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Abstract—In this paper, we consider the extension of syn-
chronous distributed filtering under randomized gossip strategy
to multi-rate asynchronous sensor network. To deal with asyn-
chronous measurements due to multi-rate sampling, two pro-
cessing schemes are proposed, i.e., a batch one and a sequential
one. In batch processing, the common fusion period is chosen
as the least common multiple of the sampling periods of all
sensors. Each measurement of a sensor is propagated to the
nearest common fusion time and saved locally. At the common
fusion time, multiple propagated measurements of a sensor are
compressed to a single measurement and then exchanged with its
neighbors. Whereas in sequential processing, the common fusion
period is chosen as the greatest common divisor of the sampling
periods of all sensors to sequentially process each measurement
once it is received. Depending on whether a real measurement
is available locally, three exchanging strategies are developed. It
is found that unlike in the traditional distributed fusion with
a common fusion center, the batch and sequential processing
schemes are not equivalent. Pros and cons of these two schemes
are analyzed. Numerical experimental results further verify the
effectiveness of the proposed schemes.

Index Terms—Multi-rate sampling, asynchronous fusion, dis-
tributed filtering, sensor network, batch processing, sequential
processing, randomized gossip

I. INTRODUCTION

In the past decades, distributed filtering over sensor network

has received much attention [1], [2] due to its wide application

in indoor localization, vehicle tracking, orbital determination,

robot navigation, etc. Depending on whether a fusion center

is available or not, distributed filtering can be categorized into

two types, i.e., distributed filtering with a fusion center and

without a fusion center. For distributed filtering with a fusion

center, the communication part is simple, whereas the fusion

functionality will malfunction if the fusion center fails. For

distributed filtering without a fusion center, however, even if

some fusion nodes fail, the fusion functionality can still work.

The difficulty of distributed filtering without a fusion center

lies in how and what to communicate between sensor nodes.

In the past few years, distributed filtering without a fu-

sion center has been extensively studied under the consensus

strategy and the diffusion strategy. In both strategies, each

This work was supported in part by the National Natural Science Foundation
of China (NSFC) through Grants 61673317, 61773313, by the Fundamental
Research Funds for the Central Universities of China.

node only communicates with its neighbors. However, the

diffusion strategy focuses on estimation accuracy, whereas the

consensus strategy focuses on estimation consensus, i.e., all

sensor estimates are expected to achieve an agreement. Under

diffusion strategy, [3] proposed a distributed Kalman filter

and smoother. A diffusion Kalman filter based on covariance

intersection method was developed in [4]. Different from

the fusion of local Kalman filters by a convex combination

regardless of the error covariance information in [3], [4]

incorporates the estimation error covariance information as

an important role to improve the estimation performance. In

[5], a distributed Kalman filter was developed with adaptive

weights by optimizing a locally defined cost function. The

diffusion strategy was proven to be more efficient than the

consensus strategy for static estimation in [6]. A diffusion

strategy based distributed fusion algorithm was proposed in [7]

without exchanging raw measurements, which is more suitable

for the case with intermittent observations. Under consensus

strategy, [8] and [9] proposed a class of distributed filtering

by imposing a consensus term on each local state estimate

to achieve consensus. [10] developed the globally optimal

Kalman consensus filter. In [11], a hybrid consensus based

linear and nonlinear filtering was proposed which is a combi-

nation of two existing consensus methods, i.e., consensus on

measurement and consensus on information. The randomized

gossip strategy, which is the fastest consensus strategy, was

studied in [12] and [13]. At each communication round, only

a pair of nodes are allowed to communicate with each other

according to the asynchronous time model. [14] proposed

a synchronous distributed filtering under randomized gossip

strategy.

For simplicity, many well-known existing estimation fusion

algorithms assume that all sensors observe synchronously, i.e.,

all sensors have the same sampling rates. However, different

sensors may have different sampling rates in practice. To deal

with asynchronous measurements due to multi-rate sampling,

asynchronous distributed filtering with a fusion center have

been extensively studied. These asynchronous distributed fil-

tering approaches can be categorized into two classes, i.e.,

batch processing and sequential processing. In the batch

processing class, asynchronous fusion based on equivalent

pseudo measurements was considered in [15] and optimal



asynchronous estimation fusion methods was proposed in

[16]. The optimal asynchronous multirate with unreliable

measurements estimation method was studied in [17]. The

distributed estimation fusion problem for a class of multi-

sensor asynchronous sampling systems with correlated noises

was discussed in [18], where the state is uniformly updated

and the sensors randomly sample measurements. In sequential

processing class, a sequential asynchronous estimation fusion

algorithm based on the predicted estimates was proposed in

[19]. A sequential estimation fusion algorithm was present-

ed in [20] for asynchronous measurement with communica-

tion uncertainties. However, asynchronous distributed filtering

without a fusion center was rarely studied in the existing

work. In this paper, we consider the distributed filtering under

randomized gossip strategy for multi-rate asynchronous sensor

network.

The rest of this paper is organized as follows. Section II

formulates the problem. We briefly summary the randomized

gossip strategy in Section III. Two asynchronous distributed

filtering schemes are proposed in Section IV. Section V veri-

fies performance of the proposed schemes through numerical

examples and the conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Consider the following typical discrete-time linear dynamic

system observed by N sensors with different sampling rates

xk = Fk−1xk−1 + wk−1 , (1)

ziki
= Hi

ki
xiki

+ viki
, i = 1, 2, . . . , N , (2)

where xk ∈ ℜn is the system state at discrete time k and its

sampling period is assumed to be T ; the superscript i is the

sensor node index and N is the number of sensor nodes in a

given network; Fk−1 ∈ ℜn×n is the state transition matrix and

wk ∈ ℜn is the driven process noise, assumed to be zero-mean

white with covariance Qk; ziki
∈ ℜmi is the k-th measurement

of sensor i with sampling period Ti; it is assumed that Ti =
niT and ni is a positive integer; xiki

∈ ℜn and Hi
ki

∈ ℜmi×n

are the corresponding system state and measurement matrix;

viki
∈ ℜmi is the driven measurement noise, assumed to be

zero-mean white with covariance Ri
ki

; the initial state x0, with

mean x̄0 and covariance P0; the two noises and x0 are assumed

to be mutually independent.

The observing process of four asynchronous sensors with

multi-rate sampling is illustrated in Fig. 1.

1 11 122 3 4 5 6 7 8 9 10 14 1513 20 21 232216 17 1918 24 25 time index

1

2

3

4

sensor index

i

i

i

1k -

k1

j

k1

i

Fig. 1. An illustration of asynchronous measurements of four sensors.

Suppose that the sampling periods of all sensors are T1 = T ,

T2 = 2T , T3 = 3T , and T4 = 4T , respectively. Then we

can see from Fig. 1 that at time 8, sensors 1, 2, and 4 have

measurements, whereas sensor 3 has no measurement. And at

time 9, sensors 1 and 3 have measurements, whereas sensors

2 and 4 have no measurements.

The system formulation of (1) and (2) can be equivalently

rewritten as

xk = Fk−1xk−1 + wk−1 (3)

zik =

{

Hi
kxk + vik, if mod(k, ni) = 0
null, otherwise

(4)

where zik, Hi
k, vik represent the measurement, measurement

matrix, measurement noise of sensor i at continuous-time kT
and

zik = zi
( k
ni

)i
,Hi

k = Hi
( k
ni

)i
, xk = xi

( k
ni

)i
, vik = vi

( k
ni

)i

if mod(k, ni) = 0.

The topology of the sensor network of the above N sensor

nodes is represented by an undirected graph G = (V,E), e.g.,

Fig. 2, where V = {1, 2, · · · , N} is the set of nodes and

E ⊂ V × V is the set of edges. The existence of an edge

(i, j) ∈ E means that nodes i and j can communicate with

each other. The set of neighbors of sensor node i is denoted

by Ni = {j ∈ V|(i, j) ∈ E}.
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(a) Random mesh topology.
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(b) Full mesh topology.

Fig. 2. The topology of a sensor network with 10 nodes.

In this paper, we consider coordinated/cooperative estima-

tion of the above asynchronous sensor network, i.e., achieving

consensus in the whole network. Randomized gossip is the

fastest strategy to achieve consensus and has been successfully

applied to distributed filtering in synchronous sensor networks

[13]. We will briefly summarize this in the next section.

However, different sensors may have different sampling rates

in practice. Therefore the main goal of this paper is to extend

randomized gossip strategy also to distributed filtering in

multi-rate asynchronous sensor networks.

III. RANDOMIZED GOSSIP

Consider a synchronous sensor network with N sensor

nodes. Let d(0) = [d1, · · · , dN ]′, where di ∈ ℜ, i =
1, 2, · · · , N , denote the measurements of all sensors. The

purpose of average consensus is to reach the consensus

d̄ = 1
N

∑N
i=1 d

i at each sensor node after certain number

of communication rounds. Randomized gossip provides the

fastest strategy to achieve this. Next we will give a brief

summary to randomized gossip strategy first.



A. Asynchronous Randomized Gossip

Two types of time models for randomized gossip were

given in [13], i.e., the synchronous and the asynchronous1

time model. In the synchronous time model, multiple node

pairs communicate with each other at the same time inde-

pendently. Whereas in the asynchronous time model, at each

communication round, only one pair of nodes are allowed to

communicate with each other. Both of these time models can

be used to achieve average consensus. However, in terms of

simplicity for implementation, the asynchronous time model

is preferred. That is also why only asynchronous time model

will be considered in this paper.

The averaging consensus problem under the asynchronous

gossip constraint was analyzed in [12] and [13]. An asyn-

chronous gossip constraint on the communication protocol

means that, at each communication round, each node can

only communicate with one of its neighbors, i.e., the node

communicates with no more than one of its neighbor in

every time slot. Denote by l the communication round index.

Suppose that at the l-th communication round, a pair of nodes

i and j are selected to communicate with each other. The data

exchange procedure between them can then be described as

d(l) = W (l)d(l − 1), l = 1, 2, . . . (5)

where

Wij =

{

I − (ei − ej)(ei − ej)
′/2, if (i, j) ∈ E

0, if (i, j) /∈ E
(6)

ei = [0, 0, · · · , 0, 1, 0, · · · , 0]′ is an N×1 unit vector with the

i-th component equal to 1.

B. Communication Pair Selection

At the l-th communication round of asynchronous ran-

domized gossip, a node i, i ∈ V, is chosen among all N
equally possible nodes first. Then one of its neighboring

nodes is chosen with the probability for each of its neighbor

to be selected is Pij , where Pij ≥ 0,
∑

j Pij = 1 and

Pij = 0 if (i, j) /∈ E. After that, the two selected nodes

exchange their data and use the average of their data as their

new data, respectively. In this communication pair selection

procedure, the most critical problem is how to determine the

probability Pij .

Define W as

W =
∑

(i,j)∈E

PijWij . (7)

This W is a doubly stochastic matrix and satisfies

1′W = 1′, W1 = 1, ρ(W −
11′

N
) < 1 ,

where ρ(·) is the spectral radius of a matrix.

1Note that “asynchronous” in gossip is different from “asynchronous”
in sensor networks, although theirs names are the same. In gossip, “asyn-
chronous” means that at each communication round, only one pair of nodes
are allowed to communicate with each other. However, in sensor networks,
“asynchronous” means that the sampling rates of sensors are different.

In [12], it was found that the converging speed of consensus

depends on the second largest eigenvalue of W : the smaller the

the second largest eigenvalue of W , the faster the converging

speed of consensus. In view of this, the optimal Pij can then

be determined by the following semi-definite programming

problem

min s (8)

subject to































W − 11′

N � sI

W =
N
∑

i,j=1

PijWij

N

Pij ≥ 0,
∑

j

Pij = 1

Pij = 0 if (i, j) /∈ E

(9)

where the matrix inequality A � B means that the difference

A − B is a positive semi-definite matrix and 1 denotes the

vector of all ones.

Remark 1. Note that the same optimal Pij also works for

vector measurements, i.e., when di ∈ ℜm,m > 1, i =
1, 2, · · · , N . The only difference is that at the l-th communica-

tion round, (5) should be applied to the local data component

by component.

IV. ASYNCHRONOUS DISTRIBUTED FILTERING

In [14], distributed filtering under the randomized gossip

strategy for synchronous sampling was studied. In practical

networks, however, different sensors may have different sam-

pling rates. For such cases, synchronous distributed filtering

under randomized gossip strategy can not be applied directly

due to missing measurements of some sensors at some times.

In this section, to deal with asynchronous measurements due

to multi-rate sampling, two processing schemes, i.e., a batch

one and a sequential one, will be discussed.

A. Batch Multi-Rate Asynchronous Distributed Filtering

In the batch scheme, the common fusion period T b
f is chosen

as the least common multiple of the sampling periods of

all sensors, i.e., T b
f = lcm(T1, · · · , TN), where the function

lcm(·) finds the least common multiple of a set of numbers.

The basic idea of batch processing scheme is that each

measurement of a sensor is propagated to the nearest common

fusion time once it is received. At the common fusion time,

multiple propagated measurements of a sensor are transformed

to a single measurement and then exchanged with its neigh-

bors. For illustrative purposes, a batch processing scheme

with two sensors is given in this subsection. Suppose that

the sampling periods of sensors i and j are Ti = T and

Tj = 2T , respectively, see, e.g., Fig. 3. Then the common

fusion period will be T b
f = lcm(T, 2T ) = 2T . Next, we will

illustrate how the batch processing scheme can be applied to

these two sensors for the time interval ((k − 2)T, kT ].
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Fig. 3. An illustration of batch scheme

1) Propagating to the Nearest Common Fusion Time: For

sensor i, its measurement at time k−1 needs to be propagated

to the nearest common fusion time k, whereas sensor j does

not need to propagate anything. The propagation for sensor i
can be done as

zik−1 = Hi
k−1F−1

k−1xk − Hi
k−1F−1

k−1wk−1 + vik−1 . (10)

2) Transformation: At the common fusion time k, the

measurements of sensor i can be written in an augmented

form as

z
i,a
k = H

i,a
k xk + v

i,a
k , (11)

where

z
i,a
k =

[

zik−1

zik

]

, H
i,a
k =

[

Hi
k−1F−1

k−1

Hi
k

]

, v
i,a
k =

[

v
i,1
k

vik

]

v
i,1
k = vik−1 − Hi

k−1F−1
k−1wk−1 ,

and the augmented measurement noise is still zero-mean white

with covariance

R
i,a
k = cov(vi,ak )

=

[

Rk−1 + Hi
k−1F−1

k−1Qk−1(H
i
k−1F−1

k−1)
′ 0

0 Rk

]

.

However, for sensor j, there is only a single measurement

at k, i.e.,

z
j
k = H

j
kxk + v

j
k . (12)

From (11) and (12), in general we can not exchange the

measurement z
i,a
k at sensor i and the measurement z

j
k at sensor

j directly. This is because their dimensions may be different.

Also the physical meaning of each component of them may

be different. However, the randomized gossip strategy requires

that the dimensions of all local data should be the same and

the physical meaning of each component of them should also

be the same. For this purpose, we apply the following linear

transformation to the local data at each sensor

yik = (Hi,a
k )′(Ri,a

k )−1z
i,a
k , (13)

y
j
k = (Hj

k)
′(Rj

k)
−1z

j
k . (14)

The state transition from k − 2 to k can be written as

xk = Fk−1Fk−2xk−2 + Fk−1wk−2 + wk−1 .

Then it can easily seen that the two-step transition process

noise and the augmented measurement noise v
i,a
k are correlated

because

cov(Fk−1wk−2 + wk−1, v
i,a
k ) = −Qk−1(H

i
k−1F−1

k−1)
′

This is against the linear Gaussian assumption where they are

assumed uncorrelated with each other in the standard Kalman

filter. As a result of this, performance of distributed estimation

using the transformed measurement yik without considering the

correlation may be degraded to certain extent.

3) Exchanging: After applying the above linear transforma-

tions to all local data, we apply the asynchronous randomized

gossip strategy to exchange data within the whole network. For

example, at the l-th communication round, a pair of nodes i
and j exchange their data as

yik,l = (yik,l−1 + y
j
k,l−1)/2 , (15)

y
j
k,l = (yik,l−1 + y

j
k,l−1)/2 . (16)

This batch multi-rate asynchronous distributed filtering un-

der randomized gossip strategy can be summarized as in

Algorithm 1 (A1).

Algorithm 1: (A1) Batch multi-rate asynchronous dis-

tributed filtering under randomized gossip strategy

Input: sensor nodes N , common fusion period T b
f ,

number of communication rounds L;

1 Initialization: x̂
i
0|0 = x̄0 and Pi

0|0 = P0, i = 1, 2, · · · , N ;

2 for k = 1; k < ∞; k = ++ do

3 Propagate measurements to the nearest common

fusion time as done in (10);

4 while mod(kT, T b
f ) == 0 do

5 j = kT/T b
f , m = jT b

f , n = (j − 1)T b
f ;

6 for i = 1; i ≤ N ; i++ do

7 x̂
i
m|n = Fm,nx̂

i
n|n, Fm,n = (Fn)

T b
f ;

8 Pi
m|n = Fm,nPi

n|nF′
m,n + Qn

9 end

10 Transform multiple propagated measurements to

a single measurement as done in (11)-(14);

11 for l = 1; l ≤ L; l++ do

12 Choose a node r among all N equally

possible nodes;

13 Choose one of its neighboring nodes with the

probability for each of its neighbor to be

selected is Prs;

14 Exchange data between the two selected

nodes as done in (15) and (16);

15 end

16 for i = 1; i ≤ N ; i++ do

17 (Pi
m|m)−1x̂

i
m|m = (Pi

m|n)
−1x̂

i
m|n +Nyim;

18 (Pi
m|m)−1 =

(Pi
m|n)

−1 +
∑N

i=1(H
i
m)′(Ri

m)−1Hi
m

19 end

20 end

21 end

Output: state estimate x̂
i
m|m and its error covariance

Pi
m|m;



B. Sequential Multi-Rate Asynchronous Distributed Filtering

In the sequential scheme, the common fusion period T s
f is

chosen as the greatest common divisor of the sampling periods

of all sensors, i.e., T s
f = gcd(T1, · · · , TN ), where the function

gcd(·) finds the greatest common divisor of a set of numbers.

The core idea of sequential processing scheme is to sequen-

tially process all measurements according to their sampled

temporal order. For illustrative purpose, sequential processing

scheme with two sensors is given in this subsection. Suppose

that the sampling periods of sensors i and j are Ti = 2T and

Tj = 3T , respectively, see, e.g., Fig. 4. Then the common

fusion period is T s
f = gcd(2T, 3T ) = T . At the fusion time,

for its l-th communication round, suppose that a pair of nodes

i and j are selected to exchange their data. Depending on

whether a real measurement is available locally, three data

exchange cases should be considered.

i

e index

e index

k1k -2k -3k - 1k + 2k + 3k +

j

time index

time index
k1k -2k -3k - 1k + 2k + 3k +

i

Fig. 4. An illustration of sequential scheme

Case 1: If both sensors have measurements, see, e.g., fusion

time kT , in Fig. 4, then their measurements are transformed

and exchanged as done in (14)-(16).

Case 2: If sensor i (or j) has measurement and sensor j
(or i) has no measurement, see, e.g, fusion time (k − 3)T ,

(k − 2)T , (k + 2)T or (k + 3)T , in Fig. 4, then the real data

and predicted data are transformed and exchanged, where the

predicted data is given by

ẑ
j
k = H

j
kFk−1x̂

j
k−1|k−1 (or ẑ

i
k = Hi

kFk−1x̂
i
k−1|k−1)

Case 3: If both sensors have no measurements, see, e.g.,

fusion time (k−1)T or (k+1)T , in Fig. 4, then the predicted

data are transformed and exchanged, where the predicted data

is given by

ẑik = Hi
kFk−1x̂ik−1|k−1

ẑ
j
k = H

j
kFk−1x̂

j
k−1|k−1

For Case 2 and Case 3, the missing measurement is replaced

by predicted data and the predicted data can be rewritten as

ẑik = Hi
kxk + vik − z̃ik = Hi

kxk + ṽik

ẑ
j
k = H

j
kxk + v

j
k − z̃

j
k = H

j
kxk + ṽ

j
k

where the pseudo measurement noises ṽik and ṽ
j
k are zero-mean

white with covariance

R̃
i

k = cov(ṽik) = Hi
kPi

k|k−1(H
i
k)

′

R̃
j

k = cov(ṽjk) = H
j
kP

j
k|k−1(H

j
k)

′

Then the transformation of the predicted data will be

yik = (Hi
k)

′(R̃
i

k)
−1ẑ

i
k , (17)

y
j
k = (Hj

k)
′(R̃

j

k)
−1ẑ

j
k . (18)

Correspondingly, for Case 2, the real and predicted data are

transformed and exchanged as done in (14)-(17); for Case 3,

the predicted data are transformed and exchanged as done in

(15)-(18).

This sequential multi-rate asynchronous distributed filtering

under randomized gossip strategy can be summarized as in

Algorithm 2 (A2).

Algorithm 2: (A2) Sequential multi-rate asynchronous

distributed filtering under randomized gossip strategy

Input: sensor nodes N , common fusion period T s
f ,

number of communication rounds L;

1 Initialization: x̂i0|0 = x̄0 and Pi
0|0 = P0, i = 1, 2, · · · , N ;

2 for k = 1; k < ∞; k ++ do

3 while mod(kT, T s
f ) == 0 do

4 j = kT/T s
f , m = jT s

f , n = (j − 1)T s
f ;

5 for i = 1; i ≤ N ; i++ do

6 x̂im|n = Fm,nx̂in|n, Fm,n = (Fn)
T s
f ;

7 Pi
m|n = Fm,nPi

n|nF′
m,n + Qn

8 end

9 for l = 1; l ≤ L; l++ do

10 Choose a node r among all N equally

possible nodes;

11 Choose one of its neighboring nodes with the

probability for each of its neighbor to be

selected is Prs;

12 Determine which case the data of sensor r
and s belonging to and then transform and

exchange their data;

13 end

14 for i = 1; i ≤ N ; i++ do

15 (Pi
m|m)−1x̂

i
m|m = (Pi

m|n)
−1x̂

i
m|n +Nyim;

16 (Pi
m|m)−1 =

(Pi
m|n)

−1 +
∑N

i=1(H
i
m)′(Ri

m)−1Hi
m

17 end

18 end

19 end

Output: state estimate x̂
i
m|m and its error covariance

Pi
m|m;

Remark 2. Due to the finer selection of the common fu-

sion period, the sequential multi-rate asynchronous distributed

filtering can help circumvent measurement synchronization in

batch processing and has a better continuity for the fused track.

However, the communication cost is higher. Whereas in batch

multi-rate asynchronous distributed filtering, less communica-

tion cost is required. However, measurement synchronization

is necessary and the continuity of the fused track will be

poorer.



V. ILLUSTRATIVE EXAMPLES

In this section, we verify the effectiveness of the proposed

algorithms. For this purpose, four examples are provided and

all results are averaged over 500 Monte Carlo runs. The target

motion in a two-dimensional plane is considered and the target

state is denoted as xk = [xk, ẋk, yk, ẏk]
′
, where xk and yk

are target displacement from the origin along the horizontal

and vertical directions and ẋk and ẏk are the corresponding

velocities.

The involved parameters in (3) and (4) for target motion

and sensor measurements are given as

Fk−1 =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









, Qk−1 = diag([0.04, 0.09]) ,

x̄0 = diag([4, 24, 9, 15]), P0 = diag([25, 1, 64, 2]) ,

Hi
k =

[

1 0 0 0
0 0 1 0

]

, Ri
k = diag([4, 9]) ,

where T = 1 s.

A. Example 1: N = 10, A1, T odd
i = T, T even

i = 2T

In this example, we verify performance of the proposed

batch multi-rate asynchronous distributed filtering. The two

mesh topologies in Fig. 2 are considered and the sampling

periods of all sensors are that

Ti =

{

T, if mod(i, 2) = 0
2T , if mod(i, 2) = 1

, i = 1, . . . , 10

The position root mean squared errors (RMSEs) are provided

in Figs. 5 and 6.
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Fig. 5. Position RMSE using A1 for random mesh topology.

From Figs. 5 and 6, we can see that the consensus of the

estimation is affected by the number of communication rounds.
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(d) L = 200

Fig. 6. Position RMSE using A1 for full mesh topology.

The more rounds of communication, the more consensus. It

can be seen that full mesh topology needs less communication

rounds than random mesh topology to achieve estimation

consensus.

B. Example 2: N = 10, A2, T odd
i = T, T even

i = 2T

In this example, we verify performance of the proposed

sequential multi-rate asynchronous distributed filtering. The

position RMSEs are provided in Figs. 7 and 8.
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(d) L = 200

Fig. 7. Position RMSE using A2 for random mesh topology.

From Figs. 7 and 8, it can be seen that the random mesh

topology needs more communication rounds than the full mesh

topology to achieve estimation consensus.
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(c) L = 100
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Fig. 8. Position RMSE using A2 for full mesh topology.

C. Example 3: N = 10, A1, T odd
i = T, T even

i = 3T

In this example, we further verify performance of the

proposed batch multi-rate asynchronous distributed filtering.

The difference form Example 1 is that the sampling periods

of sensors with even indices are changed from 2T to 3T . The

position RMSEs are shown in Figs. 9 and 10.
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(c) L = 300

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

k

R
M

S
E

_
P

o
s
it
io

n

 

 

 

node 1

node 3

node 4

node 7

node 10

(d) L = 400

Fig. 9. Position RMSE using A1 for random mesh topology.

From Figs. 9 and 10, we can see that the consensus of the

estimation is affected by the number of communication rounds.

The more rounds of communication, the more consensus.

D. Example 4: N = 10, A2, T odd
i = T, T even

i = 3T

In this example, we further verify performance of the pro-

posed sequential multi-rate asynchronous distributed filtering.
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(d) L = 200

Fig. 10. Position RMSE using A1 for full mesh topology.

The difference form Example 2 is that the sampling periods

of sensors with even indices are changed from 2T to 3T . The

position RMSEs are shown in Figs. 11 and 12.
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(d) L = 200

Fig. 11. Position RMSE using A2 for random mesh topology.

From Fig. 11 and 12, it can be seen that both random and

full mesh topologies can achieve estimation consensus.

E. Communication Rounds Comparison

To measure the disagreement of the estimates, we use the

following metric

Ψk = (
1

N

∑N

i=1
δ2k,i)

1/2 , (19)

where δk,i = x̂ik|k − x̄k|k, x̄k|k = 1
N

∑N
i=1 x̂ik|k.
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(d) L = 150

Fig. 12. Position RMSE using A2 for full mesh topology.

TABLE I lists the minimum communication rounds L
needed such that Ψk satisfies Ψk ≤ 0.001 (k = 1, 2, . . . , 100).

TABLE I
THE MINIMUM COMMUNICATION ROUNDS

random mesh topology full mesh topology

N 5 10 15 20 5 10 15 20

A1 (T, 2T ) 86 308 475 727 67 145 221 352
A1 (T, 3T ) 103 336 588 892 79 187 255 374
A2 (T, 2T ) 47 164 257 376 48 89 127 194
A2 (T, 3T ) 68 181 275 408 52 112 153 213

From TABLE I, we can see that, first, the larger the number

of sensor nodes, the more communication cost are needed to

achieve consensus. Second, the higher the degree of network

connectivity, the less communication rounds are needed. Third,

the sequential scheme has higher communication costs than the

batch scheme to achieve the same consensus criterion.

VI. CONCLUSIONS

Multi-rate asynchronous distributed filtering under random-

ized gossip strategies has been studied in this paper. To deal

with asynchronous measurements due to multi-rate sampling,

two processing schemes are proposed, i.e., a batch one and

a sequential one. Applying these two schemes is not like in

traditional distributed fusion with a common fusion center. For

the batch processing scheme, the key difference is that the

propagated measurements should be transformed due to the

possible dimensionality difference and physical meaning in-

consistency. For the sequential processing scheme, depending

on whether a real measurement is available locally, three data

exchange cases are considered and a transformation method

for missing measurement is provided. The random and full

mesh topologies are used to verify the effectiveness of these

two proposed schemes. Numerical experimental results show

that the number of sensor nodes, sampling periods and network

topology plays key roles in the determination of the minimum

number of communication rounds to achieve consensus.
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