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Abstract

We want to approximate general multivariate probability density functions by deterministic sample
sets. For optimal sampling, the closeness to the given continuous density has to be assessed. This is
a difficult challenge in multivariate settings. Simple solutions are restricted to the one-dimensional
case. In this paper, we propose to employ one-dimensional density projections. These are the Radon
transforms of the densities. For every projection, we compute their cumulative distribution function.
These Projected Cumulative Distributions (PCDs) are compared for all possible projections (or a
discrete set thereof). This leads to a tractable distance measure in multivariate space. The proposed
approximation method is efficient as calculating the distance measure mainly entails sorting in one
dimension. It is also surprisingly simple to implement.

1. Introduction

Approximating a given probability density function by another one is a ubiquitous problem. It
arises when the given density is too complex for further processing. This could be caused by an
undesired and complicated functional representation. Even if the representation is of a desired form,
the number of parameters could be unnecessarily large, e.g., Gaussian mixtures. Hence, it has to be
replaced by a more convenient representation or one with less parameters.

Recursive Bayesian filtering is an important use case for density approximation. For nonlinear
system models, the prediction step is usually infeasible for continuous prior densities. Hence, an
approximation of the prior by a set of samples is often used instead. The filtering step entails the
product of the prior and a likelihood function. In some cases, e.g., Gaussian mixture densities, this
product leads to an undesired exponential increase in parameters and calls for regular reapproximation.

The given density and its approximation can both be either continuous or discrete (over continuous
domains). Four cases can be distinguished:

1) Continuous/continuous: Approximation of a given continuous density by another continuous
density of different type or of the same type with a different number of parameters. This is
called density reapproximation.

2) Continuous/discrete: Approximation of a given continuous density by a discrete density. This
is called sampling. This is the case we consider in this paper.

3) Discrete/continuous: Approximation of a given discrete density, i.e, samples, by a continuous
density. This is called density estimation.

4) Discrete/discrete: Approximation of a given discrete density, i.e, samples, by another discrete
density, i.e., another sample set. This is called Dirac mixture reapproximation. An important
special case is the approximation with a smaller number of samples. This is called Dirac mixture
reduction.
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Figure 1: Dirac mixture approximation of Gaussian mixture with two components. Left: Perspective view.
Right: Top view and parameters.

In this paper, we focus on the second case of approximating a given continuous density by a
deterministic discrete density, see Fig. 1. The discrete density is represented by a weighted set of Dirac
delta functions at specific locations. The deterministic sampling procedure includes the calculation
of appropriate locations and, if desired, also appropriate weights. In this paper we focus on equally
weighted samples or at least on samples with prescribed weights.

2. Problem Formulation

The problem we solve in this paper is the systematic approximation of a given multivariate
continuous density f̃(x) by a Dirac mixture density f(x), i.e., by a set of L deterministic samples,
given by

f(x) = f(x | X̂) =
L∑

i=1
wi δ(x− x̂i) (1)

with given weights wi ∈ R>0, ∑L
i=1wi = 1, and desired locations x̂i ∈ RN . N is the number of

dimensions. The locations are collected in an N × L matrix X̂ =
[
x̂1, x̂2, . . . , x̂L

]
.

As we insist on a systematic approximation, we require a rigorous distance measure between the
given density f̃(x) and its approximation f(x) to be minimized. As this entails a comparison between
a continuous and a discrete density, finding an appropriate and feasible distance measure is a major
challenge. An overview of the current literature is given in the next section.

3. State of the Art

We will now give an overview of the current state of the literature on approximating given
continuous probability density functions by a set of samples. Most results are available for Gaussian
densities. Although we focus on the general non-Gaussian case, we will review some literature for
Gaussians. We will focus on deterministic approximation. However, a few words on random sampling
will be given first.

Generating samples for a given probability density function is usually performed by random
sampling. This is the simplest and fastest method and well-established algorithms are available for
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that purpose. However, with random sampling, samples are produced independently. As a result,
convergence of its statistics, such as the moments, to the true values is slow so that many samples are
required. The independent generation of samples also leads to a non-homogeneous coverage of the
given density.

3.1. Deterministic Sampling: Moment-based Approaches for the Gaussian Case
As an alternative to random sampling, deterministic sampling methods have been proposed.

Moment-based approximations of Gaussian densities are the basis for Linear Regression Kalman
Filters (LRKFs), see [1]. Examples are the Unscented Kalman Filter (UKF) in [2] and its scaled
version in [3]. A higher-order generalization is proposed in [4]. These methods are limited to a fixed
number of samples per dimension. An arbitrary number of deterministic samples of a Gaussian density
is provided by the spherical-radial rule in [5] for the so called cubature filter.

3.2. Deterministic Sampling: Distance-based Approaches
Instead of relying on moment relations that quickly become intractable, distance-based approaches

minimize an appropriate distance measure between the given continuous density and its discrete
approximation. Distance-based approaches have several distinct advantages: (1) Arbitrary number
of samples. (2) Homogeneous allocation of samples. (3) Prioritization of density regions especially
important for further processing.

One-dimensional Densities
For one-dimensional (1D) densities, the vast literature on 1D statistical tests can be used. These

are used for testing the hypothesis that a set of samples has a certain density. Inverting these tests
can be used to fit samples to a given density. We will focus on one-sample tests that compare the
cumulative distribution function (CDF) of the continuous density with the empirical distribution
function (EDF) of the samples. The Kolmogorov-Smirnov test [6] uses the maximum between the
CDF and the EDF, which is difficult to optimize. Integral squared distances between CDF and EDF
were first considered by Cramér [7] and von Mises leading to the Cramér-von Mises test. Several tests
have been developed on that basis, differing only in the weighting function for the squared difference.
One notable test is the Anderson-Darling test [8].

Dirac mixture approximation (with equally weighted samples) of continuous densities based on
the Cramér-von Mises criterion for the univariate case is proposed in [9]. Optimizing both weights
and locations is considered in [10]. Sequentially increasing the number of samples is the focus of [11]
and is applied to recursive nonlinear prediction in [12].

Multivariate Densities
Challenges: For N -dimensional (ND) densities, with N > 1, systematic approximations are

much harder to achieve as cumulative distribution functions in higher dimensions are difficult to
calculate. In addition, they are not unique [13]. This is in contrast to the univariate case, where there
are only two directions of integration for obtaining the cumulative distribution function from the
density. The results of the two directions are dependent, i.e., sum up to one. In higher dimensions,
the number of orderings of possible integration directions increases exponentially with 2N , where N is
the number of dimensions. 2N − 1 of these distributions are independent [14, p. 617]. Selecting an
arbitrary distribution from these possibilities for density approximation typically results in a bias of
the estimated parameters [13].

Consider All CDF Orderings: In order to cope with the non-uniqueness, it has been proposed
in the context of multivariate statistical tests, to simply consider all possible orderings [14, p. 617].
This can easily be done in two or three dimensions [15]. For higher-dimensional spaces, considering all
ordering becomes impractical.

Localized Cumulative Distribution: Instead of using the standard cumulative distribution
with its non-uniqueness issues, an alternative cumulative distribution is introduced in [13]. It is called
Localized Cumulative Distribution (LCD). A distance measure is then defined based on the LCDs of
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the two densities to be compared. The LCD-based approach is used for systematically approximating
arbitrary multi-dimensional Gaussian densities [16]. An improved method with better numerical
stability that exploits the symmetry of the Gaussian density with symmetric samples is proposed in
[17]. For multivariate standard normal distributions, a more efficient scheme is presented that relies
on a subsequent transformation [18]. The LCD-based approach provides very good approximations.
However, for the case of approximating continuous densities with Dirac mixtures, closed-form solutions
for the distance measure are only available in special cases.

Repulsion Kernels and Blue Noise: Comparing cumulative distribution functions is, of course,
not the only way to compare discrete densities or continuous and discrete densities. Alternatives
include comparing characteristic functions [19] and using kernel estimates. Kernel estimates of a
discrete density are exceptionally simple in the considered case of finding the best-fitting discrete
density for a given continuous density. In that case, we use the fact that the density at a certain
sample location is equal to the corresponding value of the continuous density [20]. So called repulsion
kernels are employed at the sample locations. The induced kernel density is then compared to the
given continuous density by means of, e.g., an integral squared distance [21]. For given Gaussian
densities that are approximated by Dirac mixtures, a closed-form expression for the distance measure
is derived in [22]. A randomized optimization method is then used for finding the optimal locations
instead of a quasi-Newton method in [21].

Reduction to Univariate Case: We have seen that the univariate case is significantly simpler
than the multivariate one. So it comes as no surprise that many attempts have been made to reduce
the multivariate case to the univariate one:

• Approximation on Principal Axes: The first idea that immediately springs to mind is to use 1D
approximations on the principal axes of the given continuous density. This is, of course, limited
to densities where principal axes can naturally be defined. This includes Gaussian densities [23]
in RN and the Bingham distribution [24] defined on SN−1 ⊂ RN .
• Cartesian Products: For random vectors with independent components, e.g., axis-aligned

Gaussian densities, the N marginal densities can be approximated independently. The N -
dimensional Dirac mixture approximation can then be obtained by a Cartesian product of
the individual marginal approximations. An obvious disadvantage is that the total number of
samples is the product of the individual numbers of samples, i.e., scales exponentially with the
number of dimensions N .
• One-dimensional Projections: General densities cannot be represented by their marginals, only

densities that can be factorized. However, instead of limiting projections to the coordinate
axes as done for the marginals, more projections onto different axes can be considered. For
representing arbitrary densities, all possible one-dimensional projections have to be considered.
This is called the Radon transform of the given density, see the original publication in German
[25], its English translation [26], and [27] for the higher-dimensional case. In [28], a multivariate
Wasserstein distance is constructed from the Wasserstein distance between one-dimensional
projections (called slices therein).

3.3. Combined Random and Deterministic Sampling
Besides pure random or pure deterministic sampling, combined random and deterministic sampling

has been proposed. The idea is to perform a random rearrangement, e.g., by rotation, of a deterministic
set of sample points, see [29].

4. Key Idea and Main Results

As we have seen in the state of the art in the previous section: Calculating the distance between a
continuous and a discrete density is a difficult challenge in the multivariate case. However, calculating
the distance between univariate densities is feasible.
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Näıve Approach: We now assume an integral distance measure of the form

DN = DN

(
f̃ , f

)
=
∫

RN

dN

(
f̃(x), f(x)

)
dx ,

where dN (., .) is a distance measure between two densities that is integrated over the entire space. For
example, dN (., .) could be defined in terms of the cumulative distribution functions of f̃(x) and f(x)
given by F̃ (x) and F (x) as

dN

(
f̃(x), f(x)

)
=
[
F̃ (x)− F (x)

]2
.

The cumulative distribution function F (x) is given by

F (x) =
x∫

−∞

f(t) dt .

An analogous result holds for F̃ (x), so the distance measure is

DN

(
f̃ , f

)
=
∫

RN

[
F̃ (x)− F (x)

]2
dx .

However, as we have seen in the last section, multivariate cumulative distributions are not unique and
difficult to calculate.

One option to solve this problem is to use the Localized Cumulative Distribution (LCD) instead
of the standard cumulative distribution. The LCD is unique, easy to calculate, and gives high-quality
results. However, the complexity depends on the number of dimensions considered.

Proposed Approach: Here, we pursue a different idea.
1. We represent the two densities f̃(x) and f(x) = f(x | X̂) from (1) by the infinite set of one-

dimensional projections onto all unit vectors u ∈ SN−1. For f̃(x), we obtain the set of projections
f̃(r |u) with r = u>x, which is the Radon transform of f̃(x). In the same way, we obtain the
Radon transform f(r | r̂, u) of the Dirac mixture approximation in (1), where r̂i = u>x̂i are the
transformed Dirac locations for i ∈ {1, 2, . . . , L}.

2. We compare the one-dimensional projections for every u ∈ SN−1. For the comparison, we can
use the univariate cumulative distribution functions F̃ (r |u) and F (r | r̂, u) as these are unique,
well defined, and easy to calculate. The resulting distance measures depend on the projection
vector u and are given by

D1(u) =
∫

R

d1
(
f̃(r |u), f(r | r̂, u)

)
dr ,

with
d1
(
f̃(r |u), f(r | r̂, u)

)
=
[
F̃ (r |u)− F (r | r̂, u)

]2
.

3. We can easily minimize this one-dimensional distance measure, e.g., by Newton’s method, which
yields changes ∆̂r(u) of the given projected Dirac locations r̂(u) for every projection u ∈ SN−1.

4. These changes can be projected back to the Dirac locations as ∆̂x,i(u) for i ∈ {1, 2, . . . , L} for
every projection u ∈ SN−1.

5. We integrate the one-dimensional distance measures over all possible unit vectors u, which gives
a multivariate distance measure

DN = DN

(
f̃ , f

)
= 1
AN

∫

SN−1

D1(u) du = 1
AN

∫

SN−1

∫

R

[
F̃ (r |u)− F (r | r̂, u)

]2
dr du ,

where AN is the surface area of the (hyper)sphere SN−1 embedded in RN .
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Figure 2: Visualization of Radon transform. Blue: Original multivariate density f(x). Red: Single line
integral over f(x). Yellow: Projected density fr(r |u) with u = [1, 0]>.

6. The changes from step 4 can be averaged over all u ∈ SN−1

∆̂x,i = 1
AN

∫

SN−1

∆̂x,i(u) du ,

which corresponds to a combined Newton step for all u for x̂i, i ∈ {1, 2, . . . , L}.

5. Density Representation via One-dimensional Projections (Radon Transform)

In this section, we will represent general N -dimensional probability density functions via the set
of all one-dimensional projections. This is also known as the Radon Transform [25]1.

We consider the linear projection of a random vector x ∈ RN to a scalar random variable r ∈ R

r = u>x (2)

on the line described by the unit vector u ∈ SN−1.
Given the probability density function f(x) of the random vector x, the density fr(r |u) of r is

given by
fr(r |u) =

∫

RN

f(t) δ(r − u>t) dt . (3)

fr(r |u) is the Radon transform of f(x) for all u ∈ SN−1.

Example 5.1 (2D Radon transform). We consider a two-dimensional Gaussian mixture with two
components. A single projection of this density is visualized for u = [1, 0]> in Fig. 2 and for
u = [−1, 1]>/

√
2 in Fig. 3. JExampleI

1English translation available [26].
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Figure 3: Visualization of Radon transform. Blue: Original multivariate density f(x). Red: Single line
integral over f(x). Yellow: Projected density fr(r |u) with u = [−1, 1]>/

√
2.

Dirac Mixture Densities: We consider the Dirac mixture approximation f(x | X̂) in (1).

Theorem 5.1. The Radon transform of f(x | X̂) is given by

fr(r | r̂, u) =
L∑

i=1
wi δ

(
r − r̂i(u)

)
,

where r̂i(u) = u>x̂i, i ∈ {1, 2, . . . , L}, are the projected Dirac locations. JTheoremI

Proof. Plugging f(x | X̂) in (1) into (3) gives

fr(r | r̂, u) =
∫

RN

f(t | X̂) δ(r − u>t) dt =
L∑

i=1
wi

∫

RN

δ(t− x̂i) δ(r − u>t) dt .

With the sifting property of the Dirac delta function δ(.), we directly obtain

fr(r | r̂, u) =
L∑

i=1
wi δ(r − u>x̂i) ,

which is the desired result.

We collect the locations in a vector

r̂(u) =
[
r̂1(u), r̂2(u), . . . , r̂L(u)

]>
.

The vector r̂(u) is calculated as

r̂(u) =
[
u>x̂1︸ ︷︷ ︸
r̂1(u)

, u>x̂2︸ ︷︷ ︸
r̂2(u)

, . . . , u>x̂L︸ ︷︷ ︸
r̂L(u)

]> =
(
u>
[
x̂1, x̂2, . . . , x̂L

]
︸ ︷︷ ︸

X̂

)> =
(
u>X̂

)> = X̂>u .
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Gaussian Densities: For N -dimensional Gaussian densities f(x) given by

f(x) = 1√
(2π)N |Cx|

exp
(
−1

2(x− x̂)>C−1
x (x− x̂)

)

with mean vector x̂ and covariance matrix Cx, the density fr(r |u) with fr : R→ R>0 resulting from
the projection is also Gaussian according to

fr(r |u) = 1√
2πσr(u)

exp
(
−1

2

(
r − r̂(u)

)2

σ2
r (u)

)
.

Its mean r̂(u) ∈ R can simply be calculated by taking the expected value in (2), which gives

r̂(u) = E{r(u)} = E
{
u>x

}
= u>x̂ .

Its standard deviation σr(u) ∈ R>0 is given by

σ2
r (u) = E

{(
r(u)− r̂(u)

)2} = E
{(
u>x− u>x̂

)2
}

= E
{
u>(x− x̂)(x− x̂)>u

}
= u>Cx u .

Gaussian Mixture Densities: For N -dimensional Gaussian mixture densities f(x) with M components
of the form

f(x) =
M∑

i=1
wi

1√
(2π)N |Cx,i|

exp
(
−1

2(x− x̂i)>C−1
x,i (x− x̂i)

)
,

the density fr(r |u) is also a Gaussian mixture, albeit a one-dimensional one. Due to the linearity of
the projection operator, it is given by

fr(r |u) =
M∑

i=1
wi

1√
2πσr,i(u)

exp
(
−1

2

(
r − r̂i(u)

)2

σ2
r,i(u)

)

with
r̂i(u) = u>x̂i

and
σr,i(u) =

√
u>Cx,i u

for i ∈ {1, 2, . . . , L}.

6. One-dimensional Dirac Mixture Approximation

In this section, we consider the Dirac mixture approximation on the one-dimensional projections,
i.e., we focus on the 1D case for one single projection vector u. The one-dimensional approximation
then serves as the basis for the N -dimensional approximation in the next section.

6.1. Distance Measure
The approximating density is given by the 1D Dirac mixture

f(x | x̂) =
L∑

i=1
wi δ(x− x̂i) (4)

with given weights wi ∈ R>0 that sum up to one and locations x̂i ∈ R. The desired locations are
collected in a vector

x̂ =
[
x̂1, x̂2, . . . , x̂L

]>
.
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For rating the goodness of fit of f(x | x̂) to the given continuous density f̃(x) we compare their
cumulative distribution functions rather than their densities. For the Dirac mixture approximation
f(x | x̂) in (4), the cumulative distribution function is given by

F (x | x̂) =
L∑

i=1
wi H(x− x̂i) ,

where H(.) is the Heaviside function given by

H(x) =
x∫

−∞

δ(t) dt =





0 x < 0
1
2 x = 0

1 x > 0

with
d

dx H(x) = δ(t) .

As a distance measure we use the integral squared distance between the cumulative distribution
function F̃ (x) of the given distribution and the cumulative distribution function F (x | x̂) of its Dirac
mixture approximation

D(x̂) =
∫

R

[
F̃ (t)− F (t | x̂)

]2
dt .

The integral squared distance D(x̂) depends on the vector of desired locations x̂.

6.2. Dirac Mixture Approximation by Minimizing the Distance Measure
The gradient of the distance measure D(x̂) is given by

G(x̂) = ∇D(x̂) = ∂D(x̂)
∂x̂

=
[
∂D(x̂)
∂x̂1

,
∂D(x̂)
∂x̂2

, . . . ,
∂D(x̂)
∂x̂L

]>

with
∂D(x̂)
∂x̂i

= 2wi

∫

R

[
F̃ (t)− F (t | x̂)

]
δ(t− x̂i) dt = 2wi

[
F̃ (x̂i)− F (x̂i | x̂)

]
.

The empirical cumulative distribution function F (. | .) evaluated at location x̂i is given by

F (x̂i | x̂) =
L∑

j=1
wj H(x̂i − x̂j) . (5)

Remark 6.1. It is interesting to note that F (x̂i | x̂) does not depend upon x̂i. As H(x̂i − x̂j) = 1/2
for i = j, we have

F (x̂i | x̂) = wi

2 +
L∑

j=1
j 6=i

wj H(x̂i − x̂j) .

For i 6= j, we have x̂i 6= x̂j and H(x̂i − x̂j) is either 0 or 1 and does not depend upon x̂i. JRemarkI

The Hesse matrix is defined as

H(x̂) = ∇D(x̂)∇> = ∂2D(x̂)
∂x̂ ∂x̂>

=




∂2D(x̂)
∂x̂2

1

∂2D(x̂)
∂x̂1 ∂x̂2

. . .
∂2D(x̂)
∂x̂1 ∂x̂L

∂2D(x̂)
∂x̂2 ∂x̂1

∂2D(x̂)
∂x̂2

2
. . .

∂2D(x̂)
∂x̂2 ∂x̂L

...
...

...

∂2D(x̂)
∂x̂L ∂x̂1

∂2D(x̂)
∂x̂L ∂x̂2

. . .
∂2D(x̂)
∂x̂2

L




.
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With
∂2D(x̂)
∂x̂i ∂x̂j

= 0

for i 6= j, we have

H(x̂) = diag
([

∂2D(x̂)
∂x̂2

1
,
∂2D(x̂)
∂x̂2

2
, . . . ,

∂2D(x̂)
∂x̂2

L

])
,

where
∂2D(x̂)
∂x̂2

i

= 2wi f̃(x̂i)

for i ∈ {1, 2, . . . , L}. The minimum of D(x̂) is obtained iteratively using Newton’s method

∆̂x(x̂) = −H−1(x̂)G(x̂) ,

starting with an initial location vector.

Special Case – Sorted Locations: When the location vector x̂ is sorted, i.e., x̂1 < x̂2 < . . . < x̂L,
the expression H(x̂i − x̂j) in (5) gives

H(x̂i − x̂j) =





0 i < j

1
2 i = j

1 i > j

.

As a result, F (x̂i | x̂) can be written as

F (x̂i | x̂) = wi

2 +
i−1∑

j=1
wj .

Special Case – Sorted Locations & Equal Weights: For equally weighted samples, i.e., wi = 1/L,
the expression can be simplified to

F (x̂i | x̂) = 1
2L + (i− 1) 1

L
= 2i− 1

2L .

Example 6.1 (Univariate standard normal distribution). We first consider the approximation of a
one-dimensional standard normal distribution f̃(x) given by

f̃(x) = 1√
2π

exp
(
−1

2x
2
)

.

The cumulative distribution function of the standard normal distribution f̃(x) is given by

F̃ (x) = 1
2

(
1 + erf

(
x√
2

))
,

with erf(.) the error function2. In this case, a closed-form solution of G(x̂) = 0 is available, which
gives locations

x̂i =
√

2 erfinv
(2i− 1− L

L

)
for i = 1, . . . , L .

The function erfinv(.) is the inverse of the error function. Dirac mixture approximations of the standard
normal distribution with different numbers of components L are given in Fig. 4. JExampleI

Example 6.2 (Univariate Gaussian mixtures). For Gaussian mixtures, the distance measure is
minimized as described above. Dirac mixture approximations with L = 20 of various Gaussian mixtures
with three components with different parameters are given in Fig. 5. JExampleI

2The error function erf(.) is defined as erf(x) = 2√
π

x∫

0

exp(−t2) dt.
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Figure 4: Dirac mixture approximation with equally weighted samples of univariate standard normal
distribution with different numbers of samples L.

7. Multivariate Dirac Mixture Approximation

We are now given the three main ingredients:

1. We can represent a multivariate probability density function by its one-dimensional projections,
see Sec. 5.

2. We have a mechanism for calculating a distance measure between a one-dimensional continuous
density and its Dirac mixture approximation, see Subsec. 6.1.

3. We can minimize this distance measure with a Newton-like method, see Subsec. 6.2.

Based on these three ingredients, we will now assemble a multivariate distance measure between
two continuous and/or discrete probability density functions. This entails the following seven steps.

Step 1 [One-dimensional Projections via Radon Transform]: The given density f̃(x) and its Dirac
mixture approximation f(x | X̂) in (1) are represented by their Radon transforms f̃(r |u) and f(r | r̂, u),
i.e., by their 1D projections onto unit vectors u ∈ SN−1.
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Figure 5: Dirac mixture approximation with equally weighted samples of some Gaussian mixtures with various
components and parameters.

Step 2 [One-dimensional Cumulative Distributions]: Based on the Radon transform f̃(r |u), we
calculate the one-dimensional cumulative distributions of the projected densities as

F̃ (r |u) =
r∫

∞

f̃(t, u) dt

and similarly for F (r |u).
For a Dirac mixture approximation, the cumulative distribution function of its Radon transform is

given by

F (r | r̂, u) =
L∑

i=1
wi H

(
r − r̂i(u)

)
.

Step 3 [One-dimensional Distance]: For comparing the one-dimensional projections, we compare
their cumulative distributions F̃ (r |u) and F (r | r̂, u) for all u ∈ SN−1. As a distance measure we use
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the integral squared distance

D1(r̂, u) =
∫

R

[
F̃ (r |u)− F (r | r̂, u)

]2
dr . (6)

This gives us the distance between the projected densities in the direction of the unit vector u for all
u.

Step 4 [One-dimensional Newton Step]: The Newton step from Subsec. 6.2 can now be written as

∆̂r(r̂, u) = −H−1(r̂, u)G(r̂, u)

with
G(r̂, u) =

[
∂D1(r̂, u)

∂r̂1
,
∂D1(r̂, u)

∂r̂2
, . . . ,

∂D1(r̂, u)
∂r̂L

]>

and
∂D1(r̂, u)

∂r̂i
= 2wi

[
F̃ (r̂i |u)− F (r̂i | r̂, u)

]

for i ∈ {1, 2, . . . , L}. The Hessian H(r̂, u) is given by

H(r̂, u) = 2 diag
([
w1 f̃(r̂1 |u), w2 f̃(r̂2 |u), . . . , wL f̃(r̂L |u)

])
.

The resulting Newton step is

∆̂r(r̂, u) = −
[
∆̂r,1(r̂1, u), ∆̂r,2(r̂2, u), . . . , ∆̂r,L(r̂L, u)

]>

with
∆̂r,i(r̂i, u) = F̃ (r̂i |u)− F (r̂i | r̂, u)

f̃(r̂i |u)
for i ∈ {1, 2, . . . , L}.

Step 5 [Backprojection to ND space]: For a specific projection vector u, we obtain a Newton update
∆̂x,i(u). By means of a backprojection into the original N -dimensional space, this update can be used
to modify the original Dirac locations in the direction along the vector u. For every location vector
x̂i, its modification ∆̂x,i(u) is given by

∆̂x,i(u) = ∆̂r,i(r̂i, u)u (7)

for i ∈ {1, 2, . . . , L}. Collecting ∆̂x,i(u) as column vectors in a matrix ∆̂x gives

∆̂x(u) =
[
∆̂x,1(u), ∆̂x,2(u), . . . , ∆̂x,L(u)

]
.

Based on (7), it is calculated as
∆̂x(u) = u ∆̂>r .

Step 6 [Assemble Multivariate Distance]: The individual 1D distances D1(r, u) can be assembled to
form a multivariate distance measure. This is performed by averaging over all 1D distances depending
on the unit vector u

DN (X̂) = 1
AN

∫

SN−1

D1(r̂, u) du .

Here, AN is the surface area of the (hyper)sphere SN−1 embedded in RN . AN is given by

AN = 2πN/2

Γ(N/2)
13



with Γ(.) the gamma function and can be calculated recursively as

A0 = 0, A1 = 2, A2 = 2π, AN = 2π
N − 2 AN−2 for N > 2 .

Plugging in D1(r, u) from (6) gives

DN (X̂) = 1
AN

∫

SN−1

∫

R

[
F̃ (r |u)− F (r | r̂, u)

]2
dr du

with r = u> x.

Step 7 [Perform Full Newton Update]: A full Newton update can now be performed by averaging
over all partial updates along projection vectors u

∆̂x,i = 1
AN

∫

SN−1

∆̂x,i(u) du .

For the matrix ∆̂x, we obtain
∆̂x = 1

AN

∫

SN−1

∆̂x(u) du .

In a practical implementation, the space SN−1 containing the unit vectors u has to be discretized.
Two options are available for performing the discretization: (1) Deterministic discretization, e.g., by
calculating a grid or (2) random discretization by drawing uniform samples from the hypersphere. In
both cases, we consider K samples ûk and the integration reduces to a summation

∆̂x,i ≈
1
K

K∑

k=1
∆̂x,i(ûk)

for i ∈ {1, 2, . . . , L} or

∆̂x ≈
1
K

K∑

k=1
∆̂x(ûk) .

Given initial locations for the location of the Dirac components, full Newton updates are performed as

X̂ += ∆̂x

until the maximum change over all location vectors

max
i

∥∥∥∆̂x,i

∥∥∥

falls below a given threshold.
The complete algorithm for multivariate Dirac mixture approximation is shown in Fig. 6.

8. Numerical Results

In this section, we look at some example approximations. We focus on 2D examples for visualization
purposes. To keep the setup simple, the true continuous densities are selected as Gaussian mixture
densities with two components and varying parameters.

Example 8.1 (2D Gaussian mixture with two components, varying means). We start with a Gaussian
mixture with two components. Weights are equal, i.e., w1 = 0.5, w2 = 0.5, and both covariance
matrices are identity matrices, i.e., Cx,1 = I, Cx,2 = I, see Fig. 7. The means are selected as follows:
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Input:

• Number of dimensions N
• Number of Dirac components L
• Number of discretizations K
• Step size s
• Initial location matrix X̂ ∈ RN×L

Output:

• Optimal location matrix X̂

repeat
// Initialize matrix of location changes ∆̂x

∆̂x = 0
for i = 1 to K do

// Random unit vector u ∈ SN−1

u = randn(D)
u /=

√
u>u

// Projection of samples onto vector u

r̂ = X̂>u
// Newton update along unit vector u

∆̂r = − F̃ (r̂ |u)− F (r̂ | r̂, u)
f̃(r̂ |u)

// Backprojection of location changes

∆̂x += s u ∆̂>r /K
end
// Update location matrix X̂
X̂ += ∆̂x

until Changes ∆̂x small enough

Figure 6: Complete algorithm for multivariate Dirac mixture approximation.

1. x̂1 = [ 0.0, 0.0]>, x̂2 = [0.0, 0.0]> (this corresponds to a standard normal distribution),

2. x̂1 = [−0.7, 0.0]>, x̂2 = [0.7, 0.0]>,

3. x̂1 = [−1.4, 0.0]>, x̂2 = [1.4, 0.0]>,

4. x̂1 = [−2.1, 0.0]>, x̂2 = [2.1, 0.0]>.

The results are shown in Fig. 7 for an approximation with L = 50 Dirac components. The results for
L = 100 Dirac components are shown in Fig. 8. JExampleI

Example 8.2 (2D Gaussian mixture with two components, varying covariance matrices). We start
with a standard normal distribution represented by a Gaussian mixture with equal components, i.e.,
w1 = 0.5, w2 = 0.5, x̂1 = [0, 0]>, x̂2 = [0, 0]>, see Fig. 9. The covariance matrices are selected as
follows:

1. Cx,1 =
[
3.0 1.5
1.5 3.0

]
, Cx,2 =

[
3.0 −1.5
−1.5 3.0

]
,

2. Cx,1 =
[
3.0 2.0
2.0 3.0

]
, Cx,2 =

[
3.0 −2.0
−2.0 3.0

]
,

3. Cx,1 =
[
3.0 2.5
2.5 3.0

]
, Cx,2 =

[
3.0 −2.5
−2.5 3.0

]
,

4. Cx,1 =
[
3.0 2.8
2.8 3.0

]
, Cx,2 =

[
3.0 −2.8
−2.8 3.0

]
.

The results are shown in Fig. 9 for an approximation with L = 50 Dirac components. The results for
L = 100 Dirac components are shown in Fig. 10. JExampleI
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9. Conclusions

This paper proposes a new integral transformation of probability density functions (PDF). The
so-called Projected Cumulative Distribution (PCD) is used for characterizing both continuous and
discrete random variables. It is a convenient alternative to the standard cumulative distribution
function (CDF). In multivariate settings, the CDF is non-unique, difficult to calculate, and asymmetric.
This leads to various problems when used in density comparisons. The PCD does not suffer from
these problems, can be efficiently calculated, and is simple to implement.

For comparing two densities, a generalized Cramér-von Mises distance between their two PCDs is
derived. For a given continuous density f̃(x), its Dirac mixture approximation f(x) is then obtained
by minimizing the distance measure with respect to its Dirac locations. Minimization is performed by
combining Newton updates from all (discrete) projections.

The proposed density approximation is parallelizable. Of course, it cannot be parallelized in terms
of the Dirac components as these are dependent on each other. However, the combined Newton step
can be performed in parallel for each projection.

So far, we considered analytic calculation of the projections. This is only possible in special cases.
For general multivariate densities, exact analytic expressions may not be possible. Two options are
available. The first option is to approximate the given density by a more convenient density, e.g., a
Gaussian mixture. Projections are then calculated for this approximate density. The second option is
to perform numeric line integrals in the Radon transform. The integration only has to be performed
once for a given density f̃(x).
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Figure 7: Dirac mixture approximation with L = 50 components of Gaussian mixture approximation with
two components and varying means.
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Figure 8: Dirac mixture approximation with L = 100 components of Gaussian mixture approximation with
two components and varying means.
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Figure 9: Dirac mixture approximation with L = 50 components of Gaussian mixture approximation with
two components and varying covariance matrices.
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Figure 10: Dirac mixture approximation with L = 100 components of Gaussian mixture approximation with
two components and varying covariance matrices.
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