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Abstract—We present a particle filter for multi-object tracking
that is based on the ideas of the Approximate Bayesian Compu-
tation (ABC) paradigm. The main idea is to avoid the explicit
computation of the likelihood function by means of simulation.
For this purpose, a large amount of particles in the state space is
simulated from the prior, transformed into measurement space,
and then compared to the real measurement by using an appro-
priate distance function, i.e., the OSPA distance. By selecting the
closest simulated measurements and their corresponding particles
in state space, the posterior distribution is approximated. The
algorithm is evaluated in a multi-object scenario with and without
clutter and is compared to a global nearest neighbour Kalman
filter.

I. INTRODUCTION

Multi-object tracking (MOT) has been an ongoing research
area since the 1950’s. Typical MOT applications can be found
in robotics, remote sensing, and surveillance. In general, the
range of objects to track, the different sensors, and application
areas are almost endless. Since the requirements are usually
different for every scenario, there exists a huge amount of
different MOT algorithms. A recent overview, including the
joint probabilistic data association filter (JPDAF) and random
finite set (RFS) approaches, can be found in [1].

An important class of algorithms for object tracking are
particle filters [2]–[5]. Particle filters use a set of weighted par-
ticles to represent the posterior distribution. Usually, updating
the weights from one time step to the next involves computa-
tion of the likelihood function. For MOT, this is a significant
computational bottleneck, as the likelihood function considers
all possible measurement-to-object associations. Already for a
small number of objects, evaluation of the likelihood function
takes a vast amount of time.

The problem of an intractable likelihood function is not only
restricted to MOT. In biology, psychology, and economics,
where Bayes’ theorem is often used for parameter inference
and model selection, the likelihood function often does not
have an analytical expression or is computationally intractable.
To overcome this issue, the likelihood-free class of Approxi-
mate Bayesian Computation (ABC) algorithms was invented
[6]–[10]. In [11], an ABC rejection method was proposed
for binary sensors, which is, however, a completely different
likelihood from the classical MOT.

The contribution of this work are the following: Based on
the ABC ideas, we develop a particle filter for MOT that nei-

ther requires the evaluation of the likelihood function nor the
computation of particle weights. For this purpose, we employ
the following two main aspects: (1) In the measurement space,
a set distance is used (OSPA distance) in order to compare
measurements. (2) High rejection rates are avoided by means
of a k-nearest neighbour strategy for the measurement update.
To the best of our knowledge, ABC ideas have not yet been
applied to the classic MOT problem.

In the remainder of this work, we first briefly present the
development of the ABC paradigm and its various algorithms.
Then, the MOT problem is specified and some challenges
are highlighted. Subsequently, our ABC particle filter tailored
for MOT is introduced and evaluated with a global nearest
neighbour Kalman filter (GNN) [12] as a comparison. The
computational complexity of our algorithm is slightly higher
than the GNN. Intuitively, for each particle, a GNN association
is calculated.

II. APPROXIMATE BAYESIAN COMPUTATION

In this section, we give a short introduction to ABC and
track the development of the different ABC algorithms over
the years.

For the most part, ABC algorithms were designed in various
fields of biology. Here, one of the main goals is to estimate
parameters for certain models given some data. One powerful
approach to parameter estimation is the application of Bayes’
theorem. For simple models, where the likelihood function
can be derived analytically or efficiently evaluated, parameters
can be directly inferred given the data. In many interesting
cases though, the likelihood function cannot be derived or is
computationally intractable. In these cases, Bayes’ theorem
cannot be applied directly.

Although the idea of utilising simulations in order to cir-
cumvent the likelihood function originated in the 80’s, lack of
computing power inhibited a widespread use. One of the first
papers to pick up the idea and deliver an algorithm was by
Pritchard et al. in 1999 [6]. They developed an algorithm,
today known as ABC rejection, that contains the key idea
included in all subsequent ABC algorithms. Assume, we want
the posterior distribution of a parameter x given some data
or measurement z. The ABC rejection algorithm works as
follows:



1) Draw a candidate value from the prior distribution
x∗ ∼ p(x).

2) Simulate an observation given the candidate value
z∗ ∼ p(z|x∗).

3) Compare simulated and real observation and accept, if
d(z, z∗) ≤ ε.

4) If not accepted, discard x∗ and repeat with 1).
Here, d(·, ·) is a suitable distance measure between the obser-
vations. Optimally, the information from the observations can
be expressed using sufficient summary statistics to reduce the
cost of the distance calculation. For a small ε, a large number
of accepted x∗ represents a good approximation of the correct
posterior distribution p(x|z). Although the method delivers
independent samples of the wanted distribution, it suffers from
the same problems as the standard accept-reject algorithm. If
the prior and the posterior distribution differ substantially or a
diffusive prior has to be assumed, the acceptance rate becomes
very low, e.g. [6] reports acceptance rates between 10−3 to
10−6.

In order to remedy this situation, Marjoram et al. (2003)
integrated the idea of simulating and comparing observations
into the well known framework of Markov Chain Monte Carlo
(MCMC) [7]. Instead of using the likelihood to compute the
acceptance probability, the drawn sample is used to simulate
data, which is then compared to the real observation. If the
distance between the observations is too large, the sample is
discarded directly. The acceptance probability can be written
as follows:

α =

{
p(x∗)q(xi|x∗)
p(xi)q(x∗|xi)

if d(z, z∗) ≤ ε
0 if d(z, z∗) > ε

Here, p(x) is the prior distribution and q(·|·) is the transition
kernel used to generate new candidates x∗ from the current
state xi. Similar to the ABC rejection algorithm the MCMC
ABC produces samples from the desired posterior distribution.
For good convergence, special attention has to be paid to
the prior distribution and the transition kernel. Since standard
MCMC chains are already prone to get stuck in regions of low
probability, the problem of getting stuck is even worse for the
ABC variant due to the additional threshold for passing. But
as long as the chain is in regions of high probability [8] reports
acceptance rates of up to 5%.

In 2007, the notion of ABC was first included in Sequential
Monte Carlo (SMC) samplers by Sisson et al. [8] and shortly
after, multiple versions of ABC SMC samplers appeared [9],
[10]. They all work in a mainly similar fashion. Consider a
pool of N particles with associated weights, like in standard
particle filters. Subsequently, particles are drawn according
to their weight, perturbed with a chosen transition kernel,
an observation is simulated for the drawn particle, and com-
pared against the real observation. After N particles passed
the inspection, the particles are weighted. The differences
between the SMC methods lie in the weighting procedures.
An overview of the weighting procedures can, for example,
be found in [13].

By employing SMC methods, most of the issues of the
previous methods can be circumvented. First, an SMC sampler
cannot get stuck in regions of low probability. Second, a low
acceptance rate can be avoided by using descending values
ε0 > ε1 > · · · > εm. While in the first step the largest ε and
a diffuse prior is used, in the subsequent steps smaller ε are
chosen. This yields a smooth transition from prior to posterior
distribution.

III. PROBLEM FORMULATION

This section is dedicated to a short introduction into multi-
object tracking and highlights some major challenges associ-
ated with it. Additionally, we introduce some notation that will
be used throughout the rest of the paper. Multi-object tracking
can be formulated with a linear process model and a linear
measurement equation

xk = Axk−1 + wk−1, wk−1 ∼ N (0,R) , (1)
zk = Hxk + vk, vk ∼ N (0,Q) , (2)

where wk and vk denote the process and measurement noise
in a suitable dimension. For a number M of multiple objects,
the state vector xk = [xTk,1, . . . , x

T
k,M ]T consists of the stacked

individual states. Depending on the applied process model, the
individual states might consist of the position and velocity.
For the sake of simplicity, we assume that the detection
probability is one, i.e., there are no missed detections. But
there might be false detections, i.e., clutter measurements. All
measurements can be stacked into an overall measurement
vector zk = [zTk,1, . . . , z

T
k,Mc

]T , where Mc is the number of
measurements including clutter. In multi-object tracking, the
measurements are unlabeled, i.e., can be regarded as a set of
individual measurements without any specific order. Hence,
the measurement equation becomes

 zk,π(1)

...
zk,π(Mc)


︸ ︷︷ ︸

=zk

=


H1 0

. . .
0 HM

0c×M


︸ ︷︷ ︸

=H

·

 xk,1...
xk,M


︸ ︷︷ ︸

=xk

+



vk,1
...

vk,M
ṽk,1

...
ṽk,c


︸ ︷︷ ︸

=vk

.

(3)
Here, π ∈ ΠMc denotes an unknown permutation, i.e., an
element from the group of permutations of order Mc. Further-
more, c denotes the number of false detections that can vary
between the timesteps. The ṽk,i i = 1, . . . , c are uniformly
distributed over the area of computation. The corresponding
likelihood for the measurement equation (3) incorporates the
enumeration of all measurement-to-object associations. Simply
put, this is not possible for a larger number of objects, since
the number of possible associations for N objects is Mc!/c!.

IV. ABC PARTICLE FILTER FOR MOT

In this section, we want to discuss some ideas how we
put the principles of ABC into the multi-object tracking
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(b) Kalman filter.

0 1 2 3 4 5 6 7
x - Position

4

3

2

1

0

1

2

3

y
-

Po
si

tio
n

Measurements
Ground Truth
ABC-PF
ABC-PF Mean

(c) ABC filter for N = 10.

Fig. 1: Ground truth and example estimates of the Kalman filter and the ABC filter.

framework. We will only focus on the SMC sampler, since
it provides the best results for parameter estimation [13] and
is also frequently applied in tracking scenarios. Let us consider
the same conditions as mentioned in the previous section.
Similar to other particle filters, the state is represented by a
number of particles N , each of which consists of the full state
xik = [(xik,1)T , . . . , (xik,M )T ]T for i = 1, . . . , N . Suppose
we already have a population of particles at time step k − 1,
{xik−1}Ni=1, and want to transition to time step k. In the
fashion of ABC we draw large number Npred � N of proposal
particles and predict their location in the next step by applying
the process model

x̂pk = Ax̃pk−1 + wp
k−1, p = 1, . . . , Npred . (4)

The probability for a particle to be transitioned to the next
step is equally likely, so that each particle will be father to
approximately Npred/N proposal particles. For each proposal
particle, a simulated measurement is drawn according to the
measurement equation. This step can also be regarded as
a transformation from the state space into the measurement
space

ẑpk = Hx̂pk + vpk, p = 1, . . . , Npred . (5)

Now, the simulated measurements have to be compared
to the real measurements. In the case of unclear associa-
tions between object and measurement and additional false
detections, the distance function has to be chosen carefully.
The standard Euclidean distance used in ABC methods would
produce wrong results as the associations do not fit.

We propose to use a distance metric on sets, i.e., the
OSPA distance [14], which allows us to deal with different
cardinalities (e.g., for clutter). As we consider the number
of tracks to be known and fixed over the time span, the
OSPA distance can be simplified. Let zk be the vector of
true measurements with the additional false detections, then
the OSPA-like distance function looks as follows

d(ẑpk, zk) = min
π∈ΠMc

M∑
m=1

||zk,m − ẑpk,π(m)||2 . (6)

Here, Mc is the number of true measurements plus the
number of false detections in that time step. In the definition

of the OSPA distance, a generic norm is used to assign the
optimal sub-pattern. Since our measurements consist of only
the position, we chose the Euclidean distance as a norm. If
other values are measured, such as angles, the choice of norm
should be revisited. At this point, our algorithm differs from
the usual ABC paradigm. Instead of choosing a threshold ε to
discard particles that differ too much from the measurement,
i.e., d(ẑpk, zk) > ε, we select the N particles with the smallest
distance d(ẑpk, zk). This is mainly to ensure that the algorithm
finishes in a limited, predictable time span. If a borderline
situation occurs, where the measurement happens to be far
away from the predictions waiting for particles that actually
pass the threshold might take an unreasonable amount of time.
A similar procedure for the ABC rejection sampler, together
with some analytical results, has been presented by Biau et.
al [15].

With that in mind, let us have a quick look at the computa-
tional complexity. The main computational burden is obviously
hidden in (6), but instead of having to search through all Mc!
possible permutations, the Hungarian algorithm solves this
optimization problem in O(M3

c ) [16]. Since this computation
has to be done for every proposal particle we arrive at a
complexity of O(Npred ·M3

c ) for one time step.
The algorithm for one time step can be found in Algo-

rithm 1.

V. EVALUATION

The algorithm is evaluated in a scenario with three moving
objects. Two objects move in parallel from left to right, while
a third object crosses their trajectories. An example of the
trajectories can be found in Fig. 1a. As a process model a
nearly constant velocity model (NCV) is used, a common
choice for slowly maneuvering objects. In one dimension the
model looks as follows[

xk
ẋk

]
=

[
1 ∆T
0 1

] [
xk−1

ẋk−1

]
+

[
1
2∆T 2

∆T

]
wk−1 , (7)

where ∆T is the difference between two time steps. Since the
measurements consist of only the position, the measurement
equation only extracts the current position from the state
vector, i.e., H =

[
1 0

]
.
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Fig. 2: Errors for different values of λ, averaged over the whole trajectory and 100 runs.
Left: OSPA of means, see (8). Right: MMOSPA between ground truth and particles, see (9).

Algorithm 1 ABC Particle Filter

Input: N particles {xik−1}Ni=1 that represent the state at time
step k − 1 and measurements zk for step k

Output: N particles {xik}Ni=1 that represent the state at time
step k

1: for p = 1 to Npred do
2: Draw x̃pk−1 uniformly from {xik−1}Ni=1

3: Predict the next state for the particle:
x̂pk = Ax̃pk−1 + wp

k−1

4: Simulate the measurement:
ẑpk = Hx̂pk + vpk

5: Calculate the distance to the real measurement:
d(ẑpk, zk) = minπ∈ΠMc

∑M
m=1 ||zk,m − ẑ

p
k,π(m)||2

6: end for
7: Choose N particles {xik}Ni=1 ⊂ {x̂

p
k}
Npred
p=1 with lowest

d(ẑpk, zk) as new state for time step k

The ABC filter is compared to the global nearest neighbour
Kalman filter (GNN). GNN keeps a Kalman filter for each
object and uses the measurement-to-object association that
minimises the global distance, similar to (6), but compares
the prediction to the measurement instead of a simulated
measurement. As the GNN uses a Kalman filter for prediction
and update, the solution is optimal as long as the associations
are correct. In order to create a more difficult and realistic
scenario, each time step a different number, provided by a
draw from a Poisson distribution with mean λ, of clutter
points is simulated. The clutter is uniformly distributed over
the whole area the objects are tracked in. Both filters are
assumed to know the correct starting point and velocity, but
we initialised the ABC filter as a point cloud with the correct
vector as the mean. The covariance matrices R and Q from
the dynamic model are both chosen to be diagonal with 0.3
as only values. One of the initial vectors for k = 0 is
x0 =

[
0, 1, 2.5, −1

]T
. The other initial vectors have

similar starting velocities.

The evaluation in terms of errors is not obvious, since
both algorithms suffer from labeling uncertainties [17]–[20].
Especially for the two parallel tracks, labels are switching
regularly. To account for this, we used two different distance
measures that calculate the global minimum distance. The first
one calculates OSPA distance between the mean x̄ of the
particles and the ground truth x∗, see (8)

Epoint(k) =

(
1

M
min
π∈ΠM

M∑
m=1

||x∗k,m − x̄k,π(m)||22

) 1
2

. (8)

Due to the aforementioned labeling errors, a simple calcu-
lation of the particle mean yields bad results. To remedy the
situation, the objects states for each particle are relabeled to
provide the Minimum Mean OSPA estimate.

The second measure (9) is the Mean OSPA distance [21]
between the ground truth and the particles

Ecov(k) =

(
1

M

1

N

N∑
n=1

min
π∈ΠM

M∑
m=1

||x∗k,m − xnk,π(m)||
2
2

) 1
2

.

(9)
As the GNN works with Gaussians, we sample a sufficiently

large number of points from a normal distribution with the
mean and covariance from the GNN, which are then used as
particles in the MOSPA calculation. Thereby, the spread of the
particles is compared to the estimated covariance of the GNN.

In Fig. 2 the results of some simulations can be seen. The
figures depict the average normalized error for different values
of λ. The simulations are carried out with N = 50 and Npred =
5000. For a low number of false detections the two filters
produce similar results in both the points estimates as well as
the particle-wise error calculation. As soon as the number of
false detections rises above 5, the errors for the GNN increase
considerably. On the contrary, the ABC particle filter is able
to almost keep a constant error rate even in highly cluttered
environments. This is mainly due to the implicit resampling
in the prediction step. Particles that are chosen because of a



false detection, will very likely not produce proposal particles
close to a new measurement and then be discarded.

VI. CONCLUSION AND FUTURE WORK

In this paper, we gave a short introduction into the algorithm
class of Approximate Bayesian Computation and how the
paradigm developed over the last years. We adapted the ABC
particle filters in such a way that estimation of dynamic
processes is also possible. While the framework is very general
and allows for estimation in various fields, we focused on
multi-object tracking. Therefore, we frequently used a simpli-
fied OSPA distance and the Hungarian algorithm to solve the
arising linear assignment problem.

For future work, there are many open areas where the
algorithm can be further improved and tested. First of all, since
the algorithm requires only forward computation of the process
model and measurement equation, it is optimally suited for
applications with highly nonlinear models. Depending on the
scenario, the only part that might have to be changed is the
distance function.

Furthermore, a substantial difference between the ABC
particle filter and usual particle filters is that we currently
do not make use of any weighting of the particles. Literature
suggest various weighting schemes for ABC particle filters. It
is planned to investigate these and adapt them to the area of
multi-object tracking.

In [15] and [22], some analytical results regarding the
consistency of ABC, summary statistics, and the ratio of
accepted particles are shown. Future work should be based
on these results with a discussion on appropriate summary
statistics and different distance measures for sets, such as the
kernel distance [23]–[25].

In order to have full target tracking capabilities, we intend
to add missed detections by employing the full OSPA distance.
For the case of an unkown and changing number of targets our
algorithm does not offer a simple incorporation, and hence, a
seperate birth-death process would be necessary.
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