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Abstract

The first step in developing safe and functioning systems is the specification of the intended behavior. The development,
validation, and verification depend on clear and unambiguous specifications. Building understandable specification tools
requires adequate formalisms and representation to express the expected functional behavior. We present contract ma-
chines: a graphical specification language based on the well-known modeling concept of state machines and the intuitive
semantics of assume-guarantee contracts. Contract machines (CMs) build upon the logical foundation of contract au-
tomata (CA) which are non-deterministic finite automata over alphabets of contracts, and provide the formal semantics
of CMs. CAs can be processed by (semi-)automated verification and validation tools, such as model checkers or test
case generators. In contrast to contract automata, contract machines offer a more high-level view of the system under
scrutiny by providing more features to ease usability. We present features for effective controlling of non-determinism,
using recurring specification patterns, e.g. for fault modes and error recovery behavior, and handling different versions
and variants of systems.

1 Introduction

The verification of systems and software has been gener-
ally accepted by standards to provide high safety and secu-
rity levels, e.g., ISO 26262 recommends highly the use of
semi-formal or formal methods to ensure the safety of the
two highest integrity levels. Nonetheless, using computer-
assisted specification tools and formal methods for the
specification creation is possible, although uncommon. [1,
translated by the authors]. Design-By-Contract [2] is a
well-established paradigm that states the behavior of com-
ponents is described in terms of assumptions, guarantees,
invariants, and side effects, which form its contract. In
practice, however, writing such specifications is often not
feasible – especially, for complex systems with different
operation modes – due to the lack of understandable and
accessible specification languages for system engineers.
In previous work [3], we introduce contract automata
(CA), a formal specification language that can serve as a
foundation or user-oriented specification formalism. CA
can be used to specify the behavior of mode-based reac-
tive systems. They take the form of finite-state machines
and employ assume-guarantee contracts, to guard the tran-
sitions between modes. CA can be used to specify com-
plex systems that exhibit different behaviors based on the
mode that they are currently in. For example, a system
might have the modes starting, operational, and stopping,
each of which might need a different set of contracts to de-
scribe its behavior. The contracts serve the double purpose
of describing the system behavior within a mode as well as
guarding the transitions between the modes.
Compliance of a system to a CA is defined via game-based
semantics, which can be understood as a more powerful
variant of testing the system with symbolical values. Be-
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Figure 1 Verification Pipeline for CMs

cause of this semantics, CA can be translated into exe-
cutable code which makes them applicable for a variety of
verification techniques such as model checking, deductive
verification tools, and runtime verification.

Contribution CA were designed to have a simple theo-
retical foundation on the theory of formal languages and
games. Therefore, they are also designed as a pure and
mathematical construct to ease reasoning about them and
simplify the implementation of verification systems. Nev-
ertheless, they are very extensible and form the ideal foun-
dation for building a more feature-rich and intuitive speci-
fication system.
In this work, we propose contract machines (CMs): A for-
mal and rigorously defined, yet usable, specification repre-
sentation for reactive systems that maps to CA. CMs follow
the graphical notation of state machines as introduced by
UML and SysML but uses the the semantical foundation of
CA. CMs are not simply a one-to-one graphical represen-
tation of CA. In addition to being a more engineer-oriented
version of CA, they bring a set of comfort and convenience
features to ease the system specification. This way CMs
have the following advantages over plain CA:



1. They are more intuitive through their SysML-inspired
notation and explicit handling of nondeterminism us-
ing ordering.

2. They increase compartmentalization and reduce re-
dundancy using regions, a mechanism to group modes
with common parts in their specification.

3. They make it easier to handle systems with many
modes and long contracts utilizing their notation and
the aforementioned regions.

4. They achieve better integration into real-world system
life cycles and evolution, by providing explicit man-
agement of versions and variants.

The features, which are formulated as extensions, are han-
dled by reducing a CM to its corresponding CA before veri-
fication or other subsequent tasks. This is possible because
the extensions described in this work do not formally in-
crease the expressive power of CA, they are only a matter
of representation. Figure 1 illustrates the relation of CMs
to CA and how they are placed in a verification pipeline.
The transformation of a CA to a format suitable for a veri-
fication engine and the verification process (marked by the
dashed box in the figure) is covered in our preliminary
work on CA [3].

Overview In Section 2, we give a summary of con-
tract automata (CA), especially their syntax and semantics.
Based on this, contract machines (CMs) are introduced in
Section 4 including their extensions over CA. That section
also presents the meta-model of CMs and how the exten-
sions are reduced to a plain CA. Larger specification ex-
amples of CMs are given in Section 6 for a smart contract.
We discuss extensions that we considered but ultimately
did not include in CMs in Section 7. Finally, we conclude
in Section 8.

2 Preliminary: Contract Automata

First, we give a note on terminology: We distinguish be-
tween mode and state. The state is a point in the po-
tentially infinite space of all possible system configura-
tions. For a software component, for example, this might
be the product space of all possible variable values. A
mode is an abstraction representing a set of states which
are relevant in the system’s specification. There are only
finitely many modes to describe those distinctions in the
state space which are relevant to the current analysis. What
we call mode is the similar to what is called the enumerable
state variable in typical UML state machines, while what
we call state corresponds to UML’s extended state. In this
paper, we are mainly concerned with modes.

Example Let us consider a simple counter which period-
ically emits increasing or decreasing values between -128
and 128. The contract automata is given in Figure 2. The
system has an input variable enabled of type Boolean and
an output variable val of type integer. The CA expresses

that, after the start of the system, the output value is first
increased until reaching the maximum value is reached,
and then the system decreases the output until it reaches
the minimum value if the enabled is true. The contract
automata has two modes, ‘up’ representing the mode of
increasing values and ‘down’ for decreasing. The assump-
tion in the contracts on the edges ensures that val is only
changed when enabled is true. Whenever reaching ±128,
the specification changes the mode, and so does the ap-
plicable contract (counting direction). Note that the con-
tract does not specify the exact amount which the value
should be increment or decrement. A compliant imple-
mentation to the CA may add or subtract 1 or any other
positive number in each cycle as long as the limits are ad-
hered to. Also, an implementation that alters between the
outputs val = 128 and val =−128 is also compliant.

Syntax We start with a set of input and a set of output
variables. These variables can be used in formulas, which
serve to express properties and relations of the input and
output variables. A pair of formulas, labeled assumption
and guarantee form a contract. In the previous example,
enabled is the only input and cnt the only output variable.
A contract is for example ¬enabled/cnt = old(cnt,−1),
where negenabled is the assumption and cnt = old(cnt,−1)
the guarantee. The term old(cnt,−1) refers to the output
value cnt which was present in the last operation.
In addition to the sets of input and output variables, a CA
consists of a set of modes, an initial mode and the possi-
ble transitions between the modes. A transition connects
to modes and is annotated with a contract. In the counter
automaton, the modes are ‘up’ and ‘down’ and the transi-
tions with the annotated contracts are visualized as edges
in the graph.

Reactive System Analogously to a CA, a reactive sys-
tem has input and output variables. For our verification
pipeline (Figure 1), we assume it is deterministic. A sys-
tem can be stateful meaning that it can store information
and use that later in the computation of further output val-
ues. Apart from that, we make no further restrictions on
its behavior and implementation. For the purpose of this
paper, it can be regarded as a black box that iteratively re-
ceives an assignment of inputs and produces an assignment
of outputs1.

Semantics The semantics of a CA define the compliance
of a reactive system against the CA. For this purpose, we
consider the concept of contract words. A traditional fi-
nite automaton accepts a language of words made up of
characters. In contrast, the CA accepts a language of con-
tract words, which are sequences of contracts. A reactive
system’s behavior can be defined as a set of infinite words
made up of input/output pairs, describing every possible
run of the system.

1For static verification purposes, e.g. model checking, the actual im-
plementation becomes relevant. However, this does not impair our ability
to specify the behavior of black-box systems. Indeed, other techniques
such as runtime verification or test case generation do not require knowl-
edge of the inner workings of the system.



up downstart

enabled / old(cnt,−1) < cnt < 128

¬enabled / cnt = old(cnt,−1)

enabled / cnt = 128

enabled / old(cnt,−1) > cnt > −128

¬enabled / cnt = old(cnt,−1)

enabled / cnt = −128

Figure 2 Contract automata describing systems counting up and down in [−128,128]. Assumption and guarantees are
separated with “/” on the transitions. old(cnt,−1) refers to the output value cnt of the last operation.

We connect these concepts by matching the language con-
tract word with a run of a system step by step, checking
the current input/output pair against the possible contracts
using the operational semantics of the automaton. Given
a run of the system (sequence of input/output pairs), there
are three possible outcomes on the CA. If there always ex-
ists an outgoing transition of an active mode, where the
associated assumption and guarantee are fulfilled, then the
run is compliant. For incompliant runs, we can distinguish
two cases: (a) the run is uncovered, meaning the violation
of a contract is due to the violation of assumptions, e.g.
because the selected input values that are not valid in the
current state; or (b) the run is flawed, meaning that a guar-
antee was violated because of a bad choice of output values
by the system even though least one assumption is fulfilled.
With this high-level introduction of the central concepts of
CA, we can define our user-friendly extensions and under-
stand their semantics and how they map to the basic form
of CA. For additional details and more precise and math-
ematically rigid definitions, we refer the inclined reader to
our technical report [3].

3 Related Work

The use of state machines for system modeling and for-
mal specification and verification has a long history, but is
missing the use of contracts. In this section, we give a brief
overview of selected state machine-based approaches.
Paltor and Lilius [4] present a formalization of the opera-
tional semantics of UML state diagrams to enable model
checking. In contrast to our work, the state diagram is not
used for behavioral specification and the UML semantics
are covered completely. CMs are just using a subset of
UML state diagram elements.
RoboChart [5], a “timed state-machine based formal nota-
tion for robotics”, is closer to the original state machine
notation by using entry and exit actions, and also using
Boolean guards and state updates on transitions. Their se-
mantics are based on process algebra.
Darvas et al. [6] presents the specification approach PLC-
specif targeted at programmable logic controllers (PLCs).
They build upon on a signature (similar to input and out-
put variables and definitions), a set of defined events (sim-
ilar transition guards), a state machine, an output functions

from the current state to values and invariants over the in-
ternal state and the signature. Note that the specification
is operational and deterministic by defining an executable
Mealy automaton. CMs on the other hand have no opera-
tional semantics and may be nondeterministic.
Herrmannsdörfer et al. [7] provides a survey on model-
ing and specification approaches using tabular notation for
state machines covering Parnas Tables and SCR. The latter
got a revival as NuSCR [8]. Herrmannsdörfer et al. argues
that tabular specification is advantageous over graphical
methods, since they are easier to validate and more com-
pact. CMs bring together the best of both worlds, by en-
hancing classical graphical automata with several usability
features, making them more compact, while having a rig-
orous formal model in the background to allow validation
and verification. We have previously explored table-based
specification as Generalised Test Tables [9], which can be
seen as a precursor to CA.
Itsykson [10] introduces a formalism to describe the be-
havior of software libraries using state machines. The be-
havior of the whole library, as well as of each created ob-
ject, is specified by a separate state machine. Transitions
between states are triggered by the library functions, which
in turn can have pre- and postconditions. Transitions in
CMs directly have assumptions and guarantees, and the
fulfillment of those makes a transition possible.

4 The Graphical Representation of
Contract Machines

Contract automata (CA) are very useful formalism for ver-
ification, but to make them usable by system engineers,
further enhancement are required. While a natural visu-
alization for a CA is obvious (transition diagrams) we take
a more systematic approach to defining a graphical repre-
sentation based on SysML and UML state charts. Addi-
tionally, CA as described so far are very bare-bones, and
writing them for moderately large systems is already cum-
bersome. In this section, we describe contract machines
(CMs): a user-friendly, versatile, and extensible graphical
representation for CA. We present several extensions to the
representation that can be naturally reduced to “plain” CA.
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Figure 3 A basic CM using no extensions
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c1 in > 0
even(out)
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Figure 4 A CM using transition guards to refer to the
contracts

4.1 Foundation: SysML State Machine
To lower the gap between the specification language and
the perspective of the engineer, we borrow the notations
from the state machines as defined by SysML and UML.
In particular, we reuse the notation for states, transition,
and sub-states. In contrast to UML, we have a well-defined
meaning of a contract state-machine, by defining a reduc-
tion to a CA.
Figure 3 shows a simple example of a state machine rep-
resenting a CA. This is the first step towards CMs. Note
that this example is purely illustrative and does not specify
and useful system. Firstly, we use the states and transition
of a state machine with the same meaning as modes and
transition in a CA. To increase readability, we write con-
tracts inside the modes, assigning each one a label. On the
transition, we refer to the contracts by their label (the con-
tracts of the source mode are referable on each transition).
To mark the start mode, we borrow the initial state notation
from SysML.

4.2 Extension to the representation
With the state machine notation so far, we are already able
to fully express CA. Besides the position of the contracts,
it is a one-to-one mapping to a CA. To bring further con-
venience to a user of our specification methodology, we
define further extensions to the visual representation.

4.2.1 Transition Guards
So far, the annotations on the transitions can only refer to
contracts directly. This means that the transition is taken
if and only if the current input/output pair adheres to the
referenced contract, in other words, if the contract is hit.
There exist two other meaningful cases: Either the con-
tract is missed (meaning its assumption is violated) or that
contract fails (meaning that the assumption holds, but the
guarantee is violated).

Contract

Guard Assumption Guarantee

c a g
hit(c) a g

miss(c) ¬a true
fail(c) a ¬g

Table 1 Mapping rules of transition guards to plain con-
tracts for a contract c = (a,g).

Instead of guarding a transition by using a contract verba-
tim, which corresponds to a hit of the contract, we explic-
itly distinguish between the above cases, by annotating the
transitions with hit(c), miss(c) or fail(c), where c is a con-
tract. The transition is taken, when the current input/out-
put pair hits, misses, or fails the contract, respectively. If
a contract c is used as a guard as-is, then hit(c) is implied.
Figure 4 shows how these transition guards can be used
and their semantics. Note that the given examples shown
here are syntactically valid but semantically meaningless.
Table 1 gives an overview of how the guards are mapped to
contracts. With this definition, reducing a CM with transi-
tion guards to a CA is trivial.
These operators allow to specify the behavior in unex-
pected or faulty situations. For example, the user can spec-
ify how a system should behave after an unspecified situa-
tion occurs.

4.2.2 Regions
When specifying systems using CA, certain patterns
emerge, for example, some conditions are present in as-
sumptions and guarantees and sometimes complete transi-
tions are repeated, throughout a set of modes.
To accommodate this, we define regions as a mechanism
to group modes together and attach a common set of be-
haviors.
Visually, a region is represented by a rectangle surrounding
a group of modes. It might also surround other regions,
which in turn contain modes. So formally, each mode and
each region is associated with a parent region, except the
top-level region. The structure thus forms a tree with the
regions as inner nodes and modes as leaves.
These regions can carry a set of global contracts, which
are implicitly added as available contracts to each mode in
the region, as well as a global assumption and guarantee,
which are implicitly added conjunctively to the assump-
tions and guarantees of all contracts in the region, regard-
less of whether they are defined in a region or directly in a
mode.
Additionally to outsourcing common contracts or parts of
contracts to the region, the user can also outsource com-
mon outgoing transitions: It is possible to define a transi-
tion from a region to a mode. The transition is guarded
by a contract defined in this region, or any parent region.
Semantically, this transition is then present in each mode
contained in the region.
Figure 5 shows an example of a CM with a region. The
region encompasses the modes Mode A and Mode C. The
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even(out)
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foo ¬change
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fail(foo)

hit(foo)hit(foo)
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c3
bar
baz

Region 1

fail(c3)

Figure 5 A CM using a region

global contracts of the region Region 1 are written in its
upper left corner. The mark «region» indicates the global
assumption and guarantee of the region. We can see one
region-wide transition from Region 1 to Mode A.

4.2.3 Transition Precedence for Determinism
CA as a mathematical model are nondeterministic: It is
trivially possible that a given input/output valuation sat-
isfies more than one contract. If the guards of multiple
outgoing transitions of the same mode are satisfied, all of
these transitions may be taken and there are multiple suc-
cessor modes. In this case, we call the guards (and con-
tracts) overlapping, since the space of input/output valua-
tions are not disjoint. In the specification of systems, this
nondeterminism is often unintended and hence a source of
specification flaws. If nondeterminism is intended, you
should make it explicit. The manual way to disable this
nondeterminism is by explicitly including the negation of
the overlapping contracts in the contract itself. If you need
to mutually exclude more than two overlapping contracts,
the contracts get convoluted and hard to understand, even
more, it is hard to figure out the precedence of transitions.
In CMs, we provide a way to control nondeterminism by
ordering the outgoing transitions of each mode. The user
assigns to each transition a numerical priority. The value of
the assigned numbers determines a total order: lower num-
bers indicate a higher priority. If the guards of multiple
transitions are satisfied, the one with the highest priority is
taken. Only if two overlapping transitions have equal prior-
ity, there is true nondeterminism. Figure 6 shows how this
is represented visually. In this example, the guards fail(c1)
and hit(c2) overlap for example for in = 7 and out = 5. By
assigning priority 1 to the upper, and 2 to the lower transi-
tion, we ensure determinism: In this case, only the upper
transition miss(c1) is taken. Under the hood, this is imple-
mented by constructing new contracts that are mutually ex-
clusive to all outgoing transitions (of the same mode) with
a higher priority. Of course, the construction must respect
the semantics of the different guards.

4.2.4 Conditional Transitions
One of the major challenges in the industry is the man-
agement of product families over time. We address this
by supporting variants and versions using conditionals on

Mode A

c1 in > 0
even(out)

c2 in > 5
out = 5

1
fail(c1)

2 hit(c2)

Figure 6 A partial CM using transition precedence

Mode B

stay ¬change
old(x,−1) = x

Mode C

inc change
old(x,−1)< x

dec change
old(x,−1)> x

upd change
old(x,−1) 6= x

miss(stay)

hit(stay)

hit(inc)

« v2.0 · · · , Blue »

hit(upd) «· · · v2.0 »

hit(dec) « v2.0 · · · , Red »

miss(upd)

Figure 7 A CM using conditionals

transitions. These conditions allow the user to include or
exclude a transition for a specific set of versions or vari-
ants. We unify the handling of versions and variants: We
specify both symbolically, with a natural order to handle
versions. For variants, we use symbol like foo or bar . For
versions, we use a semantic versioning scheme, e.g., v3.0

or v0.2.3 with v3.0 > v0.2.3 .
Each transition can optionally be annotated with a list of
conditions. A condition can either be a plain symbol or a
range of symbols. A range is written as v2.3 · · · v4.0 , which
means all versions from and including v2.3 upwards to and
excluding v4.0. The range can be open-ended on either
side as · · · v4.0 and v2.3 · · · to include all version up to or
from that point onwards, respectively. If a mode or contract
becomes unreachable, because all incoming transitions are
excluded, it can be removed.
When reducing a CM to a CA, a set of current version and
variant symbols must be provided. A transition is only in-
cluded in the resulting CA when every condition in the con-
ditional is satisfied by the current symbols. For plain sym-
bol conditions, this trivially means that the symbol must
be included in the set. For range conditions, this means
that a symbol must be included in the set that is within the
range, according to the natural order. If a transition has no
or an empty conditional, the transition is always included
into the effective CA.
Consider the example in Fig. 7. Here, the specified behav-
ior was refined with the release of v2.0 . Previously, it was
merely required that activating the input change while in
Mode C results in a change of the output variable x while
transitioning to Mode B. Starting with v2.0 , there are two
variants: Red and Blue . In the red variant, the same tran-
sition is required to increase x, while in the blue variant, it
must decrease.
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Figure 8 Metamodel of CMs

4.3 Metamodel
To give a comprehensive understanding of CMs, Fig. 8
shows the complete metamodel as a UML class diagram,
including all the concepts discussed in this section. Firstly,
a CM consists of Regions and Modes. They have some
aspects, such as outgoing transitions and the parent rela-
tionship, in common. Therefore, they are derived from
the abstract class Modelet: A Modelet can have a parent
(modes can be contained in regions and regions can in turn
be contained in regions). A Modelet might have no parent,
in which case it is the top-level region. The Modelet car-
ries the Contracts and we can go via an outgoing Transi-
tion to a concrete Mode. A Transition refers to a Contract
as its guard, in combination with the GuardKind, which
models the guard operators as an enumeration. In addition
to the precedence, a transition has multiple Conditions as
its conditional, which can be RangeConditions (for version
ranges) or plain SymbolConditions.

4.4 Comparison with UML state diagram
concepts

Both notation and meaning of CMs is borrowed heavily
from UML state diagrams. Especially semantically, how-
ever, there are quite a few important conceptual distinc-
tions. In this subsection, we highlight and discuss the most
important of these differences.
Recall from Section 2 that the modes of CMs correspond
to the state variable in UML. The UML extended state, the
full internal state of the system, is not present in CM, since
we regard systems as black boxes.
Fundamentally, UML state diagrams have an execution se-
mantics, while CMs are about checking the compliance of
systems. In other words, CMs can’t be executed, since
there are no actions specified, only contracts. In UML
state diagrams on the other hand, the user specifies actions

on the transitions, which determines the output. Transi-
tions in CMs have guards, essentially made up of an as-
sumption and a guarantee, which are formulas about the
input and output variables. In UML, Transitions have trig-
gers, and can have guards (which are different from CM
guards) and actions. These two concepts can not be com-
pared one by one. In UML, the trigger specifies the event
that triggers the transition, while in CMs, the transaction
is available, when the input/output pair satisfies both the
assumption and the guarantee. The UML guards can be
used to specify a formula that needs to hold for a transition
to be taken, which makes them similar to CM assumptions.
UML guards can talk about event parameters, which can be
compared to the systems input variables used in CMs, and
extended state variables, which have no correspondence in
CMs.
Apart from these conceptual differences, there are some
features of UML state machines which have no equiva-
lent in CMs. For instance, we have no hierarchical nested
states. In UML, this is a sub-machine contained within a
state of the super-machine. Upon entering the state, the
system also transitions into the starting state of the sub-
machine and responds to events accordingly. This con-
cept can be arbitrarily nested. The whole system’s state
variable is made up of the current states in all the sub-
machines from the current point in the hierarchy up to the
root. In CMs, the structural hierarchy is formed by the re-
gions. Conceptually, they are different from hierarchical
states, being used to hold contracts, transitions and formu-
las common to multiple modes. A similarity is that both
regions and hierarchical states allow outgoing transitions
that apply in all contained states/modes.
The term “region” also appears in UML state diagrams as
part of orthogonal regions, which is a mechanism to rep-
resent product automata. While CMs, or rather CA, are
closed under taking of the product, no mechanism to ex-
press this is included in the current version.
UML state machines have the notion of history states,
which allows reentering a hierarchical sub-machine in the
state from which it was left. In CMs, we do not maintain
a history of modes and since we have no real sub-machine,
the concept is not applicable. It is however possible to re-
fer to previous input and output variables using the old()̇
operator.

5 Case Study: Automatic Emer-
gency Brake System

For our first case study (Figure 9), we take the automatic
emergency brake system of a car. The system is based on
an older version of Mathworks’ Simulink example “Au-
tonomous Emergency Braking with sensor fusion”2. In our
theoretical report [3], we specify the brake system using
plain CA and are able to statically verify a C implementa-
tion using model checking.

2URL: https://www.mathworks.com/help/driving/ug/
autonomous-emergency-braking-with-sensor-fusion.html,
accessed September 2023

https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
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stay ¬(abs(T TC)< FCWtime∧TTC ≥ 0)
AEBstatus = decel = FCWactivate = 0

escalate abs(TTC)< FCWtime∧TTC ≥ 0
AEBstatus = decel = 0∧FCWactivate = 1

WARN

escalate abs(T TC)< PB1time∧TTC ≥ 0
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stay true
AEBstatus = decel = 0∧FCWactivate = 1
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AEBstatus = decel = 0∧FCWactivate = 1
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2
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1
escalatehit(reset)

3reset

Figure 9 CM of an Assistant Emergency Brake System

The purpose of this system is to monitor the estimated
time to collision (TTC, provided as input, can be calculated
from the change in distance to the text car) and engage the
brakes. The input variable stop indicates whether the car
is in a standstill. The remaining input variables FCWtime
and PB1time are constants setting the TTC threshold values
to activate the collision warning and to engage the brakes.
The outputs of the system are the deceleration decel, the
status of the system AEBStatus and whether the collision
warning should be active (FCwactivate).
The system starts in STANDBY mode, and must stay there,
as long as the TTC is lower than the warning thresh-
old FCWtime. The warning must of course be inactive
and the deceleration zero. Only if the time to collision
goes above this threshold, the warning indicator is acti-
vated (FCWactivate = 1) and the system escalates to mode
WARN. In this mode, the default action is to maintain the
status quo, realized by the contract stay with the trivial as-
sumption true having the lowest priority. Otherwise, two
options are possible: Either the TTC increases sufficiently
which resets the system to STANDBY mode, or TTC de-
creases further, going below the next threshold PB1time,
leading to an escalation to BRAKE mode and to a decelera-
tion, i.e. decel > 0. In the BRAKE mode, the stay contract
once again handles the default case while the reset contract
hits only once the vehicle comes to a full standstill. It then
transitions back to STANDBY mode.
This case study illustrates the usefulness of CMs for a re-
alistic system component. We use guards and transition
precedence to simplify the specification.

6 Case Study: Casino Smart Con-
tract

In this case study, we specify a smart contract that imple-
ments a simple Casino [11], which implements a guessing

game for head or tail of a coin toss. Figure 10 shows the
CM. In contrast to the previous case study, a smart contract
implements an interactive system where a caller invokes
the action (incl. specific parameters) that the system should
perform. The contract names correspond to these action
names. This case study demonstrates how the CM concept
can be applied to a very different use case. The contracts
in this case are not simple assume-guarantee-pairs, but fol-
low the definition of solc-verify [12] contracts, which have
not only pre- and post-conditions but also modifies clauses
(abbreviated as mod in the figure). The modifies clause
allows the user to specify which variables are allowed to
change their value. Any variable v that is not part of the
modifies clause, must keep its value, i.e., v = old(v). The
msg.sender and msg.balance are also implicit constants
representing the identification of the caller and its balance.
We use a region to define common contracts for the ac-
tions addToPot, which moves money from the casino op-
erator’s wallet to the internal pot and remFromPot, which
does the opposite. The Casino starts in mode idle, allowing
addToPot and remFromPot, and the creation of a play.
createPlay is called by the operator with their choice of
HEAD or TAIL, secured by a cryptographical bit commit-
ment scheme, such that the choice can not be deduced from
the public state. The createPlay contract takes a param-
eter n. In the CM this is just a normal input variable that
is unused in all other cases, the “(n)” can be seen as part
of the contract name. If a play is available, anyone can
challenge the operator by guessing its choice and placing
a bet. The action decideBet transfers the double amount
of the bet to the challenger if the guess was correct (con-
tract decideBetWin). Otherwise, the money is retained
(decideBetLoose) and can be withdrawn by the operator
(contract removeFromPot). Either way, the operator can
start another play afterward.
A peculiarity of smart contracts is their public nature: They
run on a ledger or blockchain architecture, such that their
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mod pot,address(this).balance,operator.balance
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Figure 10 CM of a smart contract realizing a guessing game on a blockchain. Contracts to correspond to possible inter-
actions with the smart contract.

code and data are disclosed. A consequence of this is
the special need for robustness even with malicious users.
A CM only describes the behavior provided that the as-
sumptions of the contracts hold. The casino CM for ex-
ample only describes the behavior positively, the so-called
“happy path”. To handle malicious environments, we may
want to close the set of possible actions, i.e. by adding
an implicit loop transition on each mode with the contract
“n : true/true/ /0” with the lowest precedence n, a pre- and
post-condition true and no modification of the state vari-
ables (empty modifies-clause). This would ensure that the
system is not affected by unspecified events.

7 Omitted Extensions and Future
Work

CMs as presented here are already versatile and feature-
rich specification mechanisms. Nevertheless, they can be
extended even further. In this section, we briefly discuss
some possible extensions that we considered, but finally re-
jected. Some of these might be realized in the future, when
it can be shown that their usefulness justifies the increased
complexity. Furthermore, we want to continue to explore
the usefulness of CMs before adding more features. To

this end, an implementation of a graphical modeling tool
for CMs is currently being worked on. We already dis-
cussed some omitted features in Section 4.4, we do not re-
peat those here.

Guard expressions In the current version of CM, transi-
tion guards can refer to only a single contract, wrapped in
one of the guard operators hit, miss or fail. A more general
approach would be to allow arbitrary expressions over con-
tracts including the operators and a set of Boolean connec-
tives, such as the logical operators and, or, not etc. Guards
might then look like this: miss(c1) ∧ (hit(c2) ∨ hit(c3)).
Note e.g. that ¬hit(c) would not be the same as fail(c), but
rather identical to fail(c)∨miss(c). This would allow for
more flexibility and expressiveness when specifying transi-
tions, at the cost of increased complexity of the metamodel
and the reduction to CA.

Mode Inheritance We considered mode inheritance or
template modes as a generalization of regions. This would
allow specifying modes as a derivation of other modes in-
heriting their contracts and transitions. This concept serves
the purpose of grouping common properties of multiple
modes and making it reusable across the diagram. We ulti-
mately settled on regions as the most visual approach, since



it makes the grouping of the related modes clear in the
graphical representation. This is especially true for outgo-
ing transitions, which would be less obviously associated
with the concrete modes were they attached e.g. to template
modes.

Conditionals for Regions We introduced conditionals
as a way to include transitions only in certain variants or
versions of the CM. This approach can naturally be ex-
tended to modes and regions as well. An open question is
how the exclusion of a mode affects incoming transitions,
which should be included according to their conditional.
In the current version, to exclude modes the user has to
explicitly set the conditionals to exclude all incoming tran-
sitions.

Region transition loops It is already possible to attach
outgoing transitions to regions, which are applied to all
contained modes. However, the target of a transition must
always be a concrete mode. For the general case, it is un-
clear what the semantics of a transition going to a region
should be, since there is no starting mode in a region and
even more so, the modes contained in a region do not nec-
essarily form a sub-machine. It is a common pattern in
CMs to have identical or similar “loop transitions” on many
modes (e.g. stay in Section 5). For this case – a loop transi-
tion on a region – the semantics seem much clearer: Apply
the loop transition to all modes in the region.

8 Conclusion

In this paper, we present contract machines (CMs), a
graphical mechanism to specify the behavior of complex
model-based systems. CMs are a user-friendly extension of
contract automata (CA), which form the theoretical foun-
dation of our work. They are based on the established
specification utility of state machines, as they can be found
e.g. in UML or SysML, paired with contract-based verifi-
cation. We introduce and discuss extensions to the graph-
ical representation: Transition guard to flexibly reference
contracts, regions to reduce redundancy and group com-
mon aspects of parts of the specification, transition prece-
dence to explicitly handle nondeterminism and condition-
als to manage different variants and versions of the spec-
ification. With these extensions, CMs become a intuitive
and usable specification tool with a solid formal founda-
tion that can serve as a catalyst for a variety of validation
and verification use cases. We further explore this by pre-
senting the CM specification of two small case studies, an
automated emergency brake system and a smart contract
casino scenario. We plan to continue to evaluate and ex-
pand our methods in the future, by implementing tools and
using these to specify larger and more complex systems.
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