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Abstract—Sensor networks allow robust and precise estima-
tion by fusing estimates from several distributed sensor nodes.
Because of the often limited communication resources, a trade-off
between the amount of information communicated and the qual-
ity of the fusion result has to be made. On the one hand, obtaining
the optimal fusion result often needs an infeasible amount of
additional information, but on the other hand, conservative meth-
ods usually lead to more pessimistic results in comparison. This
paper proposes a square root decomposition of the incorporated
noise terms to reconstruct the cross-covariance matrices between
sensor nodes. To save communication bandwidth, a residual is
defined that allows bounding of the cross-covariance matrix with
a reduced number of noise terms. The consistency of the proposed
method is demonstrated by two simulation examples featuring a
linear and a nonlinear setup and is compared with other state-
of-the-art fusion methods.

I. INTRODUCTION

Distributed estimation is an increasingly important task in
many modern applications, such as environmental monitoring
or indoor-navigation, due to the growing number of smart
mobile devices in every day life [1]. Since the beginning of dis-
tributed estimation in the 1970s, a vast number of algorithms
have been developed to address different aspects of distributed
estimation [2]. For optimal processing of multiple sensor
measurements, centralized approaches such as the information
filter [3]–[5] or the optimally distributed Kalman filter [6]–
[8] can be used. Yet, they lack scalability, robustness, and
modularity compared to methods that do not necessarily need a
central unit for calculation. Distributed estimation is, therefore,
a better way to handle limited bandwidth, communication rate,
and energy, which are always concerns in sensor networks. On
the downside, these algorithms need to address the correlations
that arise due to common prior information and process noise
as well as double counting [9]–[12].

Since neglecting the correlations [13] between sensor nodes
may lead to inconsistency of the fused estimate, there are sev-
eral different approaches to address the unknown dependencies
between state estimates. Usually, this is done by finding an
upper bound for the cross-covariances between sensor nodes,
which leads to a suboptimal result compared to using the actual
cross-covariances. One of the most common algorithms is
covariance intersection [14]–[16] which makes no assumption
of the correlations and always yields a consistent result. Since

covariance intersection often results in a rather pessimistic
result, several other suboptimal approaches have been formu-
lated, such as ellipsoidal intersection [17], inverse covariance
intersection [18], [19], methods for improved parameterization
of covariance intersection [20]–[22] or methods to further
tighten the bound [23]. Other authors formulated a fusion rule
using optimization-based approaches [24], [25].

Since approximating the correlations to formulate the fusion
rule usually leads to suboptimal fusion results, many other
authors tried to reconstruct the cross-covariances between
sensor nodes in order to find the optimal fusion result.
In [26], the common past invariant Ensemble KF (CPI-EnKF)
is used to reconstruct the correlations between a number of
cooperatively localizing vehicles. This approach was further
developed by [27], who used a number of random samples to
calculate the correlations between sensor nodes. While these
approaches only lead to approximated cross-covariances, the
authors in [28] used deterministic samples to reconstruct the
cross-covariance matrices optimally, which can also be seen as
a square root decomposition of the incorporated noise terms.
This sample-based fusion was further discussed in [29] to limit
the number of samples included in the sample set under the
assumption that old noise terms asymptotically approach zero
over time. Since this assumption is not always valid, the fusion
result may become inconsistent over time.

In [30], a generalized covariance intersection method was
proposed, that uses a square root decomposition of the noise
terms. Further, older noise terms are collected in a residual
term and bounded to always obtain a consistent fusion result.
By combining this square root decomposition with the recur-
sive calculation of cross-covariances provided by the sample-
based fusion, we aim to formulate a flexible and more intuitive
method to keep track of the cross-correlations between sensor
nodes in a distributed fashion without violating the consistency
of the fusion result. In this paper, we propose a square
root decomposition of noise terms. We will define a moving
horizon square root decomposition matrix to keep track of
the cross-covariance matrices in a distributed fashion that is
calculated recursively. Further, we will propose a method to
keep a residual term that will collect every noise term excluded
from the square root decomposition matrix. This residual will
be bounded, thus resulting in a consistent fusion result. We



will show that the proposed method can be used to find a
compromise between a tight fusion result and the available
bandwidth. Further, we will discuss how this method can be
adapted to account for nonlinearities in the system.

The remainder of this paper is structured as follows. Sec-
tion II provides an introduction to the fusion problem and
the underlying cross-correlations between sensor nodes. After-
wards, a fusion method based on square root decomposition of
dependent information is proposed and further developed using
only a limited number of entries and a residual which is used
to bound the remaining cross-covariances. Section IV shows
the simulation results using the proposed method. The results
are discussed in Section V and the advantages compared to
the sample-based fusion are highlighted. Finally, the paper is
concluded in Section VI.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-variant stochastic
dynamic system with state matrix Ak, state vector xk of state
dimension N , input matrix Bk, input vector uk, zero-mean
white Gaussian system noise wk with covariance matrix Qk

xk+1 = Akxk + Bkuk + wk with wk ∼ N
(
0,Qk

)
. (1)

The system is observed by a network of L sensor nodes,
where every individual node i receives measurements using
the observation model C

(i)
k according to

y(i)
k

= C
(i)
k xk + v

(i)
k with v

(i)
k ∼ N

(
0,R

(i)
k

)
, (2)

which are affected by white Gaussian noise v
(i)
k with covari-

ance matrix R
(i)
k . Further, every sensor node uses a Kalman

filter or one of its derivatives [31] to minimize the error in the
state estimate x̂(i).

To increase precision and robustness, the results of the
individual sensor nodes are fused. This can be done using
the Bar-Shalom/Campo formulas [32] for the multi-sensor
case [33]. During the fusion step, the joint state vector

m̂k|k =
[(
x̂

(1)
k|k
)>

, . . . ,
(
x̂

(L)
k|k
)>]>

and the joint covariance matrix

Jk|k =


P

(1)
k|k P

(1,2)
k|k . . . P

(1,L)
k|k

P
(2,1)
k|k P

(2)
k|k . . . P

(2,L)
k|k

...
...

. . .
...

P
(L,1)
k|k P

(L,2)
k|k . . . P

(L)
k|k

 (3)

are used to calculate the fused state estimate and covariance
matrix

x̂k|k = Pk|kH
>(Jk|k)−1

m̂k|k ,

Pk|k =
(
H>
(
Jk|k)−1H

))−1

,

where the matrix H = [I, . . . , I]T describes how the local
states vectors of the sensor nodes map into the fused state
vector. The block entries P

(1)
k|k, . . . ,P

(L)
k|k on the main diagonal

refer to the covariance matrices of the local Kalman filters and
are therefore known. The entries on the off-diagonals, on the
other hand, represent the cross-covariances between the sensor
nodes and are usually unknown. When all processing steps
are known, the cross-covariances between the sensor nodes
can be calculated recursively [9]. During the time update, the
cross-covariances between the sensor nodes are updated by
the prediction and the process noise is included, yielding the
recursive formula

P
(i,j)
k|k−1 = E[(x̂

(i)
k−1|k−1 − xk)(x̂

(j)
k−1|k−1 − xk)T]

= AkPk−1|k−1(Ak)T + Qk , (4)

where Pk−1|k−1 at the initial time step k = 1 is the common
prior information P0 between the sensor nodes. During the
measurement update, the cross-covariances are updated by

P
(i,j)
k|k = E[(x̂

(i)
k|k−1 − xk)(x̂

(j)
k|k−1 − xk)T]

= L
(i)
k P

(i,j)
k|k−1(L

(j)
k )T , (5)

with L
(i)
k = I − K

(i)
k C

(i)
k . This recursive calculation of the

cross-covariances can also be written explicitly

P
(i,j)
k|k = T

(i)
0,kP0(T

(j)
0,k)T +

k∑
τ=1

T
(i)
τ,kQτ (T

(j)
τ,k)T . (6)

as a sum of independent noise terms Qτ included at time step
τ and the common prior information P0 [30]. The matrix Tτ,k

denotes the individual matrix transformation that arise from
the Kalman filter steps. Thus, we have now recapitulated the
recursive and the explicit form of the cross-covariance calcula-
tion. It is evident from the these equations, that keeping track
of all processing steps and noise terms requires information
about every Kalman filter step and the incorporated noise terms
and is thus infeasible in large sensor networks. To still be able
to optimally reconstruct the cross-covariances between sensor
nodes, a distributed calculation is necessary.

III. SQUARE ROOT DECOMPOSITION OF NOISE TERMS

In this section, we will first derive the square root decompo-
sition of noise terms to calculate the cross-covariances between
two nodes i and j. The recursive computation of the cross-
covariances will then be limited to a fixed number of noise
terms in order to reduce communication requirements. The
remaining noise terms will be collected in a residual term that
will be bounded to keep the fusion result consistent.

A. Optimal Square Root Decomposition

To be able to distribute the calculation of the cross-
covariances between sensor nodes, a useful decomposition that
allows reconstruction during the fusion step has to be found.



The cross-covariance from (6) can be rewritten as a square
root decomposition

P
(i,j)
k|k = T

(i)
0

√
P0(

√
P0)T(T

(j)
0 )T

+

k∑
τ=1

T(i)
τ

√
Qτ (

√
Qτ )T(T(j)

τ )T

=

k∑
τ=0

Σ(i)
τ (Σ(j)

τ )T .

By decomposing the cross-covariances into the square root
form, a suitable decomposition is found that allows the
reconstruction of the cross-covariances. These square root
decomposition terms will be kept in the matrix

S(i)
k =

[
Σ

(i)
0 ,Σ

(i)
1 , . . . ,Σ

(i)
k

]
,

that includes all noise terms till the current time step k and
is of dimension M = N ×D = N ×

(
N + (k − 1)W

)
. The

calculation of this square root matrix can be done recursively.
At k = 0, the system is initialized with

S(i)
0 = Σ

(i)
0 ,

where Σ
(i)
0 denotes for the square root decomposition

√
P0

of the common prior information between all sensor nodes.
Afterwards, the matrix is linearly transformed by the predic-
tion step and the new noise term Σ

(i)
k =

√
Qk is included

(see equation (4)). The matrix is further updated by a trans-
formation L

(i)
k = I−K

(i)
k C

(i)
k for the measurement step (see

equation (5)), yielding

S(i)
k = L

(i)
k

[
A

(i)
k S

(i)
k−1 , Σ

(i)
k

]
. (7)

The size of this matrix will therefore grow linearly with time.
The cross-covariances can then be reconstructed according to

P
(i,j)
k =

k∑
τ=0

Σ(i)
m (Σ(j)

m )T = S(i)
k (S(j)

k )T .

Because of the limited bandwidth that is usually present in
sensor networks, the matrix S(i)

k needs to be limited in the
number of entries.

B. Limiting the Number of Square Root Decompositions

To address the constrained bandwidth, only a limited num-
ber of noise terms can be kept in the matrix S(i)

k . We will start
by dividing the matrix S(i)

k into two parts

S(i)
k =

[
S(i)
k,Ω , S(i)

k,T
]
,

where S(i)
k,T is a moving horizon square root decomposition

matrix

S(i)
k,T =

[
Σ

(i)
k−T+1,Σ

(i)
k−T +2, . . . ,Σ

(i)
k

]
,

which includes only noise terms up to a limited time horizon
T . The noise terms in Sk,Ω are discarded and only the noise
terms in Sk,T are kept and used to reconstruct the cross-
covariance matrix. Since the cross-covariances are calculated

by summing over a number of positive definite noise terms,
the exclusion of noise terms results in a cross-covariance term
smaller than the actual cross-covariance matrix. As a result,
the fused covariance is underestimated as well and can become
inconsistent.

To prevent this from happening, an additional residual term
Ωk is kept, that will be recursively calculated and includes all
noise terms S(i)

k,Ω that are excluded from the matrix S(i)
k,T . To

recursively calculate these parameters similar to Section III-A,
the initialization is expanded by also initializing the residual,
yielding

Ω
(i)
0 = 0 .

Afterwards we can update the square root matrix and concate-
nate it with the newest entries till we reach the time horizon
T . Once this time horizon is reached, we need to exclude the
oldest noise term from the square root decomposition matrix
Sk,T and add it to the residual

Ω
(i)
k = Ω

(i)
k−1 + Σ

(i)
k−T (Σ

(i)
k−T )T

= S(i)
k,Ω

(
S(i)
k,Ω

)T
. (8)

The exclusion of noise terms from the matrix can be seen as
a shifting operation, which can be described mathematically
as multiplying the matrix S(i)

k−1,T with a shift matrix U

S(i)
k−1,T := S(i)

k−1,TU ,

where the matrix U to shift all entries N positions to the left
is defined as

U =

[
0N×D′

ID′×D′

]
,

with D′ = N(T − 1). This results in a cancellation of the
first noise term in the matrix. Afterwards, a new term can be
concatenated (see equation (7))

S(i)
k,T = L

(i)
k

[
A

(i)
k S

(i)
k−1,T , Σ

(i)
k

]
.

Now a fusion rule needs to be formulated to incorporate the
cross-covariances Pk,T reconstructed with the matrix Sk,T
and bound the remaining cross-covariances using the residual
Ωk. For this, we will first consider the optimal joint covariance
matrix

Jk =

[
P

(i)
k P

(i,j)
k

P
(j,i)
k P

(j)
k

]
.

Since we excluded some of the correlations, this matrix can
only be partially recovered. The joint covariance matrix can
thus also be written as

Jk =

[
P

(i)
k P

(i,j)
k,T + P

(i,j)
k,Ω

P
(j,i)
k,T + P

(j,i)
k,Ω P

(j)
k

]
,



with the cross-covariances divided into one part that is recon-
structed P

(i,j)
k,T and another part P

(i,j)
k,Ω that is unknown. We

can decompose the joint covariance matrix further, yielding

Jk =

[
P

(i)
k P

(i,j)
k,T

P
(j,i)
k,T P

(j)
k

]
−

[
P

(i)
k,Ω 0

0 P
(j)
k,Ω

]
+

[
P

(i)
k,Ω P

(i,j)
k,Ω

P
(j,i)
k,Ω P

(j)
k,Ω

]
︸ ︷︷ ︸

Jk,Ω

.

We recall equation (8) where we can find that

P
(i)
k,Ω = S(i)

k,Ω

(
S(i)
k,Ω

)T
= Ω

(i)
k .

We stored the residual Ωk before and thus know the entries on
the block main diagonal of Jk,Ω. Since the cross-covariances
on the off-diagonals can not be reconstructed anymore, we aim
to find a bound for the cross-covariances [11] according to[

1
ωi

Ω
(i)
k 0

0 1
ωj

Ω
(j)
k

]
≥

[
Ω

(i)
k P

(i,j)
k,Ω

P
(j,i)
k,Ω Ω

(j)
k

]
= Jk,Ω .

To find a bound, we need to make sure that it is a valid cross-
covariance matrix. The matrix Jk,Ω can be written as

Jk,Ω =

[
S(i)
k,Ω

S(j)
k,Ω

][
S(i)
k,Ω

S(j)
k,Ω

]T

.

Since A(A)T ≥ 0 and therefore a semidefinit symmetrical
matrix, we know that Jk,Ω is a valid cross-covariance matrix
and thus can be bounded. Therefore, we can now formulate
the bounded joint covariance matrix as

J̃k =

[
P

(i)
k −Ω

(i)
k P

(i,j)
k

P
(j,i)
k P

(j)
k −Ω

(j)
k

]
+

[
1
ωi

Ω
(i)
k 0

0 1
ωj

Ω
(j)
k

]
,

where J̃k > Jk. This joint covariance matrix can also be
formulated for an arbitrary number of L sensor nodes similar
to equation (3) according to

J̃k =


P

(1)
k −Ω

(1)
k P

(1,2)
k,T ... P

(1,L)
k,T

P
(2,1)
k,T P

(2)
k −Ω

(2)
k ... P

(2,L)
k,T

...
...

. . .
...

P
(L,1)
k,T P

(L,2)
k,T ... P

(L)
k −Ω

(L)
k



+


1
ω1

Ω
(i)
k 0 ... 0

0 1
ω2

Ω
(2)
k ... 0

...
...

. . .
...

0 0 ... 1
ωL

Ω
(L)
k

 .
The weighting factors ω can be found by minimizing the trace
or determinant of the joint covariance matrix. Alternatively,
an approximate closed-form solution [30] such as the one
proposed by [34] can be used, where the trace ε is used to
calculate the weighting factor ω of sensor node n in respect
to the traces of all L sensor nodes in the system according to

ωn =
Dn

D0
=

∏L
i=1,i6=n εi∑L

i=1

∏L
i=j,j 6=i εj

=
1/εn∑L
i=1 1/εi

.

The developed algorithm is able to keep track of the cross-
covariances between sensor nodes that are caused by common
prior information and common process noise in a distributed
fashion and without violation of consistency.

C. Extension to Nonlinear Problems

The previous sections described how to obtain the square
root decomposition of noise terms in a linear system. Nonethe-
less, many applications require the utilization of nonlinear
filters to cope with nonlinearities in system and measurement
equations. For this, we assume that sensor node i uses a
nonlinear system model

xk = f
k
(xk) + wk

and a nonlinear measurement function

y(i)
k

= h
(i)
k (xk) + v

(i)
k ,

where the additive system noise wk and measurement noise vk
are defined as in equations (1) and (2). In order to keep track
of the cross-covariances, we need to find the transformation
which alters the covariance according to equation (7). This
linear transformation can be found for the Kalman filter and
all of its derivatives [35], such as the EKF [31], the UKF [36]
or any other regression Kalman filter that uses a set of samples
to approximate the transformation [35].

IV. EVALUATION

To evaluate the proposed square root decomposition based
fusion method (SqDF), two evaluation examples featuring a
linear system and a system with a nonlinear measurement
model are simulated.

A. Linear Evaluation Example

The following section will show the performance of the
proposed method with and without bounding and different
time horizons T . The results will be compared with other
fusion methods, in particular, covariance intersection (CI),
naı̈ve fusion, which ignores the correlations between the sensor
nodes and inverse covariance intersection (ICI). Further, all
methods are compared to the proposed method with an infinite
time horizon, which corresponds to the optimal fusion result
(see Section III-A). For the evaluation, a discrete-time time-
invariant linear stochastic system model is used

xk+1 = Axk + wk with wk ∼ N
(
0,Q

)
,

A =

[
1 ∆T
0 1

]
, Q =

[
1 0
0 1

]
.

The system is observed by two sensor nodes A and B using
a linear measurement model

y(i)
k

= C(i)xk + v
(i)
k with v

(i)
k ∼ N

(
0,R

(i)
k

)
.

Every measurement is corrupted by additive-white Gaussian
noise v

(i)
k with covariance matrix R

(i)
k = R

(j)
k = 50 and the



individual measurement matrices of every sensor node are set
to

C(A) =
[
1 0

]
, C(B) =

[
0 1

]
.

The model is simulated for 100 time steps and the fusion step
is performed every 10th time step. The initial conditions for
both sensor nodes are the same with x̂0 = 0 and P0 = 5 I.
After each fusion step, the local state estimate and covariance
matrix are reinitialized by the fusion results. Figure 1 shows
the error ellipses after the first fusion step. The matrices PA

and PB denote the covariances of the local Kalman filters.
The matrix POpt is calculated using the proposed square
root decomposition matrix with an infinite time horizon. The
matrices smaller than this optimal solution underestimate the
error and therefore lead to inconsistent results. On the other
hand, the matrices that are bigger than the optimal solution
will not underestimate the error, but they are more pessimistic
than the optimal covariance matrix since they overestimate
the error. As expected, naı̈ve fusion results in the smallest
fused covariance matrix PNaı̈ since the correlation between
the sensor nodes is completely dismissed. On the other hand,
CI is the most pessimistic fusion method since it makes the
worst case assumption that both sensor nodes may be fully
correlated.

Figure 1(a) shows the fusion results using the proposed
square root decomposition fusion without bounding for time
horizons T = 1, T = 5 and T = 10. The fusion result
for T = 10 includes all process noise terms incorporated
during the Kalman filter steps but excludes the common
process noise between the sensor nodes before that. It can
be shown that the acquired fusion result without bounding
always yields a result between the one from naı̈ve fusion and
the optimal fusion result. This is expected since the correlation
can be calculated as a sum of positive definite matrices and
excluding some of the terms leads to a smaller result and
therefore to an underestimated cross-covariance. Still, having
some information about the correlation is better than having
no information.

Figure 1(b) shows the fusion results with bounding for the
same time horizons. Here it can be seen that the fusion results
are always consistent and between the optimal result and CI.
The more information about the correlation is available the
less bounding has to be done and the closer the result is to the
optimal fusion result. But also with just a time horizon of T =
1, the fusion result is still much closer to the optimal result
and therefore does not overestimate the covariance matrix as
much as CI.

In Figure 2(a) the mean square error over 1000 Monte Carlo
runs is depicted. Here again, the optimal fusion result obtained
with the proposed method including all noise terms is the
method that performs the best and naı̈ve fusion is the method
that performs the worst.

The average normalized estimation error squared (ANEES)
is shown in Figure 2(b). The ANEES is a metric for the
relationship between the estimated error and the actually
achieved error. Therefore, it is a measure of how consistent
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(a) Comparison of several fusion results with the square-root de-
composition without bounding.
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(b) Comparison of several fusion results with the square-root de-
composition with bounding.

Fig. 1: Comparison of the error ellipses of covariance intersec-
tion (PCI), naı̈ve fusion PNaı̈, optimal fusion using an infinite
time horizon (POpt), square root decomposition-based fusion
PT with time horizon T with and without bounding.

an estimator is. A value below one means that the error is
overestimated and, respectively, an ANEES above one means
that the error is underestimated and the estimator will become
inconsistent. The optimal fusion result obtained by the sample-
based fusion is very close to one. CI is the method with the
lowest ANEES meaning it is the most pessimistic method, and
naı̈ve fusion is the method with the highest ANEES, meaning
it is the most optimistic and therefore becomes inconsistent.
In addition, the plots show, that the proposed method is
achieving better results the more time steps are included in
the square root decomposition matrix. The bounded version
always performs better than the unbounded version of the
proposed method. Yet, it yields less conservative results than
CI. The results also show, that the ICI method yields almost
equally good results as the square root decomposition fusion
with the most noise terms included, which is an interesting
find.
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Fig. 2: Comparison of covariance intersection (CI), naı̈ve
fusion, optimal fusion using an infinite time horizon (Opt), in-
verse covariance intersection (ICI), square root decomposition-
based fusion with time horizon T without bounding (SqDFT )
and with bounding (SqDFT ,b) for the linear example.

B. Nonlinear Evaluation Example

To show that the proposed method is also able to handle
nonlinearities of the system, this section shows a system with
a nonlinear measurement model. For the system model, a
constant velocity model

xk+1 = Ax + wk with wk ∼ N
(
0,Q

)
,

for the movement on a two-dimensional plane with the system
matrix and process noise matrix

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 ,

Q = 0.01


1
3∆T 0 1

2∆T 0
0 1

3∆T 0 1
2∆T

1
2∆T 0 ∆T 0

0 1
2∆T 0 ∆T


is chosen. Furthermore, the target is observed by four sensor
nodes that are positioned at the corners of a 20 × 20 square
at positions P (i) = [P

(i)
x , P

(i)
y ]T according to

P (1) =

[
10
10

]
, P (2) =

[
−10
10

]
, P (3) =

[
−10
−10

]
, P (4) =

[
10
−10

]
that measure the distance r and the angle θ towards the moving
target by the measurement function

y(i)
k

= h
(i)
k (xk) + v

(i)
k[

r(i)

θ(i)

]
=

√((xx)k − P (i)
x

)2
+
(
(xy)k − P (i)

y

)2
atan2

(
xy,k − P (i)

y , xx,k − P (i)
x

) + v
(i)
k ,

with measurement noise

R(i) =

[
0.05 0

0 0.5 π
180

]
and initial settings x̂0 = 0 and P0 = 0.1I. Every sensor node
uses an UKF [36] and updates the square root decomposition
matrix based on the assumptions stated in Section III-C.
Figure 3 shows the RMSE and ANEES for 1000 Monte Carlo
runs. It is obvious that neglecting the cross-correlations be-
tween sensor nodes causes large errors. It also shows that using
the proposed method without bounding leads to inconsistency
and therefore to high errors. The proposed method with the
bounding technique shows good and consistent results and
outperforms CI and ICI.

V. RESULTS AND DISCUSSION

The proposed square root decomposition based fusion
method is able to keep track of cross-covariances caused by
both common process noise and common prior information.
It can be adapted to varying bandwidth requirements by
reducing the number of square root decompositions. Since
the correlation information is still contained in the residual,
the remaining cross-covariance matrix can be bounded and
therefore a consistent fusion result can be obtained. The square
root decomposition is very similar to the sample-based fusion
proposed in [28], where the square root decomposition of
filtering steps and noise terms is used to create a set of
deterministic samples. This sample set has the disadvantage
that it can not be altered, e.g., by further filtering at the
fusion center, after it has been created. The square root
decomposition proposed in this work is still flexible, allows
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Fig. 3: Comparison of covariance intersection (CI), naı̈ve
fusion, optimal fusion using an infinite time horizon (Opt), in-
verse covariance intersection (ICI), square root decomposition-
based fusion with time horizon T without bounding (SqDFT )
and with bounding (SqDFT ,b) for the nonlinear example.

reducing the square root matrix even after it has been created
and also allows further processing. Thus, it can keep track of
correlations after the fusion already has taken place. Therefore
it can potentially be used for sensor networks with unknown
topologies and fusion that is hierarchical or decentralized.

VI. CONCLUSION

This paper proposed a novel recursive fusion technique
using a moving horizon matrix of square root noise decom-
positions. To keep the fusion result consistent, a residual
to account for discarded noise terms is stored and used for
bounding. This technique offers a flexible trade-off between

communication requirements and fusion result quality. Further
research will investigate how this technique can be used in
networks with hierarchical and decentralized topologies.
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[22] J. Ajgl, M. Šimandl, M. Reinhardt, B. Noack, and U. D. Hanebeck,
“Covariance Intersection in State Estimation of Dynamical Systems,” in
Proceedings of the 17th International Conference on Information Fusion
(Fusion 2014), Salamanca, Spain, Jul. 2014.
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