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Abstract—Multilateration systems reconstruct the location of a
target that transmits electromagnetic or acoustic messages. The
required measurement for localization is the time of arrival
(TOA) of the transmitted signal, measured by a number of
spatially distributed receivers. We present a novel multilateration
algorithm that does not require a precise clock synchronization
between the receivers. Furthermore, our method does not need
any prior information about the transmitted signal. It just must
be provided that accurate and identifiable TOA measurements
can be derived. For example, the target could emit aperiodic
pulses. Our method works with TOA differences between succes-
sive messages locally on each receiver. Therefore, our measure-
ment equations do not depend on the receivers’ clock offsets,
and clock synchronization only needs to be accurate enough to
identify each transmitted signal on all receivers. We derive a
number of concrete maximum likelihood estimators for a single
non-maneuvering target based on this method. In addition, we
consider the clock drifts of the receivers.

Index Terms—target tracking, multilateration, time of arrival,
time difference of arrival, unsynchronized receivers.

I. INTRODUCTION

a) Context: Electromagnetic and acoustic signals have
many different properties that carry information and, when
received at multiple sites, can be used to obtain the location
of the signal transmitter. A wealth of algorithms have been
proposed to locate transmitters based on one such property
or a combination thereof. There is received signal strength
(RSS)-based localization [1], [2], angle of arrival (AOA) or
bearings localization [3], Doppler shift localization [4], [5],
and time of arrival (TOA)-based localization.

Localization methods based on signal TOA are generally
referred to as multilateration and have been widely studied [6].
For example, a target equipped with a transponder that sends
messages traveling with a uniform propagation velocity can be
localized when such messages are received at multiple sites.
The same principle can also be used for navigation, i.e., an array
of transmitters at known positions emits electromagnetic pulses
simultaneously or with known time delays, and receivers in
aircraft or ships measure the TOA and calculate the difference
of times of arrival (DOTA) of the pulses at their position.
This principle was first applied during the Second World War
by the United States, called long range navigation system
(LORAN) [7]. The corresponding “multilateration algorithm”
for navigation involved looking into a map where many
hyperbola were inscribed with their corresponding DOTA.

Due to the simplicity and efficiency of the DOTA method,
it is still used today [8]. Apart from the maximum likelihood
estimation that has to be obtained iteratively, direct solutions
have been proposed which are however suboptimal with noisy
measurements [9]. Other methods directly use the TOA for
localization [10], [11] or naviagation [12], without taking
the difference of two TOA first. The target’s messages can
also be requested by an interrogation. This setup is called
secondary surveillance radar (SSR) and can be used for
localization, optionally together with DOTA [13]. Because
the mathematically similar primary surveillance radar (PSR)
is very expensive in acquisition and operation, and on top of
that attains inferior accuracy, SSR is used instead wherever
possible.

DOTA and TOA require the clocks in all receivers to
be mutually synchronized, with an accuracy according to
the propagation speed of the message. For electromagnetic
waves, 1 ns corresponds to as much as 30 cm, so the time
synchronization necessary here can be costly [14], especially
when receivers are hundreds of kilometers apart. One way
to have everything synchronized is of course using GNSS
[15], but this relies on external satellite infrastructure and an
undisturbed radio reception of their signals, which should not
be taken for granted in safety-critical systems [16].

b) State of Art: Methods for multilateration not requir-
ing any accurate sensor synchronization reduce the overall
complexity and communication overhead of distributed sensor
networks. One basic idea to localize a moving target that
inherently does not require synchronization was first introduced
in [17]. Here the DOTA of two successive messages are
measured locally at each receiver, so the constant offset of
the receiver’s clock is not relevant. This method was further
elaborated in [18], where not only two successive messages but
an entire transmission series in a time interval was considered.
Furthermore, Kalman filter target tracking was implemented
based on a linear constant velocity system model. However,
this tracking was defined for two transmissions only, and the
fact that successive measurements are actually correlated was
noted but not considered. Clock drift was treated as general
system noise and not explicitly modeled. For their method,
time intervals between transmissions at the target must always
be known.
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Fig. 1: Geometry plot (a) shows the position of an aircraft p
k

at two time steps tp k, k ∈ {1, 2} . The aircraft transmits a
message at tp 1 and tp 2 , respectively. This message travels with a constant velocity in all directions and is detected by the
receivers si, i ∈ {1, 2, 3, 4} . In (b) you can see everything on the time axis. The first transmission takes place at tp 1 = 1 µs .
From there, the signal travels through space (blue arrows) until it arrives at the individual receivers at times ti1 (marked by
fat plus signs). The second message is transmitted at tp 2 = 15 µs , i.e., τp 1,2 = 14 µs after the first transmission and arrives
at the receivers at ti2 . Signal traveling times (orange arrows) are different this time because the target has moved and hence
the distances between receivers and aircraft have changed in the meantime. Each receiver now determines its local DOTA
τ i1,2 = ti2 − ti1 . These are our synchronization-free measurements.

c) Contribution: We present a novel method to localize
a target with asynchronous receivers that does not require
the target transmission times to be known. Furthermore, we
explicitly model the clock drift of the receivers and estimate it
along with the target position.

II. PROBLEM FORMULATION

We consider a single moving target at several successive
positions p

k
∈ RD at time steps k ∈ {1, 2, . . . ,K} . The

dimension D is typically two or three. The target transmits
electromagnetic or acoustic messages at time steps tp k traveling
with uniform propagation speed c0. The transmission times or
transmission time intervals do not need to be known beforehand.
Hence, the target’s clock does not need to be synchronized with
any other clock. Transmissions can be periodic or aperiodic.

Measurements are obtained by a sufficient number of
receivers at locations si, i ∈ {1, 2, . . . ,R} . These receivers
record the TOA tik of the transmissions in terms of their own
local clock. It is important to note that the R receivers are not
time-synchronized with each other and also not synchronized
with the target.

Our goal is to determine the target positions p
k

at time steps
tp k based on the local time difference of arrival (L-TDOA) or

local difference of times of arrival (L-DOTA) measured in the
R receivers.

III. KEY IDEA

We will only use L-TDOA or L-DOTA. Hence, the receivers
do not have to be synchronized. Time differences that have
been obtained by taking the difference between two TOA from
the same receiver we will call L-DOTA, and time differences
that have been directly measured via cross correlation of two
raw signals recorded on one receiver we will call L-TDOA.
(In literature, differences of TOA are often called TDOA, too,
but we use DOTA to emphasize their composite construction.)
L-DOTA and L-TDOA differ in their measurement variance
and covariance.

Now we formulate a “round-trip” in time as valid measure-
ment equation. From Fig. 1 (b) we can see that it holds “black
arrow length plus orange arrow length equals blue arrow length
plus the measurement τ i1,2 .” The equation states a relation
between the L-DOTA or L-TDOA measurement τ i1,2 = ti2− ti1
of the receivers at position si ∈ RD, and the unknown aircraft
positions p

1
, p

2
, as well as the target’s time difference of



transmissions (TDOT) τp 1,2 = tp 2 − tp 1 , and can be seen as
a round trip through the times of arrival (ROTA)

τp 1,2 +

∥∥∥p
2
− si

∥∥∥
c0

=

∥∥∥p
1
− si

∥∥∥
c0

+ τ i1,2 ,

which yields one measurement equation

τ i1,2 = τp 1,2 +

∥∥∥p
2
− si

∥∥∥− ∥∥∥p
1
− si

∥∥∥
c0

(1)

for every sensor si , respectively,

i ∈ {1, 2, . . . ,R} .

IV. MEASUREMENT EQUATION

A. L-TDOA of Two Transmissions

For estimation and tracking, we deal with uncertain mea-
surements. By treating unknowns and measurements in (1) as
random variables and introducing additive Gaussian noise vvvik,l ,
we obtain our final measurement τ̂ττ ik,l and the measurement
equation of ROTA in its basic L-TDOA form

τ̂ττ ik,l = τττ ik,l + vvvik,l

= hi(ppp
k
, ppp

l
, τττp k,l) + vvvik,l , with (2)

fv
vv,i
k,l (v) = N (v; 0; Cv

vv,i
k,l ) =

1√
2π Cv

vv,i
k,l exp

{
v2/Cvvv,i

k,l

}
and hi(p

k
, p

l
, τp k,l )

= τp k,l +

∥∥∥p
l
− si

∥∥∥− ∥∥∥p
k
− si

∥∥∥
c0

.

We are going to formulate nonlinear optimization problems to
obtain the maximum likelihood estimate. For efficient compu-
tation, we should provide the solver with analytic gradients of
the nonlinear measurement function hi(p

k
, p

l
, τp k,l ) , so we

state these derivatives here, too.

∂

∂ p
k

hi(p
k
, p

l
, τp k,l ) =

−
(
p
k
− si

)
c0

∥∥∥p
k
− si

∥∥∥ ,

∂

∂ p
l

hi(p
k
, p

l
, τp k,l ) =

p
l
− si

c0

∥∥∥p
l
− si

∥∥∥ ,

∂

∂ τp k,l

hi(p
k
, p

l
, τp k,l ) = 1 .

Now we transform (2) into its probabilistic form

f τ̂
ττ,i
k,l (τ̂

i
k,l | pk, pl, τ

p
k,l , v

i
k,l)

= δ
(
hi(p

k
, p

l
, τp k,l ) + vik,l)− τ̂ ik,l

)
,

and by marginalizing over the joint probability distribution we
obtain the likelihood given a single measurement τ̂ ik,l ,

fL,ik,l (τ̂
i
k,l | pk, pl, τ

p
k,l )

=

∫
f τ̂
ττ,i
k,l (τ̂

i
k,l | pk, pl, τ

p
k,l , v

i
k,l) f

vvv,i
k,l (v

i
k,l) dvik,l

= fv
vv,i
k,l

(
τ̂ ik,l − hi(pk, pl, τ

p
k,l )
)

= N
(
τ̂ ik,l; h

i(p
k
, p

l
, τp k,l ); C

vvv,i
k,l

)
.

Assuming the vvvik,l, i ∈ 1, 2, . . . ,R , to be mutually Gaussian
distributed, the likelihood given R L-TDOA measurements
τ̂ ik,l from R receivers reads

fL,1:Rk,l (τ̂1:Rk,l | pk, pl, τ
p
k,l )

= N
(
τ̂1:Rk,l ; h

1:R(p
k
, p

l
, τp k,l ); C

vvv,1:R
k,l

)
,

τ̂1:Rk,l =
[
τ̂1k,l, τ̂

2
k,l, . . . , τ̂

R
k,l

]>
,

h1:R(p
k
, p

l
, τp k,l ) =


h1(p

k
, p

l
, τp k,l )

h2(p
k
, p

l
, τp k,l )

...
hR(p

k
, p

l
, τp k,l )

 .

For R given L-TDOA measurements τ̂1:Rk,l , we can now find the
unknowns that maximize the likelihood. This involves nonlinear
optimization and can be solved iteratively. The maximum
likelihood estimate is equal to the Bayesian maximum a
posteriori estimate without prior knowledge and can be used
for initialization(
p̂ML

k
, p̂ML

l
, τ̂p ML

k,l

)
= argmax
p
k
, p

l
, τp k,l

{
fL,1:Rk,l (τ̂1:Rk,l | pk, pl, τ

p
k,l )

}

= argmin
p
k
, p

l
, τp k,l

{[
τ̂1:Rk,l − h

1:R(p
k
, p

l
, τp k,l )

]>

�

(
Cvvv,1:R
k,l

)−1 [
τ̂1:Rk,l − h

1:R(p
k
, p

l
, τp k,l )

]}
. (3)

As the measurements errors of the L-TDOA from different
receivers are mutually independent, the covariance matrix
Cvvv,1:R
k,l is diagonal

[
Cvvv,1:R
k,l

]
i,j

=

Cvvv,ik,l =
(
σv
vv,i
k,l

)2
, i = j

0 , i 6= j .

This simplifies the maximum likelihood problem (3) a little,
as it can be written as a weighted sum of squares of the
deviations between the modeled measurements and the actual
noisy measurements(
p̂ML

k
, p̂ML

l
, τ̂p ML

k,l

)
(4)

= argmin
p
k
, p

l
, τp k,l

{ R∑
i=1

(
Cv
vv,i
k,l

)−1
·
(
τ̂ ik,l − hi(pk, pl, τ

p
k,l )
)2}

.

This type of problem can be solved with the Levenberg-
Marquardt algorithm [19].



Returning to the case of an exact model and exact measure-
ments, we can see that there are R equations

τ ik,l = hi(p
k
, p

l
, τp k,l )

confronted with five unknowns in 2D or seven unknowns in
3D. This way we can make up the balance and state that
L-TDOA measurements of five or seven different receivers
must be available in 2D or 3D, respectively, to find a solution.
This is a lower bound, so there may be more measurements
necessary in practice. More formally, we state the number of
unknown variables V ,

V = 2 ·D + 1 ,

and the number of equations E ,

E = R .

Now we demand having at least as many equations as unknowns

E ≥ V ⇒ R ≥ 2 ·D + 1 . (5)

B. L-DOTA of Two Transmissions

Cross correlations between pairs of signal wave forms are
expensive in terms of storage and computational power. If just
the TOA t̂tt

i

k are measured, we can still subsequently subtract
them and get a L-DOTA measurement τ̂ττ ik,l. We first define the
noisy TOA measurements t̂tt

i

k that include mutually independent
additive zero-mean Gaussian noise vvvik

t̂tt
i

k = tttik + vvvik .

From there, we come to L-DOTA measurements by subtraction

τ̂ττ ik,l = t̂tt
i

l − t̂tt
i

k

= tttil − tttik + vvvil − vvvik
= τττ ik,l + vvvik,l , (6)

with vvvik,l = vvvil − vvvik .

The L-DOTA measurement noise has a mean of zero

E
{
vvvik,l
}
= E

{
vvvil − vvvik

}
= E

{
vvvil
}
− E

{
vvvik
}
= 0 ,

and for the covariance, it follows

Cv
vv,i
k,l = Var

{
vvvik,l
}

= Var
{
vvvil − vvvik

}
= E

{(
vvvil − vvvik

)2}
= E

{(
vvvil
)2

+
(
vvvik
)2 − 2vvvikvvv

i
l

}
= E

{(
vvvil
)2}

+ E
{(
vvvik
)2}− 2E

{
vvvikvvv

i
l

}
= Var

{
vvvik
}
+ Var

{
vvvil
}
− 2Cov{vvvk, vvvl}

=

{
Var
{
vvvik
}
+ Var

{
vvvil
}
, k 6= l

0 , k = l .

Compared to L-TDOA, the L-DOTA covariance matrix has the
same structure, only the variances are higher[

Cvvv,1:R
k,l

]
i,j

=

{
Var
{
vvvik
}
+ Var

{
vvvil
}
, i = j

0 , i 6= j ,
(7)

k 6= l .

With these variances, the maximum likelihood estimator (3)
can be also used for L-DOTA.

C. L-TDOA of Many Transmissions

We can increase the ratio of the number of equations to the
number of unknowns by extending the model over multiple
time steps. Let’s say we consider M successive transmissions
over time and independently determine the(

M
2

)
=
M · (M− 1)

2

possible L-TDOA between all possible pairs of transmissions
via multiple cross correlations of the raw signal wave forms.
Formally, we first enumerate the L-TDOA between pairs of
received signals

τ̂ττ ikm,lm , m ∈
{
1, 2, . . . ,

(
M
2

)}
and plug it into (2)

τ̂ττ ikm,lm = hi(ppp
km
, ppp

lm
, τττp km,lm

) + vvvikm,lm .

Then we obtain the iterative maximum likelihood estimator
analog to (4)(
p̂ML

1
, p̂ML

2
, . . . , p̂ML

M , τ̂p ML
1,2 , τ̂p ML

2,3 , . . . , τ̂p ML
M−1,M

)
= argmin

(...)

{ R∑
i=1

(M2 )∑
m=1

(
Cv
vv,i
km,lm

)−1

�

·
(
τ̂ ikm,lm − h

i(p
km
, p

lm
, τp km,lm

)
)2}

. (8)

If km − lm > 1 , then τp km,lm
is derived by summing up the

target transmission intervals between km and lm . Now we can
make up the new balance between the number of unknowns V

V =M ·D + M− 1 (9)

and the number of equations E

E =

(
M
2

)
· R .

For the balance it follows

E ≥ V ⇒ R ≥ 2 · M · (D + 1)− 1

M · (M− 1)
,

or simpler,

E ≥ V + 1 ⇒ R ≥ 2D

M− 1
.

It may thus be possible to reduce the minimum number of
required receivers R compared to (5).



D. L-DOTA of Many Transmissions

In this section we will transfer IV-C to L-DOTA measure-
ments. That is, we directly measure two TOA t̂tt

i

k, t̂tt
i

l at each
receiver and obtain the L-DOTA τ̂ττ ik,l by taking the difference
between them

τ̂ττ ik,l = t̂tt
i

l − t̂tt
i

k .

Assuming that each TOA measurement t̂tt
i

k contains additive
white Gaussian noise vvvik

t̂tt
i

k = tttik + vvvik ,

when we set up the L-DOTA measurement as in (6),

τ̂ττ ik,l = τττ ik,l + vvvik,l ,

we obtain again the variance of the measurement noise

Var
{
vvvik,l
}
=

{
Var
{
vvvik
}
+ Var

{
vvvil
}
, k 6= l

0 , k = l .

L-DOTA measurements of more than two successive messages
can be correlated, and the covariance matrix is not diagonal
anymore

Cov
{
vvvik1,l1 , vvv

i
k2,l2

}
= E

{
vvvik1,l1 · vvv

i
k2,l2

}
= E

{(
vvvil1 − vvv

i
k1

)
·
(
vvvil2 − vvv

i
k2

)}
= E

{
vvvil1vvv

i
l2 − vvv

i
l1vvv

i
k2 − vvv

i
k1vvv

i
l2 + vvvik1vvv

i
k2

}
= Cov

{
vvvil1 , vvv

i
l2

}
− Cov

{
vvvil1 , vvv

i
k2

}
�

− Cov
{
vvvik1 , vvv

i
l2

}
+ Cov

{
vvvik1 , vvv

i
k2

}
with Cov

{
vvvik, vvv

i
l

}
=

{
Var
{
vvvik
}
, k = l

0 , k 6= l .

It does not make sense to use all
(M

2

)
L-DOTA here, as the

covariance matrix would become singular. Two typical cases
are taking all differences between directly successive TOA

(k1 < l1) ∧ (l1 = k2) ∧ (k2 < l2) (10)

⇒ Cov
{
vvvik1,l1 , vvv

i
k2,l2

}
= −Var

{
vvvik2
}
,

and taking the differences between one specific TOA and all
others

(k1 = k2) ∧ (l1 > k1) ∧ (l2 > k1) ∧ (l1 6= l2) (11)

⇒ Cov
{
vvvik1,l1 , vvv

i
k2,l2

}
= Var

{
vvvik1
}
.

As we only take local time differences, the covariance between
L-DOTA of different receivers i, j is zero

Cov
{
vvvik1,l1 , vvv

j
k2,l2

}
= 0 , i 6= j .

At each receiver, fromM TOA t̂ik , we can getM−1 L-DOTA
measurements τ̂ττ ikm,lm , m ∈ {1, 2, . . . ,M− 1} ,

τ̂ττ ikm,lm = hi(ppp
km
, ppp

lm
, τττp km,lm

) + vvvikm,lm .

Their noise is correlated but not linearly dependent, i.e., the
covariance matrix Cvvv,i

1:M−1 is non-diagonal but still has full

rank. Analog to (3), we get the iterative maximum likelihood
estimator(
p̂ML

1
, p̂ML

2
, . . . , p̂ML

M , τ̂p ML
1,2 , τ̂p ML

2,3 , . . . , τ̂p ML
M−1,M

)
= argmin

(...)

{ R∑
i=1

[
τ̂ i1:M−1 − h

i
1:M−1(. . .)

]>

�

(
Cvvv,i

1:M−1

)−1 [
τ̂ i1:M−1 − h

i
1:M−1(. . .)

]}
, (12)

with

τ̂ i1:M−1 =


τ̂ ik1,l1
τ̂ ik2,l2

...
τ̂ ikM−1,lM−1


and

hi1:M−1(. . .) =


hi(p

k1
, p

l1
, τp k1,l1

)

hi(p
k2
, p

l2
, τp k2,l2

)
...

hi(p
kM−1

, p
lM−1

, τp kM−1,lM−1
)

 .

The covariance matrix is[
Cvvv,i

1:M−1

]
m,n

=

Var
{
vvvikm,lm

}
, m = n

Cov
{
vvvikm,lm , vvv

i
kn,ln

}
, m 6= n ,

which for the typical choices of L-DOTA is

[
Cvvv,i

1:M−1

]
m,n

=


Var
{
vvvikm

}
+ Var

{
vvvilm
}
, m = n

−Var
{
vvvikn
}
, lm = kn

Var
{
vvvikn
}
, km = kn

0 , elsewhere .

We will write down the covariance matrix explicitly for the
previously mentioned two special cases under the assumption
that the measurement noise vvvi is stationary. For differences
between directly successive TOA (10),

Cvvv,i
1:M−1 =

(
σivvv
)2 ·


2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 2

 ,

and when differences are taken between the first TOA and all
others (11),

Cvvv,i
1:M−1 =

(
σivvv
)2 ·


2 1 1
1 2 1

. . . . . . . . .
1 2 1

1 1 2

 .

As it turns out, the Levenberg-Marquardt nonlinear least squares
(LS) method exhibits superior runtime and convergence to
the global optimum from any starting point in the maximum



likelihood problems discussed here. Thus, we are going to
transform (12) into a pure sum of squares. For this purpose,
we need to decompose the inverse covariance matrix. Since it
is positive definite, we can use its Cholesky decomposition

C−1 = R>R .

Then we can rewrite the quadratic form

ξ>C−1ξ = ξ>R>R ξ =
(
R ξ
)> (

R ξ
)

into a sum of squares

ξ>C−1ξ =
∑
m

([
R ξ

]
m

)2
,

and obtain the maximum likelihood estimate using a Levenberg-
Marquardt optimizer. If analytic gradients are supplied, they
must then of course also be multiplied accordingly with the
Cholesky decomposition R of the inverse covariance matrix.

Again we count the number of equations E and unknowns V .
In any case we need at least as many equations than unknowns
to obtain a unique optimum. A theoretical lower bound for the
number of receivers R is

E ≥ V ⇒ R ≥ M
M− 1

·D + 1 .

V. MEASUREMENT EQUATION WITH CLOCK DRIFT

A. Clock Drift

Even if precise clocks are used in the receivers, a certain
drift is unavoidable [20]. The clocks may run at a very constant
rate, but not at exactly the true speed. Clock drift typically is
on the order of 100 ns/s, which, multiplied by the speed of
light, corresponds to 30m/s. As our basic measurement is the
L-DOTA τ ik,l = til − tik spanning over successive transmissions
and hence is on the order of seconds to minutes, we cannot
neglect the drift here. We do assume that the drift is stable,
though. At receiver i, instead of the true time tik, we measure
a transformed value t̃ik, according to the clock offset bi and
the clock drift δi of the particular receiver

t̃ik = tik ·
(
1 + δi

)
+ bi .

This brings us to the L-DOTA measurement with clock drift

τ̃ ik,l = t̃il − t̃ik
= til ·

(
1 + δi

)
+ bi −

(
tik ·
(
1 + δi

)
+ bi

)
=
(
til − tik

)
·
(
1 + δi

)
= τ ik,l ·

(
1 + δi

)
.

Plugging this measurement into (1), we arrive at the more
detailed ROTA measurement model that includes the drift

τ̃ ik,l =
1 + δi

c0
·
(
c0 τp k,l +

∥∥∥p
l
− si

∥∥∥− ∥∥∥p
k
− si

∥∥∥) . (13)

B. L-TDOA of Many Transmissions With Clock Drift

Especially with L-TDOA of many transmissions, we can
have much more equations than unknowns, so we can think
about including clock drift into our model. Here, we assume
that every receiver has its own drift which is constant over the
window of transmissions that we consider in the measurement
equation. The stochastic measurement equation is derived by
adding zero-mean white Gaussian noise to (13)

τ̂ττ ikm,lm = hi(ppp
km
, ppp

lm
, δδδi, τττp km,lm

) + vvvikm,lm ,

m ∈
{
1, 2, . . . ,

(
M
2

)}
,

with

hi(p
km
, p

lm
, δi, τp km,lm

) (14)

=
1 + δi

c0
·
(
c0 τp km,lm

+
∥∥∥p

lm
− si

∥∥∥− ∥∥∥p
km
− si

∥∥∥) .

Again we calculate the derivatives for improved numerical
efficiency during optimization

∂

∂ p
km

hi(. . .) =
− (1 + δi)

(
p
km
− si

)
c0

∥∥∥p
km
− si

∥∥∥ ,

∂

∂ p
lm

hi(. . .) =
(1 + δi)

(
p
lm
− si

)
c0

∥∥∥p
lm
− si

∥∥∥ ,

∂

∂ τp km,lm

hi(. . .) = (1 + δi) ,

∂

∂ δi
hi(. . .) =

�

τp km,lm
+ 1

c0

(∥∥∥p
lm
− si

∥∥∥− ∥∥∥p
km
− si

∥∥∥) .

We obtain the iterative maximum likelihood estimator analog to
(8). The difference is basically that the nonlinear measurement
function hi(. . .) includes drift now. It is also a nonlinear LS
problem(
p̂ML

1
, . . . , p̂ML

M , τ̂p ML
1,2 , . . . , τ̂p ML

M−1,M, δ̂
1,ML, . . . , δ̂R,ML

)
= argmin

(...)

{ R∑
i=1

(M2 )∑
m=1

(
Cv
vv,i
km,lm

)−1

�

·
(
τ̂ ikm,lm − h

i(p
km
, p

lm
, δi, τp km,lm

)
)2}

,

and can be solved with the Levenberg-Marquardt nonlinear LS
method. Compared to (9), we needR more equations E =

(M
2

)
– one per receiver for its drift. Hence, the theoretical lower
bound of the number of receivers is

E ≥ V ⇒ R ≥ 2 · M · (D + 1)− 1

(M+ 1) (M− 2)
. (15)



C. L-DOTA of Many Transmissions With Clock Drift

Acquisition of
(M

2

)
L-TDOA via individual cross-

correlations can be tedious, so we see how far we can get with
L-DOTA measurements that can be derived from simple TOA
measurements. Note that we only get up to M− 1 L-DOTA
measurements per receiver, and they are correlated. We obtain
a maximum likelihood estimator similar to (12),

τ̂ττ ikm,lm = hi(ppp
km
, ppp

lm
, δδδi, τττp km,lm

) + vvvikm,lm ,

m ∈ {1, 2, . . . ,M− 1} ,

only this time with the the additional unknowns δ1, . . . , δR,

hi1:M−1(. . .) =


hi(p

k1
, p

l1
, δi, τp k1,l1

)

hi(p
k2
, p

l2
, δi, τp k2,l2

)
...

hi(p
kM−1

, p
lM−1

, δi, τp kM−1,lM−1
)

 ,

and with a different measurement function hi(. . .) including
drift (14). It can be written as a maximum likelihood problem(
p̂ML

1
, . . . , p̂ML

M , τ̂p ML
1,2 , . . . , τ̂p ML

M−1,M, δ̂
1,ML, . . . , δ̂R,ML

)
= argmin

(...)

{ R∑
i=1

[
τ̂ i1:M−1 − h

i
1:M−1(. . .)

]>

�

(
Cvvv,i

1:M−1

)−1 [
τ̂ i1:M−1 − h

i
1:M−1(. . .)

]}
,

and with Cholesky decomposition(
Cvvv,i

1:M−1

)−1
=
(
Rvvv,i

1:M−1

)> (
Rvvv,i

1:M−1

)
,

also as sum of squares

argmin
(...)

{ R∑
i=1

M−1∑
m=1

[
Rvvv,i

1:M−1
[
τ̂ i1:M−1− h

i
1:M−1(. . .)

]]2
m

}
,

so it can be solved with the Levenberg-Marquardt nonlinear
LS method.

Here we have less equations E = (M−1) ·R than with the
L-TDOA measurements. However, for allM≥ 3 , we can find
a number of receivers R such that there are more equations
than unknown variables,

R ≥ M · (D + 1)− 1

M− 2
.

Comparing this to (15), we see that M+1
2 times as many

L-DOTA receivers as L-TDOA receivers are necessary for a
given time horizon M to obtain a balanced equation system.

VI. EVALUATION

In this section, we evaluate the ROTA measurement model
by employing a selection of measurement processing methods
from Sec. IV on a specific arrangement of targets and receivers.
A variable number of receivers is placed on a circle with
a radius of 5 km, see Fig. 2 (b) for five receivers. Inside

this sensor array, successive positions of one moving target
are placed. As we do not apply a system model herein, the
concrete track is rather abitrary. First, all correct measurements
are determined according to (1), and Gaussian noise is added
via deterministic sampling. Standard deviation of the primary
TOA measurements is set to 3 ns which, multiplied with the
speed of light, corresponds to 0.9m. For the L-DOTA values
consequently holds σvvv ≈ 4.2 ns after subtraction (7). With
these noisy measurements, the maximum likelihood problem
(12) is solved using the Levenberg-Marquardt algorithm with
analytic gradients. This yields estimated positions, of which
root mean square error (RMSE) is determined. On the ordinate
of Fig. 2 (a), the mean RMSE of the M target positions is
shown respectively.

A common mistake in multilateration is to simply apply
unweighted LS estimation. This corresponds to the dark blue
and orange line in Fig. 2 (a), and unsurprisingly, they have
the largest RMSE. Incorrectly assuming a diagonal covariance
matrix is more problematic for successively chosen DOTA (10)
than for the “star-shaped” model (11). When the LS estimator
is correctly weighted however, both DOTA choices perform
equally (yellow and purple line).

VII. CONCLUSION

The paper presents a systematic derivation of a new method
for performing MLAT of a single target with multiple unsyn-
chronized receivers. The method is very flexible as it does not
require information about the transmission times at the target.

The measurement equations relating the target positions with
time differences measured locally at the individual receivers are
derived in detail. In addition, a maximum likelihood method is
derived for estimating the target positions based on a standard
nonlinear LS method (Levenberg-Marquardt).

Drifts of the local clocks in the individual receivers are
explicitly considered during the estimation. They cannot be
neglected as the time difference between target transmissions
can be on the order of several seconds, where clock drift would
lead to errors on the order of hundreds of meters.

VIII. FUTURE WORK

So far, we focused on the static measurement problem: The
position of a target is calculated based on a finite number
of transmissions of the target. The next step is to perform
tracking of the target over time. In order to fully exploit the
measurement information and to also provide an update with
each new measurement, a sliding window of measurements will
be used instead of consecutive, mutually exclusive measurement
windows. Of course, this approach leads to correlations that
have to be taken into account, which requires an appropriate
estimation mechanism. In addition, a model for the target
motion is required.

Two processing modes will be investigated. The first mode
is batch processing, where measurements are collected over a
certain time span and the target track is calculated all at once
in batch mode. The second mode is recursive online processing,
where every new measurement is assimilated in real time.
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Fig. 2: Simulation withM = 7 message transmissions according to Sec. IV-D. (a) RMSE plot for different numbers of receivers
(abscissa) and various measurement processing methods. “L-DOTA-Succ Cov-Diag” means for example that differences between
successive TOA have been used as in (10), and yet a diagonal covariance matrix was (incorrectly) assumed. (b) Geometry of
the arrangement in this evaluation example, for R = 5 receivers.

Finally, the proposed method will be extensively evaluated
with real data. For this purpose, Frequentis Comsoft in
Karlsruhe-Durlach (frequentis-comsoft.com) will provide data
sets from an operational wide area MLAT system.
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