

31. Deutscher Flammentag

27.-28. Sept. 2023

TU Berlin

An assessment of fluidized bed dynamics with CPFD simulations

F. Zhang, S. Tavakkol, S. Dercho, L. Bohlender, T. Zirwes, M. Zeller, J. Vogt, D. Stapf

Institute for Technical Chemistry (ITC)

Outline

□ Motivation

□ Simulation method

□ Numerical setups

Results

- □ Fluidization behavior
- □ Effect of gas temperature
- □ Effect of up-scaling
- □ Summary

Chemical recycling of plastic wastes

- □ ~350 Mt plastic waste per year worldwide
 - 22% mismanaged, 9% recycled
- □ Chemical recycling of plastic wastes
 - Contaminated/mixed plastics
- □ Challenges
 - Process design, efficiency, product yield, scale-up, economic viability
- □ Fluidized bed technology
 - Enhanced, homogeneous heating
 - Potential for scale-up
- □ Simulation of lab-scale fludized bed
 - Model validation, hydrodynamics

https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-managementand-recycling-fall-short.htm

Mismanaged 22%

Landfilled 49%

incinerated 19%

recycled

Feichi Zhang | An assessment of fluidized bed dynamics with CPFD simulations

Karlsruher Institut für Technologie

3D simulations of cold-mode fluidized bed

□ Numerical setups

- Cylindrical reactor
- Bed material: quartz sand
- Fluidizing agent: N₂
- **PSD**: $d_{\text{mean}} = 2.3 \text{ mm}$
- Diameter: $d_R = 3, 5, 10 \text{ cm}$
- Gas temperature: $T_G = 25$ and $500 \,^{\circ}C$
- OpenFOAM-v2206
- Grid resolution: 1 mm
- No. parcels: up to 32 mil.

Feichi Zhang | An assessment of fluidized bed dynamics with CPFD simulations

Outlet

600 mm

Computational particle fluid dynamics (CPFD)

Euler-Lagrange modeling (4-way coupling)

Multiphase particle-in-cell (MPPIC) for modeling collisional force

Continuous phase – gas Balance of momentum (Navier-Stokes equations)

$$\frac{\partial(\alpha_g \rho_g \vec{u}_g)}{\partial t} + \nabla(\alpha_g \rho_g \vec{u}_g \vec{u}_g)$$
$$= -\nabla p + \nabla(\alpha_g \vec{\tau}_{eff}) + \alpha_g \rho_g \vec{g} + \vec{S}_u$$

$$\vec{S}_u = -\frac{1}{V_{cell}} \sum_{i=1}^{n_{p,cell}} \vec{F_d}$$

Disperse phase – particle Conservation of momentum (Newton's 2nd law)

$$m_p \frac{d\vec{u}_p}{dt} = \sum \vec{F}_{external}$$

 $= (\vec{F}_d) + \vec{F}_g + (\vec{F}_c) + \vec{F}_i$

$$\vec{F_c} \propto \nabla \tau_p \quad \tau_p = \frac{p_s * \alpha_p^{\beta}}{\alpha_{packed} - \alpha_p}$$

21

Results

Fluidization behavior

Comparison with experiments

- \square Bed height h_B increases with m_S and u_G
- \square Pressure drop Δp increases with m_S and remains almost constant with u_G

Pressure drop Δp

Dynamic properties of fluidized bed

Specific kinetic energy of sand k_s and bubble frequency f_B

 \square Increase of k_S with m_S and u_G

 \square f_B decreases inversely proportionally with m_S

Impact of gas temperature

- $\square Increase of gas density and viscosity with T_G$
- **\Box** Same fluidization behavior at increased T_G
- \square Slight increase of h_B and Δp

<i>T_G</i> [°C]	25	500
$ ho_{G}$ [kg/m ³]	1.14	0.44
v_{G} [m ² /s]	1.6e-5	8e-5
h _B [cm]	17.5	19.0
∆p [mbar]	18.9	19.8

 m_{S} = 390 g, u_{G} = 21 cm/s

Impact of gas temperature

- $\square Increase of drag force with T_G$
 - Increase of k_S by ca. 50%
 - f_B remains almost constant

T_G [°C]	25	500
$k_S [{ m mJ/kg}]$	13.6	19.2
f_B [Hz]	3.7	4.0

Impact of scale-up: setups

□ Up-scaling at

- Constant Δp and h_B
- Bubbling fluidization regime
- **\square** Increase of m_S with $d_R: m_S \propto d_R^2$
- Simulation setups
 - Same resolution for gas phase (1 mm)
 - Proportionally increased No. of Lagrange parcels with m_S

d_R	3 cm	5 cm	10 cm
m_S	140 g	390 g	1600 g
u_G	21 cm/s	21 cm/s	21 cm/s
N _P	2.9 mil.	8.0 mil.	32.0 mil.

Regime diagram for gas-solid

fluidized bed according to Grace

Grace JR, Contacting modes and behaviour classification of gas-solid and other two-phase suspensions.1986

12

Impact of scale-up: bubble formation

Impact of scale-up: dynamic properties

- Increased bubble-to-wall distance
- Enhanced bubble formation
- □ Multiple arrays of rising bubbles at $d_R = 10$ cm
- Specific kinetic energy remains constant
- Bubble frequency increases

$h_B, \Delta p$ $\approx \text{const.}$	d_R [cm]	3	5	10
	<i>h_B</i> [cm]	18.0	17.5	17.4
	Δp [mbar]	21.0	20.2	20.0
$k_S \approx \text{const.}$	\bar{k}_{S} [mJ/kg]	18.8	19.6	19.3
f_B \uparrow	f_B [Hz]	2	3.2	3.8

Summary

- Simulation of cold-mode fluidized bed
- \Box k_S increases with m_S and u_G
- \Box f_B decreases with m_S and remains constant with u_G
- \Box k_s increases at elevated gas temperature, while $f_B \approx \text{const.}$
- □ Up-scaling leads to enhanced bubble formation and an increase of f_B while $k_S \approx \text{const.}$
- □ Importance of k_s and f_B for characterizing hydrodynamic behaviors of fluidized bed

Outlook

- Mixing of plastic particles, contact heat transfer, pyrolysis reactions
- Correlation of k_s and f_B with heating rate and pyrolysis reaction

Thank you for your attention!

Karlsruher Institut für Technologie

Particle-resolved

simulation

Plastic pyrolysis

in fluidized bed

