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Abstract—We present DQV-SLAM (Dual Quaternion Visual
SLAM). This novel feature-based stereo visual SLAM framework
uses a stochastic filter based on the unscented transform and a
progressive Bayes update, avoiding linearization of the nonlinear
spatial transformation group. 6-DoF poses are represented by
dual quaternions where rotational and translational components
are stochastically modeled by Bingham and Gaussian distribu-
tions. Maps represented by point clouds of ORB-features are in-
crementally built and landmarks are updated with an unscented
transform-based method. In order to get reliable measurements
during the update, an optical flow-based approach is proposed
to remove false feature associations. Drift is corrected by pose
graph optimization once loop closure is detected. The KITTI
and EuRoC datasets for stereo setup are used for evaluation.
The performance of the proposed system is comparable to state-
of-the-art optimization-based SLAM systems and better than
existing filtering-based approaches.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) entails
parallel ego-motion tracking and building a map of unknown
surroundings. Among different possible sensors, stereo cam-
eras provide cost-efficient and informative perception. How-
ever, camera-only visual SLAM can be challenging, e.g., due
to changing lighting conditions, blurring under fast motion,
and dynamic scenarios with moving objects, which can lead
to reduced accuracy.

The state-of-the-art visual SLAM frameworks typically rely
on optimization, either for feature-based [1], [2] or direct
methods [3], [4]. Optimization-based approaches are shown
in [5] to provide better accuracy than filtering-based methods
for the same computational cost, as they can process a large
set of state variables more efficiently. However, stochastic
filters are able to provide a probability distribution over the
states without additional computational effort, which enables
efficient obstacle avoidance and motion planning. For example,
the safety margins for navigation can be adapted according
to the current state uncertainty [6]. Moreover, SLAM sys-
tems employing a stochastic filter show comparably robust
and accurate results with sparser extracted features [7]. This
makes them a functional option besides the optimization-
based approaches, in particular for mobile robots in practical
applications.
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Fig. 1: Qualitative mapping (green point cloud) and tracking (red
curve) results from the proposed SLAM framework with stereo setup
onboard a vehicle (a) and drone (b, c).

Early filtering-based approaches to visual SLAM either use
a particle filter [8] or the Extended Kalman Filter (EKF) [9]
for pose and map estimation and are only able to operate in
small-scale scenarios. Recently, filtering-based odometry or
SLAM systems, which are capable of large-scale operation,
were developed for visual-inertial sensor setups using an
inertial measurement unit (IMU) in addition to the cameras [6],
[7], [10]. ROVIO [7] employs an Iterated EKF and uses
direct photometric image patch alignment while [10] develop
a feature-based method employing a Multi-State Constraint
Kalman Filter (MSCKF) [11]. In contrast to these systems,
our approach only uses visual sensors, not requiring higher-
order motion information, and employs a novel unscented
transform-based nonlinear filter which avoids linearization.

Conventional filters for pose estimation rely on the local
linearization of nonlinear spatial transformations as shown
in [7], [12], where the EKF and Unscented Kalman Filter
(UKF) are applied to the special Euclidean group SE(3) or
SE(2). This is essentially an approximation under the assump-
tion of small motion and low noise level. Besides, the SE(3)
states are usually parameterized by the 4-dimensional transfor-
mation matrix, which suffers from overparameterization and
numerical instability. Some orientation filters also use Euler
angles, which can lead to ambiguity and gimbal lock. Dual
quaternions [13], however, provide a natural parameterization
of 6-DoF poses without ambiguity and with little redundancy.



In [14], an unscented orientation filter was first proposed
based on Bingham-distributed unit quaternions. In [15], an un-
scented pose estimator was introduced for planar motion rep-
resented by dual quaternions. In [16], the first dual quaternion
filter for 6-DoF pose estimation was proposed, where Bingham
and Gaussian distributions are employed to model orientational
quaternions and pure translation, respectively. Good efficiency
as well as accuracy have been shown with experiments, and
no local linearization is required. However, this filter imposes
a linear formulation and a special metric based on point pairs,
which restrict its application to static point cloud registration
or stitching. The aforementioned works have shown some
advantages of dual quaternion filtering, but limited applica-
bility for practical robotic applications. Besides, to the best
knowledge of the authors, there is no dual quaternion-based
6-DoF SLAM framework so far, especially with a stereo setup.

Thus, we propose a feature-based stereo SLAM framework
using a novel unscented filtering scheme with dual quaternions
representing the 6-DoF ego-motions. More specifically, our
main contributions are:
• A novel dual quaternion nonlinear filtering approach

for 6-DoF pose estimation is proposed based on the
unscented transform and a progressive Bayes update.

• A novel unscented transform-based approach is proposed
for the map update.

• To ensure reliable feature observations in dynamic sce-
narios, an optical flow-based algorithm is proposed and
embedded in the filtering scheme to exclude false data
association.

• Based on the proposed tracking and mapping meth-
ods, the first dual quaternion-based stereo visual SLAM
framework is developed.

Thorough evaluations in real-world scenarios are conducted
using the KITTI [17] and EuRoC [18] datasets including
indoor/outdoor and static/dynamic scenarios on diverse robotic
platforms. The proposed framework gives robust and accurate
performance comparable to state-of-the-art optimization-based
visual SLAM. It is currently ranked the most accurate filtering-
based SLAM system in the stereo setup category of KITTI1.

The remainder of the paper is divided as follows: In Sec. II,
preliminaries about dual quaternion pose parameterization and
Bingham modeling are introduced. The proposed filtering
technique is explained in Sec. III. Sec. IV presents the pro-
posed SLAM framework with a detailed introduction for each
function block. Results of real-world benchmarking are given
in Sec. V and the work is concluded in Sec. VI.

II. PRELIMINARIES

A. Pose Parameterization Using Dual Quaternions

In this work, 6-DoF poses are parameterized by dual
quaternions [13] as

x = xq +
ε

2
t⊗ xq , (1)

1DQV-SLAM on http://www.cvlibs.net/datasets/kitti/eval odometry.php

with the unit quaternion xq = cos (θ/2) + u sin (θ/2) repre-
senting orientation and t ∈ R3 the position. Here, the unit
vector u denotes the rotation axis and θ the angle, such that
a vector can be rotated accordingly. ⊗ denotes the Hamilton
product [13] and ε is the dual unit (ε2 = 0). The arithmetic of
dual quaternions is therefore the combination of the Hamilton
product and dual number theory. Detailed introductions can be
found in [19]. In this paper, we use the vector form

x = [x>q , x>p ]> ∈ R8 , (2)

with xp = 1
2t⊗xq . Thus, the pure translation can be computed

as
t = 2 xp ⊗ x−1

q , (3)

with x−1
q being the inverse of xq [20]. The orientational term

xq inherently lies on the unit hypersphere S3.

B. Bingham Distribution

As introduced in [14], [21], the Bingham distribution on
S3 is well suited for modeling uncertain unit quaternions
as its dispersion is inherently antipodally symmetric, thus
ensuring equal density at xq and −xq , which denote the same
orientation. It is defined as

fB(xq; M,Z) =
1

N(Z)
exp(x>q M Z M>xq) , (4)

with xq ∈ S3 ⊂ R4. The orthonormal matrix M controls
the rotation of its dispersion on S3, whereas the diagonal
matrix Z = diag(z1, z2, z3, z4) determines the concentration
with z1 < z2 < z3 < z4 ≤ 0. These two matrices can be
generated from the eigendecomposition of a negative semi-
definite matrix Cq . In the remainder of the paper, we use Cq

to denote the parameter matrix of the Bingham distribution.

III. UNSCENTED DUAL QUATERNION FILTERING

A. Prediction Using Unscented Transform

In this work, the rotational and translational components
of dual quaternions are modeled by the Bingham and the
Gaussian distribution respectively, i.e., xq ∼ B(Cq) and
t ∼ N (µt,Σt). In [22], a deterministic sampling method was
proposed for the Bingham distribution to draw sigma points
and their weights preserving the first and second moment. We
employ this method and further combine it with deterministic
sampling for the Gaussian distribution modeling pure trans-
lation. The resulting unscented transform-based sampling ap-
proach is proposed as shown in Alg. 1, where dual quaternion
samples are composed of the two components using Cartesian
product.

The prediction step assumes the system dynamics model

xk = a(xk−1,uk−1)⊗ vk . (5)

The time-invariant system noise

vk = [v>q,k,v
>
p,k]> (6)

is modeled by vq,k ∼ B(Cv
q) and vt,k ∼ N (µvt ,Σ

v
t ) with

vp,k =
1

2
vt,k ⊗ vq,k . (7)



Algorithm 1 Sigma Point Generation
procedure sampleUT (Cq,µt,Σt)

1: {(σiq, ri)}i=1:α ← sampleDet (Cq); // see [22]
2: {(σjt , sj)}j=1:β ← sampleDet (µt,Σt); // see [23]
3: {(σkx, wk)}k=1:(α·β) ← ∅, k ← 1;
4: for i = 1 to α do
5: for j = 1 to β do
6: σkx ← [(σiq)

>, ( 1
2σ

j
t ⊗ σiq)

>]>;
7: wk ← ri · sj ;
8: k ← k + 1;
9: end for

10: end for
11: return {(σkx, wk)}k=1:(α·β)

end procedure

System state samples drawn by Alg. 1 can thus be propagated
through the system equation a(·, ·) together with the noise
samples also drawn by Alg. 1, following the Cartesian product.
The Bingham and Gaussian priors are then approximated from
the resulting samples using the moment matching approach
introduced in [14].

B. Progressive Bayes Update

For the update step, the pose prior is corrected given the
measurement model

zk = h(xk) + wk , (8)

with h(·) denoting the observation function and wk the
measurement noise. The measurement noise is assumed to be
additive, such that the likelihood function can be derived as

f(zk|xk) = fwk
(zk − h(xk)) (9)

using Bayesian inference [20], [24], [25]. In order to adapt
the sampling-based filtering scheme to the non-identity mea-
surement model and to eliminate sample degeneration, we
update the prior gradually with rescaled likelihood factors.
We apply a progressive Bayesian inference scheme that has
been used in a number of nonlinear filtering approaches [20],
[26]. An introduction can be found in Alg. 2. During each
progressive update step, we first draw deterministic samples
according to Alg. 1, then calculate each sample’s likelihood.
The progressive step size is determined by ensuring the
ratio between smallest and largest likelihood to be larger
than a predefined threshold τ ∈ (0, 1] (Alg. 2, line 6-8).
After reweighting the samples with the scaled likelihood,
the posterior is approximated by moment matching [14]. We
summarize the posterior parameters to be Ĉkx for convenience.
Detailed theoretical foundation of this methodology can be
found in [20], where it is applied for planar motion filtering.

IV. DQV-SLAM: FRAMEWORK DESCRIPTION

Fig. 2 shows the proposed stereo SLAM framework. The
system takes grayscale stereo images as input data and in a first
step extracts ORB features [27] that are used as measurement
input in the following. ORB features are fast to extract and

Algorithm 2 Nonlinear Progressive Update

procedure progressiveUpdate (C
k|k−1
q ,µ

k|k−1
t ,Σ

k|k−1
t , zk)

1: Λ← 1, i← 1;
2: {Ĉk

q , µ̂
k
t , Σ̂

k
t } ← {C

k|k−1
q ,µ

k|k−1
t ,Σ

k|k−1
t };

3: while Λ > 0 do
4: {(σjx, wj)}j=1:α ← sampleUT (Ĉk

q , µ̂
k
t , Σ̂

k
t );

5: {sj}j=1:α ← likelihood ({σjx}j=1:α, zk);
6: smin ← min ({sj}j=1:α);
7: smax ← max ({sj}j=1:α);
8: λi ← min (Λ, log(τ)

log(smin/smax)
);

9: for j = 1 to α do
10: wj ← (sj)λi · wj ;
11: end for
12:

{
Ĉk
q , µ̂

k
t , Σ̂

k
t

}
← momentMatch ({(σjx, wj)}j=1:α) ;

13: i← i+ 1, Λ← Λ− λi;
14: end while
15: Ĉkx ← {Ĉk

q , µ̂
k
t , Σ̂

k
t };

16: return Ĉkx
end procedure

match while providing similar performance to the popular
SIFT and SURF features which makes them a good choice
for feature-based SLAM algorithms [1], [27].

The unscented dual quaternion filter from Sec. III is adapted
for the stereo SLAM setup and further incorporates a prob-
abilistic mapping scheme that incrementally builds a global
map Mk as a point cloud of landmarks from the observed
ORB features.

Mk = {lik}i=1:n , lik ∈ R3 . (10)

Each landmark also carries appearance information encoded
by an ORB-descriptor, which is used for data association.

The filter state for the SLAM framework consists of two
parts: the dual quaternion camera pose xk and the map Mk.
Uncertainty of the pose is modeled by the combined Bingham
and Gaussian parameters Ĉkx (cf Sec. III-B) and an individual
covariance matrix Pi

k is kept per landmark lik.
The filter recursion after the preprocessing stage consists

of four steps pose prediction, data association, pose update
and map update which will be explained in Sections IV-A
to IV-E. In case of a successful loop closure detections, the
update steps are replaced by pose graph optimization and a
subsequent map correction step. The loop closure module is
detailed in Section IV-F.

A. System Model and Prediction

The system dynamics model is assumed as

xk|k−1 = xk−1 ⊗ uk ⊗ vk , (11)

where the system input uk is computed as the dual quaternion
transformation between consecutive frames using the visual
odometry library libviso2 [28]. The pose prior xk|k−1 can
then be predicted based on Sec. III-A. Using visual odometry
as system input for visual SLAM is shown by [29], [30] to



Fig. 2: Overview of the proposed stereo visual SLAM framework.

be advantageous over generic motion models, e.g., constant
velocity, which cannot properly handle sudden movements.

However, as libviso2 extracts features from regions with
large image gradient [28], similar to the ORB keypoint detec-
tor, it is essential to assure that the features extracted in the
prediction step are not correlated to the ORB-features used in
the update step. Inspired by [30], we exclude observed ORB-
features that are close to the features used during prediction
from being associated during the update step (see image
preprocessing in Fig. 2).

B. Measurement Model: Landmark Projection

The pose prior xk|k−1 is corrected progressively using the
observed ORB-features zk that are associated with landmarks
lk−1 from the map Mk−1. The measurements are by conven-
tion represented by the stereo pixel coordinates of the features
after image rectification, namely

zk = [ul, vl, d ]> ∈ R3 , (12)

with [ul, vl ]
> being the left pixel coordinates and d = ul−ur

the corresponding disparity across the image pair.
To calculate the expected measurements ẑik, the landmarks

lik−1 are projected onto the image plane with respect to the
pose prior xk|k−1. They are then associated with the current
observations, for which their projected uncertainty is required.
In [31], sigma point-based methods are proven to give good
approximations when propagating uncertainty through the
nonlinear camera model. Inspired by this, we propose a land-
mark projection approach based on the unscented transform
illustrated in Fig. 3 and explained in Alg. 3. Each landmark
lik−1 in the current field of view is projected onto the image
plane together with its uncertainty Pi

k−1 using sigma points.
Besides, a time-invariant observation pixel noise R is added
to the projected covariance and finally gives the measurement
noise Sik. Using the observation noise R as an additive term,
instead of augmenting the landmark state, is shown in [12] to
only have a negligible loss in accuracy for low-dimensional
states (e.g. the 3D landmark positions) while reducing the
number of sigma points and thus the computational cost.

C. Data Association: Optical Flow-based Feature Matching

In the data association stage, the projected landmarks must
be reliably associated with the currently observed ORB-
features. However, this can be risky in dynamic scenarios

right camera

lk−1

Pk−1

ẑk =[ul,vl,d]
T

Σẑk
d =ul−ur

left camera (reference)

u
v

baselinex
z

y

Fig. 3: Stereo landmark projection. Landmark lk−1 with uncertainty
Pk−1 is projected onto the image plane using sigma points, resulting
in an expected observation ẑk and covariance Σẑk .

Algorithm 3 Landmark Projection
procedure projLandmark (xk|k−1, lk−1,Pk−1,R)

1: {(σjl,k−1, w
j)}j=1:β ← sampleDet (lk−1,Pk−1);

2: {ẑjk}j=1:β ← proj (xk|k−1, {σjl,k−1}j=1:β);
3: ẑk ←

∑β
j=1 w

j · ẑjk;
4: Σẑk

←
∑β
j=1 w

j(ẑjk − ẑk)(ẑjk − ẑk)>;
5: Sk ← Σẑk

+ R;
6: return {ẑk,Sk}

end procedure

as shown in Fig. 4, where some features are extracted from
dynamic surroundings, e.g., the moving vehicles. In order
to eliminate this issue, an optical flow-based approach is
proposed for feature matching.

For each landmark lik−1 about to be associated with the
observation, we first compute its predicted optical flow as the
translation between its projection onto the previous and current
image, for which the last pose posterior and the current prior
are used, respectively. The predicted optical flow is shown
by the orange arrows in Fig. 4(a). Meanwhile, its observed
optical flow (blue arrow) is calculated using the OpenCV
library [32]. Landmarks on the static environment will have
almost identical directions and magnitude of predicted and
observed optical flow. In contrast, landmarks projected on
dynamic objects will be observed to have optical flow that
largely differs from the predicted direction or magnitude.
These landmark projections are excluded from being further
associated (green circles without ellipses in Fig 4(b)).



(a) ORB features (red), projected landmarks (green), predicted and
measured optical flow denoted by orange and blue arrows.

(b) Covariance ellipses defining the geometric search region (blue)
and successfully associated landmarks (yellow).

Fig. 4: Data association based on optical flow direction and feature
matching using Mahalanobis and descriptor distance.

The remaining projected landmarks ẑk are then associ-
ated with the observed features based on the Mahalanobis
distance given by the projected covariance Sk from Alg. 3
(shown as blue ellipses in Fig. 4(b)). For features inside
this search region, appearance-based matching is done in the
ORB descriptor space to find the most similar-looking pairs.
Successful associations are shown as yellow lines in Fig. 4(b).
The aforementioned correspondence search is first done for
left and right image separately. Afterwards, a coherence check
is performed to ensure that the associations found in both
images satisfy the epipolar constraint. In the end, the data
association step gives a set of m associated landmarks and
features {(ljk−1, z

j
k)}j=1:m that will be used for pose and map

update.

D. Likelihood and Pose Update
We assume that the measurement noise is independently

Gaussian-distributed for individual features. The likelihood in
Alg. 2 line 5 can then be computed as the product of the
likelihood values given by the predicted measurements ẑjk and
their associated observations zjk. This can further be derived
as

s =

m∏
j=1

1

Nj
exp

(
−1

2
(ẑjk − zjk)>(Sjk)−1(ẑjk − zjk)

)
, (13)

with Nj = (2π)
3
2

√
det(Sjk) being each Gaussian normaliza-

tion constant. The projected landmark ẑjk and its covariance Sjk
are calculated by Alg. 3. Given the likelihood (13), the pose
prior is updated according to Sec. III-B. To avoid numerical
instabilities in the progressive update, the maximum number
of correspondences processed at once must be limited. When
more than Mmax = 30 valid correspondences are found, several
subsets are processed sequentially while adding a regulariza-
tion term to the parameter matrix Ĉkx between the consecutive
rounds of progressive update. The subsets are determined such
that the correspondences are evenly distributed over the image.

Algorithm 4 Landmark Update

procedure updateLandmark (Ĉkx , lk−1,Pk−1, zk,R)

1: {Ĉk
q , µ̂

k
t , Σ̂

k
t } ← Ĉkx ;

2: {(σ̂ix,k, wi)}i=1:α ← sampleUT (Ĉk
q , µ̂

k
t , Σ̂

k
t );

3: {(σjl,k−1, p
j)}j=1:β ← sampleDet (lk−1,Pk−1);

4: ∆← α · β;
5: {ẑδk}δ=1:∆ ,{wδẑ}δ=1:∆ ,{lδrep}1:∆ ← ∅;
6: for i = 1 to α do
7: {ẑδk}δ=β(i−1)+1:βi ← proj (σ̂ix,k, {σ

j
l,k−1}j=1:β);

8: {wδẑ}δ=β(i−1)+1:βi ← multiply (wi, {pj}j=1:β);
9: {lδrep}δ=β(i−1)+1:βi ← {σjl,k−1}j=1:β ;

10: end for
11: ẑk ←

∑∆
δ=1 w

δ
ẑ · ẑδk;

12: Sk ←
∑∆
δ=1 w

δ
ẑ(ẑ

δ
k − ẑk)(ẑδk − ẑk)> + R;

13: Slzk ←
∑∆
δ=1 w

δ
ẑ(l

δ
rep − lk−1)(ẑδk − ẑk)>;

14: Kk = Slzk S−1
k ;

15: lk = lk−1 + Kk(zk − ẑk);
16: Pk = Pk−1 −Kk Sk KT

k ;
17: return {lk,Pk};
end procedure

E. Map Update

A static map is assumed in our framework. Each landmark
position lk−1 ∈ R3 is assumed to be independently distributed
and have zero-centered Gaussian noise denoted by Pk−1. For
large-scale mapping, explicit modeling of the cross-correlation
between landmarks is computationally infeasible (cf. Fast-
SLAM [33]). Therefore, landmarks are updated individually
based on the unscented transform as shown in Alg. 4. One
single map is maintained in the proposed system and the cross-
correlation between pose and landmarks is incorporated in a
sample-based manner.

For each re-observed landmark, sigma points are drawn
from the current pose posterior Ĉkx and the last landmark
posterior {lk−1,Pk−1}, respectively. Given each pose sample,
the whole set of landmark sigma points is projected onto the
image plane to get the predicted measurements. Their weights
are computed by multiplying the weights of landmark and
pose samples. The predicted measurements, their weights and
the landmark samples are then concatenated each individually
(Alg. 4, line 7-9). The remaining steps of the algorithm
follow the UKF update without state augmentation as proposed
in [12].

For newly observed features, new landmarks will be added
to the map and their uncertainty Pk is initialized by pro-
jecting sigma points from the observation noise R to global
coordinates, which can be seen as the inverse operation of
Alg. 3. To only keep trackable landmarks in the map, we
impose a culling policy that removes landmarks which are
not re-observed within 5 frames.

When initializing landmarks from stereo observations, we
differentiate between close and far points similar to [1] and [9].
As suggested in [9], landmarks within a distance of 40
times the baseline are represented as 3D positions, while far
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Fig. 5: Sample trajectories given by the proposed SLAM system for
the KITTI dataset. Top: Seq. 00, 05. Bottom: Seq. 08, 01 (open loop).

points are parameterized by the inverse depth representation
introduced in [34].

F. Loop Closure and Pose Graph Optimization

As mentioned in most SLAM systems, accumulated odom-
etry errors, also known as drift, should be corrected once a
loop closure is detected. In our proposed framework, loop
closure detection is activated if landmarks re-enter the current
field of view after not having been observed for more than
a certain number of frames. Though the drift initially cannot
be estimated, we assume that it is limited such that previously
observed landmarks should be located near the current field of
view at a loop closure point. After associating these landmarks
with current feature observations, a global pose estimate is
calculated using the Perspective-n-Point (PnP) method with
an embedded RANSAC scheme for eliminating outliers [32].
Once similar global pose estimates are given in three con-
secutive frames with a sufficient percentage of inliers in each
RANSAC process, the loop closure is finally confirmed.

The pose estimates from the unscented dual quaternion filter
are inserted into a pose graph as odometry constraints. Once
a loop closure is detected, an edge closing the graph with
the measured drift given from the PnP method is added and
the pose graph optimization is triggered. The optimization is
done by the gtsam framework [35]. After that, the filter is reset
according to the optimized states. For correcting the map, each
landmark stores the index of its last observing pose and gets
corrected correspondingly.

V. EVALUATION

The proposed SLAM framework is implemented in C++
and evaluated using the KITTI [17] and EuRoC [18] datasets
for stereo-only setup and compared to other state-of-the-art
SLAM systems. The KITTI dataset contains outdoor driving
scenarios of both urban and highway surroundings, whereas
the EuRoC dataset was recorded indoor onboard a flying Micro
Aerial Vehicle (MAV). For the two datasets, we employ their
respective standard evaluation metric given in [17] and [36].
The system is configured to extract 1000 ORB-features per
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Fig. 6: Sample trajectories given by the proposed SLAM system for
the EuRoC dataset. Top: MH-01, MH-05. Bottom: V1-02, V2-01.

image and use landmarks within a distance of 140 times the
stereo baseline.

A. Tracking Accuracy

Fig. 5 shows four sample trajectories from the KITTI
dataset. Our system gives very accurate results on the 00 and
05 sequences (upper row), where several loop closure points
occur. In the bottom row, two open loop trajectories are shown,
where no loop closure occurs. Here, the trajectory is estimated
only by the filtering algorithm and no pose graph optimization
is performed. We compare our system to libviso2 which gives
the system input for the prediction step. It is apparent that the
proposed progressive update scheme using mapped landmarks
gives significant improvement compared to the pure odometry
where only correspondences between consecutive frames are
used. Although drift cannot be corrected for the open loop
trajectories, the result of our system is still close to the ground
truth. Our overall translational error is 1.11% for the training
set and 1.47% for the test set. This increased error mainly
results from the challenging highway sequences (20 and 21)
where textureless images occur more frequently. In Table I,
we give detailed benchmarking on the KITTI training set.
For comparison, several state-of-the-art SLAM systems are
used, including SuMa [37] (LiDAR SLAM), ProSLAM [38]
and ORB-SLAM2 [1] (feature-based using keyframes). All
the compared systems are optimization-based. For all the
sequences, the proposed progressive update is shown to give
significant improvement over libviso2. Regarding translational
error, the proposed DQV-SLAM performs equally or better
compared to SuMa and ProSLAM for 3 of the 11 sequences.

For the EuRoC dataset, we show four sample trajectories
in Fig. 6 from both the machine hall (top row) and Vicon
room (bottom row) environments. The proposed SLAM system
gives accurate results also in the challenging MAV scenarios
that comprise fast motion and varying lighting conditions. Ta-
ble II further shows detailed benchmarking results with other
state-of-the-art systems. For the full SLAM configuration, we



TABLE I: Relative error trel (%) / rrel (°/100m) on KITTI odometry dataset. * denotes no loop closure. Bold numbers denote the best.

Sequence
Approach 00 01* 02 03* 04* 05 06 07 08* 09 10*

ORB-SLAM2 [1] 0.7/0.3 1.4/0.2 0.8/0.2 0.7/0.2 0.5/0.1 0.4/0.2 0.5/0.2 0.5/0.3 1.1/0.3 0.9/0.3 0.6/0.3
DQV-SLAM 0.7/0.4 3.5/0.7 1.0/0.3 1.4/0.4 1.0/0.4 0.8/0.3 1.1/0.4 0.6/0.4 1.3/0.4 1.6/0.6 0.9/0.5
libviso2 [28] 2.7/1.2 4.3/1.0 2.2/0.9 2.3/1.0 1.1/0.8 2.2/1.2 1.3/0.9 2.4/1.8 2.8/1.3 2.8/1.2 1.4/1.2
SuMa [37] 0.7/0.2 1.7/0.5 1.2/0.4 0.7/0.5 0.4/0.3 0.4/0.2 0.5/0.3 0.7/0.6 1.2/0.4 0.6/0.2 0.7/0.3

ProSLAM [38] 0.7/0.3 1.7/0.5 1.0/0.3 0.6/0.2 0.5/0.5 0.8/0.3 0.5/0.3 0.5/0.3 1.0/0.3 1.0/0.3 0.5/0.2

TABLE II: ATE (Absolute Trajectory Error) of RMSE in meter on EuRoC. ’x’ denotes system failing. Bold numbers denote the best.

Sequence
Approach V1-1 V1-2 V1-3 V2-1 V2-2 V2-3 MH-1 MH-2 MH-3 MH-4 MH-5

ORB-SLAM2 [1] 0.04 0.02 0.05 0.04 0.04 x 0.04 0.02 0.03 0.12 0.06

DQV-SLAM 0.10 0.08 0.15 0.19 0.20 x 0.06 0.09 0.13 0.35 0.19
VI-SLAM [39] 0.04 0.05 0.11 0.10 0.18 x 0.11 0.09 0.19 0.27 0.23

DQV-SLAM no LC 0.30 0.29 0.37 0.45 0.48 x 0.25 0.27 0.40 0.82 0.53
S-MSCKF [10] 0.23 0.20 0.30 0.14 0.31 x n/a n/a 0.37 0.48 0.48

ROVIO [7], results from [10] 0.22 0.21 0.34 0.28 0.21 0.26 n/a n/a 0.44 1.34 0.99
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Fig. 7: Runtime KITTI 00.

compare to VI-SLAM [39], a keyframe-based stereo visual-
inertial SLAM system. Our system is more or equally accurate
as VI-SLAM for four of the five machine hall sequences and
performs competitively for the Vicon room, despite only using
camera input and no inertial data. The bottom part of Table II
compares the proposed system with loop closure disabled
to two filtering-based visual-inertial odometry approaches,
ROVIO [7] (monocular) and S-MSCKF [10] (stereo). For the
machine hall sequences which contain features at larger depth,
DQVSLAM is more accurate than ROVIO. It stays comparable
to the VIO systems for the remaining sequences although it
does not process higher-order motion cues from an IMU.

ORB-SLAM2, which is among the best visual SLAM sys-
tems, is used as a baseline for our benchmarking (not included
into comparison). Generally speaking, our system performs
competitively robust and accurate compared to the other state-
of-the-art visual SLAM systems in challenging indoor and
outdoor real-world scenarios.

B. Timing

The proposed system shows an averaged processing time
of 220 ms per frame over the whole KITTI dataset on a
mobile computer (Intel Core i5-7200U CPU, 8GB RAM).
Fig. 7 shows the timing result for KITTI 00 among different
processing stages. This sequence contains several loop closure
points, which can be observed as peaks when pose graph
optimizations are performed. The overall processing frame rate

is near 5 Hz. It is in the same order of magnitude as the input
frame rate (10 Hz), yet not real-time, due to the sampling-
approximation-based filtering scheme and unoptimized code
for prototyping.

VI. CONCLUSION

In this paper, we presented DQV-SLAM, a novel feature-
based stereo visual SLAM framework using an unscented dual
quaternion filtering and mapping approach. A novel implemen-
tation of the 6-DoF SLAM problem using the dual quaternion
formalism and methods from directional estimation is given.
An optical flow-based approach is embedded into the pose
filter to ensure robust data association in dynamic scenarios.
The system is able to reliably detect loop closure and correct
drift. It is ranked the best filtering-based approach in the
visual odometry/SLAM category of KITTI. For different real-
world scenarios, the proposed framework shows competitive
performance compared to state-of-the-art systems. However,
there is still much potential that can be exploited. The current
unscented transform-based sampling scheme provides a sparse
coverage of the state space and samples are only placed on
the principal axes. With the employed measurement model,
this is problematic, as small changes in orientation of the
camera can have large influence on the projected landmark
positions. To provide for a better coverage of the manifold
of orientations, sampling schemes that draw a larger number
of more evenly distributed samples could be employed [40],
[41]. The proposed filtering scheme can also be improved
by considering the correlation between the orientation and
translation part [42]. Furthermore, the efficiency should be
improved and pose graph optimization be moved to a parallel
thread to enable future deployment on real-time robotic plat-
forms. Besides, other kinds of sensors, e.g., LiDAR or IMU,
can be incorporated into the framework using sensor fusion
techniques for better performance.
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