
Architectural runtime models for integrating runtime observations
and component-based models
Robert Heinrich
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

a r t i c l e i n f o

Keywords:
Software architecture
Runtime model
Performance model
Workload
Palladio Component Model

a b s t r a c t

Keeping track of modern software applications while dynamically changing requires strong interaction
of evolution activities on development level and adaptation activities on operation level. Knowledge
about software architecture is key for both, developers while evolving the system and operators while
adapting the system. Existing architectural models used in development differ from those used in
operation in terms of purpose, abstraction and content. Consequences are limited reuse of development
models during operation, lost architectural knowledge and limited phase-spanning consideration of
software architecture.

In this paper, we propose modeling concepts of the iObserve approach to align architectural
models used in development and operation. We present a correspondence model to bridge the
divergent levels of abstraction between implementation artifacts and component-based architectural
models. A transformation pipeline uses the information stored in the correspondence model to update
architectural models based on changes during operation. Moreover, we discuss the modeling of
complex workload based on observations during operation. In a case study-based evaluation, we
examine the accuracy of our models to reflect observations during operation and the scalability of
the transformation pipeline. Evaluation results show the accuracy of iObserve. Furthermore, evaluation
results indicate iObserve adequately scales for some cases but shows scalability limits for others.
t

1. Introduction

Modern software systems, such as cloud-based applications,
change rapidly to react on the ever increasing amount of events
the systems must handle. Examples of events are outage of re-
sources, peak loads during marketing campaigns, emerging re-
quirements and changes of infrastructures or third party services.
Changes may comprise the replication or migration of a database
component (Heinrich, 2016), replacement of one algorithm im-
plementation by another (Qin and Eichelberger, 2016), or more
substantial modifications of the system design like adding a new
feature or changing the architecture style (e.g., monolithic sys-
tem changed to microservices). Keeping track of these changes
requires strong interaction of evolution activities on development
level and adaptation activities on operation level. Consequently,
more collaboration or even integration of the role of developer
and operator is proclaimed in emerging paradigms like DevOps.
DevOps is a set of practices of developers and operators partic-
ipating together in the entire application lifecycle, from design
through the development process to production support (Mueller,
2019).

E-mail address: robert.heinrich@kit.edu.
 o
Software architecture is a central artifact to keep track of
the system for both, developers while evolving the system and
operators while adapting the system. Thus, the phase-spanning
consideration of software architecture is essential for aligning
development-level evolution and operation-level adaptation.

Existing architectural models used in the development phase
differ from those used in the operation phase in terms of purpose,
abstraction and content (Heinrich et al., 2017). Consequences
of these differences are limited reuse of development models
during operation, lost architectural knowledge and limited phase-
spanning consideration of the software architecture.

In our previous work, we proposed architectural runtime mod-
els as a means for combining automated adaptation as well as the
human inspection of modern software systems (Heinrich et al.,
2015b). While runtime models have shown their effectiveness for
self-adaptation, using runtime models during software evolution
has been neglected so far (Heinrich et al., 2014). As commonly ob-
served, software systems in operation often drift away from their
initial development models (Murphy et al., 2001). In contrast,
runtime models are kept in-sync with the underlying system.
Thus, runtime models may serve as valuable basis for evolu-
tion and adaptation activities (Heinrich et al., 2015b). However,
ypical runtime models are close to an implementation level
f abstraction (Vogel and Giese, 2010). While being useful for

e
t
s
p

e

p
t
a
b
o
t
m
p

w

2

c
m
u
a
a
t
c

t
a
e
c
r
i
H

m
g
b
p
d
a

e
u
c
e
m
o
d

a
i
R
d

e
b

h

self-adaptation, such low level of abstraction impedes system
comprehension for human developers when evolving the system.
In addition, owing to various modifications during the applica-
tion’s lifecycle, runtime models may grow in detail or become
unnecessarily complex, which severely limits comprehensibil-
ity of this kind of runtime models for humans during software
evolution (e.g., see Vogel and Giese, 2014).

The iObserve approach (Hasselbring et al., 2013) targets to
facilitate the automated analysis as well as the human inspec-
tion of architectural models by following the MAPE (Monitor,
Analyze, Plan, Execute) control loop model for managing system
adaptation (Brun et al., 2009). Architectural runtime models are
initialized and updated via dynamic processing of monitoring
data (Hasselbring, 2011). As an umbrella to integrate develop-
ment models, code generation, monitoring, analysis and runtime
model update, we proposed a concise megamodel in Heinrich
(2016). The concept of a megamodel reflects the relationships of
models, metamodels and transformations (Favre, 2004; Vignaga
t al., 2013). The iObserve megamodel is applied for updating
he architectural runtime model based on monitoring data. Sub-
equently, the updated model is analyzed for quality flaws, like
erformance bottlenecks in the application (Reussner et al., 2016)

and confidentiality issues in data processing (Seifermann et al.,
2019; Schmieders et al., 2015), which may trigger adaptation or
volution activities based on the architectural runtime model.
In a previous publication (Heinrich, 2016), we introduced sev-

eral changes to cloud-based software applications during oper-
ation. Contributions of iObserve are on monitoring (Jung et al.,
2013) and analyzing cloud-based software applications (Heinrich,
2016). Differences between architectural models among develop-
ment and operation have been discussed in Heinrich et al. (2017).
Based on these differences, the usage of the megamodel in the
plan and execution phase of the MAPE loop has been sketched
in Heinrich et al. (2017) and implemented in Pöppke (2017).

This paper is a significant extension of our previous work by
roviding (i) detailed description of the models and transforma-
ions of the iObserve megamodel and (ii) evaluation of accuracy
nd scalability of model construction in the iObserve approach
ased on observations during operation. After giving an overview
f possible changes during operation in Section 2 and introducing
he iObserve approach in Section 3, we provide details on our
odeling concepts in Section 4. Contributions reported in this
aper are as listed hereafter.

• Following an introduction of the iObserve megamodel and
the parts relevant in this paper in Section 4.1, we give
a detailed description of the Runtime Architecture Corre-
spondence Model (RAC) in Section 4.2 to specify the corre-
spondence between an element of the architectural model
and implementation artifacts. Thus, the RAC bridges the
divergent levels of abstraction between component-based
architectural models and the implementation level. While
generating source code from the architectural model, corre-
spondence information is recorded in the RAC and is subse-
quently used for updating the architectural model based on
observations of the executed application.

• In Section 4.3, we extend the transformation pipeline intro-
duced in Heinrich (2016) by transformations to update the
architectural runtime model for changes in component de-
ployment and allocation of execution containers like servers.

• The term workload denotes the usage intensity and user
behavior an application faces (Reussner et al., 2016). In
Section 4.4, we come up with an approach to model complex
workload (e.g., several user groups of different behavior
and nested user behavior) based on observations during

operation. In contrast to related approaches, this approach
exploits knowledge from the existing architectural model
to identify different user groups, their user behavior and
usage intensity. It is fully integrated in the iObserve ap-
proach by exploiting the information specified in the RAC
to identify user interaction and drive model updates using
the transformation pipeline.

• Section 4.5 then discusses the applicability of the proposed
modeling concepts in terms of dependencies to tools and
effort for conducting human activities in the iObserve ap-
proach.

• In Section 5, we evaluate the accuracy of the architectural
runtime models for reflecting changes in workload (i.e. user
groups, user behavior as well as usage intensity), component
deployment and execution container allocation. Moreover,
we evaluate the scalability of the transformation pipeline for
updating the models to reflect the changes during operation.

• After the features of iObserve have been described and
evaluated, Section 6 shows a comparison of the features of
iObserve to those of related approaches to point out the
novelty of our approach.

The paper concludes with a summary and outlook of future
ork in Section 7.

. Changes during operation

Changes during application operation that are relevant in the
ontext of this paper affect the application usage and deploy-
ent. In particular, we focus on changes in user behavior and
sage intensity, migration and (de)replication of components,
nd (de)allocation of execution containers (Heinrich, 2016). Here-
fter, we briefly describe the changes relevant for understanding
he paper and discuss how to identify them while observing a
loud-based application.
Workload characterization changes (C1): The usage intensity of

he application and the user behavior may change which may
ffect the system’s quality properties like performance (cf. Khan
t al., 2012). The amount of users concurrently using the appli-
ation (closed workload Reussner et al., 2016), the users’ arrival
ate at the system (open workload Reussner et al., 2016), and the
nvoked services are contained in observable user sessions (van
oorn et al., 2008).
The deployment of the application’s software components

ay change, for example to address performance issues by mi-
ration or replication of components. These changes may either
e triggered actively by an adaptation mechanism or can be
erformed autonomically by the observed system. Changes in
eployment may cause confidentiality issues in data processing
nd storage.
Migration (C2): moves a software component from one ex-

cution container to another. Migration is typically realized by
ndeploying the component on one execution container, and
reating a new instance of the same component type on another
xecution container (von Massow et al., 2011). In consequence,
igration is in essence the combination of one undeployment and
ne deployment operation of a component of the same type on
ifferent execution containers.
Replication (C3): duplicates a running component instance in

way that the workload can be distributed among the deployed
nstances. This operation is based on the deployment operation.
eplication can only be performed if the architecture allows to
istribute requests to a component.
Dereplication (C4): is the inverse operation to C3. It is in

ssence the undeployment of a component instance which has
een replicated before.
In order to distinguish the changes C2 to C4, the events must

ave unique identifiers. Based on these identifiers, a sequence of

c
s
h
i
w
a
o
a
d
t
c
d

3

t
t

O
b
e
w
t
b
c
A
d
I
v
r
c
t
e

h
s
c
a
e
d
f

c
a
o
m
S
p
e
p
t
d
i
d
i

deployment and undeployment events of the same component
type with the same instance identifier can be clearly identified as
migration. In contrast, replication creates a new instance with a
new identifier of the same component type. Note, in the following
we will not distinguish between component type and instance
but merely use the term component for reasons of brevity.

(De)allocation (C5/C6): appears when execution containers be-
ome available (allocation), or disappear (deallocation) (von Mas-
ow et al., 2011). Although the observation of both changes is
ighly technology dependent, we described several ways to do so
n Heinrich (2016). In the scope of this paper, we focus on systems
here deployment and undeployment of components is handled
utonomously. For these systems allocation and deallocation is
ften performed implicitly without creating distinct events. As
deployment always requires an existing execution container,
eployment events imply the necessary allocation of an execu-
ion container. Analogously, the undeployment event of the last
omponent deployed on an execution container may imply the
eallocation of the execution container.

. Overview of iObserve

This section gives an introduction and conceptual overview of
he iObserve approach before modeling details are described in
he next section.

Fig. 1 gives an overview of iObserve. The figure is inspired by
reizy et al. (2008). Parts in the focus of this paper are marked
lue. In the iObserve approach, we consider development-level
volution and operation-level adaptation as two mutually inter-
oven processes (Hasselbring et al., 2013). The evolution ac-
ivities are conducted manually (i.e. in a non-automated way)
y the human developer to implement perfective, adaptive or
orrective changes to the system (Lientz and Swanson, 1980).
daptation activities are performed fully automatically by pre-
efined procedures where possible without human intervention.
f human intervention is required, the human operator is in-
olved in adaptation (i.e. operator-in-the-loop adaptation Hein-
ich et al., 2015b). Central to the iObserve approach is an ar-
hitectural runtime model that is usable for automatized adap-
ation and is simultaneously comprehensible for humans in the
volution process.
During the initial development of a software application, the

uman developer manually creates an architectural model to de-
cribe the application’s architecture and deployment in a
omponent-based fashion. Based on the architectural model the
rtifacts to be executed during operation are automatically gen-
rated. These artifacts are manually extended by the human
eveloper to create an executable application (see details in the
ollowing section).

During the operation of the application, the state of the exe-
uted application is observed by monitoring (Jung et al., 2013)
nd used to automatically update the architectural model. The
perator can run automated analyses based on the architectural
odel to detect upcoming quality flaws (Reussner et al., 2016;
eifermann et al., 2019). The architectural model is used for
lanning an adaptation to mitigate the quality flaws and finally to
xecute the adaptation procedure (Heinrich et al., 2017) – where
ossible without human intervention. For evolution, the archi-
ectural model supports the human developer in making design
ecisions which are evaluated and finally realized by implement-
ng source code and redeploying the application. All the tooling
eveloped in the iObserve project is available for download in the
Observe GitHub repository.1

1
 https://github.com/research-iobserve.
Fig. 1. iObserve cloud application life-cycle: Considering adaptation and
evolution as two interwoven processes.

4. Architecture modeling

After describing the iObserve approach on a conceptual level,
we take a more technical stance in this section by discussing the
models, metamodels and transformations required to realize the
approach.

4.1. The iObserve megamodel

In order to keep track of the different models, metamodels
and transformations of iObserve, we apply the concept of a meg-
amodel. Megamodels provide a notation for the relationships of
models, metamodels and transformations (Favre, 2004; Vignaga
et al., 2013). The iObserve megamodel is shown in Fig. 2. The
parts of the megamodel in the focus of this paper are marked
blue. To give the reader an impression of the complete approach,
we sketch the megamodel in full extent in this subsection before
we focus on the marked parts in the following subsections. Note,
only the most relevant relationships are depicted to keep the
visualization of the megamodel understandable.

The iObserve megamodel serves as an umbrella to integrate
development models, code generation, monitoring, runtime
model update as well as adaptation planning and execution. Rect-
angles represent models and metamodels, respectively. Solid lines
represent transformations between models while diamonds indi-
cate multiple input or output models of a transformation. Dashed
lines represent the conformance of a model to a metamodel, of
data to a data type or of an artifact to a framework. Previous ver-
sions of the iObserve megamodel have been published in Heinrich
(2016) and Heinrich et al. (2017).

In contrast to related runtime modeling approaches (discussed
in Section 6), iObserve utilizes the same software architecture
modeling language at development and operation to provide
rich models which are comprehensible for developers and op-
erators likewise, and which can be fed back into the evolution
process without the need of conversion and the risk of loss of
knowledge. We use the Palladio software architecture modeling
language defined by a comprehensive metamodel – the Palla-
dio Component Model (PCM) (Reussner et al., 2016) – as the
architecture metamodel (see Fig. 2). The PCM has been chosen
because it is established in the software architecture community,
offers matured tool support (named the Palladio Bench Reussner
et al., 2016), and comprises the modeling constructs to represent
the changes described in Section 2. A detailed discussion on
the selection of the architecture metamodel is given in Hein-
rich (2016). The PCM comprises several partial metamodels for

i
m
t
i

c
a
t

describing different architectural views on a software system.
The following partial metamodels are relevant for models and
transformations described in this paper. A complete overview
and further details on the PCM can be found in Reussner et al.
(2016). The repository model describes components and their
interfaces stored in a repository. The system model specifies
the software architecture by assembling components from the
repository. The resource environment model provides a specifi-
cation of the execution containers, their resource configuration
(i.e., CPU, hard disk) and network connection while the alloca-
tion model specifies the deployment of the components to the
execution containers. The usage model specifies the interaction
of the users with the system. It describes user groups, the user
behavior and usage intensity. The usage model shows a UML
activity diagram like syntax with predecessor/successor relations
between the model elements. Quality-relevant properties, like
resource demands of actions and processing rates of resources,
are part of the PCM models.

The iObserve megamodel is divided into four sections defined
by two dimensions — one for development vs. operations, and
one for model level vs. implementation level.

On the development side, the megamodel shows the archi-
tectural model that describes the software application to be de-
veloped. Moreover, the megamodel depicts the combination of
the software application with a model-driven monitoring ap-
proach (Jung et al., 2013). The model-driven monitoring approach
comprises the languages for specifying the monitoring. According
to Jung et al. (2013), two languages have been developed to
specify different characteristics of the monitoring. The instrumen-
tation record language (IRL) defines the data structures used for
monitoring in a record type model. This record type specification
can be reused for different applications. The instrumentation
aspect language (IAL) specifies the collection of data and the
probe placement in an instrumentation model. This is specific to
the application to be observed. Observing the five change scenar-
ios in Section 2 requires the specification of probes for service
invocations, component deployment and component undeploy-
ment. The architectural model, the record type model and the
instrumentation model are used for generating source code of the
application (i.e., implementation artifacts) and the corresponding
monitoring probes (record type implementation) that are woven
in the application source code by aspect-oriented programming
(aspect implementation). Details on the model-driven monitoring
approach are described in Jung et al. (2013).

On the operation side, the architectural model is updated
by monitoring data which results from observing the running
application to create the architectural runtime model. The archi-
tectural runtime model reflects the current state of the running
application and can be applied for analysis to identify upcom-
ing quality flaws. For example, performance bottlenecks may
occur in case of increased usage intensity and limited process-
ing capacity in the given service offering of the current cloud
provider (Heinrich, 2016). Once a quality flaw has been identi-
fied, candidate architectural models are generated to solve the
flaw based on an adaptation planning approach (Pöppke, 2017).
The adaptation planning approach builds upon the design space
exploration approach PerOpteryx (Koziolek et al., 2011) to find
appropriate adaptation candidates for given degrees of freedom
in the architectural model. Deployment of components of the
application to execution containers is an example of a degree
of freedom. If an appropriate candidate architectural model has
been found, the differences between the candidate model and
the architectural runtime model are identified and specified in
an adaptation model. In the example, the adaptation model will
exhibit a change in component deployment from one execution

container to another (for instance another data center or another
cloud provider) to provide additional processing capacity. Based
on the adaptation model, adaptation scripts are generated to
automatically adapt the application. Details on the adaptation
planning approach are described in Pöppke (2017). If no appro-
priate candidate model can be found or if adaptation cannot be
executed automatically, human intervention is triggered.

4.2. Runtime architecture correspondence

The Runtime Architecture Correspondence Model (RAC) is de-
picted as the central element in the megamodel in Fig. 2 because
it is essential for the use of an architectural model during de-
velopment and operation. Monitoring results in observations of
events with respect to source code classes like the invocation of
a service of a class or the deployment of a class. The RAC bridges
the divergent levels of abstraction between the monitoring out-
come on implementation level and component-based architec-
tural models. More precisely, the RAC contains the correspon-
dence between a software component and the source code classes
implementing the component. By correspondence we denote the
knowledge about which class (or implementation artifact in gen-
eral) originated from which component (or architectural model
element in general). This knowledge is essential to update the ar-
chitectural model based on observations on implementation level.
Furthermore, this knowledge is required for weaving the moni-
toring probes into the application source code and for generating
adaptation scripts.

Reproducing knowledge about a component-based architec-
ture from source code and monitoring outcome, respectively, is
a non-trivial task. Software applications often comprise hundreds
or thousands of source code classes with many different depen-
dencies more or less explicit. Finding appropriate partitions of
such complex applications requires the usage of heuristics (Sadou
et al., 2011). The related approaches discussed in Section 6 apply
heuristics to identify software components, their boundaries as
well as required and provided interfaces. Applying these heuris-
tics results in more or less adequate architectural models which,
however, often differ from the initial architectural model cre-
ated during development, for example in terms of the level of
abstraction.

For this reason, iObserve does not extract the architectural
model from scratch but updates an existing development model
based on monitoring data. To do so, we require aforementioned
correspondences. Specifying the correspondences between ele-
ments of different models, often on different levels of abstraction,
is addressed in several approaches in literature (e.g., Kramer
et al., 2015; Hamlaoui et al., 2014; Yie et al., 2012). Typically,
correspondence rules are specified to describe the complex re-
lation between model elements. Due to the component-based
architecture underlying the iObserve approach, there is a one-
to-many (1:n) mapping between an element of the architectural
model and the artifacts implementing that model element. Con-
sequently, we can specify the modeling language to create the
RAC by the metamodel depicted in Fig. 3. We use the UML class
diagram notation in the figure as metamodels are commonly
depicted as UML class diagrams. To avoid misunderstandings,
it is important to note at this point that the RAC metamodel
in Fig. 3 does not shows the actual architectural model and
mplementation artifacts depicted in Fig. 2. Instead, it shows
etaclasses that represent them and refer to the actual architec-

ural model elements and implementation artifacts as described
n the following.

The correspondence model metaclass is the model root that
ontains the correspondence metaclass. Furthermore, it contains
metaclass to represent the architectural model and a metaclass
o represent a set of implementation artifacts. The metaclass

c
c
t
U
p

Fig. 2. Overview of the iObserve megamodel.
Fig. 3. Runtime architecture correspondence metamodel.

architectural model element refers to an element of the actual ar-
chitectural model in Fig. 2. The metaclass implementation artifact
refers to an actual implementation artifact in Fig. 2. Consequently,
the correspondence metaclass specifies the relation between one
element of the architectural model and one implementation ar-
tifact. If an element of the architectural model is implemented
by several implementation artifacts, several correspondences are
specified in the RAC.

During the initial application development or evolutionary
changes by the developer, the source code stubs of the application
are generated from the architectural model by the transformation
TApp in Fig. 2. For this purpose, we use the tool ProtoCom (Becker
et al., 2008) which is part of the Palladio Bench (Reussner et al.,
2016). Based on the architectural model, ProtoCom generates Java
interfaces and classes, method signatures within the classes and
calls to external services as well as deployment scripts. While
generating the code, the correspondence information between
a generated class (represented by the implementation artifact
metaclass in Fig. 3) and the component of the architectural model
(represented by the architectural model element metaclass in
Fig. 3) is automatically stored in the RAC by an extension of the
ProtoCom code generator.

During operation, the software application and the entire
loud-based system faces various changes (cf. Section 2). These
hanges require the initial architectural model to be updated
o continuously reflect the current state of the running system.
pdating the architectural model based on observations on im-
lementation level must not deviate its component-based fashion
and, thus, its usefulness for humans in long-term evolution and
operator-in-the-loop adaptation. In iObserve, the level of abstrac-
tion of the initial architectural model and the updated model
is maintained, due to (a) both, the initial architectural model
and the architectural runtime model, rely on the same meta-
model, and (b) the correspondence between an element of the
architectural model and the implementation artifacts is recorded
in the RAC while code generation during development and (c)
restored while updating the component-based architectural run-
time model by monitoring data related to the implementation
artifacts. The level of abstraction of the initial model does not
affect the correspondence specification in the RAC. Therefore, in
analogy to existing component models, we do not predetermine
the abstraction level used in the architectural model. Conse-
quently, due to the correspondence between the architectural
model and the implementation artifacts specified in the RAC, the
abstraction level of the model cannot deviate from one update to
another.

4.3. Transformation pipeline

After the application has been deployed in an execution en-
vironment, it is observed using aforementioned monitoring ap-
proach. As depicted in Fig. 2, iObserve filters and aggregates
the monitoring data regarding the five change scenarios in Sec-
tion 2 using the transformation TPreprocess. Subsequently, iObserve
automatically relates the monitoring data to elements of the
architectural model based on the correspondence relations spec-
ified in the RAC and uses the aggregated data to drive runtime
model update by the transformation TRuntimeUpdate. The transfor-
mations are implemented based on the high throughput and
parallelizing pipe and filter framework Teetime (Wulf et al., 2016)
to automatically schedule and execute the transformations.

Fig. 4 illustrates the inner structure of the TPreprocess transfor-
mation. The notation for this figure and the following figures
in this section is as described hereafter. Rectangles represent
models. Solid lines depict transformations between the models.
Note, monitoring data and events are instances of a metamodel
according to our model-driven monitoring approach (Jung et al.,
2013) and thus considered models in iObserve. Starting with
monitoring data on the left side, FTrace filters service call entry and
exit events used to determine call traces through the software
application. Each service call event comprises the point in time

t
s
e
t
t
o
i
t
g

F
m
r

f
b

t

m

a
w
e
f
k
c

2
r

Fig. 4. Inner structure of the TPreprocess transformation.

Fig. 5. Inner structure of the TRuntimeUpdate transformation.

he event occurred, session information, the name of the invoked
ervice, a counter that indicates whether it is an application
ntry-level operation, and the full qualified name of the class
hat implements the service. The TEntryCall transformation listens
o that event stream to identify events of application entry-level
perations and create entry call events. Based on the session
nformation, the transformation TEntryCallSequence aggregates all en-
ry calls of each observed user session and combines them in a
raph-based entry call sequence model.
Component deployments and undeployments are filtered by

Deployment and FUndeployment , respectively, and can directly be
apped to the corresponding events as there is no aggregation

equired.
Fig. 5 depicts the inner structure of the TRuntimeUpdate trans-

ormation. Based on the aggregated and refined events provided
y TPreprocess, the transformation TRuntimeUpdate comprises transfor-

mations for updating the architectural runtime model to reflect
changes observed in the running system. The RAC is used in these
transformations to identify the elements of the architectural run-
time model corresponding to the observed implementation arti-
facts. For the sake of brevity the RAC is not depicted and only the
most relevant transformations are visualized in the figure.

The transformation TWorkload updates the user behavior and
usage intensity (C1) in the PCM usage model. Updates in user
behavior and usage intensity are further discussed in Section 4.4.

Changes in deployment (C2 to C4) are represented in the PCM
allocation model by the transformations TDeployment and
TUndeployment . Each deployment event contains information about
the deployed implementation artifact (i.e., unique identifier and
class name) and the execution container the artifact is deployed
to. Also each undeployment event contains information about
the implementation artifact and the execution container the
artifact is removed from. The components on architecture level
corresponding to the implementation artifacts can be identified
based on the correspondence relations specified in the RAC.
Consequently, the PCM allocation model can easily be updated
by TDeployment and TUndeployment for given deployment and undeploy-
ment events by changing the deployment of components to the
corresponding execution containers.

The execution containers in the PCM resource environment
model (C5/C6) are updated by the transformations TAllocation and
TDeallocation. Deployment and undeployment events are employed
o update the PCM resource environment model. If a deployment
 i
Fig. 6. Transformation pipeline for modeling of user behavior within TWorkload .

event shows a deployment of a component (its implementation
artifacts to be specific) to an execution container not yet con-
tained in the resource environment model, the model is updated
by TAllocation for adding the new execution container. Then, the
transformation TDeployment is invoked for adding the component
deployment to the execution container. The new execution con-
tainer, however, does not yet have a network connection to
the other execution containers in the resource environment. The
network connection is derived based on observed service calls. If a
service of a component deployed on another execution container
calls a service of the component deployed on the new execution
container, we can assume a network connection between the
two execution containers. If an undeployment event removes
the last component deployment from an execution container
in the model, the execution container and its network connec-
tions are removed from the resource environment model by the
transformation TDeallocation.

4.4. Behavior modeling

For adequately modeling complex user behavior in TWorkload
it is not sufficient to only aggregate service calls to sequences.
Control flow elements like branches and loops must be detected
and the single call sequences must be bundled to clusters, each
representing the behavior of a certain user group. Moreover,
usage intensities must be determined based on time stamps
associated to the call sequences. In the following, we describe the
behavior modeling approach of iObserve.

Starting with the entry call sequence model provided by
TPreprocess we first identify different user groups within the ob-
served user sessions. Once the several user groups are distin-
guished the group-specific behavior can be modeled individually.
This enables analyses, for instance, on the impact of changes in a
user group’s specific workload on the application performance.

A user group is defined by a set of user sessions that ex-
hibits a similar behavior pattern reflected by the services invoked.
This means the types and count of service calls must be similar
within a user group. The identification of different user groups is
handled by the transformation TUserGroupDetection depicted in Fig. 6.
For clustering the user sessions into groups a distance measure
is required for determining the similarity between the single
user sessions. The count of each distinct service call is used for
the estimation of similarity. The user sessions are clustered into
distinct user groups based on clustering principles we adapted
from Menascé et al. (1999) and van Hoorn et al. (2014). We
odified these principles as follows.
The number of possible user groups is input to these existing

pproaches. However, the number of user groups is often unclear
hen estimating clusters from scratch. This threatens accuracy of
xisting approaches. In contrast, we do not create the user groups
rom scratch but build upon the iObserve megamodel to leverage
nowledge on expected user groups from the PCM usage model
reated during development for cluster estimation.
We apply the X-Means clustering algorithm (Pelleg and Moore,

000) which is an extension of the established K-Means algo-
ithm (Alsabti, 1998) for efficient cluster estimation. The cluster-

ng algorithm assigns each user session to exactly one user group

g
c
c
s
s
l
W
p
a
B
f

t
T
t
w
s
t
T
f
c

m
g
E
n
t
c
c
b
i
v
s
f
u
a
g
t
o

based on the number of matching service calls. In other words,
user sessions with a similar number of matching service calls are
assigned to the same user group. The clustering result is a set of
entry call sequence models, each representing a particular user
group and containing exclusively the associated user sessions.

Further, the usage intensity for each of the identified user
roups is calculated based on the contained user sessions. Basi-
ally, two types of workload can be distinguished — open and
losed workload (Reussner et al., 2016). An open workload is
pecified by a certain inter-arrival time between users (repre-
ented by user sessions) requesting the system. A closed work-
oad is specified by a certain user population on the system.
hereas approaches like (Langhammer et al., 2016) do not sup-
ort the definition of usage intensity (usage intensity must be
dded manually after the model has been extracted) and WESS-
AS (van Hoorn et al., 2014) is limited to closed workload speci-
ications, our approach supports both types of workload.

For deriving an open workload we calculate the inter-arrival
ime distribution from the given user sessions within a group.
herefore, the distances between the entry time points of the
imely ordered user sessions are used. For deriving a closed
orkload the mean number of concurrent user sessions on the
ystem is determined. First, time intervals are calculated from
he points in time each user session enters and exits the system.
hese intervals are used to divide the observed time into time
rames. Where for each time frame the number of active users
an be counted.
For identifying branches in the user behavior, the transfor-

ation TBranchDetection aggregates the call sequences within a user
roup to construct a specific branch model for each user group.
qual service calls within a sequence are merged and alter-
ative service calls are represented as branches. Each branch
ransition contains a call sequence and a transition probability
alculated from the ratio of user sessions assigned to the spe-
ific transition to the overall number of user sessions of the
ranch. Consequently, the branch model reflects a call sequence
ncluding branches. Existing approaches (cf. Menascé et al., 1999;
an Hoorn et al., 2014) apply transition frequency matrices that
tate the transition probabilities between the single service calls
or each user group. This is a simplified representation of the
ser groups’ behavior as it only states the probabilities of which
next service is called. In contrast, iObserve takes each sin-

le service call into account (instead of transition probabilities)
o reflect precisely the user behavior actually observed during
peration (Peter, 2016).
The transformation TLoopDetection identifies loops within call se-

quences. For each sequence, the repeated occurrence of service
calls is identified which may comprise a single or multiple service
calls. TLoopDetection provides for each user group a loop branch
model. Iterations are represented by loop elements annotated
with a loop count that specifies the number of iterations. As
existing approaches (cf. Menascé et al., 1999; van Hoorn et al.,
2014) rely on transition probabilities, they do not support the
detection of loops. They can only model transitions of a single
service call to itself. iObserve in contrast is able to detect even
complex user behavior.

The transformation TArchitecturalModelUpdate produces a PCM usage
model from the loop branch models. For each user group a sepa-
rate usage scenario is created within the usage model that reflects
the obtained entry calls, branches, loops and the corresponding
usage intensity.

4.5. Discussion on applicability

This section refers to the applicability of the proposed mod-
eling concepts by discussing first their dependency to tools and
languages mentioned in the previous sections and second the
effort for performing manual steps of the iObserve approach.

We use the tools Palladio Bench, ProtoCom and Kieker as
well as the programming language Java for implementing and
illustrating iObserve. However, there is no conceptual limitation
to these tools and languages. iObserve can be applied based on
an arbitrary modeling language that is able to reflect the changes
during operation described in Section 2. This means the language
must be able to express at least the application’s usage intensity
and user behavior, software components and their interfaces,
execution containers and the deployment of components to ex-
ecution containers. An arbitrary code generator can be applied
that is able to generate source code in an arbitrary object-oriented
language from the component-based model. Of course, the code
generator must be extended to fill the RAC when generating
code. The running system can be observed using an arbitrary
monitoring framework that is able to observe the changes during
operation. In Kunz et al. (2017), we proposed a platform to use
an arbitrary monitoring framework for iObserve.

Most steps of iObserve are automated. Nevertheless, some
steps need to be performed by humans. For these steps we
discuss the effort in the following. The developer creates an
initial architectural model and updates the architectural model
due to evolutionary changes. The effort for creating or updating
the architectural model depends on the extent of the system
and changes to be modeled and the level of abstraction of the
model as these factors determine the amount of information to be
represented in the architectural model. As mentioned before, we
do not make any specification regarding the level of abstraction
of the model.

Moreover, the developer may specify and place monitoring
probes using the model-driven monitoring approach (Jung et al.,
2013). iObserve addresses the most common changes during
operation (see Section 2) of cloud-based software applications
discussed in literature (Heinrich, 2016). For these changes the
record type specification can be reused for different architectural
models without additional effort. Merely the probe placement
and data collection may be adapted. Observing other changes
would require to update the models and transformations of the
iObserve megamodel. The effort of this heavily depends on the
new changes to be observed and their representation in the
models.

The developer manually extends the source code stubs gen-
erated from the architectural model with details that cannot
be generated automatically. To be more specific, the developer
implements the method bodies in the stub classes. This is because
the PCM contains the specification of external calls and quality
properties of internal actions, like resource demands, but there
are no implementation details specified in the PCM. The PCM
purposely abstracts from implementation details as they may not
be available in early design, on the one hand, and on the other
hand to force the modeler to abstract from details not relevant to
quality properties. This way, the PCM prevents the modeler from
‘‘programming’’ (i.e. specifying information on implementation
level) in the PCM as this is part of the following development
phases and thus keeps track of the model. We believe this is
useful also for other component-based modeling languages. The
effort for manual extension obviously depends on the number
and extent of method bodies to be implemented.

In order to create a running system, the operator deploys the
completed application in an execution environment. This can be
done manually or in automated fashion but is not specific to the
iObserve approach.

m

a
I
s
w
m
C
b
C
i
d

f
c
s
b
g
s
s
m
o
i
u
e

i
p
o
t
m
o
c
(

5. Evaluation

The architectural runtime models of the iObserve approach
ust reflect the changes during operation described in Section 2.

Therefore, we designed experiments based on an established
community case study described in this section. The experiments
are designed according to the changes along the following goals.

Goal 1: We evaluate the accuracy of the architectural runtime
models of iObserve for reflecting changes in workload charac-
terization, component deployment and allocation of execution
containers.

Runtime modeling approaches face specific requirements to-
wards their reaction times according to Cheng et al. (2009). For
instance, the runtime model in our work has to be updated
timely as this is required for running analyses and mitigative
actions close to the observation of changes during operation.
Consequently, in

Goal 2: We examine the scalability of the transformation
pipeline for updating the architectural runtime models to reflect
changes during operation.

Note, the transformation TApp is not evaluated in this paper as
it is an extension of ProtoCom which has already been evaluation
in Becker et al. (2008).

5.1. A sample system for evaluation

The evaluation of iObserve builds upon an established case
study from the software architecture modeling and analysis com-
munity — the Common Component Modeling Example (CoCoME)
(Herold et al., 2008; Heinrich et al., 2015a). CoCoME resembles
trading system as it may be applied in a supermarket chain.

t implements processes at a single cash desk for processing
ales, like scanning products or paying, as well as enterprise-
ide administrative tasks, like ordering products or inventory
anagement. In an evolution scenario (Heinrich et al., 2016), Co-
oME has been extended by an online shop where customers can
uy products online. The detailed design and implementation of
oCoME is described in Heinrich et al. (2016) and the source code
s available for download.2 CoCoME is deployed in a cloud-based
ata center.
An overview of user groups and use cases of CoCoME relevant

or the evaluation of iObserve is given in Fig. 7. The use cases
omprise the services of CoCoME. CoCoME provides 13 different
ervices. The service invocations will be observed and processed
y the iObserve transformation pipeline for evaluation. All user
roups involved in the system will invoke the login and logout
ervices. A service typically invoked by a Customer is the sale
ervice (part of the use case ProcessOnlineSale). A Stock Manager
ay invoke the check delivery and update stock services (part
f the use case ReceiveOrderedProducts). A Store Manager may
nvoke the change price and order product services (part of the
se case ChangePrice and OrderProducts, respectively) (Herold
t al., 2008).
As a trading system, CoCoME may face variations in usage

ntensity from time to time. For example, advertisement cam-
aigns of the supermarket chain may lead to increased number
f sales and thus changes in the application’s workload charac-
erization (C1). Components of the CoCoME application may be
igrated (C2) from one data center to another, replicated (C3)
r dereplicated (C4). Furthermore, data centers for deploying the
omponents of CoCoME may become available (C5) or disappear
C6).

2 https://github.com/cocome-community-case-study.
Fig. 7. Excerpt of the use cases of CoCoME.

5.2. Research questions and metrics

Following the goal-question-metric approach (Basili et al.,
1994) we derive research questions and associated metrics from
the evaluation goals. These are described per goal hereafter.

5.2.1. Accuracy
We derive two research questions from Goal 1.
RQ1.1: How accurate does iObserve reflect the changes during

operation (see Section 2) in the architectural runtime model?
RQ1.2: How accurate does iObserve reflect user groups in the

architectural runtime model?
For answering RQ1.1, we first evaluate changes in workload

characterization by conducting a series of experiments. For each
experiment, a manually specified PCM usage model serves as a
reference model. In the reference model we specify the changes in
workload characterization to be evaluated in form of a PCM usage
model. We use a script to automatically generate user sessions
that comprise the user behavior and usage intensity that exactly
corresponds to the specified reference model. The user sessions
are represented in form of aggregated and refined events in an
entry call sequence model. iObserve is applied to update the
current usage model of the application based on the generated
user sessions. We evaluate whether iObserve adequately reflects
workload changes by comparing the updated usage model to the
reference model. A detailed experiment design is described in
Section 5.3.

Second, for evaluating changes in deployment and allocation
we again conduct a series of experiments. We manually spec-
ify reference models and generate deployment and undeploy-
ment events which are then input to the iObserve transformation
pipeline for updating the current architectural model of the ap-
plication. For each change in component deployment and each
(de)allocation of an execution container we examine whether
it is correctly reflected in the architectural runtime model by
comparing the updated models to the reference models.

In the experiments on user behavior, we compare a reference
PCM usage model to the PCM usage model generated by iObserve.
Therefore, we apply the following set-based metrics to models.
Two sets are considered equal if their contained elements are
equal. The Jaccard Coefficient (JC) (Levandowsky and Winter,
1971) determines the similarity of two sets A and B by comparing
their elements. The more elements of the sets are equal, the more
similar are the sets to each other. We choose the JC as it is a
simple yet powerful metric to compare two sets for equality. The
JC ranges from 0.0 to 1.0. A value of 1.0 indicates the sets contain
only equal elements. A value of 0.0 indicates the sets do not share
any element.

JC(A, B) =
|A ∩ B|

|A ∪ B|

e
o
r
c

t
n
o
t
R
a
L
e
e
T

o
t
e
H
t
s
w
u
t

i
K
o
1

T
r
n
b
t

l
b
i
m
g
e

We consider a PCM usage model as a set of elements. The
lements of the reference model are compared to the elements
f the generated model. We denote a JC value of 1.0 as an exact
epresentation. Any JC value less than 1.0 is considered as a
orrupt representation.
Even if only equal elements are contained in both models,

hey may be interrelated to each other in a different way. We
eed to consider this in the experiments for the representation
f user behavior in a PCM usage model. In order to evaluate
he representation of user behavior we apply the Spearman’s
ank Correlation Coefficient (SRCC) (Wayne, 1990). The SRCC is
measure for the similarity of the ordering of two lists L1 and

2. We assume the set of all elements E contained in a list are
qual for both lists (see JC). Let rank(L, e) denote the index of the
lement e in the List L and n = |E| the total number of elements.
hen, SRCC is defined as:

SRCC(L1, L2) = 1 −
6
∑

e∈E(rank(L1, e) − rank(L2, e))2

n(n2 − 1)
It is important to note at this point that in general the order

f elements in models may differ although they are interrelated
he same way. For example, model elements referred by other
lements within the model may be placed at different positions.
owever, we construct our reference PCM usage models in a way
hat the order of the elements conforms to their predecessor and
uccessor relationship (also for nested elements). Consequently,
e can assume in the experiments that given two equal PCM
sage models, the order of elements within the model is equal,
oo.

We choose the SRCC because of its intuitiveness and simplic-
ty to compute compared to other similar metrics, such as the
endall Rank Correlation Coefficient (Kendall, 1938). A SRCC value
f 1.0 reflects the same order in both lists. A SRCC value less than
.0 reflects less similarity in the ordering of both lists.
We consider a PCM usage model as a list of model elements.

he SRCC is used to investigate the similarity of the order in the
eference model and the generated model. The prerequisite same
umber of model elements has already been checked by the JC
efore. Again, we consider a SRCC of 1.0 as an exact representa-
ion and any value less than 1.0 as a corrupt representation.

For evaluating the accuracy of the usage intensity we calcu-
ate the Relative Measurement Error (RME) (Abramowitz, 1974)
etween the reference usage intensity and the generated usage
ntensity. The RME is determined by the true value xt and the
easured value xm. In our evaluation, xm is not measured but
enerated by iObserve. A RME value close to 0.0 indicates low
rror.

RME =
xm − xt

xt
In the experiments on changes in deployment and allocation,

we use the JC for comparing the models generated from deploy-
ment and undeployment events to the reference models. Models
involved in these experiments are the PCM allocation model and
the PCM resource environment model, respectively. We do not
apply the SRCC for the experiments on changes in deployment
and allocation as, in contrast to the PCM usage model, the order is
not relevant for elements of the allocation model and the resource
environment model. In other words, there is no defined predeces-
sor/successor relationship between the elements of the resource
environment. Two models are equal merely if they contain equal
execution containers, equal components and equal deployments
of the components to the execution containers.

For answering RQ1.2, we compare user groups in the refer-
ence usage model to those in the model updated by iObserve. The
iObserve transformation pipeline applies a clustering algorithm to
distinguish monitored user sessions into specific user groups. In
our experiment, each user session is labeled with membership
information of a certain user group. We apply the following
metrics for comparison.

The percentage of misclassified user sessions (MC) (van Hoorn
et al., 2014) indicates the accuracy of the clustering. This metric
has already been used in related studies (e.g., WESSBAS van
Hoorn et al., 2014). For each of the resulting clusters k, the
number of misclassified user sessions (MCUS) is summarized. The
sum is divided by the overall number of user sessions (US). Thus,
the MC reflects the percentage of the user sessions that were
assigned to wrong clusters.

MC =

∑k
i=1 |MCUSi|

|US|
In addition, we apply the metric Sum of the Squared Error

(SSE) (Pelleg and Moore, 2000) to investigate the compactness
of the clusters. The SSE is commonly used for evaluating the
accuracy of a clustering algorithm. For each of the k clusters Cli,
the squared distances between each data point p ∈ Cli and its
centroid ci is summarized.

SSE =

k∑
i=1

∑
p∈Cli

(p − ci)2

The closer the data points to each other (i.e., the lower the
SSE), the more similar are the data points. We apply the SSE to
evaluate the similarity of user sessions within a certain cluster.
High SSE values indicate the cluster should be split.

5.2.2. Scalability
While examining the scalability of iObserve two dimensions of

scalability must be distinguished. The first dimension refers to an
increased number of users calling the same service within a given
time frame. This means, although the observed user behavior
remains the same, the number of monitored events may increase
in case of increasing number of users that call the application
(cf., advertisement campaign). In this dimension, the size of the
resulting models is not affected while the number of monitoring
events to be processed increases. The second dimension refers to
an increased number of services called by a constant number of
users. This means, although the number of users of the applica-
tion remains constant, the transformations may need to handle
increased number of events in case the size of user behavior
increases (i.e. the single users call additional services). In this
dimension, the size of the resulting models increases while the
number of monitoring events to be processed increases. Conse-
quently, we derive the following research questions from Goal 2
for analyzing the scalability of iObserve.

RQ2.1: How does iObserve scale with increasing number of users
calling the same service?

RQ2.2: How does iObserve scale with increasing number of ser-
vices called by the same user?

We measure the wall-clock time required for executing the
transformations while increasing the number of events along the
two dimensions. We denote this time as execution time in the
following.

5.3. Experiment design

The design of experiments to investigate iObserve with respect
to the evaluation goals are described in the following.

T
e
(
p
m
e
f
i
i
t
a

l
t
p
c
s
d
e
m
m

n
r
s
(
t
u
f
o
o
s
a
w
s

p
e
e
E
e
t
t
p
e
E
m
a
r
r
a
e
t
s
r
t

b
r
e

a
t
m
o
u
a
r
o
i
t
t
F
c
n
t
N
o
a
t
c
l
s
s
o
n
s
t
a
e
a
c
R
m
w
a
s
c
o

a
o
t
d
s
e
a
r
F
s
e
c

t

5.3.1. Accuracy
In iObserve, two transformation stages – TPreprocess and

RuntimeUpdate – are used to continuously preprocess monitoring
vents and subsequently update the architectural runtime model
cf. Fig. 2). For evaluating the accuracy of iObserve we apply
reprocessed events generated from manually specified reference
odels instead of using monitoring data. This is necessary to
xclude influence factors of load drivers and the monitoring
ramework. Furthermore, the generated events allow us specify-
ng any combination of model elements we want to investigate
n the experiments. As we do not use monitoring data, only the
ransformation TRuntimeUpdate is evaluated in the experiments on
ccuracy. Preprocessing of monitoring events is not required.
For evaluating the accuracy of representing changes in work-

oad characterization we conduct several experiments that refer
o different user behaviors and workload types. For each ex-
eriment a reference model is created and user sessions are
onstructed that correspond to the reference model. The user ses-
ions are input to the iObserve transformation pipeline which up-
ates the PCM usage model. Each experiment is repeated in sev-
ral experiment runs. For each experiment run the updated usage
odel is compared to the reference model using aforementioned
etrics.
We repeat each experiment in 500 runs to ensure a sufficient

umber of samples and thus achieve a certain reliability of the
esults. Each experiment run comprises a random number of user
essions in the range of 1 to 200 due to the following reasons:
a) We apply the random number of user session to evaluate that
he transformation is not affected by the number of considered
ser sessions. (b) The random number of user sessions allows
or evaluating the representation of usage intensity. Both types
f workload, open and closed workload, depend on the number
f user sessions and the entry and exit time points of the user
essions. A random number of user sessions and random entry
nd exit time points of the user sessions ensure that varying
orkload is created. The range of 1 to 200 user session ensures a
ufficient variance in the number of user sessions to be processed.
The user behavior to be evaluated in the experiments com-

rises the PCMmodel elements system entry calls (i.e. application
ntry-level service calls), branches, loops, as well as related prop-
rties like probabilities of branch transitions and loop iterations.
ach experiment comprises 500 runs as argued before. For each
xperiment run the length of a call sequence (1–5 service calls),
he number of transitions of a branch (2–5 branch transitions),
he transition probabilities of a branch (the sum of the transition
robabilities has to yield 1), and the loop count of a loop (2–5 it-
rations), respectively, are set randomly within the given ranges.
ach experiment run is configured randomly to evaluate the
odel accuracy is not affected by the number of model elements
nd their properties. Aforementioned ranges are chosen for two
easons: (a) the number of possible configurations is kept within
easonable limits and thus each configuration is repeatedly evalu-
ted during the 500 experiment runs. (b) a larger range of model
lements would not increase the evaluation significance as per
ype of model element the same transformation is executed. Con-
equently, increasing the range of model elements would merely
esult in increased repetitions of the same transformations with
he same input.

For the experiments to evaluate the representation of user
ehavior we combine the PCM usage model elements in various
easonable combinations. This results in eight experiments — one
xperiment for each of the following bullet points:

i. call sequence,
ii. branch,

iii. loop,
iv. overlapping loops,
v. nested branch
vi. nested loop,
vii. loop within branch, and
viii. branch within loop.

The experiments are configured randomly but within the
forementioned ranges for the model elements. For evaluating
he accuracy of iObserve to handle call sequences, a reference
odel and user sessions are created that represent call sequences
f random length. The accuracy of representing branches is eval-
ated using a reference model and user sessions that represent
branch with a random number of branch transitions and a

andom specification of the branch transition probabilities (sum
f the transition probabilities is always 1). Each user session
n this experiment contains a call sequence after the branch
ransition that is common to all user sessions. This is needed
o evaluate the merging of the control flow after the branch.
or evaluating loops a reference model and user sessions are
reated that represent repeated call sequences with a random
umber of repetitions. Each call sequence to be represented by
he loop element consists of a random number of service calls.
ote, two call sequences where each represents a loop may
verlap. In this case only one call sequence can be transformed to
loop element. In order to construct compact models we decide
o transform the call sequence that comprises the most service
alls to the loop element. In the experiment on overlapping
oops either additional service calls of the first loop or additional
ervice calls of the second loop are added. Thus, the number of
ervice calls of one sequence is increased while the number of the
ther sequence remains the same. The accuracy of representing
ested branches is evaluated by a reference model and users
essions that reflect nested alternative call sequences. Again,
he number of branch transitions and transition probabilities
re set randomly. The accuracy of representing nested loops is
valuated by a reference model and user sessions that comprise
call sequence in a random number of repetitions. The repeated
all sequence again contains a call sequence repeated randomly.
epresenting a loop within a branch is evaluated by a reference
odel and users sessions that reflect alternative call sequences
hile each sequence contains repeated service calls. Representing
branch within a loop is evaluated by a reference model and user
essions that reflect alternative sequences of repeated service
alls. The number of service calls in the sequence and the number
f repetitions is chosen randomly.
The accuracy of usage intensity is evaluated by varying entry

nd exit times of the created user sessions. The representation
f an open workload is evaluated by a random definition of a
ime distance between the user sessions’ entry times. The time
istance constitutes the mean arrival time of the created user ses-
ions. For the representation of a closed workload the entry and
xit times of the random number of user sessions are varied. Thus,
random number of concurrent user sessions is created which

epresent the population count of a closed workload specification.
or the experiment on the accuracy of usage intensity the user
essions comprise a call sequence like in (i) of the user behavior
xperiments. This is because only the entry and exit times are
onsidered in this experiment, not the user behavior in between.
Next, the experiment design for evaluating the accuracy of

he transformations for changes in deployment and allocation is
described. We create deployment and undeployment events for
a given number of execution containers to evaluate the update
of the architectural runtime model with respect to changes in
deployment and allocation. In our experiments we use five execu-
tion containers (denoted as nodes n1 to n5) and one component
(denoted as c). The number of events in the experiment is suffi-

cient as an increased number would result in repeated execution

f
w
n
c
m
c
e
t
T

s
s
t
o
u
n
w
t

t
s
T
o

i
M
p
c
g
o

s
t
g
m
s
o
s

a
F
t

of the same transformations with similar input. The generated
events reflect the following deployment changes.

For evaluating component migration the generated events re-
lect a sequence of deployments and undeployments. We start
ith the component c deployed on the first execution container
1. The component is stepwise migrated to the next execution
ontainer until the component has been deployed on n5. This
eans the component is undeployed on the current execution
ontainer and deployed on the next execution container. For
ach migration we evaluate whether it is correctly reflected in
he architectural model by the transformations TDeployment and
Undeployment .
For evaluating component replication we generate a similar

equence of deployment events. In contrast to aforementioned
equence, the component c is not undeployed but it is deployed
o the next execution container until a replication is deployed
n n5. Dereplication is evaluated the reverse way. We generate
ndeployment events starting with n5 until the replication on
2 has been undeployed. For each (de)replication we evaluate
hether it is correctly reflected in the architectural model by the
ransformations TDeployment and TUndeployment , respectively.

For evaluating the representation of allocation we again create
a sequence of deployment events to the five execution containers.
In contrast to aforementioned experiments, the execution con-
tainers are not yet contained in the PCM resource environment
model. Therefore, not the handling of the deployment changes by
TDeployment is in focus of this experiment but the creation of new
execution containers in the PCM resource environment model
by the transformation TAllocation. For evaluating the representation
of deallocation we create a sequence of undeployment events
to the five execution containers. Not the handling of the de-
ployment changes by TUndeployment is in focus of this experiment
but we evaluate whether the execution containers are removed
from the PCM resource environment model by the transformation
TDeallocation once there is no longer a component deployed. For each
(de)allocation we evaluate whether it is correctly reflected in the
architectural model.

Further, we need to evaluate whether our clustering approach
assigns user sessions of the same user group to the same cluster.
Therefore, we model exemplary behaviors of three user groups –
Customer (CR), Stock Manager (SKM) and Store Manager (SEM) –
of the CoCoME trading system and its web shop extension (Hein-
rich et al., 2016). Fig. 8 depicts the behavior for each of the
hree user groups by service calls and transition probabilities to
ubsequent service calls in a UML activity diagram like syntax.
he modeled behavior is the reference model for our experiments
n clustering.
We construct the Store Manager user group in a way that

t does not represent the best fitting cluster. Within the Store
anager user group, a subgroup of users that mainly change
rices and another subgroup of users that mainly order products
an be identified. Therefore, we apply the Store Manager user
roup to evaluate whether it is split by our clustering approach
nce a certain variance factor is applied for clustering.
In analogy to related studies (van Hoorn et al., 2014), we

pecify three different behavior mixes by alternately doubling
he load (i.e. number of user sessions) of one of the three user
roups. This setting allows for evaluating whether the behavior
ix affects the clustering accuracy. The call sequence of each user
ession is randomly generated according to the reference model
f the respective user group. Fig. 9 shows two exemplary call
equences for each user group.
We apply this setting in two different configurations to evalu-

te the variance parameter of the X-Means clustering algorithm.
or both configurations the number of user groups is known from

he existing PCM usage model. With the first configuration we
Fig. 8. Reference model for the clustering experiments.

Fig. 9. Exemplary call sequences for the clustering experiments.

evaluate the accuracy of iObserve to identify predefined clusters.
For the parametrization of the X-Means clustering algorithm the
number of user groups is set to 3 and the variance of user groups
is set to 0. With the second configuration we evaluate whether
iObserve is able to identify better fitting clusters within a given
range. A variance value of 10 is introduced. Consequently, the
minimum number of user groups is set to 2 (2 is the minimum
number of clusters) and the maximum number of user groups
is set to 13. A variance value of 10 has been chosen to provide
the clustering algorithm with a range of potential clusters that is
wide enough to enable a good clustering. Changes in user groups
are possible during operation when users start to behave in a
way not expected before. This might be the case if new services
are available, the user’s preferences for invoking certain services
change or services are not available any longer.

Each of the two configurations is executed for 8000 user ses-
sions. Each user session is labeled with the user group it belongs
to. The number of user sessions in the experiment is created
according to the given user group mix. For each user session
the user behavior is created randomly according to the reference
model of the respective user group. 8000 user sessions guarantee
each user group is represented by user session with high variance
of user behaviors.

T
e
o
T
t

c
s
u
s
e
t

t
s
a
c
a
e
t
c
t

i
p
n
b

W
e
S
o
(
n
s
o
a
s
o

C
o
o
t
o
a
w
I
t

a
t
r
c
e
m
e

5

s

T
E

o
b
t
b
t
r

r
t
a
t
i

o
T
t
i
m
c
t
i
i
s
t
a
t
w

i
s
i
d
d
m
s
o
i
q
m
i

u
o
t

5.3.2. Scalability
In the scalability experiments, the two transformation stages

Preprocess and TRuntimeUpdate are used to preprocess monitoring
vents and subsequently update the architectural runtime model
n that basis. Although the experiments include both stages –
Preprocess and TRuntimeUpdate, the two stages are addressed separately
o better locate potential scalability limits.

As simultaneous user interactions with the cloud-based appli-
ation may lead to a large number of monitoring events, we put
trong emphasis on examining the scalability of the user behavior
pdate in our evaluation. Updating the user behavior for exces-
ive system usage requires processing a variety of monitoring
vents and, therefore, is well suited to examine the scalability of
he iObserve transformation pipeline in worst case.

Changes in deployment and allocation as described in Sec-
ion 2 are less appropriate for analyzing the scalability of iOb-
erve. First, they occur relatively seldom compared to user inter-
ctions which nearly occur permanently in large enterprise appli-
ations. Second, they do not require a comprehensive aggregation
nd preprocessing as can be identified directly by observable
vents for deployment and undeployment. Third, their impact on
he updated model is relatively small compared to user behavior
hanges as only single elements (e.g., a deployment context) need
o be updated.

In the experiments, we examine and discuss the scalability of
Observe while increasing the number of monitoring events to be
rocessed in two dimensions as introduced before: (i) increased
umber of users calling the same service and (ii) increased num-
er of services called by the same user.
For (i), we use the sale service of the CoCoME case study.
e generate an increasing number of user sessions for which

ach user session contains exactly one call of the sale service.
tarting with one (100) user session we increase the number
f user sessions in orders of magnitudes until reaching 100000
105) user sessions. By increasing the number of user sessions the
umber of monitoring events to be processed is increased in the
ame extent. While increasing the number of user sessions we
bserve how this influences the execution time for updating an
rchitectural runtime model. We chose an upper limit of 105 user
essions as this is expected to result in a reasonable large number
f events to be processed.
For (ii), we randomly chose from the 13 services provided by

oCoME. We generate user sessions with an increasing number
f service calls. Starting with one call we increase the number
f calls within the user sessions in orders of magnitudes un-
il reaching 105 calls. While increasing the number of calls we
bserve how this influences the execution time for updating an
rchitectural runtime model. We chose an upper limit of 105 calls
ithin a user session to be in line with the first experiment.

n fact, we believe 105 calls is far beyond the number of calls
ypically contained in a user session.

Ten repetitions of the scalability experiments are sufficient to
chieve reliable results. More precisely, we chose ten repetitions
o reduce the impact of variation within a single experiment
un on the overall results. The scalability experiments have been
onducted on a virtual machine with Ubuntu Linux 16.04 64-bit
dition. The machine is using four virtual CPUs with 3.41 GHz. The
achine has 2 GB RAM and 100 GB disk space. As Java Runtime
nvironment we used the OpenJDK 1.8 64-bit edition.

.4. Experiment results

The results of the experiments to evaluate iObserve are de-
cribed per evaluation goal in the following.
able 1
valuation results of accuracy for representation of user behavior.
User Behavior JC SRCC

Call sequence 1.0 1.0
Branch 1.0 1.0
Loop 1.0 1.0
Overlaps 1.0 1.0
Nested branch 1.0 1.0
Nested loop 1.0 1.0
Loop within branch 1.0 1.0
Branch within loop 1.0 1.0

Table 2
Evaluation results of accuracy for representation of usage intensity.
Usage Intensity RME

Open workload 0.0%
Closed workload 13.1%

5.4.1. Accuracy results
For answering RQ1.1, we first conducted the experiments on

changes in workload characterization and applied the metrics JC
and SRCC to interpret the experiment results. Table 1 gives an
verview of the experiment results for the representation of user
ehavior in the usage model. For each of the experiments, both
he JC and SRCC show the value 1.0. Thus, for each evaluated user
ehavior no single deviation between the reference model and
he updated usage model was identified within 500 experiment
uns.

Due to the experiment design we could demonstrate the accu-
acy of the transformations is not affected by influence factors like
he number of user sessions or variances in number of loop counts
nd branch transitions. Consequently, the experiments show the
ransformations are able to accurately reflect observed changes
n user behavior.

Table 2 shows the experiment results for usage intensity. For
pen workload the experiments resulted in a RME value of 0.0%.
his means each open workload specified by a mean inter-arrival
ime in the usage model correctly represents the corresponding
nter-arrival time in the user sessions created from the reference
odel. This is because the inter-arrival time can easily be cal-
ulated by TWorkload based on the monitoring events. The RME of
he closed workload specifications shows a value of 13.1%. This
ndicates the number of concurrent user sessions determined by
Observe deviates from the reference number of concurrent user
ession by 13.1% on average. In contrast to the open workload,
he number of active users within a given time frame has to be
pproximated for the closed workload specifications. The devia-
ion is caused by the approximation of the number of active users
ithin a given time frame (see Section 4.4).
Next, we discuss the results of the experiments on changes

n deployment and allocation. Starting with a base model we
tepwise changed the deployment in each of the five exper-
ments for migration, replication, dereplication, allocation and
eallocation. The models created from the deployment and un-
eployment events are compared to the corresponding reference
odel using the JC. Table 3 shows the experiment results per
tep. Step means a change in deployment of the component for
ne of the five execution containers. The JC for all the changes
n deployment and allocation in the experiments is 1.0. Conse-
uently, the experiments demonstrate an exact representation of
igration, replication, dereplication, allocation and deallocation

n the models.
For answering RQ1.2 (the accuracy of the clustering to detect

ser groups), we use two different experiment configurations. In
ne configuration the number of user groups is fixed to evaluate
he accuracy of iObserve to identify predefined clusters. In the

n
(
(
A
e
m
u
o
I
s
p

m
o
t

Table 3
Evaluation results of accuracy for representation of deployment and allocation.
Deployment/
Allocation

JC

Step 1 Step 2 Step 3 Step 4

Migration 1.0 1.0 1.0 1.0
Replication 1.0 1.0 1.0 1.0
Dereplication 1.0 1.0 1.0 1.0
Allocation 1.0 1.0 1.0 1.0
Deallocation 1.0 1.0 1.0 1.0

Table 4
Clustering results with variance value 0.
UG UGM Cl1 Cl2 Cl3 MC SSE

CR 50% 0 0 4000
0.0% 177.04SKM 25% 2000 0 0

SEM 25% 0 2000 0

CR 25% 0 2000 0
0.0% 190.37SKM 50% 4000 0 0

SEM 25% 0 0 2000

CR 25% 0 0 2000
0.0% 202.31SKM 25% 0 2000 0

SEM 50% 4000 0 0

other configuration we evaluate whether iObserve is able to iden-
tify better fitting clusters within the given range. A variance factor
enables the clustering algorithm to determine a better fitting
number of clusters (i.e. user groups).

Table 4 shows the results of the configuration using a fixed
umber of user groups (UG) and alternately doubling the load
i.e. number of user sessions) of one of the three user group mixes
UGM). Three clusters – Cl1, Cl2 and Cl3 – have been created.
s seen in the table, the clustering algorithm correctly assigns
ach user session to the user group specified in the reference
odel. The misclassification rate for each load distribution in the
ser group mixes is 0.0%. The table further shows the number
f user sessions of each user group does not affect the accuracy.
n consequence, the evaluation results summarized in the table
how the accuracy of iObserve to transform user session into
redefined user groups.
The SSE values in Table 4 indicate the predefined user groups

ay not be the best fitting clusters, especially for double number
f user sessions of SEM. Therefore, a variance factor is introduced
o find better fitting clusters. Table 5 gives an overview of the
results in case the variance value of user groups is set to 10. Four
clusters have been created. For each load distribution the user
sessions of user group SEM are divided into two separate sub-
groups. This can be explained by the high dissimilarity between
the user sessions of user group SEM. A closer inspection of the
resulting subgroups reveals the user sessions are divided into the
one group that mainly changes prices and the another group that
mainly orders products. Introducing the variance factor results
in misclassification rates ranging from 6.01% to 13.77%. This is
because some of the user sessions are no longer assigned to the
clusters of user group SEM. By splitting the user group SEM, the
SSE values in Table 5 decrease in comparison to Table 4. This
indicates more compact clusters. In consequence, the evaluation
results summarized in the table show iObserve is able to find
better fitting clusters for given user sessions.

5.4.2. Scalability results
In the scalability experiments, we investigate the scalabil-

ity of iObserve for the two dimensions (i) increased number
of users calling the same service and (ii) increased number of
services called by the same user by measuring the execution
time of the transformations. For TPreprocess we analyzed the sub-
transformations TEntryCall and TEntryCallSequence. For TRuntimeUpdate, we
analyzed only TWorkload – there in detail TUserGroupDetection,
TBranchDetection, TLoopDetection, and TArchitecturalModelUpdate. The transforma-
tions TDeployment , TUndeployment , TAllocation and TDeallocation are irrelevant
for the scalability experiments, due to the reasons discussed in
Section 5.3.2. Each scalability dimension has been evaluated in a
separate experiment. Fig. 10 shows the execution time measure-
ments in milliseconds. Each experiment consists of ten repetitions
to alleviate measurement errors. From these ten repetitions, we
visualized the median in the result plots.

Fig. 10a shows the results of the experiment for increasing the
number of users calling the same service for TPreprocess. The execu-
tion time values of TPreprocess first increase sublinearly between 1
and around 100 users calling the same service and then increase
in a linear manner between around 100 and 100000 users calling
the same service.

Fig. 10b shows the results of the experiment for increasing
the number of users calling the same service for TRuntimeUpdate. The
execution time values of TRuntimeUpdate first increase sublinearly
between 1 and around 100 users calling the same service and
then increase in a slightly superlinear manner between around
100 and 100000 users calling the same service.

Fig. 10c shows the results of the experiment for increasing
the number of services called by the same user for TPreprocess.
The execution time values of TPreprocess first increase sublinearly
between 1 and around 100 services called by the same user
and then increase in a linear manner between around 100 and
100000 services called by the same user.

Fig. 10d shows the results of the experiment for increasing
the number of services called by the same user for TRuntimeUpdate.
The execution time values first scale sublinearly between 1 and
around 100 services called by the same user and then increase
in superlinear fashion between around 100 and 100000 services
called by the same user.

In order to interpret the results of the scalability experi-
ments we conduct a worst case time complexity analysis of
the transformations. In the following, we summarize the worst
case time complexity analysis while further details are available
in the iObserve GitHub repository. We introduce the following

parameters.
Table 5
Clustering results with variance value 10.
UG UGM Cl1 Cl2 Cl3 Cl4 MC SSE

CR 50% 0 4000 0 0
6.01% 141.32SKM 25% 2000 0 0 0

SEM 25% 0 0 641 1359

CR 25% 0 0 0 2000
10.74% 134.33SKM 50% 886 3114 0 0

SEM 25% 0 0 2000 0

CR 25% 0 0 0 2000
13.77% 159.15SKM 25% 0 0 2000 0

SEM 50% 1215 2785 0 0

o
i
c
t
A
c
(
w

Fig. 10. Scalability results of the iObserve transformation pipeline.
s

a
t
t
t
l
t
c

b

• n: number of entry call events;
• s: number of user sessions;
• b: number of branch transitions;
• l: number of loops;
• es: number of elements in the largest user session;
• eb: number of elements in the largest branch transition;
• el: number of elements in the largest loop;

First, the subtransformations of TPreprocess are explained. TEntryCall
perates on hash maps to identify entry call events, which results
n worst case time complexity of O(1). TEntryCallSequence parses the
lass and operation signature of an entry call event and maps it to
he corresponding user session based on its session information.
s TEntryCallSequence operates on hash maps the worst case time
omplexity is O(1). TPreprocess is executed for each observed event
in the experiments, for each entry call event) which results in
orst case time complexity of O(n).
 c
TRuntimeUpdate is executed once for each experiment run. The
ubtransformations of TRuntimeUpdate are explained hereafter.
TUserGroupDetection identifies the distinct calls within the user ses-
sions, clusters the users sessions into user groups using the
X-Means clustering algorithm (Pelleg and Moore, 2000) and cal-
culates the usage intensity for each user group. This results in
worst case time complexity of O(s2 ∗ es) for TUserGroupDetection.

For the users sessions of each user group TBranchDetection creates
tree structure by aggregating the contained entry calls, iden-

ifies the transition probability for each branch transition and
hen merges branch transitions and removes redundant branch
ransitions. This results in worst case time complexity of O(s ∗

og(s)+ s∗es ∗b2). Note, we assume the number of user groups of
he application will be limited to a small number. Therefore, we
an neglect this factor in the worst case time complexity analysis.
TLoopDetection traverses the tree structure recursively for each

ranch transition to identify loops. This results in worst case time
omplexity of O(b ∗ e3 + b ∗ e ∗ l).
b b

C
b
2
r
a
m
S
K
s
t
h
b
a

c
c
t
I
i
b
h
i
e

t
m
m
t
f
i
e

t
e
i
e
d
l

5

a
m
a
c
i

TArchitecturalModelUpdate iterates the tree structure to create the
elements of the architectural model. This shows worst case time
complexity of O(b ∗ (eb + el)).

For answering RQ2.1, we conclude as follows. TPreprocess scales
well in a linear manner while increasing the number of users call-
ing the same service. This is explained by aforementioned worst
case time complexity analysis. In contrast, TRuntimeUpdate shows
slightly superlinear scalability while increasing the number of
users calling the same service. This can also be explained based on
the worst case time complexity analysis as follows. In this specific
experiment, the number of user sessions s increases the same
way the number of entry calls n increases as each user session
comprises exactly one call (es = 1). There is no loop (l = 0, el = 0)
and no branch (which means number of branch transitions b is 1).
This branch transition contains one element (eb = 1). This results
in quadratic scaling in the worst case depending on the number
of user sessions s due to user group detection for this experiment.

For answering RQ2.2, we conclude as follows. TPreprocess scales
well in a linear manner while increasing the number of services
called by the same user as explained by the worst case time
complexity analysis. In contrast, TRuntimeUpdate shows superlinear
scalability while increasing number of services called by the same
user. This is explained based on the worst case time complexity
analysis as follows. Unlike the experiment for increasing the
number of users calling the same service, which has to handle
an increasing number of user sessions calling the same service,
the experiment for increasing number of services called by the
same user has to handle an increasing number of service calls (es)
within a single user session (s = 1). There is no branch (b = 1).
The CoCoME case study provides 13 different services. These 13
different services are called repeatedly in random order which
results in many loops. This leads to cubic scaling in the worst
case depending on the number of elements (eb) to be processed
for loop detection in this experiment.

TRuntimeUpdate shows long execution times for a large number of
services called by the same user in the experiment. For smaller
number of services called by the same user the experiment results
in adequate execution times. We expect that more than some
hundred service calls will very seldom occur in a single user
session in a practical setting. Mostly, the number of services
called will be far below. In conclusion, we expect TRuntimeUpdate
will show adequate execution time for processing user sessions
in practical settings.

5.5. Threats to validity

In case study research, four aspects of validity are distin-
guished (Runeson et al., 2012) – internal validity, external valid-
ity, construct validity, and conclusion validity (i.e., reliability).

Internal validity: A possible threat to validity is the set-based
metrics JC and SRCC we applied for comparing models in the
accuracy evaluation. In general, the order of elements in models
may differ although they are interrelated the same way. For
example, model elements referred by other elements within the
model may be placed at different positions. Furthermore, deciding
whether two models are equal is a non-trivial task in general.
However, in the experiments on user behavior modeling we
compare activity diagram like models with predecessor/successor
relation between the model elements. We construct the reference
models in a way that the order of the elements conforms to their
predecessor and successor relationship (also for nested elements).
This is why we can assume in the experiments that given two
equal models, the order of elements within the models is equal.
Also, in the experiments on changes in deployment and alloca-
tion we applied the set-based metric JC. In the allocation model
and resource environment model of the PCM, there is no order
between the execution containers and components deployed on
an execution container. Consequently, we merely evaluate the
existence of the elements in the experiments on changes in
deployment and allocation for which the JC is an adequate metric.

External validity: In case study research, the representative-
ness of a sample case may be sacrificed to achieve a deeper
understanding and better realism of the phenomena under study.
Consequently, the results achieved in the study might not be
transferable to an arbitrary other case, due to the individual
properties of each case. However, the case study gives important
insights and provides indicators for cases having similar prop-
erties. We used the CoCoME community case study as a study
subject in our evaluation. The CoCoME case study balances real-
world relevance with suitability for an academic environment
and is established in the software architecture modeling and
analysis community (Herold et al., 2008; Heinrich et al., 2015a).
oCoME comprises typical properties of a modern component-
ased software application running in the cloud (Heinrich et al.,
015a). Therefore, we expect a certain representativeness of the
esults achieved with CoCoME for other cloud-based software
pplications. Moreover, other case studies known in the com-
unity represent very similar web shop scenarios. Examples are
ock Shop3 (emulates a web shop that sells socks), TeaStore (von
istowski et al., 2018) (emulates a web shop for tea and tea
upplies), JPetStore (Jung and Adolf, 2018b) (emulates a web shop
hat sells pets) and The Heat Clinic4 (emulates a web shop for
ot sauces). The reason for this is that e-commerce is proba-
ly the most relevant business case for cloud-based software
pplications.
Nevertheless, we can merely examine few sample cases in

ase study research. For example, the reference model for the
lustering experiments represent per user group one of arbi-
rary combinations of service calls and transition probabilities.
t is not feasible to examine each possible combination. Also
n the scalability experiments we can only examine few of ar-
itrary combinations of service calls. Still the sample cases we
ave examined give indicators for the accuracy and scalabil-
ty of iObserve. These can be further investigated in follow up
xperiments.
Construct validity: Evaluation results are highly dependent on

he quality of the monitoring events. In the evaluation, we apply
onitoring events generated from manually specified reference
odels instead of observing a running system. This is necessary

o exclude influence factors of load drivers and the monitoring
ramework. Furthermore, generating the events allows for spec-
fying any combination of events we want to investigate in the
xperiments.
Conclusion validity: While analyzing the evaluation results,

he effects of interpretation by a specific researcher must be
liminated. In order to analyze the accuracy and scalability of
Observe, we apply statistical metrics which give a reasonable
vidence and reduce the need for interpretation. Consequently,
ue to the study design, there is hardly an interpretation that may
ead a researcher to another conclusion.

.6. Assumptions and limitations

Currently, the iObserve approach is limited to observation
nd processing of changes in the application’s usage and deploy-
ent, i.e. migration and (de)replication of software components
nd (de)allocation of execution containers. These are the most
ommon changes for cloud-based software applications discussed
n literature (see discussion in Heinrich, 2016). iObserve can be

3 https://microservices-demo.github.io.
4 https://demo.broadleafcommerce.org.

d
T
t
q
c
f
N
r
a
i

a
o
s
i

6

l

c
c

w
o
c
h
a
t
r
g
a
s
t

c
w
w
u

a

S
m
s
p
o
r
b
f
u

n
e

d
e
L
s
m
a
m
f
T
f
s
e
s
t
t
h
v
t
b
t
2
s
t
r
s
b
e
s
i
i
f
c
o
t
o
a
m
r
c
e
w
(
c
t
s

m
e
e
c
L
m
a
d
p
m
P
m
b
w
(
r
e
o

extended for additional types of changes easily by adding new
monitoring probe specifications, new transformations and new
(partial) models or model elements to the iObserve megamodel.

iObserve focuses on the software application architecture and
oes not consider internal events of the cloud infrastructure.
hus, the impact of infrastructure internals, e.g. changes in the
echnology stack or internal replications, on the application’s
uality is not considered. We use a Platform as a Service (PAAS)
loud. Therefore, we assume we can observe all events needed
rom the perspective of an application developer and operator.
evertheless, Software as a Service (SAAS)-based services can be
epresented in the architectural model and may be supported by
dditional monitoring technologies in the future development of
Observe.

A common limitation of runtime modeling approaches is the
ccuracy of the model depends on the length of the time span
f observation. If the time span is too short, events that occur
eldom may not be observed or probabilities calculated may be
naccurate due to neglected events.

. Related work

Software adaptation and evolution is an architectural chal-
enge (Kramer and Magee, 2007). Nevertheless, existing
approaches dealing with the interplay between adaptation and
evolution (e.g., Müller and Villegas, 2014; Oreizy et al., 2008) lack
ontinuous modeling and updating of software architectures in
omponent-based fashion.
There are various existing approaches related to iObserve

hich are discussed in this section. On the one hand, the novelty
f iObserve is in the integration of several existing concepts to
omprehensively support adaptation and evolution. On the other
and, iObserve is unique in the way that it updates development
rchitectural models by observations of the running system and
hus preserves development knowledge and, at the same time,
eflects the current status of the running application. Table 6
ives and overview of the features of iObserve and how they
re covered by existing approaches. If a feature is covered by a
pecific approach this is marked by ‘‘X’’ in the table. Details on
he single approaches are discussed in the following.

Work related to the parts of iObserve presented in this paper
an be distinguished basically into three major categories. First,
ork on reusing development models during operation. Second,
ork on model extraction from monitoring data. Third, work on
ser behavior modeling and user group detection.
Work on reusing development models during operation, such

s Morin et al. (2009), Ivanovic et al. (2011), Schmieders and
Metzger (2011) and Canfora et al. (2008), employs development
models as foundation for reflecting software systems during op-
eration. (Bencomo et al., 2014) gives an overview of runtime
modeling and analysis approaches. The work in Morin et al.
(2009) reuses sequence diagrams in order to verify running appli-
cations against their specifications. However, the approach does
not include any updating mechanisms that changes the model
whenever the reflected systems is being modified. Consequently,
operational changes like described in Section 2 are not supported.
Other than this, the runtime models in Ivanovic et al. (2011),
chmieders and Metzger (2011) and Canfora et al. (2008) are
odified during operation. These approaches employ workflow
pecifications created during development in order to carry out
erformance and reliability analyses during operation for service
rchestration. The approaches update the workflow models with
espect to quality properties (e.g., response times) of the services
ound to the workflow. However, these approaches do not re-
lect component-based software architectures. Further, this work
pdates the model with respect to single parameters and does
ot change the model structure, which is required to reflect for
xample (de)replication of components (C3/C4).
Work on model extraction creates and updates model content

uring operation. Approaches, such as Schmerl et al. (2006), Song
t al. (2011), van der Aalst et al. (2011), von Massow et al. (2011),
anghammer et al. (2016) and Walter et al. (2017), establish the
emantic relation between executed applications and runtime
odels based on monitoring events (for a comprehensive list of
pproaches see Szvetits and Zdun, 2013). Starting with a ‘‘blank’’
odel, these approaches create model content during operation

rom scratch by, e.g., observing and interpreting operation traces.
herefore, they disregard information that cannot be gathered
rom monitoring data, such as design perspectives on component
tructures and component boundaries. The work in van der Aalst
t al. (2011) exploits process mining techniques for extracting
tate machine models from event logs. Without knowledge about
he component structure, the extracted states cannot be mapped
o the initial application architecture. In consequence, the model
ierarchy is flat and unstructured, which hinders software de-
elopers and operators in understanding the current situation of
he application at hand. Furthermore, the work reflects processes
ut neither components nor their relations (C2 to C4). Other than
his, the approaches in Schmerl et al. (2006) and (Song et al.,
011) extract components and their relations from events for the
ake of comparing actual and intended architectures. To this end,
he work modifies the runtime model by model transformation
ules in response to single events. With these approaches we
hare the application of transformation rules to update a model
ased on monitoring events. The resulting models in Schmerl
t al. (2006) and Song et al. (2011) are coarse-grained, which is
ufficient for deciding whether an actual composition maps to the
ntended composition. However, when conducting analyses for
dentifying quality flaws (e.g., performance bottlenecks or con-
identiality violations), the observation and reflection of resource
onsumption is crucial. Reflecting the consumption by the means
f workload specifications requires to process event sets rather
han single events, which outruns the event processing capacity
f this approach (C1). The approaches in von Massow et al. (2011)
nd Brosig et al. (2011) extract component-based architectural
odels for performance simulation. von Massow et al. (2011)

eflects component migration and (de)replication as well as exe-
ution container (de)allocation in the models. Brosig et al. (2011)
xtracts components, their connections and inner behavior as
ell as performance properties. However, also von Massow et al.
2011) and Brosig et al. (2011) neglect design perspectives on
omponent structures and component boundaries. Furthermore,
he extraction of workload specifications and user groups is not
upported.
More sophisticated approaches for extracting architectural

odels can be found in Langhammer et al. (2016) and Walter
t al. (2017). Langhammer et al. (2016) propose an approach to
xtract architectural, behavioral, and usage models from source
ode and test cases. In contrast to iObserve, the approach by
anghammer et al. is limited to static input for extracting the
odels as it does not use monitoring events. Therefore, this
pproach cannot reflect dynamic information like changes in
eployment and usage during operation. Walter et al. (2017)
roposes the PMX framework for extracting architectural perfor-
ance models from monitoring events. In contrast to iObserve,
MX extracts architectural models from scratch which has afore-
entioned disadvantages for identifying components and their
oundaries. Furthermore, an overview of existing work on soft-
are architecture reconstruction is given in Ducasse and Pollet
2009). In contrast to these approaches, iObserve does not aim to
econstruct a software architecture from source code but updates
xisting development models by monitoring data gathered during
peration.

User Modeling

r et al.
17)

Menascé et al.
(1999) and Ruffo

et al. (2004)

Vögele et al.
(2018) and Jung
and Adolf (2018a)

Kistowski et al.
(2014) and Herbst

et al. (2013)

X

X X
X X

X
X X X
X X X
Table 6
Comparison of iObserve features to related approaches.
Features iObserve Reusing Dev. Model Model Extraction

Morin et al.
(2009)

Ivanovic et al. (2011),
Schmieders and Metzger (2011)

and Canfora et al. (2008)

Schmerl et al. (2006), Song et al.
(2011) and Brosig et al. (2011)

von Massow
et al. (2011)

van der Aalst
et al. (2011)

Langhammer
et al. (2016)

Walte
(20

Component-based architecture X X X X
Preserve development knowledge X X X X
Observe running system X X X X X
Reflect current status in model X X X X X X
Identify upcoming quality flaws X X X X X X
Extract user groups X
Extract workload specification X
Detect migration X X
Detect (de)replication X X
Detect (de)allocation X X

Work on user behavior modeling and user group detection ex-
tracts user behavior models and apply clustering algorithms to
identify user groups from observed user interaction during opera-
tion. The architecture model extraction approach of Langhammer
et al. (2016) also supports the extraction of user behavior spec-
ification in form of a PCM usage model. However, the approach
in Langhammer et al. (2016) does not support the identification
of different user groups. Furthermore, this approach does not
support the extraction of usage intensities due to aforementioned
limitation of static input for model extraction. Often Markov
chains are applied for reflecting user interaction with the sys-
tem (Li and Tian, 2003). For example, the approaches of Menascé
et al. (1999) and Ruffo et al. (2004) apply Markov chains to extract
user behavior models and rudimentary identify user groups based
on log files. Based on our previous joint work (Vögele et al., 2015),
the WESSBAS approach in Vögele et al. (2018) extracts workload
specifications and approximates user groups from monitoring
events for load testing and model-based performance prediction.
The PMX framework (Walter et al., 2017) supports the extraction
of different user groups and the approximation of workload speci-
fications from monitoring events. In contrast to WESSBAS (Vögele
et al., 2018) and PMX (Walter et al., 2017), the iObserve approach
is based on a development model to be updated during operation.
Therefore, in iObserve the user groups can be taken from the
development model instead of approximating them. Moreover,
WESSBAS is limited to workload specifications while PMX and
iObserve also support the extraction, or update respectively, of
architectural models. Jung and Adolf (2018a) proposes a first
attempt for extracting behavior models which reflect real user
groups instead of approximated groups. Since this approach also
arose from the iObserve project it is similar to the approach
proposed in this paper. However, it does not leverage knowledge
about user groups contained in the development model.

Furthermore, there is work on modeling usage intensity with-
out detecting user groups. LIMBO (Kistowski et al., 2014) al-
lows for specifying usage intensity models for seasonal patterns,
trends, bursts and noise. Herbst et al. (2013) propose an approach
for forecasting usage intensities based on decision tree and direct
feedback cycles. In contrast to these approaches, iObserve is
focused on the identification of user groups and their behavior.

To summarize, development models that are reused during
operation provide good comprehensibility to humans, but are not
updated with respect to structural changes yet. However, struc-
tural updates are required to reflect migration (C2),
(de)replication (C3/C4) and (de)allocation (C5/C6). Work on model
extraction automatically creates runtime models from scratch,
which may be useful for performance analysis for instance. How-
ever, as development decisions on the applications’ architec-
tures cannot be derived from monitoring events the resulting
models lack architectural knowledge. Work on user behavior
modeling and user group detection extract user groups and their
behavior as well as usage intensities from monitoring events.
These approaches create usage models from scratch as they lack
leveraging knowledge contained in development models.

Work related to other parts of the iObserve approach is dis-
cussed in Heinrich (2016) and Heinrich et al. (2017).

7. Conclusion and future work

In this paper, we proposed models and transformations of the
iObserve approach to aligning development-level evolution and
operation-level adaptation of cloud-based software applications.
We gave a detailed description of the RAC, a model to specify
the correspondence between the elements of the architectural
model and implementation artifacts. We came up with the iOb-

serve transformation pipeline to update the architectural runtime
model by changes observed during operation and proposed an
approach to model complex workload based on these observa-
tions. In contrast to related approaches, we do not create runtime
models from scratch but exploit and update architectural knowl-
edge available from the application development. This avoids
weak spots of common runtime modeling approaches like loss
of architectural knowledge and different levels of abstraction of
architectural models used in development and operation.

The accuracy of the architectural runtime models updated
by the iObserve transformation pipeline has been evaluated for
reflecting changes in workload characterization, component de-
ployment and execution container allocation. Evaluation results
show iObserve adequately represents monitoring events related
to these changes during operation in architectural runtime mod-
els. Furthermore, we evaluate the scalability of the iObserve
transformation pipeline. Evaluation results indicate the current
implementation of iObserve adequately scales for some cases
but shows scalability limits for other cases that must be further
investigated in future work.

In the future, we plan to extend the scalability experiments
by considering influence factors like variation in the complexity
of user behavior in the experiments. Further revising and opti-
mizing the current implementation of iObserve with respect to
performance and scalability will also be part of future work.

Another topic of future work is to further expand the planning
and execution phases of the MAPE control loop. First attempts
have been proposed in Heinrich et al. (2017) and Pöppke (2017).
Besides further analyzing design space exploration and optimiza-
tion approaches to find optimal candidate architectural models,
we will further investigate the execution of adaptation plans to
allow for a maximum degree of automation where adaptation
is possible without human intervention. We are currently devel-
oping an approach for observing and assuring geolocation com-
pliance of data flows in cloud-based applications. This approach
builds upon the modeling concepts proposed in this paper by
making use of data-centric modeling and adaptation techniques.
Another step in this direction is the investigation of data-centric
models rather than control flow based models. In Seifermann
et al. (2019), we proposed first attempts to extend architectural
models by data properties and data flows which need to be
revised and extended in the future.

Further, we plan to investigate the application of approaches
from view-centric engineering with synchronized heterogeneous
models, like (Kramer et al., 2015), in order to describe correspon-
dence relations in a more fine-grained scale.

Acknowledgments

This work was partially supported by the DFG (German Re-
search Foundation) under the Priority Programme SPP1593: De-
sign For Future — Managed Software Evolution (iObserve) and the
German Federal Ministry of Education and Research under grant
01IS17106A (Trust 4.0). The author thanks all the members of the
iObserve project Wilhelm Hasselbring, Reiner Jung, Andreas Met-
zer, Klaus Pohl, Ralf Reussner and Eric Schmieders for valuable
discussions and their support. Special thanks to Nicolas Boltz for
maintaining the iObserve tooling and supporting the evaluations
described in the paper. The author also thanks Tobias Pöppke,
David Peter and Alessandro Giusa who contributed to iObserve
in the context of their bachelor and master theses.

References

Abramowitz, M., 1974. Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables. Dover.

Alsabti, K., 1998. An efficient k-means clustering algorithm. In: IPPS/SPDP

Workshop on High Performance Data Mining.

B

B

B

B

C

C

D

F

H

H

H

H

H

H

H

H

H

H

H

I

J

J

J

K

K

K

Basili, V.R., Caldiera, G., Rombach, H.D., 1994. The goal question metric approach.
In: Encyclopedia of Software Engineering. Wiley.

ecker, S., Dencker, T., Happe, J., 2008. Model-driven generation of performance
prototypes. In: Performance Evaluation: Metrics, Models and Benchmarks.
Springer, pp. 79–98.

encomo, N., France, R., Cheng, B.H.C., Aßmann, U., 2014. Models@run.time.
Springer.

rosig, F., Huber, N., Kounev, S., 2011. Automated extraction of architecture-
level performance models of distributed component-based systems. In: 26th
IEEE/ACM International Conference on Automated Software Engineering. pp.
183–192.

run, Y., et al., 2009. Software Engineering for Self-Adaptive Systems. Springer,
pp. 48–70, chapter Engineering Self-Adaptive Systems Through Feedback
Loops.

anfora, G., Di Penta, M., Esposito, R., Villani, M.L., 2008. A framework for QoS-
aware binding and re-binding of composite web services. J. Syst. Softw. 81
(10), 1754–1769.

heng, B.H.C., et al., 2009. Software engineering for self-adaptive systems:
A research roadmap. In: Software Engineering for Self-Adaptive Systems.
Springer, pp. 1–26.

ucasse, S., Pollet, D., 2009. Software architecture reconstruction: A process-
oriented taxonomy. IEEE Trans. Softw. Eng. 35 (4), 573–591.

avre, J.-M., 2004. Foundations of model (driven) (reverse) engineering – episode
i: Story of the fidus papyrus and the solarus. In: Dagstuhl Post-Proccedings.

amlaoui, M.E., Trojahn, C., Ebersold, S., Coulette, B., 2014. Towards an ontology-
based approach for heterogeneous model matching. In: 2nd International
Workshop on the Globalization of Modeling Languages. CEUR, pp. 1–10.

asselbring, W., 2011. Reverse engineering of dependency graphs via dynamic
analysis. In: 5th European Conference on Software Architecture: Companion
Volume. ACM, pp. 5:1–5:2.

asselbring, W., Heinrich, R., Jung, R., Metzger, A., Pohl, K., Reussner, R.,
Schmieders, E., 2013. iObserve: Integrated Observation and Modeling Tech-
niques to Support Adaptation and Evolution of Software Systems. Technical
Report 1309, Kiel University.

einrich, R., 2016. Architectural run-time models for performance and privacy
analysis in dynamic cloud applications. SIGMETRICS Perform. Eval. Rev. 43
(4), 13–22.

einrich, R., Gärtner, S., Hesse, T.-M., Ruhroth, T., Reussner, R., Schneider, K.,
Paech, B., Jürjens, J., 2015a. A platform for empirical research on information
system evolution. In: 27th Int’l Conference on Software Engineering and
Knowledge Engineering. KSI Research Inc., pp. 415–420.

einrich, R., Jung, R., Schmieders, E., Metzger, A., Hasselbring, W., Reussner, R.,
Pohl, K., 2015b. Architectural run-time models for operator-in-the-loop adap-
tation of cloud applications. In: IEEE 9th Symposium on the Maintenance and
Evolution of Service-Oriented Systems and Cloud-Based Environments. IEEE.

einrich, R., Jung, R., Zirkelbach, C., Hasselbring, W., Reussner, R., 2017. Software
Architecture for Big Data and the Cloud. Elsevier, chapter An Architectural
Model-Based Approach to Quality-aware DevOps in Cloud Applications.

einrich, R., Rostami, K., Reussner, R., 2016. The CoCoME Platform for Collabora-
tive Empirical Research on Information System Evolution. Technical Report
2016,2; Karlsruhe Reports in Informatics, Karlsruhe Institute of Technology.

einrich, R., Schmieders, E., Jung, R., Rostami, K., Metzger, A., Hasselbring, W.,
Reussner, R., Pohl, K., 2014. Integrating run-time observations and design
component models for cloud system analysis. In: 9th Int’l Workshop on
Models@Run.Time. CEUR Vol-1270, pp. 41–46.

erbst, N.R., Huber, N., Kounev, S., Amrehn, E., 2013. Self-adaptive workload
classification and forecasting for proactive resource provisioning. In: 4th
ACM/SPEC International Conference on Performance Engineering. ACM, pp.
187–198.

erold, S., et al., 2008. CoCoME – the common component modeling example.
In: The Common Component Modeling Example. Springer, pp. 16–53.

vanovic, D., Carro, M., Hermenegildo, M., 2011. Constraint-based runtime
prediction of sla violations in service orchestrations. In: Service-Oriented
Computing. Springer, pp. 62–76.

ung, R., Adolf, M., 2018a. Extracting realistic user behavior models. In: CEUR
Vol-2066.

ung, R., Adolf, M., 2018b. The JPetStore suite: A concise experiment setup for
research. In: 10th Symposium on Software Performance. pp. 1–3.

ung, R., Heinrich, R., Schmieders, E., 2013. Model-driven instrumentation with
Kieker and Palladio to forecast dynamic applications. In: Symposium on
Software Performance. CEUR Vol-1083, pp. 99–108.

endall, M.G., 1938. A new measure of rank correlation. Biometrika 30 (1/2),
81–93.

han, A., Yan, X., Tao, S., Anerousis, N., 2012. Workload characterization and
prediction in the cloud: A multiple time series approach. In: Network
Operations and Management Symposium. IEEE, pp. 1287–1294.

istowski, J.v., Herbst, N.R., Kounev, S., 2014. Modeling variations in load
intensity over time. In: 3rd International Workshop on Large Scale Testing.
ACM, pp. 1–4.
Koziolek, A., Koziolek, H., Reussner, R., 2011. Peropteryx: Automated application
of tactics in multi-objective software architecture optimization. In: ACM
SIGSOFT Conference on Quality of Software Architectures. ACM, pp. 33–42.

Kramer, M.E., Langhammer, M., Messinger, D., Seifermann, S., Burger, E.,
2015. Change-driven consistency for component code, architectural mod-
els, and contracts. In: 18th International ACM SIGSOFT Symposium on
Component-Based Software Engineering. ACM, pp. 21–26.

Kramer, J., Magee, J., 2007. Self-managed systems: an architectural challenge. In:
Future of Software Engineering. pp. 259–268.

Kunz, J., Heger, C., Heinrich, R., 2017. A generic platform for transforming
monitoring data into performance models. In: 8th ACM/SPEC on International
Conference on Performance Engineering. pp. 151–156.

Langhammer, M., Shahbazian, A., Medvidovic, N., Reussner, R.H., 2016. Auto-
mated extraction of rich software models from limited system information.
In: 13th Working IEEE/IFIP Conference on Software Architecture. pp. 99–108.

Levandowsky, M., Winter, D., 1971. Distance between sets. Nature 234 (5).
Li, Z., Tian, J., 2003. Testing the suitability of Markov chains as web usage

models. In: 27th Annual International Computer Software and Applications
Conference. pp. 356–361.

Lientz, B.P., Swanson, B.E., 1980. Software Maintenance Management: A Study of
the Maintenance of Computer Application Software in 487 Data Processing
Organizations. Addison-Wesley, pp. 1–160.

Menascé, D.A., Almeida, V.A.F., Fonseca, R., Mendes, M.A., 1999. A methodology
for workload characterization of e-commerce sites. In: 1st ACM Conference
on Electronic Commerce. ACM, pp. 119–128.

Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A., 2009. Mod-
els@run.time to support dynamic adaptation. IEEE Comput. 42 (10),
44–51.

Mueller, E., 2019. What is devops? http://theagileadmin.com/what-is-devops/.
Müller, H., Villegas, N., 2014. Runtime evolution of highly dynamic software. In:

Evolving Software Systems. Springer, pp. 229–264.
Murphy, G., Notkin, D., Sullivan, K., 2001. Software reflexion models: bridging

the gap between design and implementation. IEEE Trans. Softw. Eng. 27 (4),
364–380.

Oreizy, P., Medvidovic, N., Taylor, R.N., 2008. Runtime software adaptation:
Framework, approaches, and styles. In: Companion of the 30th Int’l
Conference on Software Engineering. ACM, pp. 899–910.

Pelleg, D., Moore, A.W., 2000. X-means: Extending k-means with efficient
estimation of the number of clusters. In: 17th International Conference on
Machine Learning. pp. 727–734.

Peter, D., 2016. Observing and Modeling Workload Characteristics of Dynamic
Cloud Applications (Master’s Thesis). Karlsruhe Institute of Technology.

Pöppke, T., 2017. Design Space Exploration for Adaptation Planning in Cloud-
based Applications (Master’s Thesis). Karlsruhe Institute of Technology.

Qin, C., Eichelberger, H., 2016. Impact-minimizing runtime switching of
distributed stream processing algorithms. In: EDBT/ICDT Workshops 2016.

Reussner, R.H., et al. (Eds.), 2016. Modeling and Simulating Software
Architectures – The Palladio Approach. MIT Press, ISBN: 978-0-262-03476-0.

Ruffo, G., Schifanella, R., Sereno, M., Politi, R., 2004. WALTy: a user behavior
tailored tool for evaluating web application performance. In: 3rd IEEE
International Symposium on Network Computing and Applications. pp.
77–86.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. Wiley.

Sadou, S., Allier, S., Sahraoui, H., Fleurquin, R., 2011. From object-oriented
applications to component-oriented applications via component-oriented
architecture. In: Working IEEE/IFIP Conference on Software Architecture. pp.
214–223.

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H., 2006. Discovering
architectures from running systems. IEEE Trans. Softw. Eng. 32 (7), 454–466.

Schmieders, E., Metzger, A., 2011. Preventing performance violations of service
compositions using assumption-based run-time verification. In: Towards a
Service-Based Internet. Springer, pp. 194–205.

Schmieders, E., Metzger, A., Pohl, K., 2015. Runtime model-based privacy checks
of big data cloud services. In: Service-Oriented Computing. Springer, pp.
71–86.

Seifermann, S., Heinrich, R., Reussner, R., 2019. Data-driven software architecture
for analyzing confidentiality. In: IEEE International Conference on Software
Architecture. IEEE, pp. 1–10.

Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z., Sun, Y., Mei, H., 2011. Sup-
porting runtime software architecture: A bidirectional-transformation-based
approach. J. Syst. Softw. 84 (5), 711–723.

Szvetits, M., Zdun, U., 2013. Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime. Softw. Syst.
Model..

van der Aalst, W., Schonenberg, M., Song, M., 2011. Time prediction based on
process mining. Inf. Syst. 36 (2), 450–475.

van Hoorn, A., Rohr, M., Hasselbring, W., 2008. Generating probabilistic and
intensity-varying workload for web-based software systems. In: SPEC Int’l
Performance Evaluation Workshop. In: LNCS, Springer, pp. 124–143.

V

V

V

V

V

v

v

W

W

W

Y

R
a
H
A
a
p
s
s
s
c
i
a
R
G
a
C

van Hoorn, A., Vögele, C., Schulz, E., Hasse bring, W., Krcmar, H., 2014. Automatic
extraction of probabilistic workload specifications for load testing session-
based application systems. In: 8th International Conference on Performance
Evaluation Methodologies and Tools. ACM, pp. 139–146.

ignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H., 2013. Typing artifacts in
megamodeling. Softw. Syst. Model. 12 (1), 105–119.

ogel, T., Giese, H., 2010. Adaptation and abstract runtime models. In: Workshop
on Software Engineering for Adaptive and Self-Managing Systems. ACM, pp.
39–48.

ogel, T., Giese, H., 2014. On unifying development models and runtime models
(position paper). In: 9th Int’l Workshop on Models at Run.Time. CEUR.

ögele, C., Heinrich, R., Heilein, R., Krcmar, H., van Hoorn, A., 2015. Mod-
eling complex user behavior with the palladio component model. In:
Softwaretechnik-Trends, Vol. 35(3).

ögele, C., van Hoorn, A., Schulz, E., Hasse bring, W., Krcmar, H., 2018. WESSBAS:
extraction of probabilistic workload specifications for load testing and per-
formance prediction—a model-driven approach for session-based application
systems. Softw. Syst. Model. 17 (2), 443–477.

on Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J., Kounev, S.,
2018. Teastore: A micro-service reference application for benchmarking,
modeling and resource management research. In: 26th IEEE International
Symposium on the Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems. IEEE, pp. 223–236.

on Massow, R., van Hoorn, A., Hasselbring, W., 2011. Performance simulation
of runtime reconfigurable component-based software architectures. In: ECSA.
In: LNCS, vol. 6903, Springer, pp. 43–58.

alter, J., Stier, C., Koziolek, H., Kounev, S., 2017. An expandable extrac-
tion framework for architectural performance models. In: 3rd International
Workshop on Quality-Aware DevOps. ACM.
ayne, D., 1990. Spearman rank correlation coefficient. In: Applied Nonpara-
metric Statistics, second ed..

ulf, C., Wiechmann, C.C., Hasselbring, W., 2016. Increasing the throughput of
pipe-and-filter architectures by integrating the task farm parallelization pat-
tern. In: 19th International ACM SIGSOFT Symposium on Component-Based
Software Engineering. IEEE, pp. 13–22.

ie, A., Casallas, R., Deridder, D., Wagelaar, D., 2012. Realizing model
transformation chain interoperability. Softw. Syst. Model. 11 (1), 55–75.

obert Heinrich is head of the Quality-driven System Evolution research group
t Karlsruhe Institute of Technology (Germany). He holds a doctoral degree from
eidelberg University and a degree in Computer Science from University of
pplied Sciences Kaiserslautern. His research interests include modularization
nd composition of model-based analysis for several quality properties, such as
erformance, confidentiality and maintainability, as well as for several domains,
uch as information systems, business processes and automated production
ystems. One core asset of his work is the Palladio software architecture
imulator. He is involved in the organization committees of several international
onferences, established and organized various workshops, is reviewer for
nternational premium journals, like IEEE Transactions on Software Engineering
nd IEEE Software, and is reviewer for international academic funding agencies.
obert is principal investigator or chief coordinator in several grants from the
erman Research Foundation and governmental funding agencies. He has (co-)
uthored more than 50 peer-reviewed publications and spent research visits in
hongqing (China) and Tel Aviv (Israel).

	Architectural runtime models for integrating runtime observations and component-based models
	Introduction
	Changes during operation
	Overview of iObserve
	Architecture modeling
	The iObserve megamodel
	Runtime architecture correspondence
	Transformation pipeline
	Behavior modeling
	Discussion on applicability

	Evaluation
	A sample system for evaluation
	Research questions and metrics
	Accuracy
	Scalability

	Experiment design
	Accuracy
	Scalability

	Experiment results
	Accuracy results
	Scalability results

	Threats to validity
	Assumptions and limitations

	Related work
	Conclusion and future work
	Acknowledgments
	References

