61131-3 standard [9]. The rules of both
approaches were implemented in Java. We used Java, as a
program in Java requires almost as many or fewer lines of
code than programs in other programming languages [16]. In
the evaluation we specify existing change propagation rules
of both approaches in CPRL.

B. Change Propagation Rules

This section gives an overview of the change propagation
rules already implemented by both approaches.

1) Electronic and Mechanical Components of aPS: The
change propagation approach for electronic and mechanical
components is based on the metamodel describing the struc-
ture of a plant in aPS. The metamodel can be constructed at
different abstraction levels. On a higher abstraction level, the
metamodel is comprised of components, modules, structures,
and interfaces. A component represents parts that can be
supplied by a third party, while a module can be assembled
by a plant manufacturer. Components and modules can have
interfaces for fixation and communication. Structures can be
used to organize modules, components, and interfaces [1].

Each row in Table I defines a change propagation rule
for the metamodel elements (i.e., metaclasses). Each rule
describes the propagation of change from metaclass A (i.e.,
the metaclass in the first column of a row) to metaclass B
(i.e., metaclasses in the second column of the same row). An
example of a rule is the change propagation from components
to interfaces. In addition, the approach iterates over all
change propagation rules until no new elements in the current
iteration are marked as changed (i.e., transitive closure).

2) Control Programs According to the IEC Standard: The
change propagation approach for PLC software [15] is based
on a metamodel for control programs according to IEC stan-
dard. The metamodel contains elements that are relevant for
analyzing maintainability. A program is comprised of other
elements such as global variables, functions, and function
blocks. Global variables can be used for input and output.
Function Blocks are stateful, as they can access global
variables, while functions perform stateless calculations [9].

The rows of Table II contain the change propagation rules.
The rules describe the change propagation from metaclass
A to metaclass B. While the first column of Table II

TABLE II
OVERVIEW OF RULES FOR IEC SOFTWARE: CHANGE PROPAGATION

FROM METACLASS A TO METACLASS B

Metaclass A Metaclass B

Global Variable Configuration, Function Block, Method,
Program

Function Function, Function Block, Method, Program

Function Block
Abstract Method, Abstract Property, Func-
tion, Function Block, Global Variable,
Method, Program, Property

Interface
Abstract Method, Abstract Property, Func-
tion, Function Block, Global Variable, Inter-
face, Method, Program, Property

Abstract Property Function Block, Method, Program, Property
Abstract Method /
Method / Property Function Block, Method, Program

shows the candidates for metaclass A, the second column
shows the candidates for metaclass B. An example of a
rule is the change propagation from a global variable to the
corresponding function block. This approach also calculates
a transitive closure of the affected elements. To this end, if a
function block or an interface causes a change propagation,
the analysis calculates the change propagation using the
change propagation rules. Then, it iterates over the newly
inserted changing elements and calculates the changes based
on the newly inserted changing elements and the change
propagation rules. In all other cases, the analysis aborts the
change propagation after one iteration.

C. Results

To answer Question 1, we use CPRL to specify the
existing change propagation rules of both approaches, which
have been already realized in Java. The existing change
propagation rules are either a change propagation along
a forward reference or a backward reference. Thus, these
change propagation rules can be covered by CPRL. However,
a change propagation rule in Java does not always correspond
to a change propagation rule in CPRL. For example, some
change propagation rules in Java had to be split into more
than one change propagation rule in CPRL. In contrast, there
are also change propagation rules in Java that were combined
into one change propagation rule in CPRL.

To construct the transitive closure, the approaches iterate
over all model elements that are marked by change prop-
agation rules as changed and apply the change propagation
rules. CPRL does not currently support loops over all change
propagation rules. Thus, the coverage of CPRL for approach
for mechanical and electronic components and for software
(i.e., Metric 1) is approximately 93% and 98%, respectively.

To answer Question 2, we count the lines of code that are
in average needed to specify a change propagation rule in
Java and in CPRL. While counting the lines of code in Java,
we ignored blank lines, comments, and lines containing only

braces. For example, the code of the bus system example (cf.
Listing III-A) has 10 lines. Further, the help methods in Java
for the change propagation rules were counted only once.
Then, we specified all existing rules in both change prop-
agation approaches with CPRL. We consider only change
propagation rules that can be specified by both Java and
CPRL. A Java rule for approaches to change propagation
analysis for mechanical and electronic components and for
IEC programs (i.e., Metric 2) has 12 and 10 lines of code
in average, respectively. Using CPRL we could specify the
change propagation rules in 1 line in average. The reason for
longer rules in Java is the technical constructs in a GPL such
as loops or branches leading to a redundant code in Java.

D. Limitations

CPRL currently supports forward and backward refer-
ences, as well as their combination. As described previously,
these types and their combinations allow for the coverage
for a majority of change propagation rules in the disciplines
under study. More complex language features can be possible
extensions for further types of lookup methods. Currently,
these types of lookup methods can be integrated using
imperative code written in Java. Although we currently do
not provide these features, this is not a conceptual restriction
of CPRL and will be implemented in future work.

E. Threats to Validity

We consider the following categories of validity [17]:
Internal validity: We applied CPRL to the change prop-

agation rules of two impact analysis approaches. The results
of the evaluation depend on the implementation of the change
propagation rules. Thus, both impact analysis approaches and
CPRL were carried out by different developers.

External validity: We evaluated CPRL by application to
change propagation rules in aPS. Thus, the results might not
be generalizable to other disciplines. But, the discipline of
aPS is composed of other sub-disciplines such as electronic,
mechanical, and software. Thus, we showed the applicability
of our DSL to several disciplines. The focus is to show the
relevance of a DSL to reduce the amount of technical code
and to improve the readability of change propagation rules.
Further, we applied our DSL to existing approaches, that are
implemented independently of the DSL. Both approaches are
evaluated in the respective sub-discipline.

Construct validity: In approaches under study in eval-
uation, the CPRL does not cover iterations over all change
propagation rules. However, we did not select the approaches
with focus on this criterion. The application of CPRL to
these approaches demonstrates that using a forward and a
backup reference, as well as their combinations allows for
the coverage for a majority of change propagation rules.

Conclusion validity: To minimize the interpretation ef-
fects of individual researchers we used metrics for the
evaluation. The lines of code metric can be different in
different programming language. We used Java, as a program
in Java requires almost as many or fewer lines of code than
programs in other programming languages [16]. We counted

the lines that contribute to change propagation rules (e.g., we
ignored comments or lines of code containing only a brace).

V. CONCLUSION & FUTURE WORK

In this paper, we introduced CPRL, a language for the
declaration of change propagation rules. The presented lan-
guage facilitates the separation of concerns in the engineering
process for change propagation approaches. It allows domain
experts to specify rules without making the way they are
evaluated or interpreted explicit. The design process of CPRL
is driven by a previously evaluated set of rules for the change
propagation in the disciplines of information systems and
business processes. The evaluation of CPRL demonstrates
that the DSL can be used to specify most change propagation
rules independently of the discipline under study by applying
it to the discipline of aPS.

Future work includes the application of CPRL to further
disciplines and augmenting CPRL with additional features
to include more complex change propagation rules such as
calculating transitive closure.

ACKNOWLEDGMENT
This work was partially supported by the DFG under the

Priority Programme SPP1593 (RE1674/12-1, VO937/29-1)
and as part of the Research Training Group GRK 2153:
Energy Status Data – Informatics Methods for its Collection,
Analysis and Exploitation.

REFERENCES

[1] B. Vogel-Heuser et al., “Maintenance effort estimation with kamp4aps
for cross-disciplinary automated production systems - a collaborative
approach,” in 20th IFAC World Congress, Toulouse, France, 2017.

[2] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- System and software quality models,” Tech. Rep., 2010.

[3] R. Heinrich et al., “A methodology for domain-spanning change
impact analysis,” in Euromicro Conference on SEAA. IEEE, 2018.

[4] A. Göknil et al., “Change impact analysis for requirements: A meta-
modeling approach,” Information and software technology’14, vol. 56.

[5] A. Göknil et al., “A rule-based change impact analysis approach
in software architecture for requirements changes,” CoRR, vol.
1608.02757, 16.

[6] H. K. Dam et al., “An agent-oriented approach to change propagation
in software maintenance,” JAAMAS, vol. 23, no. 3, pp. 384–452, 2011.

[7] L. C. Briand et al., “Impact analysis and change management of uml
models,” in ICSM, 2003.

[8] K. Müller and B. Rumpe, “A model-based approach to impact analysis
using model differencing,” CoRR, vol. abs/1406.6834, 2014.

[9] IEC, “61131-3: Programmable controllers–part 3: Programming lan-
guages.”

[10] A. Göknil et al., “A rule-based approach for evolution of AADL mod-
els based on changes in functional requirements,” in ECSA Workshops.
ACM, 2016, p. 10.

[11] S. Sunkle et al., Analyzing Enterprise Models Using Enterprise
Architecture-Based Ontology. Springer, 2013, pp. 622–638.

[12] K. Rostami et al., “Architecture-based Change Impact Analysis in
Information Systems and Business Processes,” in ICSA. IEEE, 2017.

[13] K. Rostami et al., “Architecture-based assessment and planning of
change requests,” in QoSA. ACM, 2015, pp. 21–30.

[14] V. R. Basili et al., “The goal question metric approach,” in Encyclo-
pedia of Software Engineering. Wiley, 1994.

[15] J. Rätz, “Erweiterung eines Wartbarkeits-Frameworks für die Program-
miersprache IEC 61131-3,” 2017.

[16] L. Prechelt, “An empirical comparison of seven programming lan-
guages,” Computer, vol. 33, no. 10, pp. 23–29, 2000.

[17] P. Runeson et al., Case Study Research in Software Engineering:
Guidelines and Examples, 1st ed. Wiley, 2012.

