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Abstract: Positional cranial deformities are a common finding in toddlers, yet differentiation from
craniosynostosis can be challenging. The aim of this study was to train convolutional neural networks
(CNNs) to classify craniofacial deformities based on 2D images generated using photogrammetry as
a radiation-free imaging technique. A total of 487 patients with photogrammetry scans were included
in this retrospective cohort study: children with craniosynostosis (n = 227), positional deformities
(n = 206), and healthy children (n = 54). Three two-dimensional images were extracted from each
photogrammetry scan. The datasets were divided into training, validation, and test sets. During
the training, fine-tuned ResNet-152s were utilized. The performance was quantified using tenfold
cross-validation. For the detection of craniosynostosis, sensitivity was at 0.94 with a specificity
of 0.85. Regarding the differentiation of the five existing classes (trigonocephaly, scaphocephaly,
positional plagiocephaly left, positional plagiocephaly right, and healthy), sensitivity ranged from
0.45 (positional plagiocephaly left) to 0.95 (scaphocephaly) and specificity ranged from 0.87 (posi-
tional plagiocephaly right) to 0.97 (scaphocephaly). We present a CNN-based approach to classify
craniofacial deformities on two-dimensional images with promising results. A larger dataset would
be required to identify rarer forms of craniosynostosis as well. The chosen 2D approach enables
future applications for digital cameras or smartphones.

Keywords: artificial intelligence; deep learning; craniosynostoses; photogrammetry; congenital
abnormalities; trigonocephaly

1. Introduction

Skull deformities manifest in approximately 16% [1,2] of newborns, with craniosynos-
tosis diagnosed at a notably lower incidence of 0.05%. This condition entails the premature
ossification of one of the five skull sutures, impeding the perpendicular growth of the neu-
rocranium along the affected suture [3,4]. Isolated craniosynostosis exhibits a multifactorial
etiology, though familial aggregation is noted in certain cases. Syndromic craniosynosto-
sis, affecting multiple sutures, is commonly associated with craniofacial syndromes like
Morbus Pfeiffer, M. Apert, M. Crouzon, or M. Muenke, often linked to mutations in the
Fibroblast Growth Factor Receptor gene (FGFR) [5].

Craniosynostoses hinder regular neurocranial growth, leading to craniofacial deformi-
ties with significant psychosocial implications and an elevated risk of intracranial pressure
elevation or neuropsychological development deficits [6,7]. The early detection of patho-
logical growth patterns is imperative, often discernible through specific clinical findings
and growth patterns.
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Patients with craniofacial deformities typically present in early infancy and are con-
ventionally diagnosed through clinical examination, ultrasound, or imaging modalities like
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) [8,9]. However, the
use of tomographic techniques, especially in young patients, necessitates general anesthesia
and carries the risk of radiation exposure in CT imaging, a concern given the increased
susceptibility to malignancies during early development [10,11]. Still, the advantage of
incidental relevant findings in CT or MRI imaging and the confirmatory function of imaging
need to be considered and set into relation.

Three-dimensional (3D) photography emerges as a non-invasive alternative for skull
growth analysis [12–14]., demonstrating independence from examiner-related biases [15–17]
and possible subjective bias [18–20]. Traditional methods, such as CT scans with manual
cephalometric measurements, may not be mandatory for single-suture synostosis diagnosis,
as suggested by several authors to date [21–23]. Photogrammetry, or any form of optical 3D
scanning, efficiently captures craniosynostosis morphology, aiding in cephalometric measure-
ments and surgical result quantification [14,16,23,24]. Nevertheless, the use of a 3D scan as
a diagnostical tool needs an experienced surgeon for interpretation. This study proposes a
theoretical basis for a diagnostic approach combining clinical examination with an AI-based
classification of a 3D photo face scan for single-suture synostosis diagnosis [6,12,13].

To this day, many craniofacial centers still rely on CT scans for the diagnostic assess-
ment of cranial deformity [25,26], and primary or secondary medical care units often lack
the expertise to distinguish positional deformities from craniosynostosis with certainty.
Recognizing the efficacy of convolutional neural networks (CNNs) and deep learning
(DL) in medical image analysis, particularly in radiology [27,28], we aim to leverage these
technologies for classifying pathological growth patterns in craniosynostosis. While CNNs
have excelled in 2D image classification, such as 2D X-rays, pathohistological scans or
photos of skin cancer [29–31], their application to 3D data, such as face scans, is limited by
the scarcity of the relevant literature and pre-trained neural networks [30]. However, when
transitioning to 3D images like CT or MRI scans, the challenges multiply due to increased
data complexity and computational demands.

The representation of 3D images either through polygon models or native 3D imaging
demands a more intricate understanding and processing. Neural networks tailored for 3D
data, like 3D CNNs, need to be employed. These models are computationally intensive and
require significantly more resources for training and inference, alongside a large annotated
dataset, which are often scarce in the medical domain, especially for rare conditions such
as craniosynostosis. The geometric and topological intricacies in 3D medical images, such
as surface scans depicted by polygon models, necessitate advanced preprocessing and
augmentation techniques to ensure accurate representation and subsequent classification.

Furthermore, the heterogeneity in medical imaging data, stemming from different
imaging modalities, varying acquisition protocols or scanning hardware, and patient-
specific variations, adds an additional layer of complexity. Ensuring robustness and gener-
alizability across diverse medical imaging datasets is crucial, which requires meticulous
dataset curating. With the limited data on craniosynostosis in a single tertiary care center,
focusing on 2D data is more viable as they require fewer computational resources and are
easier to manage than 3D data, enabling quicker iterations and potentially more accurate
predictions with the available data.

Our project aims to establish the technological foundation for a diagnostic tool using
2D images extracted from patient-specific photogrammetric surface scans. This tool seeks
to enhance diagnostics in primary care and diminish reliance on CT scans for infantile
patients. Unlike approaches requiring extensive manual preprocessing, our straightforward
2D approach, derived from photogrammetric scans, may be applicable independently
of 3D scanning devices, utilizing standard digital cameras or smartphones to support
pediatricians and the primary medical sector.

This study addresses two key questions:

Can neural networks reliably differentiate craniosynostosis from non-synostotic patients?
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Can neural networks reliably classify different types of common craniofacial deformities?

2. Materials and Methods
2.1. Study Design and Ethics

The study protocol was reviewed and approved by the Ethics Committee of the
Medical Faculty of the University of Heidelberg (ethics number S-237/2009). The study
was carried out according to the Declaration of Helsinki and written informed consent was
obtained from parents.

2.2. Patients

The database of the Department of Oral and Cranio-Maxillofacial Surgery at the
University Hospital of Heidelberg underwent a query to identify children with cranial
deformities spanning the years 2011 to 2020. Inclusion criteria comprised patients aged
0–14 months, who obtained parental consent and underwent a routine photogrammetric
scan at our department for head form evaluation. Validation of the initial clinical diagnosis
was contingent upon specialist opinion, surgical intervention, additional diagnostics, or
subsequent scans. Enrolled patients exhibited craniofacial deformities, posterior positional
deformities, or sagittal/metopic synostosis. Exclusion criteria encompassed a history of
complex craniofacial syndromic deformities, non-synostotic and non-positionally associ-
ated craniofacial deformities, as well as a history of prior craniofacial surgery. Due to the
limited number of cases, lambdoid and coronary craniosynostoses (right, left, and bilateral)
were excluded during data collection. Excluding small subgroups in training neural net-
works in general is essential to prevent model bias and unreliable generalization. Small
subgroups lack the robustness necessary for the model to discern meaningful patterns,
making it prone to overfitting and misinterpreting rare cases. Excluding the underrep-
resented groups in this collective ensures a focus on more prevalent and representative
cases, fostering a model that better captures the nuances of common pediatric craniofacial
structures and conditions. A total of 50 patients per group was set as the cutoff to be able
to distribute patients properly between training, validation and test sets.

The healthy control group was recruited from children seen in our outpatient clinic
who either did not have a deformity or had a positional deformity within the threshold of
a normal range. Every patient with a 3D photogrammetry scan in our clinical routine is
analyzed with the Cranioform Analytics Software 4.0 (Cranioform AG, Alpbach, Switzer-
land). To be qualified as a healthy control group patient, the threshhold was defined to
be a cranial vault asymmetry index (CVAI) of <3.5% and a cranial index (CI) of <90. Fur-
thermore, healthy twins and siblings of patients, routinely 3D scanned in our department,
were also included. The collected dataset was manually screened to exclude other forms of
craniomaxillofacial anomalies that could be confounding, such as cleft lip patients or other
syndromic patients with relevant asymmetries.

2.3. Cephalometric Measurements and Analytics

The patient’s 3D surface model was recorded in the daily routine using a 3D X-ray-
free photogrammetry system in the Department of Oral and Maxillofacial Surgery at the
University of Heidelberg. All photographic scans (recording time: 1.5 ms) were performed
using a stereophotogrammetric Canfield VECTRA-M5 360 system (Canfield Science, Fairfield,
NJ, USA) using a standardized recording protocol (Figure 1).
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Figure 1. Vectra-M5 360 (Canfield Scientific Inc., Fairfield, NJ, USA) System is a three-dimensional 
stereophotogrammetry camera system that consists of five cameras. 

The system consists of 5 stereophotogrammetric cameras, allowing one to calculate a 
3D surface with textures or 2D perspectives of the scanned patient. The infant was placed 
on the chair in the middle while the images were acquired. To properly show the head 
shape, a tight cap was placed on the head (Figure 2). 

The data were orientated and spatially annotated using Cranioform Analytics 4.0 
software (Cranioform, Alpnach, Switzerland), the Mirror software 2.0 (Canfield Science, 
Fairfield, NJ, USA), and Geomagic Studio 6.0 (Raindrop Inc., Durham, NC, USA). For the 
training, frontal, lateral, and top-down images of the patient’s head were exported. 

Figure 1. Vectra-M5 360 (Canfield Scientific Inc., Fairfield, NJ, USA) System is a three-dimensional
stereophotogrammetry camera system that consists of five cameras.

The system consists of 5 stereophotogrammetric cameras, allowing one to calculate a
3D surface with textures or 2D perspectives of the scanned patient. The infant was placed
on the chair in the middle while the images were acquired. To properly show the head
shape, a tight cap was placed on the head (Figure 2).

The data were orientated and spatially annotated using Cranioform Analytics 4.0
software (Cranioform, Alpnach, Switzerland), the Mirror software 2.0 (Canfield Science,
Fairfield, NJ, USA), and Geomagic Studio 6.0 (Raindrop Inc., Durham, NC, USA). For the
training, frontal, lateral, and top-down images of the patient’s head were exported.
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Figure 2. Three images per patient: frontal, lateral, and top-down ((a) positional plagiocephaly right 
side; (b) scaphocephaly; (c) healthy). 

2.4. Approach and Preprocessing 
This study was based on 2D images (1600 × 1400 pixels, jpeg) calculated from the 

photogrammetric data. No advanced preprocessing (e.g., segmentation or ROI definition) 
was applied to the data. By using 2D images, this approach should be optimized for reg-
ular photos to be used in perspective without 3D scanning. As neuronal networks perform 
best on images of the same width and height, images were automatically rescaled to 1600 
× 1600 and center-cropped. 

Data augmentation was conducted using established methods (rotational, flip, crop, 
and color jitter) and pixels were normalized via mean image subtraction. Augmentation 
techniques were used from the PyTorch transforms library. The dataset of all annotated 
images was split into training (60%), validation (20%), and test data (20%). The test data 
set was held back and not used for training or validation so that we could validate the 
network afterward. 

2.5. Network Architecture 
Due to the limited amount of image data, training from scratch did not yield satisfac-
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the training effort as pre-trained networks can already distinguish basic image features 
like edges, color changes, etc. The loss function was equipped with individual weights to 

Figure 2. Three images per patient: frontal, lateral, and top-down ((a) positional plagiocephaly right
side; (b) scaphocephaly; (c) healthy).

2.4. Approach and Preprocessing

This study was based on 2D images (1600 × 1400 pixels, jpeg) calculated from the
photogrammetric data. No advanced preprocessing (e.g., segmentation or ROI definition)
was applied to the data. By using 2D images, this approach should be optimized for regular
photos to be used in perspective without 3D scanning. As neuronal networks perform best on
images of the same width and height, images were automatically rescaled to 1600 × 1600 and
center-cropped.

Data augmentation was conducted using established methods (rotational, flip, crop, and
color jitter) and pixels were normalized via mean image subtraction. Augmentation techniques
were used from the PyTorch transforms library. The dataset of all annotated images was split
into training (60%), validation (20%), and test data (20%). The test data set was held back and
not used for training or validation so that we could validate the network afterward.

2.5. Network Architecture

Due to the limited amount of image data, training from scratch did not yield satisfactory
results, and pre-trained networks from PyTorch were utilized. This greatly reduced the
training effort as pre-trained networks can already distinguish basic image features like edges,
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color changes, etc. The loss function was equipped with individual weights to account for the
strongly imbalanced class distribution of the five possible classification results.

Since the different 2D images—en-face, top-down, and profile—contained different
views and features of the head, one individual pre-trained CNN was used for each pro-
jection. With this approach, each individual network became an expert for the specific
projection. During preliminary testing on the available data, the pre-trained ResNet152
(RN152) performed best compared to other models (ResNext, Alexnet, InceptionV3, and
GoogLe-Net) and thus was chosen for further processing. The three individual RN152s
for each projection were trained with the corresponding image data. Each net predicted
the related images after completing the training, validation, and test loop. Before the final
classification, the performance of each network was fine-tuned individually, optimizing
loss by adapting the available hyperparameters. Resulting in three predictions, the final
result was calculated via plurality voting by summing up the certainties of each classifi-
cation network and selecting the class with the highest overall score as illustrated in the
architecture in Figure 3.
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Figure 3. The architecture of the ResNet 152 3-Net approach. For each projection (axial, frontal,
and sagittal) a ResNet152 delivers a classification. Plurality voting selects the classification with
the highest probability between the three predictions to a final prediction for the cranial deformity
(patient picture was artificially generated).

2.6. Validation and Statistical Evaluation

In this study, the final classification results were derived from the independent test
set, which was excluded from both training and validation phases, ensuring unbiased
evaluation. To enhance reliability, tenfold cross-validation was employed, involving ten
unique splits of the training and validation sets. This approach yielded an average perfor-
mance for the test set, enhancing robustness and strengthening the validity of the results.
Subsequently, global accuracy, precision, sensitivity, and specificity values were calculated
for all patients as well as for each individual class.

2.7. Addressing the Research Questions

To answer the first main research question: “Can a combination of neural networks
reliably indicate the necessity of surgery in patients with cranial deformities?”, the collective
and the respective data were partitioned into two cohorts: Cohort 1 with patients with an
indication for surgery and Cohort 2 with no indication for surgery (n = 260: healthy or
positional posterior plagiocephaly on the right and left side).
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To answer the second main research question: “Can a combination of neural networks
reliably classify different types of craniosynostosis, position-induced deformities and
healthy controls?”, the collective was partitioned into five groups (healthy, deformational
posterior plagiocephaly left, deformational posterior plagiocephaly right, scaphocephaly,
and trigonocephaly).

3. Results
3.1. Patient Collective

Following the application of inclusion criteria, 487 patients could be enrolled in this
study. In total, 73% of the cohort were male (n = 356), while 27% (n = 131) were female. The
categorized cohorts included healthy controls (n = 54), positional posterior plagiocephaly
left (n = 72), positional posterior plagiocephaly right (n = 134), scaphocephaly (n = 138),
and trigonocephaly (n = 89). There were n = 227 patients with an indication for surgery
(craniosynostosis in the form of scaphocephaly or trigonocephaly) and n = 260 patients
with no indication for surgery (healthy or positional posterior plagiocephaly on the right
and left side).

3.2. Network Performance

The final results can be seen in Tables 1 and 2. Table 1 corresponds to the differentiation
of the group with an indication for surgery or healthy control; Table 2 shows the results of the
five classes. The results for the first question (Can we determine the indication for surgery or
not?) showed an accuracy for both classes of 90%. All other statistical evaluation parameters
averaged over 85%, showing good classification potential for the underlying cohort.

Table 1. Results after tenfold cross-validation of the test dataset (n = 96) for the indication for surgery.

No Indication for Surgery (n = 52) 1 Indication for Surgery (n = 44) 2

Accuracy 0.90 (0.03) 0.90 (0.03)
Precision 0.88 (0.04) 0.92 (0.04)

Sensitivity 0.94 (0.03) 0.85 (0.05)
Specificity 0.85 (0.06) 0.94 (0.03)

1 Patients without craniosynostosis and 2 patients with craniosynostosis. Mean and standard deviation (parenthe-
sis) are shown; a value of 1 represents perfect prediction in all cases.

Table 2. Results after tenfold cross-validation of the test dataset (n = 96) for all subgroups.

Healthy
(n = 10)

Plagiocephaly
Left (n = 14)

Plagiocephaly
Right (n = 26)

Scaphocephaly
(n = 27)

Trigonocephaly
(n = 17)

Accuracy 0.93 (0.02) 0.88 (0.03) 0.84 (0.05) 0.96 (0.03) 0.93 (0.03)
Precision 0.68 (0.12) 0.69 (0.17) 0.71 (0.09) 0.92 (0.08) 0.82 (0.10)

Sensitivity 0.73 (0.13) 0.45 (0.17) 0.76 (0.15) 0.95 (0.03) 0.80 (0.14)
Specificity 0.96 (0.02) 0.96 (0.03) 0.87 (0.07) 0.96 (0.04) 0.96 (0.03)

Differentiation of the subgroups; mean and standard deviation (parenthesis) are shown. A value of 1 represents
perfect prediction in all cases.

In addressing the second research question, a tenfold cross-validation was conducted
on the statistical measures, as illustrated in Table 2. It was generally observed that the classes
with a higher number of patients (scaphocephaly, plagiocephaly right, and trigonocephaly)
exhibited superior performance. With respect to sensitivity, the scaphocephaly group
yielded the best results, while the plagiocephaly left group showed the least favorable
outcome. Precision was highest in the scaphocephaly group and lowest in the healthy
control group. A commendable level of accuracy, ranging from 84 to 96%, was achieved
across all subgroups. However, the sensitivity for the healthy and plagiocephaly patients
was notably lower, standing at 73% and ranging from 45 to 76%, respectively. Overall, the
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findings are encouraging, barring the subgroups healthy and plagiocephaly left, where the
results were less satisfactory.

Table 3 presents the metrics of true positive, true negative, false positive, and false
negative concerning the first research question related to the differentiation between the
classes indicating surgery and no surgery requirement. Both the true positive and true
negative rates exceed 90%, while the false positive and false negative rates are below 10%,
showcasing a highly satisfactory performance.

Table 3. Validation metrics for surgery and no surgery indication classes. Values are normalized to 100.

Indication for True Positive True Negative False Positive False Negative

Surgery 91.35% 92.05% 7.95% 8.65%
No Surgery 92.05% 91.35% 8.65% 7.95%

Table 4 delineates the metrics, including true positive, true negative, false positive,
and false negative, pertinent to the second research question addressing the differentiation
among the five observed classes: healthy, plagiocephaly left, plagiocephaly right, scapho-
cephaly, and trigonocephaly. Despite the less favorable performance of true positives in
the healthy class, it surpasses the randomness of a dice throw. Nevertheless, it is not on
par with the performance observed in the other groups, underscoring the necessity for
additional validation with a healthy control group.

Table 4. Validation metrics for cranial form subgroup classes. Values are normalized to 100.

Diagnosis True Positive True Negative False Positive False Negative

Healthy 48.89% 95.67% 2.00% 1.44%
Plagiocephaly left 73.36% 83.44% 1.67% 5.62%

Plagiocephaly right 88.22% 92.17% 0.67% 9.11%
Scaphocephaly 96.57% 98.56% 0.44% 2.25%
Trigonocephaly 81.22% 97.11% 0.56% 6.33%

4. Discussion

Convolutional neural networks are progressively used in the automated classification
of medical images and represent a central tool in image-based machine learning. Critical for
the performance of these methods are the amount of data, the quality of annotation, and the
homogeneity of data distribution to the classes. To our knowledge, we present the largest
collective of photogrammetry scans of craniofacial patients assessed using convolutional
neural networks. The observed 3:1 male-to-female ratio aligns with the existing literature,
particularly in the context of metopic and sagittal synostosis [32]; we, therefore, deem it a
representable collective for the representative classes.

Despite the relatively modest sample size of 487 patients for AI-based endeavors,
we demonstrated the capability of a convolutional neural network (CNN) to distinguish
prevalent craniosynostosis conditions from positional deformities or healthy toddlers.

Pertaining to the first research question, the classification task delineating the two
groups—“surgery vs. no surgery indication”—yielded an accuracy of 90%, a sensitivity
of 94%, and a specificity of 85%. In addressing the second research question, the accuracy
metrics are encouraging, spanning a range of 84–96% for the classification across all classes,
alongside appreciable sensitivity and specificity for well-represented subgroups. However,
the sensitivity for the underrepresented healthy patients merely stands at 45%, which is
considered inadequate.

The variations in detection performance could stem from several factors. Firstly, the
limited dataset of 487 patients may not fully capture the diverse spectrum of craniofacial de-
formities, potentially leading to suboptimal performance, especially for underrepresented
groups like healthy patients. The imbalance in the dataset, with a higher prevalence of
certain deformities, might contribute to the disparity in sensitivity and specificity across
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different classes. Additionally, the reliance on pre-trained neural networks, particularly
the ResNet152 architecture, could introduce biases. While pre-trained networks expedite
learning by recognizing basic features, they might not be optimally tuned for the nuances
of craniofacial morphology. Due to the scarcity of pre-trained networks for 3D data, we see
another potential limitation in adapting CNNs to 2D images derived from 3D scans, as 3D
information might be lost in the process.

Furthermore, the intricate nature of craniofacial anatomy and the challenge of accu-
rately differentiating subtle deformities from normal variations may contribute to variations
in performance.

A validation study consecutive to performance optimization would be needed to
define a common threshold for a possible diagnostic tool. Sensitivity towards underrep-
resented healthy cases, marked at 45%, underscores the necessity for additional data to
achieve a more robust classification. Our focus on isolated, non-syndromic craniosynostosis
subtypes resulted in the exclusion of coronal or lambdoid synostoses, affecting the general-
izability of findings. Furthermore, the study’s population, largely comprising patients with
suspected positional deformities, introduces a potential bias in the healthy control group.
To enhance the clinical relevance and address these limitations, future research should
prioritize larger and more diverse datasets, consider a wider spectrum of craniosynostosis
subtypes, and meticulously balance patient groups to ensure representative outcomes.

The male-to-female ratio within our cohort stands at 2.7 to 1. Notably, the existing
literature cites a ratio range of 3 to 3.5 to 1 in cases of trigonocephaly and scaphocephaly,
thus rendering our cohort fairly representative. However, a certain degree of bias is inherent,
given that toddlers evaluated in a specialized craniofacial tertiary care center seldom exhibit
symmetrical facial features (considered healthy). Our cohort also encompasses individuals
who were initially suspected of positional deformity yet were subsequently categorized as
healthy owing to a low cranial vault asymmetry index (CVAI). Consequently, it remains
plausible that patients exhibiting mild cranial deformity were included within the healthy
control group.

One of the greatest weaknesses of our study was the low number of healthy control
group patients and the possible biases of this group. Acquiring 3D scans of healthy
children’s head shapes from a craniofacial point of view could offer a wealth of data for an
approach like ours. Inviting voluntary participation from parents, coupled with educational
sessions at pediatric clinics, could facilitate this acquisition. It is imperative to obtain
broad informed consent, ensuring parents fully grasp the study’s scope. Anonymizing
data would uphold privacy, while a multi-center approach, involving collaboration with
various healthcare centers, would yield a diverse dataset. Integrating 3D scanning within
routine pediatric screenings could minimize inconvenience, and ensuring easy accessibility
to scanning facilities will help avoid selection bias. Adequate training for personnel
conducting the scans, robust ethical oversight, and engaging with ethical review boards
will be key in maintaining quality and ethical standards. A feedback loop with participating
families and healthcare providers could help continuously refine the acquisition process,
making it a more streamlined and ethically sound endeavor. In any data science-based
approach, the scarcity of quality data is limiting. It is therefore recommended to prepare
clinical data for the future in a GDPR-conforming way to allow data use and sharing.

For our collective, another possibility to augment the population of healthy controls and
thus reduce class imbalance would have been the use of a web crawler to acquire photographs
of healthy infants, as utilized by Agarwal et al. [33]. Generally, deep learning algorithms
perform better when large datasets are used during training [34]. However, due to the low
prevalence of isolated, non-syndromic craniosynostosis, it is difficult to obtain large datasets
for each craniosynostosis subtype. Smaller datasets can lead to suboptimal results. As coronal
or lambdoid synostoses were grossly underrepresented in our study population, these groups
were excluded. To reduce class imbalance, we adjusted weights on the loss function to
emphasize underrepresented groups and applied regularization techniques.
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In the scope of this project, we also tested an ensemble approach, where three different
network architectures (ResNet-152, ResNext 50, and GoogLeNet) were used to classify
each projection. Through this, we aimed to decrease the individual classification error
and obtain an overall better classification performance. However, as the performance of
the ResNet-152 approach proved close to optimal, the ensemble approach did not exhibit
further improvement compared to the shown results.

An approach combining 3D photogrammetry and deep learning was conducted by
de Jong et al. with a precision of 99.5% [35] for differentiation between images of the
most common craniosynostosis and those of healthy patients. Yet, positional deformities
were not assessed in this study, and the data required extensive preprocessing before they
could be subjected to analysis. Most other studies focus on isolated characteristics and
use extensive preprocessing as well. Such studies quantified the cranial shape changes
consecutively to corrective surgery [36] or therapy of positional plagiocephaly [37,38].

An approach that used photography as a basis to classify sagittal, coronal, and metopic
synostosis used a Res-Net with fewer hidden layers. This approach was performed with
an overall sensitivity of 90.6% [33], showing comparable results with similar limitations
when considering our findings. As the discrimination of positional plagiocephaly and
craniosynostosis can be challenging for inexperienced practitioners, we see our approach
as more suitable for this target group. Nevertheless, the sensitivity and specificity of our
neuronal net leave room for improvement, especially when considering the discriminatory
performance of the underrepresented groups.

Several other approaches use deep learning to classify craniosynostosis, yet most of
them are conducted on the basis of CT imaging [25,39]. The utilization of machine learning
not only holds promise for more accurate and early diagnosis but also for understanding
the underlying morphological changes associated with craniosynostosis if methods of
“explainable AI” can be applied.

However, most of these studies necessitate a large dataset and extensive preprocessing,
which could be a limiting factor in real-world clinical settings. The incorporation of
machine learning in craniosynostosis classification underlines an evolving interdisciplinary
collaboration between medical and artificial intelligence domains, aiming to enhance
diagnostic precision and patient care outcomes. The comparative examination of these
machine learning approaches illustrates a burgeoning field with substantial scope for future
research, particularly in developing models that require minimal preprocessing and are
adept at handling a diverse range of data.

5. Conclusions

In conclusion, our study presents a promising approach to convolutional neural
networks for craniosynostosis classification based on photogrammetry scans as a screening
tool for the future. The findings support the assumption that more data for subgroups will
enhance the performance, and further research with larger numbers in training is needed.

- Accuracy and specificity: The classification of surgical indication demonstrated a
commendable accuracy of 90%, underscoring the diagnostic prowess. Specificity at
85% emphasizes the reliability of distinguishing cases requiring surgery from those
that do not.

- Performance disparities: notably, sensitivity towards underrepresented healthy cases
stood at 45%, indicating a need for increased data inclusivity for more equitable model
performance.

- Ensemble approach: while an ensemble approach incorporating diverse network
architectures was explored, the study revealed that the ResNet-152 approach alone
yielded optimal performance, providing valuable insights into model optimization.

- Future directions: to fortify our findings, future research should prioritize expanding
datasets, encompassing a broader range of craniosynostosis subtypes, and refining
model sensitivity for enhanced clinical applicability.
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