
Data-Driven Classification Methods
for Craniosynostosis Using 3D

Surface Scans

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für

Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Matthias Schaufelberger, M.Sc.

geb. in Karlsruhe

Tag der mündlichen Prüfung: 14. Dezember 2023
Referent: Prof. Dr. rer. nat. Werner Nahm
Korreferent: Prof. Dr.-Ing. Michael Heizmann



This document - excluding the cover, pictures, tables and graphs - is licensed under
the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/



Abstract

This work investigates into radiation-free classification of craniosynostosis with
an additional focus on including data augmentation and using synthetic data as a
replacement for clinical data.

Motivation: Craniosynostosis is a condition affecting infants and leads to head
deformities. Diagnosis using radiation-free 3D surface scans is a promising alter-
native to traditional computed tomography (CT) imaging. Clinical data are only
sparsely available due to the low prevalence and difficulties in anonymization. This
work addresses these challenges by proposing new classification algorithms for
craniosynostosis, by creating synthetic data for the scientific community, and by
demonstrating that it is possible to fully replace clinical data with synthetic data
without losing classification performance.

Methods: A statistical shape model (SSM) of craniosynostosis patients is created
and made publicly available. A 3D-2D conversion from the 3D mesh geometry
to a 2D image is proposed which enables the usage of convolutional neural net-
works (CNNs) and data augmentation in the image domain. Three classification
approaches (based on cephalometric measurements, based on an SSM, and based
on the 2D images using a CNN) to distinguish between three types of craniosynos-
tosis and a control group are proposed and evaluated. Finally, the clinical training
data are fully replaced with synthetic data by an SSM and a generative adversarial
network (GAN).

Results: The proposed CNN classification outperformed competing approaches
on a clinical dataset of 496 subjects and achieved an F1-score of 0.964. Data augmen-
tation increased the F1-score to 0.975. Attribution maps of the classification decision
showed high amplitudes on parts of the head associated with craniosynostosis.
Replacing the clinical data with synthetic data created by an SSM and a GAN still
yielded an F1-score of more than 0.95 without the model having seen a single clinical
subject.

Conclusion: The proposed conversion of 3D geometry to a 2D encoded image
improved performance to existing classifiers and enabled data augmentation during
training. Using an SSM and a GAN, clinical training data could be replaced with
synthetic data. This work improves existing diagnostic approaches on radiation-free
recordings and demonstrates the usability of synthetic data which makes clinical
applications more objective, interpretable, and less expensive.
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Zusammenfassung

Diese Arbeit befasst sich mit strahlungsfreier Klassifizierung von Kraniosynostose
mit zusätzlichem Schwerpunkt auf Datenaugmentierung und auf die Verwendung
synthetischer Daten als Ersatz für klinische Daten.

Motivation: Kraniosynostose ist eine Erkrankung, die Säuglinge betrifft und zu
Kopfdeformitäten führt. Diagnose mittels strahlungsfreier 3D Oberflächenscans
ist eine vielversprechende Alternative zu traditioneller computertomographischer
Bildgebung. Aufgrund der niedrigen Prävalenz und schwieriger Anonymisier-
barkeit sind klinische Daten nur spärlich vorhanden. Diese Arbeit adressiert diese
Herausforderungen, indem sie neue Klassifizierungsalgorithmen vorschlägt, syn-
thetische Daten für die wissenschaftliche Gemeinschaft erstellt und zeigt, dass es
möglich ist, klinische Daten vollständig durch synthetische Daten zu ersetzen, ohne
die Klassifikationsleistung zu beeinträchtigen.

Methoden: Ein Statistisches Shape Modell (SSM) von Kraniosynostosepatienten
wird erstellt und öffentlich zugänglich gemacht. Es wird eine 3D-2D-Konvertierung
von der 3D-Gittergeometrie in ein 2D-Bild vorgeschlagen, die die Verwendung
von Convolutional Neural Networks (CNNs) und Datenaugmentierung im Bild-
bereich ermöglicht. Drei Klassifizierungsansätze (basierend auf cephalometrischen
Messungen, basierend auf dem SSM, und basierend auf den 2D Bildern mit einem
CNN) zur Unterscheidung zwischen drei Pathologien und einer Kontrollgruppe
werden vorgeschlagen und bewertet. Schließlich werden die klinischen Trainings-
daten vollständig durch synthetische Daten aus einem SSM und einem generativen
adversarialen Netz (GAN) ersetzt.

Ergebnisse: Die vorgeschlagene CNN-Klassifikation übertraf konkurrierende An-
sätze in einem klinischen Datensatz von 496 Probanden und erreichte einen F1-Score
von 0,964. Datenaugmentierung erhöhte den F1-Score auf 0,975. Zuschreibungen
der Klassifizierungsentscheidung zeigten hohe Amplituden an Teilen des Kopfes,
die mit Kraniosynostose in Verbindung stehen. Das Ersetzen der klinischen Daten
durch synthetische Daten, die mit einem SSM und einem GAN erstellt wurden,
ergab noch immer einen F1-Score von über 0,95, ohne dass das Modell ein einziges
klinisches Subjekt gesehen hatte.

Schlussfolgerung: Die vorgeschlagene Umwandlung von 3D-Geometrie in ein 2D-
kodiertes Bild verbesserte die Leistung bestehender Klassifikatoren und ermöglichte
eine Datenaugmentierung während des Trainings. Unter Verwendung eines SSM
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und eines GANs konnten klinische Trainingsdaten durch synthetische Daten ersetzt
werden. Diese Arbeit verbessert bestehende diagnostische Ansätze auf strahlungs-
freien Aufnahmen und demonstriert die Verwendbarkeit von synthetischen Daten,
was klinische Anwendungen objektiver, interpretierbarer, und weniger kostspielig
machen.
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Chapter 1
Introduction

1.1 Motivation

In the past decade, machine learning (ML) approaches have been a driver for
technological progress in biomedical engineering and clinical healthcare [1]. Their
ability to learn an underlying function and extract statistical patterns from training
data not observable by humans often make them more accurate, effective and less
expensive compared to traditional approaches. Due to technological advancements
in computing power and the trend toward collecting large amounts of data [2],
data-driven approaches are likely to continue being one of the dominant drivers in
the future of healthcare [3]. As such, they have been consistently advancing into
image analysis, modeling, segmentation, and classification, especially if data are
available in abundance. However, this is usually not the case for rare diseases such
as craniosynostosis [4].

Craniosynostosis affects infants and is a condition characterized by irregular
growth patterns of the skull due to the premature fusion of head sutures, leading
to distinctive head deformities. Craniosynostosis is linked to increased intracranial
pressure [5] which has been connected to reduced brain growth and diminished
neurocognitive development in planning, attention, processing speed, vision, and
speech [6, 7]. Surgical remodeling of the skull is performed to reduce intracranial
pressure and to achieve a physiological head shape [8]. Early intervention and
diagnosis are key to limit neurological consequences and to ensure regular skull
growth [9]. Diagnosis requires visual assessment, palpation, and medical imaging
with computed tomography (CT) being the gold standard [10]. CT imaging is
not only expensive, but also exposes children to ionizing radiation which should
be avoided and performed only when absolutely necessary [8]. In contrast, 3D
photography such as stereophotography and laser scanning has been proposed
for routinely monitoring and documenting patients [11]. This cost-effective and
radiation-free image modality calls for the development of ML approaches to enable
an automated and radiation-free diagnosis of craniosynostosis.
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2 Chapter 1. Introduction

However, the low prevalence of craniosynostosis [12] inherent to rare diseases
impedes the creation of large clinical datasets. The lack of data is further complicated
by the sensitive nature of the patient recordings which show the patients’ faces and
are therefore subject to strict patient data restrictions. Consequently, there are no
publicly available datasets of craniosynostosis patients and existing classification ap-
proaches could only be tested on in-house datasets which reduces comparability [13].
In the long run, a diagnostic prediction tool requires acceptance and trust of parents
and physicians [14]. For the computer-supported diagnosis of craniosynostosis, this
could be achieved by using diverse and selected datasets, by making training data
accessible to independent experts, and by using classification algorithms which give
an explanation or interpretation about the diagnostic prediction that they make.

Diverse approaches to overcome the described challenges have to be developed:
Synthetic data might replace clinical data as it cannot be linked to an individual
and can be published to increase the availability of publicly available training and
evaluation data. A conversion of the 3D patient surface scans into a modality which
does not disclose patient identity could facilitate data sharing. Most importantly, it is
also required to develop interpretable and well-performing classification approaches
suitable to use anonymous clinical data, synthetic data, and data augmentation.

1.2 State of the Art

According to bibliometric studies [15, 16], the research field of craniosynostosis is
dominated by clinical, neurogenetic, and surgical publications, while engineering
studies only play a minor role. CT imaging is the most established imaging modali-
tiy [17], while 3D surface scanning [11] has been emerging in the last decade [18].

CT imaging has been used for both assessment and computer-assisted diagnosis
of craniosynostosis [17, 19]. This included studying shape differences between patho-
logical and physiological subjects [19], statistical analysis [20], shape quantification
for brain assessment of craniosynostosis patients [21], and shape analysis using atlas-
based approaches [22]. Clinically recorded ratios of width, length, and diagonal
measurements have been extracted automatically [23], as well as circumference-
based measurement [24]. Classification approaches have been proposed for binary
classification of sagittal synostosis using Fourier analysis [25], image descriptors [26],
2D skull bone projection [27], multi-view CT projection [28] with up to 90.5 % classi-
fication accuracy, and multi-class classification of craniosynostosis using a statistical
shape model (SSM) and manually defined shape descriptors [29] with reported
accuracies of 95.7 % on 141 cases.

The introduction of 3D surface scanners enabled the radiation-free recording of
craniosynostosis patients before and after clinical intervention. In particular, SSMs
were frequently used for shape quantification: Statistical differences between the
principal components of a pathology-mixed model and a physiological model could
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be observed [30] and combinations of principal components could be correlated with
clinical length measurements [31]. SSMs and principal component analysis were also
used to quantify shape changes between pre-and post-operative craniosynostosis
patients using healthy shape models [32, 33] or asymmetry models [34]. Using
distance-based measurements with respect to a pre-defined center point [35] is
an alternative to statistical shape modeling and has been used to extract head
volume [36] and to automatically compute cephalometric parameters [37]. The first
classification approach using 3D surface scans [13] was published in 2020 (during
the implementation of this thesis) and demonstrated a classification accuracy of
99.5 % on 196 cases using a feedforward neural network and triangular ray tracing
with distance extraction. While it is one of the most promising approaches, manual
alignment of the scans was required and data augmentation or synthetic data could
not be added on the fly [13].

Although it has been acknowledged that a lack of data is detrimental to cur-
rent classification models [38, 39], and it has been advocated for the inclusion of
synthetic data [13], no study synthesized or augmented datasets using SSMs or
generative adversarial networks (GANs). The creation of publicly available clinical
or synthetic datasets could increase reproducibility [40] and collaboration. The lack
of publicly available data also leads to in-house validation of the models, which
reduces comparability, especially if no other classification method has been tested for
comparison. The usage of increasingly complex neural networks (NNs) [13, 28, 38]
could decrease trust of physicians and parents alike [41–43] which could be solved
with interpretable models or even replacing them with inherently explainable white
box models.

1.3 Research Question and Goals of This Work

The goal of this thesis is to improve data-driven and radiation-free classification
of craniosynostosis by developing new methods for the classification of this condi-
tion. As clinical data are rare, the dependence on them is reduced by developing
approaches for synthetic data generation and data augmentation during model
training. These two problem definitions lead to the following research questions,
theses and hypotheses:
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Research question I

What are suitable data-driven classification methods for craniosynostosis?

Thesis I

Both neural-network-based methods and non-neural-network-based methods
are capable of classifying craniosynostosis.

Hypothesis I

An F1-score of 0.95 or higher can be obtained by neural-network-based meth-
ods and non-neural-network-based methods.

Research question II

What are suitable ways to reduce the dependency on clinical data for the
classification of craniosynostosis?

Thesis II

Synthetic data can replace clinical data during training with similar perfor-
mance on clinical test data.

Hypothesis II

If trained on synthetic data, the F1-score of the classifier is at most 0.05 smaller
compared to the classifier trained on clinical data.

Both research question are strongly rooted in practical applicability, often a
typical characteristic in the field of biomedical engineering. They aim to contribute
to the field of image-guided diagnostic of craniosynostosis tailored toward the
clinical use-case. Both questions have the underlying assumption of a common
dataset for comparison. From an engineering perspective, the following milestones
are required to answer the proposed questions and to overcome the presented
challenges:

• Systematically evaluate classification approaches:
Develop new and improve existing classification methods and systematically
compare them in terms of classification performance to answer the proposed
questions.

• Encode the 3D geometry into an anonymous representation:
Develop an approach to encode the 3D geometry of the head into a representa-
tion suitable for classification, e.g. a 2D image. This makes data sharing easier
and might improve classification performance.
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• Synthesize pathology-specific data:
Translate, incorporate and develop methods to synthesize realistic and pathol-
ogy-specific data (for example using an SSM). This enables the creation of
synthetic datasets.

• Increase data availability:
Make synthetic data publicly available, contributing to the scientific commu-
nity, and enabling other scientists to test their algorithms in a controlled and
comparable environment. This facilitates collaboration and makes develop-
ment of applications related to craniosynostosis easier.

1.4 Structure of This Thesis

The structure, main parts and their dependencies are visually outlined in Fig. 1.1.

Part I describes the medical and mathematical fundamentals required to understand
the methods and results:

• Chapter 2 gives a brief introduction about the pathogenesis, diagnosis, and
therapy of craniosynostosis.

• Chapter 3 provides an overview about the most common ML methods for
classification (NN-based and non-NN-based) as well as GAN-based data
synthesis.

• Chapter 4 introduces the concept of statistical shape modeling, including their
creation and evaluation.

Part II introduces the clinical dataset to evaluate the classification algorithms, the
preprocessing, and the published SSM:

• Chapter 5 introduces the clinical dataset and preprocessing used in this thesis.
• Chapter 6 revolves around the creation, evaluation, and publication of a

pathology-specific SSM and demonstrates some of its clinical use cases.

Part III comprises a collection of proposed classification methods for craniosynosto-
sis and contains the main methodological contributions:

• Chapter 7 presents a multi-height classification approach based on clinically
established cephalometric parameters.

• Chapter 8 introduces a classification approach based on the shape parameter
vector of a cranium SSM derived from the work in Chapter 6.

• Chapter 9 showcases the 3D-2D conversion of the 3D head shape into a 2D
image in combination with a classification approach based on a convolutional
neural network (CNN).
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Figure 1.1: This schematic shows the main parts of this work with their dependencies and their rela-
tionship to the final experiment. From left to right: Part II, III, and IV.

Part IV combines the CNN-based classification method with multiple data synthesis
approaches to replace clinical data with synthetic data:

• Chapter 10 presents a data synthesis pipeline and performs a classification of
craniosynostosis on synthetic data alone.

Part V outlines follow-up-studies, summarizes the main findings, and highlights
the consequences for the field:

• Chapter 11 proposes the immediate follow-up steps for clinical applicability
and explores possible future paths.

• Chapter 12 concludes this thesis by summarizing the contributions and an-
swering the scientific questions posed in the introduction.



PART I

FUNDAMENTALS





Chapter 2
Medical Fundamentals

2.1 Craniosynostosis and Head Deformities

2.1.1 Skull Development in Infants

During the first years of life, the human brain grows rapidly and requires sufficient
space to expand. The neurocranium is the protective case of the brain and, together
with the facial skeleton, forms the human skull. Eight bones are considered to be
part of the neurocranium and the four largest ones (frontal bone, the left and right
parietal bones, and the occipital bone) form the calvaria, the top part of the skull [44].

The cranial sutures (depicted in Fig. 2.1) occupy the space between the cranial
bones and consist of collagen fibres which allow tiny movements essential for the
growth of the skull and head. After a couple of months, the sutures begin to ossify
and have turned to bone after one to two years [45]. During regular growth, the
lambdoid suture starts fusing after 2–3 months, the metopic suture after 3–9 months,
and the sagittal and the coronal sutures after 18–24 months [46]. The ossification
continues the whole lifetime and different degrees of ossification are even considered
for forensic age estimation [47]. Brain growth is considered the driver for calvarial
expansion, therefore it is essential for a uniform and regular head growth to allow
bone movement and expansion which requires that the sutures are not yet fully
ossified. If the closure of one or multiple skull sutures happens prematurely, this is
called craniosynostosis.

2.1.2 Pathology and Pathogenesis of Craniosynostosis

Craniosynostosis is characterized by the premature ossification of skull sutures in
infants and results in irregular growth patterns. Its reported prevalence is three to
six cases per 10,000 live births [12, 48–50]. Due to the low prevalence, the American
National Organization for Rare Disorders has included craniosynostosis into the list

9
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Frontal suture

Frontal fontanelle

Coronal suture

Sagittal suture

Occipital fontanelle
Lambdoid suture

Figure 2.1: Position and names of the cranial sutures and fontanelles in a healthy infant. Adopted
from [45].

of rare diseases. Head deformities related to craniosynostosis have been described
since the antiquity [51]. The scientific foundation beyond simple descriptions of the
resulting shape were laid by Rudolf Virchow in 1851 [52, 53], who linked the head
deformities to the closure of skull sutures and created the scientific foundation of
this disease. He hypothesized the closure of sutures leads to compensatory growth
perpendicular to the suture, summarized as Virchow’s law, which still holds up to
date.

Craniosynostosis can occur isolated (affecting one suture) or non-isolated (affect-
ing multiple sutures). Multi-suture synostosis is the minority of cases and accounts
for approximately 5 to 20 % of all occurrences, the numbers vary depending on the
population, region, and medical access of the community [50, 54]. The causes of
multi-suture synostosis are often syndromic conditions such as Crouzon, Muenke,
or Pfeiffer syndromes, which have genetic reasons and tend to show multiple and
distinct craniofacial features [55]. Isolated craniosynostosis is the most common type
of craniosynostosis and its causes are believed to be multifactorial: Pathogenetic
research suggests primarily genetic involvement due to the increased occurrence
of craniosynostosis in the same families [50]. Some genetic mutations have been
identified to cause premature fusion of specific sutures [56]. Other risk factors such
as smoking during pregnancy have been attributed to increased risk of craniosynos-
tosis [57].

Isolated craniosynostosis can be classified into sagittal synostosis (scaphocephaly),
metopic synostosis (trigonocephaly), unilateral coronary synostosis (anterior pla-
giocephaly), lambda synostosis (posterior plagiocephaly) and bicoronal synostosis
(brachycephaly).1 The most common types are sagittal synostosis with around
50 % [54] and metopic synostosis with around 30 % of all cases [50], while uni- and

1Although bi-coronal synostosis involves two sutures, the medical community counts it as
an isolated type of craniosynostosis.
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control coronal metopic sagittal

Figure 2.2: Sutures and their closure and corresponding head deformities associated with them that
will be relevant to this work.

bi-coronal synostosis together account for around 15–20 % of all cases [58], and
lambda synostosis around 2 % [58]. Symptoms of isolated craniosynostosis are a de-
formity of the neurocranium and consecutively deformations of the viscerocranium
(the ears, facial and dental parts) can be observed.

Craniosynostosis can cause aesthetic, acoustic, ophthalmological complications
and, most severely, has been linked to elevated intracranial pressure [5, 59], which
can lead to reduced brain growth and reduced neuropsychological development
such as vision impairment and slowed development of language, speech, and visual
spatial skills [6, 7]. However, as the grow conditions for the brain worsen with time,
the risk of a reduced mental development and impairment is the main reason why
parents and physicians try to act fast. Early diagnosis and effective treatment are
therefore key.

2.1.3 Diagnosis and Treatment of Craniosynostosis

As dictated by Virchow’s Law, the premature closure of a suture limits the expansion
of the skull perpendicular to the fused suture, causing compensatory growth along
the suture, resulting in distinct head shapes [53], depicted in Fig. 2.2. In clinical
practice, diagnosis is performed in specialized medical hospitals and consists of
visual examination, palpation of the suture positions and fontanels, cephalometric
measurements, and medical imaging.

Computed tomography (CT) imaging is the gold standard for diagnosis as well
as surgical planning and is still routinely performed in many craniofacial centers
worldwide. However, this exposes infants to ionizing radiation which should be
avoided [8]. Plain radiography can sometimes be used to reduce the impact of
radiation, but is less common [10]. Alternative imaging methods include black bone
magnetic resonance imaging (MRI) [60], ultrasound sonographic imaging [61], and
3D photography. MRI has the notable drawback that the infant needs to be sedated
during image acquisition to prevent moving [60, 62]. Ultrasound imaging and 3D
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photography are radiation-free and broadly available diagnostic options. Ultrasound
sonographic imaging is the most operator-dependent imaging routine and requires
a well-trained expert to visualize the entire suture and to correctly interpret the
image [10]. As a radiation-free alternative to traditional CT, 3D surface scans provide
inexpensive and fast means to objectively quantify head shape without exposure to
radiation or sedation. 3D surface scan recordings are typically used to monitor the
condition before surgery and the head development after the operation [11].

Surgical treatment involves resection of the synostosis as well as remodeling
and reshaping of the cranial vault. The operation aims to prevent abnormal brain
growth, thus enabling a regular development of skull and face [8, 63]. The operation
is often performed during the first year of life to ensure sufficient re-ossification
and to reduce strong deformations in the first place [9]. The introduction of several
surgical methods has made the surgical treatment safe since the 1960s [51]. Compli-
cations during surgery are rare [64] and in most cases a normalized head shape is
achieved [65]. For further reading, it is referred to [66].

2.1.4 Non-synostotic Positional Plagiocephaly

The most important differential diagnosis for craniosynostosis are head deformi-
ties without suture fusion. These head deformities are mainly manifested as a
non-synostotic posterior plagiocephaly. As opposed to craniosynostosis, causes of
positional plagiocephaly are mostly caused by environmental circumstances such as
unilateral pressure such as static positioning. Some children have the tendency to
lie on one side which can contribute to positional plagiocephaly [67]. The success of
the “back to sleep” campaign in the United States to prevent sudden infant death
syndrome (SIDS) is widely attributed to a rise of positional plagiocephaly cases in
infants [6, 50, 67, 68]. Back sleeping is one of the most effective ways to prevent SIDS
which inadvertently also led to an increased incidence of positional plagiocephaly.
Positional skull deformities are generally benign, reversible, and do not require sur-
gical intervention. They are often treated with positioning pillows, helmet therapy
or changes in positioning behavior [69, 70].

Positional plagiocephaly should not be confused with coronary synostosis or
lambda synostosis. As positional plagiocephaly is more common than both coronary
and lambda synostosis combined, the term “plagiocephaly” often refers to positional
plagiocephaly.

2.2 Cephalometric Measurements

The two most important metrics for the evaluation of head asymmetry and shape
are cephalic index (CI) (also sometimes referred to as “cephalic ratio”) and cranial
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Figure 2.3: Measurement visualization of width w, length l, and the two diagonals d30◦ and d−30◦ to
compute cephalic index (CI) and cranial vault asymmetry index (CVAI) on the head viewed from top.

vault asymmetry index (CVAI). Both measurements are depicted in Fig. 2.3. CI
describes the ratio of width w over length l of the head, computed as

CI = w

l
. (2.1)

In the medical community, the measurement is often multiplied by 100 % to
avoid a range close to 1. The CI is influenced by several craniofacial deformities
such as sagittal synostosis and coronal synostosis. CVAI is a measure of asymmetry
and is computed at ±30◦ [71] on the diagonals at d30◦ and d−30◦ as

CVAI = d−30◦ − d30◦

max(d−30◦ , d30◦)
. (2.2)

CVAI is influenced especially by plagiocephaly and lambdoid synostosis, but
also to a lesser extend by metopic synostosis. A visualization of the measured
diagonals is provided in Fig. 2.3.

The physiological range of the mean CI for infants has been reported to be
roughly between 0.79 and 0.92 and depends on age, extraction position, and eth-
nicity [23, 72–78]. Early measurements used calipers, but CT and 3D surface scan
imaging enable computer-assisted determination of cephalometric measurements.





Chapter 3
Machine Learning Fundamentals

3.1 Non-Neural-Network-Based Machine
Learning Models

This section gives a brief overview about popular supervised machine learning
(ML) models such as kernel-based, probabilistic, and tree-based models which are
sometimes called “traditional” ML models [79, 80]. Neural network (NN) classifi-
cation models are described in Section 3.2. First ML studies focused on learning
games such as chess or checkers [81] for demonstration purposes and have since
been applied to many different tasks such as classification, regression, pattern recog-
nition, and feature extraction. ML describes the approach of a machine to “learn” a
representation of data or task instead of explicitly defining the parameters of the
machine learning model. This avoids time-expensive manual parameter tuning for
similar models operating on different domains. Instead, only a training algorithm is
provided allowing the model to be optimized automatically.

Supervised learning describes the strategy to use input data with associated
ground truth labels on which the model can be evaluated and optimized. This
requires only a nominal scale of the input data (i.e., the labels represent categories)
and is often performed for classification tasks (e.g., predicting the type of craniofacial
deformity given an input sample). Many ML models are available in free and open-
source software (FOSS) libraries such as scikit-learn. Those libraries are well
documented and enable using powerful ML models for novice and experienced
users.

3.1.1 Decision Trees and Random Forests

Decision trees (DTs) [82] use a hierarchical, tree-based structure to infer decision
rules on the input data for classification. They are white box-classifiers and can be
visualized in a tree-like if-else structure which can easily be explained or interpreted.

15
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DTs operate directly on the input features and can easily over-fit, especially if a high
tree depth is used which leads to many fine-grained distinctions. For stabilization,
they are often used after feature extraction methods such as principal component
analysis (PCA).

Bagged (bootstrap aggregated) models are an ensemble of multiple decision tree
models with randomly sampled input parameters which use a voting procedure
(e.g., majority voting or average voting) to determine the final model output. This
introduces additional randomness into the model making it less prone to over-fitting.
Bagged tree models are also called random forests (RFs) [83].1

3.1.2 k-Nearest Neighbors

The principle behind k-nearest-neighbors (kNN) classification [84] is to classify
samples based on the similarity to all training data. The sample is placed into the
majority class of the k nearest neighbors. The distance metric to determine the
neighbors can vary, but Euclidean distance is a common choice. kNN classification
does not make assumptions with respect to the data distribution and simply contains
a lookup-table of the training data and computes the distances in each query. kNN
classifiers are therefore fully explainable and the closest samples can be retrieved
for comparison purposes. kNN classification can also be used in combination with
dimensionality reduction approaches such as PCA.

3.1.3 Naïve Bayes

Naïve Bayes (NB) classifiers use Bayes’ theorem to classify samples with the “naïve”
assumption that there is conditional independence of feature pairs (which is almost
never the case for real-world problems). This corresponds to modeling the covari-
ance matrix as a diagonal matrix. As a consequence regarding the assumption of
conditionally independent feature pairs, maximum a posteriori (MAP) estimation
can be used to classify new samples. The underlying probability function is usually
modeled as a Gaussian distribution, but other distributions are also possible. Due to
its simplicity, NB is a fast and robust estimator. Some considerations on why NB
works well is described in [85, 86].

3.1.4 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [87] uses decision boundaries to classify data
according to the maximum posterior probability in a similar fashion to NB. In
contrast to NB, the input features are not necessarily assumed to be conditionally

1Since a forest is made out of multiple trees (in this case, decision trees)
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independent (which leads to a non-diagonal sample covariance matrix). LDA
assumes that the different classes share the same covariance matrix which leads to a
linear decision boundary between classes (hence the name). If different covariance
matrices are assumed for each class, the classification decision boundary becomes
quadratic resulting in quadratic discriminant analysis (QDA).

3.1.5 Support Vector Machines

Support vector machines (SVMs) [88] are classifiers that use kernel functions to
transform the input features into a high-dimensional space in which the different
classes can be separated by hyper-planes. They use a subset of training samples
(support vectors) to construct the separating hyper-planes for the decision function
and are sensitive to differently scaled inputs.

SVMs alone are inherently binary and can only construct a decision boundary
between two classes. To adapt them for multi-class-problems, either a one-vs-one
scheme with n · (n − 1)/2 SVMs or a one-vs-rest scheme with n SVMs has to be
implemented.

3.1.6 Visualization

Prediction functions of the introduced classifiers are shown in Fig. 3.1 with different
hyper-parameters for a more intuitive understanding of their behavior. The if-else
decisions of the DT leads to coarse horizontal and vertical boundaries for the DT,
which is very fine-grained for the RF. The prediction boundary for kNN becomes
smoother for a larger number of neighbors. For LDA, the linear decision boundary
is replaced by a quadratic boundary if the covariance matrices are allowed to differ.
For the SVM, the kernel choice has a strong influence of on the resulting predictions.

3.2 Feedforward Neural Networks

Artificial NNs have become a popular and powerful machine learning tool for
classification and regression. They are mostly inspired by the neural networks
of the nervous system of animals and describe a hierarchical structure of layers
which “learn” features with increasing complexity. The trainable parameters of
the networks consist of weights and biases of the connections between each of the
neurons. Feedforward neural networks (FNNs) are one of the fundamental types of
artificial NN and have been adapted to more specialized types of networks such as
convolutional neural networks (CNNs). There is excellent literature about ML with
different levels of depth available (e.g. [79, 80]).
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Figure 3.1: Exemplifying plot of the different classifiers to visualize their behavior. Shown is a visualiza-
tion of the prediction function of amulti-class classification of thementioned classifiers for visualization
purposes only. For LDA, the covariancematrices are indicated with the ellipse and themeanwith a star.
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Figure 3.2: The basic structure of a neural network. A single artificial neuron receives inputs from the
previous layer (above) and computes its activation value according to Eq. (3.1). This is performed for
all neurons in all layers of the feedforward neural network (FNN) until the input is propagated to the
output (below).

3.2.1 Structure

The fundamental building blocks of FNNs are artificial neurons, visualized in Fig. 3.2.
They receive weighted inputs and pass their sum into a nonlinear activation function,
mathematically described as

f(x,w) = σ

(
n∑

i=0
xi · wi

)
, (3.1)

with wi denoting the trainable network weights, xi the respective inputs from
previous layers (with x0 = 1, making w0 a trainable constant initial activation or
“bias” for each neuron), and σ the activation function, for example rectified linear
unit (ReLU) with σ(x) = max(0, x). The non-linearity of the activation function is
the key element to fit the model to any type of input data.2

2In contrast, a linear activation function would lead to a system of only linear blocks which —
according to the mathematical definition of linearity — would also be linear and (regardless
of the number of neurons and layers) could be mathematically simplified and collapsed
into one single linear layer.
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Multiple neurons form a layer in which each neuron receives inputs from all
previous neurons from the previous layer (see Fig. 3.2). The intermediate layers not
connected to the input or output are called hidden layers. A network consisting of
multiple fully connected layers is called a FNN or multi layer perceptron (MLP),
making MLPs one of the simplest types of NN. As NNs can have thousands or even
millions of tunable model parameters, the effective and efficient optimization of
those parameters can be a substantial challenge. The model optimization process of
NNs is usually referred to as model training.

3.2.2 Model Training

The objective during model training is to find the best value of the objective function,
i.e., the global minimum of the cost function. Unlike some of the “traditional” ML
approaches such as LDA, FNNs do not have a convex loss function, so multiple
local minima exist and the random network initialization and optimization strategy
affect the result. The cost function has a parameter space with a large number of
parameters for optimization and the training goal is to find the parameters which
yield the smallest cost function value. Such optimization can be performed by
computing the gradient on the current position and descending along the negative
gradient in an interval dictated by the learning rate. Since the objective function
depends on all training samples, the exact gradient is costly to compute and is
therefore approximated by taking only a subset of the training instances (minibatch).
This training approach is called stochastic gradient descent (SGD) and is the basis for
many other optimization algorithms such as adaptive moment estimation (ADAM).
Often, regularization such as Tikhonov regularization (or L2 regularization) is
performed. In the context of machine learning, this is denoted as “weight decay”
since it results in a multiplicative factor to shrink the learning rate during each
iteration [79].3 During supervised training, labeled training images are presented to
the mathematical model and their loss is computed to adjust the model parameters
according to the gradient of the loss function with respect to the given parameter.
The loss and gradients are therefore propagated backwards (hence the name back-
propagation) to the first layer adjusting all available parameters according to the
optimizer.4 In deep learning libraries such as pytorch [89], this is performed
automatically during training. For example, pytorch uses directed acyclic graphs

3Tikhonov regularization adds an additional term to the cost function which relates to the
model parameters, therefore preferring solutions with smaller norms. During SGD, this
is equivalent to multiplicatively shrinking the weight factor by a constant during each
training iteration.

4From the mathematical point of view, the neurons of each layer (see also Eq. 3.1) are a
function composition of the functions of previous layers, so their gradients can be obtained
using the chain rule.



3.3. Convolutional Neural Networks 21

input image convolutions and pooling layers fully connected layers

Figure 3.3: Basic structure of a convolutional neural network suitable for a classification task. Typically,
convolutional layers and pooling layers are applied to the image structures until in the end, a few fully
connected layers are applied for the classification.

to keep track of all values and operations used during the forward pass and employ
a network graph traversal approach during back-propagation.

Unlike most non-neural-network-based classifiers, FNNs can be extensively
tuned by changing hyperparameters such as number and type of model parameters
(network structure, number of layers, activation function), loss function to minimize
(e.g., mean squared error or cross entropy loss), optimizer (e.g., SGD or ADAM),
and training (e.g., number of training iterations (epochs), number of parallel input
(minibatches)).

Due to the high popularity of NNs, their versatility in many application, the
vast number of different network architectures and countless possibilities of hyper-
parameter-tuning, there is a vivid community and a massive amount of available
information about their training and optimization.

3.3 Convolutional Neural Networks

3.3.1 Structure

CNN are widely used for image processing, segmentation, 2D classification, and
computer vision. In contrast to FNNs, CNNs use convolutional filter kernels which
are slid across the image. This spatially confines features in the kernels and reduces
the number of trainable parameters (thus implicitly applying regularization).

Convolutional layers employ multiple filter kernels in parallel and are frequently
followed by a pooling layer, which partitions the image into rectangles and yields
one output per partition. The most common approach is max pooling, which
passes only the largest value from its inputs. Pooling serves as a nonlinear image
downsampling to extract the most important features and their relative locations.
After several convolutional layers and pooling layers, usually a couple of fully
connected layers are used to perform a classification on the extracted features in
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which the number of neurons in the last fully connected layer correspond to the
number of classes. Fig. 3.3 shows the structure of a typical CNN.

In image classification, CNNs have been extremely successful and have sup-
planted virtually all competing approaches [90]. Additionally, easy access through
FOSS libraries and a large selection of many different pre-trained networks give
incentives to change, process, or re-arrange input data to 2D images to enable the
usage of CNNs in multiple domains. Some examples include classification on elec-
trocardiographic images, from time-sensitive wavelet transformation [91], optical
flow on video data for gait recognition [92], or images assembled from electrocardio-
graphic imaging [93].

The output of the convolutional layers of the CNN often correspond to succes-
sively more complex features [94]. Empirically, those features in the first layers tend
to be similar across different domains [95]. The concept of transfer learning exploits
this concepts and uses pre-trained networks which are fine-tuned, i.e., their last
layer is replaced with a layer matching the number of classes and re-trained on the
current classification problem. This reduces training time and enables the creation
of convolutional features even if little training data are available. There is excellent
literature available for further reading [96].

3.3.2 Training Strategies

3.3.2.1 Data Subdivision

For predictive models which perform data-driven learning, a popular strategy for
model evaluation is dividing the available dataset into training, validation, and test
sets (e.g. 60 % — 20 % — 20 % is a typical split). In this scenario, the model is always
trained on the training set, model performance is evaluated and optimized on the
unseen validation set. The final evaluation is performed on the test set to avoid
over-optimization toward the validation set, which ideally has never been used by
the developers before.5

Ideally, the training, validation, and test sets have similar class distributions on
each set, which can be achieved using stratification. During stratification, splitting is
performed for each class individually and combined for each split (see also Fig. 3.4
for stratified cross-validation).

One disadvantage of the standard train, validation, and test split is that by
chance, the model might have a “lucky” or “unlucky” test set, leading to over- or
under-estimation of the model performance, especially for small datasets. Cross-
validation is an option to circumvent this problem.

5During contests, e.g., during the Netflix price [97], the test set is usually kept secret and
only used for the final scoring of all participants.
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Figure 3.4: Stratified 10-fold cross-validation with a class distribution equivalent to the main dataset
used in this thesis.

3.3.2.2 Stratified k-fold Cross Validation

Cross validation consists of subdividing the full dataset into a set of k splits. During
k-fold cross validation, the model is tested on the kth split and trained on the
remaining data. Additionally, stratification can be used to ensure the same class
distribution among splits. k-fold cross validation leads to an increased training
time (since k models must be trained), but ensures that each sample has been tested
in one of the folds. The test set distributions of stratified 10-fold cross validation
are visually exemplified in Fig. 3.4. Another advantage of cross-validation is that
the performance is evaluated multiple times and therefore statistics such as mean
performance and its standard deviation can be obtained giving an approximation of
the robustness of the classifier.6

3.4 Evaluation of Classification Models

Correctly and incorrectly classified samples can be arranged in a confusion matrix
according to their true and predicted label and give the full information of the
classifiers. To evaluate classification performance quantitatively, several metrics
exist, with some being tailored toward specific problems (e.g., class imbalance)
and use-cases (e.g., information retrieval of search queries or diagnostic tests). An
exemplary confusion matrix and the definitions of sensitivity, precision, and recall
derived from it are displayed in Fig. 3.5.

6Accumulating all predictions and computing a metric from the combined predictions
instead of computing mean and standard deviation is usually not a valid way to measure
classification performance since it often over-estimates performance on non-linear metrics.
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Figure 3.5: Confusionmatrix definition including true positives, true negatives, false positives, and false
negatives. The definitions of true positive rate, true negative rate, positive predictive value, negative
predictive value are included.

Accuracy is computed as the ratio of correctly classified instances over all in-
stances. F1-score can be calculated as the harmonic mean of precision and recall
and can therefore also be computed when the number of true and false negatives
is unknown (e.g., during data retrieval). G-mean describes the geometric mean
of all class-wise sensitivities (which, in a binary classification problem is equal to
sensitivity and specificity). In a binary classification problem, the three metrics can
be computed as

Accuracy = TP + TN
TP + FP + TN + FN

, (3.2)

F1-score = 2 · TPR · PPV
TPR + PPV

, (3.3)

G-mean =
√

TPR · TNR. (3.4)

(3.5)

While accuracy is likely the most common and intuitive metric of the three, it is
severely influenced by the class distribution of the dataset and given an imbalanced
dataset: high accuracy values can be achieved by classifiying everything as the
majority class and do not necessarily represent a robust classifier. The F1-score is
regarded a more suitable metric when dealing with imbalanced datasets, because
class imbalance influences it to a lesser extend.7 G-mean is independent of class
distribution [98] and its value cannot be higher than the lowest sensitivity. However,
its non-linearity and high sensitivity to minority classes makes it less intuitive and is
therefore less popular. For non-binary classification problems, the F1-score of each
class can be computed as the arithmetic mean of individual binary F1-scores (macro
F1-score).
7However, the F1-score has other shortcomings: As the F1-score relies on precision, it is not
symmetric and therefore depends on the definition of which is the “positive” class. In other
words, the F1-score can be manipulated for binary classification problems by swapping the
positive and negative classes. However, this behavior disappears for a multi-class problem.
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Figure 3.6: GANs training visualized: The generator constructs images from random noise, while the
discriminator decides if the images are real or fake. This creates a loss which can be used to update
both networks.

3.5 Generative Adversarial Networks

Generative NNs such as generative adversarial networks (GANs) [99] are designed
to model the data distribution p(x) of a given dataset to be able to synthesize data
from the approximated distribution.8

GANs have two components, a generator and a discriminator, which are trained
simultaneously and compete against each other in a zero-sum game. The generator
network receives random noise z and synthesizes random images x̃(z), while the
discriminator network receives the generator’s images and the real samples trying
to predict which images are real and which are forged. Successively, the generator
synthesizes images more and more similar to the sample distribution p(x), and
the discriminator becomes better at distinguishing between them. From a game-
theoretic standpoint, they optimize their strategy to minimize their individual loss
until a deviation from this strategy would lead to a higher individual loss and a
Nash equilibrium is reached. Model training is visualized in Fig. 3.6. According
to [99], the training equation can be described as

min
G

max
D

V (D,G) = Ex∼pr logD(x) + Ez∼pz log(1−D(G(z))). (3.6)

x denotes the real data and D(x) the probability that x came from the real data
distribution pr, while G(z) denotes the generator creating an image from a noise
vector z sampled from the noise distribution pz. E denotes expected values of the
data distribution. The training of GANs is considered challenging since the two
adversaries have to be trained simultaneously. Typical problems which can arise

8During classification problems, the conditional probability function p(x|y) is modeled
(predict x given an input y).
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are vanishing gradients (which effectively stops training for the generator) or mode
collapse (in which only one subset of classes is generated).

As with deep learning, the tuning possibilities of GANs are immense and spe-
cialized approaches for specific problems exist, mostly for, but not limited to, image
generation and image modification. Examples include image synthesis using deep
convolutional generative adversarial networks (DCGANs) [100], domain transfer
such as style transfer [101–103], and image context encoding for inpainting [104].
Two variations of GANs are described below.

Conditional GAN The notion of conditional GANs (cGANs) [105] is to add a con-
ditional component to the inputs of both generator and discriminator so that they
can be conditioned to behave differently according to an input label y. In practice,
this is usually implemented as an embedding vector which serves as an additional
input parameter fed into both the generator and the discriminator. This changes the
cost function (compared to Eq. 3.6):

min
G

max
D

V (D,G) = Ex∼pr logD(x|y) + Ez∼pz log(1−D(G(z|y))) (3.7)

Wasserstein GAN Wasserstein generative adversarial networks (WGANs) [106]
aim to provide a continuous gradient for a larger group of distributions to avoid
vanishing gradients. While they originally proposed weight clipping, a regulariza-
tion term controlled by a parameter λ can also be used [107], yielding the loss LW

as

LW (D,G) = Ex̃∼pzD(x̃)− Ex∼prD(x) + λEx̂∼px̂(||∇x̂D(x̂)||2 − 1)2, (3.8)

with x denoting the real samples, x̃ denoting the generator samples from G(z), and
x̂ = ϵx+ (1− ϵ)x̃ with ϵ denoting a uniformly distributed random variable between
0 and 1. The penalty term samples from a distribution x̂ between the generator
and discriminator, and, according to the authors, experimentally resulted in good
performance [107].



Chapter 4
Statistical Shape Modeling

Fundamentals

4.1 Model Construction

A statistical shape model (SSM) describes the shape variability of a geometrical
object by means of mathematical deformations in terms of probability and statistics.
Its applications range from shape reconstruction using partially available data [108]
over shape registration [109] to shape analysis [30] and data synthesis [110]. Mathe-
matical definitions of shape [111] define it as the characteristic form that remains
when position, orientation, reflection, and scale are removed. In the medical context,
this definition can be more lenient and often includes scale because it is related to
age and is associated with different features (e.g., when considering an infant head
and an elderly head).

Point distribution models (PDMs) describe the statistical information incorpo-
rated in the model by a set of points (often in a triangular mesh) and are the most
common type of SSMs. Cootes et al. [112, 113] is credited as pioneering the creation
of the first SSM using training data (the available data from which the statistical
information is derived). Human face and head models [33, 110, 114] are one of the
benchmarks applications due to their large variety in applications and the (admit-
tedly less quantifiable) human fascination of modeling the human face due to its
meaningfulness in human interaction, recognition, and emotion. Popular models of
the human face or head available upon request include the Basel face model [110]
and the Liverpool-York-head-model [33, 115]. Combinations of SSMs unify separate
models to increase statistical variety [116, 117]. For an overview about the current
trends and challenges, the reader is referred to [118].

Figure 4.1 visualizes the required steps for model construction and shows the
main steps required to construct a PDM. During this thesis, each dataset sample
Γi ∈ Rpi×3 is a triangular 3D surface mesh, each having a different number of points

27
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Dataset and 
preprocessing

Rigid alignment Correspondence
establishment

Statistical modeling

Figure 4.1: The statistical shapemodel pipeline employed in this study. The target scan is colored green
with the deforming template in white.

pi and cells.1 As a prerequisite to derive statistical information from the training
data, it is required that the subjects share the same point identifiers across all scans
so that each identifier has a unique morphological meaning. In practice, this requires
the use of a reference shape or template Γt ∈ R3×pr which is deformed to match each
sampe and usually has a different number of points pr. The template can be any
shape, but is often either one shape of the training shapes or a related and similar
shape (e.g., a smoothed version with symmetric vertices). The following steps need
to be performed on each dataset sample on the template.

• Dataset acquisition and preprocessing of all scans Γi, which includes removing
artifacts such as duplicate vertices, etc.

• Rigid alignment to obtain the aligned shape Γa
i to match the same morpholog-

ical regions of template and sample. Procrustes analysis (see Section 4.2.1) is
one of the typical tools for this task. Landmark-free registration algorithms
such as random sample consensus (RANSAC) [119] can also be used, but are
less robust.

• Correspondences establishment (see Section 4.3) is the process to obtain a
common representation Γc

i , suitable for statistical analysis. In contrast to the
alignment step before, this involves nonrigid shape deformations and can be
performed using shape morphing.2

• Rigid alignment is performed using 4.2.2 to remove rotational and translational
elements introduced during establishing correspondence.

• Statistical analysis is performed last and consists of principal component
analysis (PCA) [121, 122]. This enables a representation in which model
instances can be synthesized and matched in terms of a normally distributed
shape vector.

1Cells (or faces) are usually not modeled because they do not provide shape information.
2Some methods such as nonrigid iterative closest points affine (ICPA) [120] can also perform
alignment and correspondence establishment simultaneously.
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4.2 Spatial Alignment

In a first step, template and target have to be aligned. If landmarks are available, it
is often preferred to make use of them using Procrustes analysis (see 4.2.1). Facial
landmark detectors [123, 124] can provide a set of landmarks if required. This step
removes rotation and translation and is crucial for correspondence retrieval which
relies on close morphologically equal regions.

4.2.1 Ordinary and Orthogonal Procrustes Analysis

Procrustes analysis is an algorithm to align two shapes with a set of known corre-
spondences subject to a distance metric such as the Euclidean distance. Depending
on the use case, Procrustes analysis can make use of rotation, translation, reflection,
and uniform scaling to best fit the moving set Xm ∈ Rp×3 to the fixed set Xf ∈ Rp×3.

The translational component can be removed by subtracting the centroids (com-
puted as the arithmetic mean), aligning both shapes to the origin and re-scaling
them using their Frobenius norm:

Xt
m = Xm −Xm (4.1)

Xt
f = Xf −Xf (4.2)

Xs
m = Xt

m/sm with sm = ||Xt
m||F (4.3)

Xs
f = Xt

f/sf with sf = ||Xt
f ||F (4.4)

The rotation matrix R ∈ R3×3 can be computed efficiently by exploiting the
singular value decomposition (SVD):

UΣVT = Xs
m
T ·Xs

f (4.5)

R = V ·UT (4.6)

The remaining scaling is contained in Σ ∈ R3×3. The transformation of the
moving points to the target points is as follows:

Xa
m = Xm ·R · sf

sm
· trace(Σ) +Xf −Xt

m ·R (4.7)

If only rotation and translation are removed, the approach is called the orthogonal
Procrustes analysis (as the resulting transformation will be orthogonal). No scaling
is performed in orthogonal Procrustes Analysis. If no reflection is desired, the
determinant of the matrix has to be det(R) = 1 (when reflecting, det(R) = −1).
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Table 4.1: Pseudocode of GPA to align all morphed subjects to each other using orthogonal Procrustes
analysis.

1: Choose arbitrary reference shape Γr from the set
2: Until convergence of the reference shape, do:
3: Align all shapes: Γa

i = OrthogonalProcrustes(Γi,Γr)
4: Compute mean aligned shape Γa

5: Set the mean shape as the new reference shape: Γr = Γa

4.2.2 Generalized Procrustes Analysis

In contrast to ordinary Procrustes analysis, which registers one shape to a reference
shape, generalized Procrustes analysis (GPA) registers a set of shapes without a
predefined reference. GPA performs Procrustes analysis iteratively and aligns all
shapes to the mean shape of the set. Multiple options for implementation exist [125],
but one basic structure is described in Tab. 4.1.

4.3 Correspondence Establishment

4.3.1 Overview

“Correspondence” refers to using the same point identifiers across all scans which
enables statistical analysis. After the initial rigid alignment, the template has to
be mapped to each of the target scans to obtain the correspondences. This is a
nonrigid surface registration problem and a variety of algorithms to solve this
problem exist [126]. Many of these algorithms are tailored toward specific use-cases.
Some popular approaches for correspondence establishment in the shape model
community are nonrigid coherent point drift (CPD) [127], iterative closest points
(ICP) variations [128, 129], and Gaussian process morphable models [109]. For
head modeling, some of the most common algorithms include Laplace-Beltrami
regularized projection (LBRP) [115] (see in Section 4.3.2), iterative coherent point
drift (ICPD) [33], the open framework [114], including ICPA [120], nonrigid iterative
closest point translation (ICPT) [120, 130]. During correspondence retrieval, the
reference or template shape usually gets deformed in such a way that it “best”
matches the target shape according to a cost function which depends on the used
algorithm. This often introduces small translations, rotations, and locally anisotropic
deformations in each iteration to the reference shape. The deformed and mapped
reference shape either replaces the target shape for the further pipeline or the nearest
neighbors or closest points to the surface are mapped for this purpose. The resulting
shape in so-called dense correspondence Γc

i has the same point identifiers as the
reference shape but is in the shape of the target shape Γc

i ∈ R3×pr .
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Figure 4.2: Variation of the stiffness parameter λ during template morphing.

4.3.2 Laplace-Beltrami Shape Morphing

Laplace-Beltrami regularized projection (LBRP) [33, 115] for shape morphing relies
on mutual correspondences between template and target and uses the Laplace-
Beltrami operator Lr ∈ RpX×pX computed on the original shape, usually the reference
shape (also called template shape) Xr ∈ RpX×3 as a regularization, controlled by the
stiffness parameter λ ∈ R≥0. A higher λ puts more weight to the regularization term
with the Laplace-Beltrami operator of the equation, leading to a mesh which retains
its original shape (this is visualized in Fig. 4.2). For a low λ, the original template
shape is disregarded and is mapped closer to the target mesh, which might lead to
irregularities in the projection. This template projection step can be solved for the
deformed shape X ∈ RpX×3 using [33, 115]:[

λLr
SX

]
X =

[
λLrXr
SYY

]
(4.8)

The two Boolean selection matrices SX ∈ [0, 1]k×pX and SY ∈ [0, 1]k×pY select the
k correspondences on the template (or reference shape) Xr and target Y. pX denotes
the number of template points, pY the number of target points.
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4.4 Statistical Modeling

After correspondence establishment, the shapes in dense correspondence have to be
aligned to remove translation and rotation using GPA (see Section 4.2.2). After this
step, the actual statistical modeling can be performed.3

Each target in dense correspondence Γc,a
i is regarded as a multivariate, inde-

pendent observation of a random variable and its probability distribution. For this
reason, each Γc,a

i is vectorized into a 1-dimensional vector representing a multivari-
ate observation of one shape si = [x1i , y1i , z1i , x2i , y2i , z2i , . . . x

pr
i , ypri , zpri ]T:

vec(Γc,a
i ) = si ∈ R3pr (4.9)

All N observations are arranged into a 2D observation or data matrix S ∈ R3pr×N

in which the full statistical information of the SSM is contained. The next step is to
extract the relevant information from the matrix. SSMs typically model the shape
variation as a multivariate Gaussian distribution, which can be entirely described
by its mean shape µ ∈ R3pr and its covariance Σ ∈ R3pr×3pr . The mean shape can be
subtracted from the observation matrix to obtain the zero-mean observation matrix:

Szm = S− µ (4.10)

The zero-mean observation matrix is analyzed using dimension reduction such
as PCA. Alternatives to ordinary PCA are probabilistic PCA [131] (suitable for
including incomplete observations) and weighted principal component analysis
(WPCA) [33] which allows to assign different weights to each point.

4.4.1 Weighted Principal Component Analysis

Applying ordinary PCA treats each point with the same weight, while WPCA
enables the usage of weights for each points. For example, it might be desirable to
use a denser point concentration for the face and ears in a head model since more
detailed expression is expected or desired. The over-representation of the face can
be balanced out using WPCA and the cranium is not under-represented [33].

For SSMs, there are usually many more points than observations (pr>>N ),
so WPCA can be computed efficiently using the weighted Gram matrix GW ∈
RN×N (resulting in the decomposition of this matrix instead of one with the size
of R3pr×3pr) [115]. The sparse weight matrix W ∈ R3pr×3pr assigns a weight to each

3If GPA is not performed, translations and rotations will be present in the first principal
components of the model.
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variable (point coordinate) and to each edge for connected vertices. The weighted
Gram matrix GW ∈ RN×N can be computed as

GW = ST
zmWSzm (4.11)

to perform the eigendecomposition of GW as

GW = UGΛGUT
G. (4.12)

The principal components V ∈ R3pr×N of the SSM can be computed as

V = SzmUGΛ
− 1

2
G , (4.13)

The desired eigenvalues Λ ∈ RN×N of the sample covariance matrix can be re-scaled
from the Gram matrix GW:

Λ = 1
N − 1ΛG. (4.14)

Each observation can be re-parameterized using the parameter vector α ∈ RN that
assigns a weight to each principal component:

s = s+VΛ
1
2α (4.15)

This representation of an SSM is preferred over storing the full covariance matrix.
Some of the advantages and applications include:

• Small storage requirements, even for large matrices due to the decomposition
of the covariance matrix via PCA.

• The shape variance is concentrated in the first few components, so the final
components contain mostly noise. Therefore, the first k principal components
can be selected without losing much information. k is often determined as a
ratio of the total variance in the dataset.4

• Drawing random shapes only requires drawing a random α from a normal
distribution.

• Fitting an SSM to unseen data requires only spatial alignment of an unseen
sample sunseen with s and solving of Eq. (4.15).

• Translation of probabilistic applications such as posterior probability into the
shape space (e.g., posterior shape modeling [108]).

4The last principal component will always be 0, since the mean shape s was subtracted
before computing the covariance matrix.



34 Chapter 4. Statistical Shape Modeling Fundamentals

4.5 Model Evaluation

Evaluation of statistical models can be subdivided into two categories: Evaluat-
ing the registration of each subject to the morphed reference using distance error
metrics and evaluating the model itself using compactness, generalization, and
specificity [132].

4.5.1 Registration Evaluation

Landmark points: One of the most important registration metrics [132] are land-
mark points, which are easily identifiable, corresponding points on both meshes.
Landmark errors are computed as Euclidean distances. By virtue of its definition,
those landmark points are sparse and morphologically consistent, but they do not
necessarily represent the whole object well. For example, there are several facial
landmarks, but they do not cover the back of the head.5 While landmark errors
indicate well if the global registration of the two meshes is good, they are “blind” to
local registration.

Vertex-to-nearest-neighbors: Vertex-to-nearest-neighbor distances evaluate all
points and are independent from any landmarks. For each point of the reference
mesh (the term “point” and “vertex” are in this regard used interchangeably), the
corresponding nearest neighbor on the target mesh is determined and their Eu-
clidean distance is computed. However, the vertex-to-nearest-neighbor distance
is low as long as the two surfaces are morphed close to each other, regardless of if
the other surface is morphologically correct. For example, a nose can be morphed
to a chin due to poor initial alignment, but the vertex-to-nearest-neighbor-error
will be low. This metric is therefore suitable for local registration, but is “blind”
to the global registration. A variant of this approach includes vertex-to-surface or
point-to-plain (point distance to the surface). This is usually more accurate but
requires face information and is computationally more expensive.

4.5.2 Shape Model Evaluation Metrics

Compactness Compactness describes the model’s ability to contain much of the
model’s variance in the first few components. It is computed as the sum of the
eigenvalues of the sample covariance matrix and is often normalized. Compactness
is not an error metric and therefore higher values are considered better.

5If they were densely available and would cover the complete shape (the ideal case), there
would not be a need to perform a registration in the first place.
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Generalization Generalization describes the model’s ability to generalize well to
unseen data. It is computed using an leave-one-out approach in which the model
is constructed using N − 1 samples and is fitted to the N th sample. Generalization
error is usually higher for the first components and becomes smaller the more
components are used (because the left-out sample can be explained better if there
are more components). A smaller generalization error is considered better.

Specificity Specificity is linked to data synthesis and describes the model’s ability
to create specific instances. Its computation requires to generate synthetic instances
and the closest training sample is determined. Specificity is generally lower for
the first principal components and increases with more components. A smaller
specificity error is considered better.
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Chapter 5
Dataset and Preprocessing

5.1 3D Surface Scans and Landmarks

All data from this study were thankfully provided from the Department of Oral
and Maxillofacial Surgery of the Heidelberg University Hospital, where all patients
with craniofacial diseases are routinely recorded using a 3D surface imaging system
(Canfield VECTRA-360-nine-pod, Canfield Science, Fairfield, NJ, USA) for moni-
toring and documentation purposes. Often, the patients were recorded multiple
times before and after therapy, preoperatively to track the status of the disease and
post-operatively to monitor and ensure correct skull development. The children
wore tight-fitting hairnets to minimize artifacts caused by the hair. A standardized
protocol was used, which had been examined and approved by the Ethics Commit-
tee Medical Faculty of the University of Heidelberg (ethics number S-237/2009). The
study was carried out according to the Declaration of Helsinki and written informed
consent was obtained from all parents. All scans were acquired between 2011 and
2021. For each recording, the scanner provided a triangular surface mesh which
was later annotated with ten cephalometric landmarks and the medical diagnosis
by clinical staff. The available landmarks for each scan are visualized in Fig. 5.1 and
listed in Tab. 5.1.

5.2 Inclusion and Exclusion Criteria

For a classification study, the 3D patient geometry, landmarks for alignment, and
the label with the clinical diagnosis were required. Additionally, most patients were
recorded multiple times which could potentially introduce cross-over: If the same
patient appeared in training and test set, the classifier could “cheat” by identifying
patient-specific features, leading to an over-estimation of the classifier performance.
Thus, for each patient only the preoperative scans closest to the operation date were
selected and duplicate scans of the same patients were discarded.
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Sellion

SubnasaleLabiale superius
Gnathion

Exocanthion left
Otobasion superius left

Tragion left

Exocanthion right
Otobasion superius right

Tragion right

Figure 5.1: Landmarks provided in the dataset. Six out of ten landmarks were symmetric landmarks
available on the left and right side. The same subject is shown from three perspectives.

Table 5.1: Landmarks on 3D surface scans provided by the medical staff. The cephalometric landmark
notation of [133] was used.

Landmark Abbreviation
Tragion (left and right) (tl) and (tr)
Sellion (se)
Exocanthion (left and right) (exl) and (exr)
Subnasale (sn)
Labiale Superius (ls)
Otobasion superius (left and right) (obsl) and (obsr)
Soft tissue gnathion (gn)

While the initial dataset contained 7529 samples from 2553 different subjects,
most of them had to be discarded beforehand: Many scans were duplicate scans from
the same patients, did not have a patient age available or were older than 1.5 years.
However, around 80 different labels were annotated as a ground truth pathology
for those scans, but over 70 of them were duplicates or so rare they contained
only one or two samples. Multi-suture synostostotic cases were removed. As 10-
fold cross validation was planned, pathologies with fewer than ten instances were
removed, including lamboid synostosis. An automatic pipeline was implemented
using pymeshlab and bash to discard patients with corrupt scans, incomplete
landmarks, or a missing 3D Slicer [134] transformation matrix to map the landmarks
from the scanning device frame to real-world coordinates. Around 550 subjects
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control coronal metopic sagittal

Figure 5.2: Head shapes of the four classes in the dataset. Top row: front view, bottom row: top view.

remained. As a last step, the remaining files were semi-automatically inspected from
different perspectives and around 50 patients recordings had uncorrectable errors in
their scans such as missing parts or large holes which also had to be removed. This
resulted in the final dataset configuration of 496 subjects.

The following types of craniosynostosis patients had been selected: coronal
(brachycephaly and unilateral anterior plagiocephaly), sagittal (scaphocephaly),
or metopic suture fusion (trigonocephaly), as well as a control group without any
suture fusion. The four classes are displayed in Fig. 5.2. Beside healthy subjects,
the majority of the control group consisted of scans of children with positional
plagiocephaly. While positional plagiocephaly patients were later treated with
helmet therapy or laying repositioning, all craniosynostosis patients underwent
surgical remodeling of the cranium. The final dataset consisted of 496 subjects. A
violin plot [135–137] of the 496 patients’ class and age distribution is displayed
in Fig. 5.3. The distribution including left and right annotation as subclasses is
displayed in Fig. 5.4. Regarding the selection of classes, this approach is comparable
to other classification studies, which distinguished between craniosynostosis and
non-craniosynostosis classes, in particular Mendoza et al. [29] and de Jong et al. [13].

5.3 Preprocessing and Artifact Removal

The Python module pymeshlab from the open-source software Meshlab [138] was
used to preprocess the 3D surface scans. Isolated parts, duplicate faces and vertices
were removed, and holes in the surface scans were closed in a fully automated
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Figure 5.3: Violinplot of the class and age distribution of the subjects in the dataset. Parenthesis indi-
cate number of samples per class.

Figure 5.4: The class distribution of the dataset including subclasses with left and right annotations.
Parenthesis indicate number of samples per class. If not specified, the subclass was ignored.
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stitching artifact irregular mesh lengths

large holes
(irreparable)

hair cap artifacts

Figure 5.5: Repairable and non-repairable artifacts in the dataset. Large holes (top left) were non-
repairable and made the scan unusable, hair cap artifacts (top right) were not removed and did not lead
to poor performance. Stitching artifacts (bottom left) appeared like a scar and could be removed using
re-meshing. Irregular mesh lengths (bottom right) were often close to the ears and could mostly be
corrected using re-meshing, but were sometimes too large so that the scan had to be removed.

manner, as those types of artifacts could lead to incorrect data in the distance maps.
Typical artifacts are depicted in Fig. 5.5. Additionally, parts of and around the ears
were often characterized by large edge lengths, so isotropic explicit re-meshing [139]
with a target length of 1 mm was used to obtain regular meshes. The medical staffs’
clothes and hands could be ignored since they only had body contact at the torso
of the child to position it and did not affect the scan of the head. Everything below
the child’s neck could be cut off to speed up computation during feature extraction,
template morphing, or image creation.

5.4 Sellion-Tragion Orientation

The sellion tragion orientation (STO) is a coordinate frame defined during this thesis
from the sellion and left and right tragion landmarks which enables a systematic
extraction of shape parameters across different scans and will be used in Chapter 7
and Chapter 9. Its origin and axes were defined in Cartesian space using three
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uz

ux

uy

Figure 5.6: Sellion tragion orientation coordinate axes constructed from sellion, left tragion, and right
tragion.

landmarks (left and right tragion, located on the ears, as well as the sellion, located
on the nose) in a similar manner to the frontal, sagittal, and median axes commonly
used in various medical disciplines and is depicted in Fig. 5.6.

The center point or origin pc was defined as the midpoint of left and right tragion
(ptl and ptr):

pc =
1
2 (ptl + ptr) (5.1)

The two landmarks were located on different ends, so the origin was approxi-
mately in the center of the head. The definition proposed here is reminiscent of the
cranial focus point definition [35] for computed tomography (CT) data. The axis
direction ux (corresponding to the frontal axis) was defined as the direction from
the origin to the sellion located on the nose:

ux = ps − pc (5.2)

uy (corresponding to the median axis) was defined orthogonal to ux from the
center to the left tragion:

uy = (ptl − pc)− ux
ux · (ptl − pc)

||ux||
. (5.3)

uz was constructed to be orthogonal to the two previous directions, thus corre-
sponding to the sagittal axis:

uz = ux × uy (5.4)

The direction vectors [ux,uy,uz]T were each normalized to length 1 mm so that
they created an orthonormal basis [ex, ey, ez]T.
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Statistical Craniosynostosis Head

Model

This chapter quotes partly in verbatim from the related open-access publication licensed
under CC-BY in Diagnostics [140]. The original publication comprises both the publicly
available model [141] and the statistical shape model (SSM)-based classification approach
based on the model, originally published with a reduced dataset of 367 samples. For this
thesis, they were separated into two different chapters, one for the SSM (Chapter 6) and one
for the classification approach (Chapter 8).

6.1 Introduction

As outlined in the introduction in Chapter 1, statistical modeling is a popular ap-
proach to synthesize synthetic, large-scale datasets with a high degree of individual
representation. This is useful to reduce the dependency on clinical data, thus reduc-
ing costs and making data available to other research groups. For a general overview
about statistical shape modeling, it is referred to Chapter 4. This introduction covers
the more specific applications of SSMs to craniosynostosis.

For general-purpose head and face models [33, 110, 114], making the model pub-
licly available to enable data synthesis is often a key aspect of the publication. In the
field of craniosynostosis assessment, models are mostly used for statistical purposes
or to compare pre-and post-operative craniosynostosis patients [33, 115, 142]. Data
synthesis approaches have not been translated to SSMs of craniosynostosis patients
despite the lack of publicly available datasets, which has been acknowledged [38, 39]
and could boost also approaches using 2D photography data [143].

The goal of this work is therefore to create an SSM of the head containing
the pathologic features of craniosynostosis patients, which can be made publicly
available and used for data synthesis. As a later step (see Chapter 8), the model will
be changed to a cranium model to enable an SSM-based classification approach.

45
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6.2 Methods

6.2.1 Shape Model Creation

For a description of the dataset, the classes and the applied preprocessing to the
data, the reader is referred to Chapter 5. The pipeline for the creation of the SSM
employed in this chapter follows the structure described in the fundamentals in
Chapter 4, consisting of alignment, correspondence establishment, and statistical
modeling. Therefore, a template was aligned and morphed to each subject, from
which the point identifiers could be used for the statistical modeling.

The mean shape of the Liverpool-York child head model [115] was used as
the basis for the template. The Liverpool-York-model had been constructed as a
symmetric model with physiological subjects, so the model was free of biases toward
any particular pathology. However, since the model did not contain any eyes and
mouth, those were added as additional vertices and triangular faces. The initial
vertex order was left unchanged, which made it possible to incorporate the proposed
model into the other (and vice versa using a posterior modeling approach [108]).
The final template had a mean edge length of 2.91 mm and pH = 13151 vertices. In
order to increase expression of the SSM, all original N = 496 subjects were mirrored
on the sagittal plane to increase the dataset size for the SSM to 2N = 2 · 496 = 992
subjects. Alignment and shape morphing was performed individually.

Spatial alignment For alignment, Procrustes analysis was used (see Section 4.2.1 in
the fundamentals) which was applied on the landmarks of template and target. As
the Liverpool-York child head model was constructed using children from two to
15 years, ordinary Procrustes analysis including scaling was chosen for alignment.
This yielded a transformation to translate, rotate, and re-scale computed on all
ten template and target landmarks. This transformation was applied to the whole
template mesh.

Correspondence establishment For correspondence establishment among the tem-
plate and all the subjects (see Section 4.3), four morphing methods which had already
been applied successfully to head morphing by other groups were selected and
employed: Laplace-Beltrami regularized projection (LBRP) [115], iterative coherent
point drift (ICPD) [33], nonrigid iterative closest points affine (ICPA) [120], and non-
rigid iterative closest point translation (ICPT) [120] were analyzed and employed
during this thesis. The mathematical formulations of the LBRP morphing can be
found in Section 4.3.2, while all hyper-parameters and the description of the ICPD,
the ICPA and ICPT methods can be found in the appendix in Chapter A. For the
LBRP, the morphing approach was divided in two steps, the first step with a high



6.2. Methods 47

regularization λ = 10 and a second step with a low regularization λ = 0.1 to let the
template deform closer toward the target scan.

Statistical modeling Statistical modeling consisted of the pipeline described in
Section 4.4: Rigid generalized Procrustes analysis (GPA) was applied to remove the
non-shape related attributes translation and rotation from the morphed templates
(see Section 4.2.2). Scale was considered an attribute of shape because features
related to craniosynostosis could depend on the patient’s age and head size.

For statistical modeling, weighted principal component analysis (WPCA) as
described in Section 4.4.1 was used instead of ordinary principal component analysis
(PCA) since ordinary PCA would have resulted in the majority of variance in the
facial parts of the head model since there was the majority of vertices. The weights
for each point were assigned according to the mass matrix M ∈ RpH×pH , which
was composed of per-vertex weights and per-edge weights in a similar manner to
barycentric cells: The diagonal elements of M represented the vertex weights. Each
vertex weight was defined as the sum of the area of the adjacent faces for which this
vertex was the nearest neighbor. Likewise, the non-diagonal elements represented
the edge weights and each edge weight was defined as the sum of the area of the
adjacent faces for which this edge was the closest edge. To account for the vectorized
representation of the observations, the mass matrix was stretched by factor 3 and
nearest-neighbor-interpolated, resulting in M3 ∈ R3pH×3pH . The computation of
the Gram matrix and performing the actual singular value decomposition (SVD) is
described in Section 4.4.1. This resulted in the typical representation of the SSM:

sH = s̄H +VHΛ
1
2
HαH (6.1)

s̄H ∈ R3pH denoted the vectorized mean shape, VH ∈ R3pH×2N denoted the
principal components of the SSM, ΛH ∈ R2N×2N the eigenvalues of the sample
covariance matrix, and αH ∈ R2N the shape parameter vector which was computed
on the augmented dataset consisting of the original and the mirrored samples of the
full head.

Overall, one SSM of the full head was created, as well as four submodels of each
class control, coronal, metopic, and sagittal. A modified version of the full head
model would be relevant for the classification approach in Chapter 8, while the
four submodels of each class were suitable for the generation of synthetic samples,
required in Chapter 10. A texture model was also created to provide texture for 2D
image-rendering applications.

6.2.2 Texture Model

The texture model was created across all subjects since no distinctions between the
subclasses were expected. The SSM used a vectorized representation of all points as:
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s = [x1, y1, z1, x2, y2, z2, . . . , xpH , ypH , zpH ]T (6.2)

The texture model used therefore a vectorized representation of all color values:

t = [r1, g1, b1, r2, g2, b2, . . . , rpH , gpH , bpH ]T (6.3)

For each point in correspondence, the color value was nearest-neighbor-mapped
from the texture of the target mesh to the morphed template.

6.2.3 Pathology Change

To demonstrate the possibilities of the SSM, an exemplary application is presented:
The head of a scaphocephaly patient is changed toward the control group, as shown
in Fig. 6.7. This is a variation of changing a labeled attribution [110] (other examples
include gender or weight) using linear regression. The pathology of an individual
sample can be changed as

αID,control = αID +αcontrol −αsagittal (6.4)

with ᾱclass denoting the mean parameter vector of a specific class, αID the parameter
vector from a specific patient, and αID,class the parameter vector of the subject with
a specific class attribute added.

6.3 Results

6.3.1 Shape Model Publication

During the creation of this thesis, an SSM was made publicly available. The SSM
was created from an earlier version of this dataset which contained 367 subjects and
was published on Zenodo1 [141]. The model contained the SSM, a texture model,
triangular cell information, the class-specific submodels, and 100 instances of each
model sampled from a Gaussian distribution. For more information, it is referred to
the relevant publication [140].2

1https://zenodo.org/record/6390158
2Since the publicly available dataset [141] is linked to the publication [140], the dataset was
not updated to the current model with 496 subjects. The principal components did not
change substantially, while generalization error decreased by 2mm and specificity error
depending on the morphing approach by ≈ 1mm.

https://zenodo.org/record/6390158
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Figure 6.1: Boxplot of landmark errors for the four morphing approaches.

6.3.2 Morphing and Shape Model Evaluation

The template morphing approaches were evaluated using two metrics: landmark
errors and vertex-to-nearest-neighbor distances. Landmark errors provide sparse
point-to-point errors on known correspondences. Vertex-to-nearest-neighbor dis-
tances evaluated how close the template had been fitted onto the target points
without taking into account if the nearest neighbor was morphologically correct.
Fig. 6.1 shows landmark errors for the four morphing algorithms and reveals that
the LBRP and ICPD methods scored lower landmark errors than ICPA and ICPT.
Fig. 6.2 shows the mean vertex-to-nearest-neighbor-distances and reveals reverse
trends compared to Fig. 6.1. ICPA showed the closest fit to the surface while LBRP
showed that 10 % of the subjects had errors larger than 1 mm.

For shape model evaluation the three metrics compactness, generalization, and
specificity [132, 144] were used. Compactness determines the model’s ability to
capture most of the variance with few components, generalization the model’s
ability to fit to unknown observations, and specificity the model’s ability to create
synthetic instances similar to the training data. Compactness, generalization, and
specificity are presented in Fig. 6.3. The most compact models across all components
were ICPA and ICPT which also had larger specificity errors. Generalization errors
were lowest for LBRP and ICPT, but overall below 2 mm when using more than 10
model components. LBRP was chosen as the final morphing method as it scored
best two of the five metrics (landmark error and specificity error), and scored the
best generalization up to 40 components.

For qualitative comparison, the first model components of the LBRP method
are depicted in Fig. 6.4. The first principal component changed primarily size. The
second component affected both pathology and size, mostly shrinking the head
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Figure 6.2: Boxplot of vertex-to-nearest-neighbor distances for the four morphing approaches.

to a shape reminiscent of a sagittal synostosis in negative direction and increasing
the cranial size in positive direction similar to a coronal suture fusion. The third
component influenced pathologies related to metopic and sagittal suture fusion. The
mean shape submodels are presented in Fig. 6.5 and depict the expected pathologies
clearly. The first three principal components of the texture model are depicted in
Fig. 6.6. The first component changed brightness from dark to bright, the second
component influenced mostly the color of the hair cap, and the last component had
an effect on skin color and slightly influenced the hair cap color.

The pathology translation and attribution change from a scaphocephaly patient
to the control group is visualized in Fig. 6.7. The individual could still be recognized
as the same person, but the head shape had changed.

On a 3.7 GHz 6-Core Intel i5 processor, the computation times for the whole
dataset of 2N = 496 · 2 patients for LBRP, ICPT, ICPA, and ICPD were 2 h 12 min,
50 h 24 min, 59 h 20 min, and 429 h 20 min. The LBRP was therefore around 20-fold
less time-consuming than ICPT and ICPA, and around 200-fold less time-consuming
than the ICPD approach. Real-time capability might not be an issue for a one-shot
creation of an SSM as a publicly available dataset, but it would not be scalable if
used in clinical practice (i.e., including an additional recording to an already existing
model).

6.4 Discussion

The SSM united statistical information of 496 subjects and their mirrored twins
with and without craniosynostosis. To date, many methods presented by various
authors rely on in-house datasets making quantitative comparisons difficult. A set



6.4. Discussion 51

Figure 6.3: Compactness, generalization, and specificty of the four shape models depending on the
morphing approach. For compactness, higher means better, for generalization and specificity, lower
means better.
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Figure 6.4: Principal components of the full statistical shapemodel constructed using the LBRPmethod,
the colorbar indicates the Euclidean differences to the mean shape.
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Figure 6.5: Mean shapes of the submodels constructed with the LBRP method, the colorbar indicates
the Euclidean differences to the mean shape of the control model.

of synthetic 3D surface head scans of the SSM could help creating a large patient
cohort for a reproducible evaluation of methods to assess craniosynostosis.

The principal components reflected the pathologies present in the dataset and
showed realistic results. A comparison with other craniosynostosis-related SSMs is
difficult since there are no publicly available models by other groups. In the medical
field, studies which created shape models for craniosynostosis [31, 145] did not
include quantitative metrics such as landmark error, compactness, generalization,
and specificity. The most comparable SSM might be the Liverpool-York-Model [33,
115], as it is a full head model and also contained a submodel comprising children
from 2 to 15 years. Compared to the Liverpool-York head model [33], the LBRP
model employed in this thesis has similar landmark and vertex-to-vertex errors, but
a higher compactness and lower generalization and specificity errors. However, the
comparison has to be taken with a grain of salt since a substantially smaller dataset
with different samples and age profiles was used in this work. Neither of the models
is qualitatively better or worse, but it can be argued that the proposed SSM model
of craniosynostosis patients performs similar to state-of-the-art head models.

Multiple morphing methods were tested during this work, but no method was
clearly superior. While the ICPA method excelled in terms of vertex-to-nearest-
neighbor errors, the LBRP model had the lowest landmark errors, specificity errors,
low generalization errors, and was the fastest morphing method. For this reason, it
was selected as the morphing method to be further used during this thesis.



54 Chapter 6. Statistical Craniosynostosis Head Model
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Figure 6.6: The texture model which can be employed for patient counseling. From top to bottom the
first three principal components at σ = 2.
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Figure 6.7: Patient pathology assessment using pathology change. Left: the original head shape of the
scaphocephaly patient (front and top view). Right: the patient’s head with removed pathology using
the full SSM (front and top view). The original texture had been used which explains the noise.

Limitations of the model includes the control class of this study which was
assembled by the scans of children who visited the hospital without indication to be
treated surgically. This includes patients who were diagnosed being healthy and
patients who were diagnosed having positional plagiocephaly. Thus, the control
model represents a mixed group of children and should be used with caution when
generating healthy subjects.

After a thorough research of the available literature, the model created in this
study is the largest SSM of craniosynostosis patients and infants in general and
the initial model is still the only one which has been made publicly available as
of September 2023. Compared with the initially published model [140], the third
principal component resulted in different shape changes, but otherwise, the metrics
were qualitatively similar.

6.5 Conclusion

An SSM model creation pipeline for craniosynostosis patients was developed, suit-
able to create a state-of-the-art SSM of the head according to qualitative and quan-
titative metrics. The first publicly available SSM of craniosynostosis patients was
derived using part of this dataset and the proposed methods. An approach for
visualization and patient counseling was proposed and qualitatively evaluated.
Researchers without access to clinical data can use the model for the assessment of
head deformities.
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Chapter 7
Classification Using

Cephalometric Measurements

7.1 Introduction

Machine learning (ML) interpretability is a heavily debated issue in the scientific
community of biomedical engineering. There are two approaches to ML model
interpretability or often called “explainable artificial intelligence”: The first option
is trying to explain black box models, the second option is to use inherently ex-
plainable white box models in the first place. Many scientists in engineering [42]
and institutions propose the usage of white box models over interpreting black
box models to avoid discrimination and give users the “right to explanation” [43].
Typically cited examples for white box classification are decision trees (DTs) and
k-nearest-neighbors (kNN) classifiers. The classification decision of DTs consists of
simple Boolean if-else statements and can be fully retraced by visualizing the tree.
However, if the DT’s depth is too high or a random forest (RF) with many trees is
used, the resulting visualization might be so complex, that it de facto ceases to be an
easily understandable classifier for humans. kNN-classification can be visualized by
retrieving the closest sample in the training set and the sample is assigned to the
class in which there are the most neighbors in a given high-dimensional radius.

Ideally, an explainable white box classifier relies on already familiar clinical
parameters and can be applied fast, easily, and economically. For this reason,
the currently well established quantitative parameters cephalic index (CI) and
cranial vault asymmetry index (CVAI) for assessing head shape are an apparent
starting point for further analysis. However, the results of CI and CVAI values
can vary depending on the extracted measurement position [146], and can limit
measurement comparability [23]. Alternatively, it has been suggested to measure CI
values of multiple heights during the assessment of sagittal synostosis on computed

59
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Dataset and 
preprocessing

Feature definition Feature extraction Classification

Figure 7.1: Schematic of the multi-height classification approach. After preprocessing of the dataset,
the CI and CVAI could be extracted. The extraction of all values before the feature definition provides
more flexibility in the feature definition to obtain the most relevant features before the classification.

tomography (CT) images [23, 147]. Focused on classifying head deformities on 3D
surface scans instead of using CT scans, this work aims to make two contributions:

• Single-height analysis: The influence of the measurement height for the com-
puted values of CI and CVAI, and their influence on classification performance
will be systematically assessed and analyzed.

• Multi-height classification: Multi-height feature extraction approaches are
proposed and tested with multiple classifiers.

White box classifiers such as DT, RF, and kNN are explicitly included and
compared against other classification approaches in both the single-height domain
and the multi-height domain.

7.2 Methods

The dataset and preprocessing steps used in this chapter are described in Chapter 5,
resulting in 496 samples of four classes: control, coronal suture fusion, metopic
suture fusion, and sagittal suture fusion. Fig. 7.1 visualizes the study schematic:
CI and CVAI values were first computed, and feature extraction was performed in
multiple ways. All classification experiments were subject to the same, stratified
10-fold cross-validation scheme with reproducible splits and a fixed random noise
generator.

7.2.1 Clinical Parameter Extraction

The first step of the pipeline consisted of extracting the featues width w, length
l, and diagonals d−30◦ and d30◦ for the later computation of the CI and the CVAI.
This required a common frame of reference since the values were derived from
rule-based algorithms that required angles and height values (see Section 2.3). The
sellion tragion orientation (STO) (see Section 5.4) was used as a common frame
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Figure 7.2: Intersection points of CI and CVAI values. The full height interval of h = [0, 1) in steps
of ∆h = 0.01 is displayed. The Center-Steps extraction points are visualized for CI in cyan and CVAI
points in magenta (mind the perspective distortion).

of reference across all subjects to compute CI and CVAIs values. A cylindrical
coordinate system was employed for ray-casting with the radius r, and angle φ,
and normalized height h ∈ [0, 1), presented in Fig. 7.2. This allowed to compute
CI and CVAI values dependent on height, by using width w(h), length l(h), and
diagonals d−30◦(h) and d30◦(h), which had to be determined as the distance between
intersection points on opposite ends. The intersection points were determined using
ray-casting which was implemented using triangular ray intersection and the vtk
python module [148] and is visualized in Fig. 7.2. Missing values for scans with
holes or artifacts were interpolated using 1d linear interpolation in height direction.

7.2.2 Single-Height Analysis

As a first assessment, CI and CVAI were computed for later visualization of the
height dependency:

CI(h) = w(h)
l(h) (7.1)

CVAI(h) = d−30◦(h)− d30◦(h)
max(d−30◦(h), d30◦(h))

(7.2)

As a second assessment, classification performance was determined as a function
of the height. For this purpose, the classifiers had to be trained and evaluated for
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Table 7.1: Multi-height classification approaches employed in this work. Single-height methods are in
white, multi-height in light yellow.

Feature selection Comment

Full-Heights naïvely using very close values in h ∈ [0, 1) with∆h = 0.01
Steps from h ∈ [0.1, 0.9] with a step-width of∆h = 0.1
Center-Steps from h ∈ [0.3, 0.6] with a step-width of∆h = 0.1
SHAP mean absolute SHAP values
Middle h = 0.5, single-height
Maximum single-height features but not on a fixed point

each of the required heights, which was again sampled in the interval h ∈ [0, 1) with
∆h = 0.01.

The classification approach was carried out using a stratified 10-fold cross valida-
tion scheme and multiple classifiers were tested: linear discriminant analysis (LDA),
support vector machine (SVM) with a linear kernel, naïve Bayes (NB), DT, RF, and
kNN with k = 5. For the SVM, a one-versus-one with six binary linear SVMs was
chosen to enable multi-class classification, for DT and the RF, the maximal depth was
capped to six which acted as a regularization and prevented over-fitting. A single
feature vector consisted of width w, length l, and diagonals d−30◦ and d30◦ . Before
feeding the feature vector to the classifiers, all extracted features were divided by
their Frobenius norm for normalization. For each height, all classifiers were trained
and evaluated, yielding a total of 100 · 6 · 10 = 6000 classification runs (100 height
steps, 6 classifiers, and 10 cross-validation runs).

7.2.3 Multi-layer Classification

Multiple methods were designed to explore the classification of craniosynostosis
on cephalometric parameters with multiple height measurements. They are sum-
marized in Tab. 7.1 and were designed to have differences in the number and
distribution of features.

The baseline consisted of the two single-height methods “Middle” and “Max”
which used the values h = 0.5 and the maximum value. The four multi-height
methods should be compared against the baseline: The “Full-Heights” method
was designed as a naïve method using the full range of all values. The “Center-
Steps” and “Steps” methods (see Tab. 7.1) were intended to find a trade-off between
head coverage and reducing measurements. This trade-off between head coverage,
measurement robustness and measurement effort avoided disturbances such as the
eye cavities and difficult plane determination close to the tip of the head. The points
of the “Center-Step” features are depicted in Fig. 7.2. The final feature approach used
SHapley Additive exPlanations (SHAP) values [149]. SHAP values try to extract
the most important features by varying the individual features in their inputs.
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Figure 7.3: SHapley Additive exPlanations (SHAP) analysis of CI and CVAI in the dataset. The SHAP
values were obtained by accumulating the feature points according to their DT feature contribution on
the test sets of ten-fold cross-validation in an initial experiment before the final study.

Full-Heights

Steps

Center-
Steps

SHAP

MiddleMax

Figure 7.4: Overlap of CI and CVAI points displayed as sets of a Venn diagram. The SHAP features used
values from the full head while the other multi-height features reduced the number of points from the
full head step by step.

The SHAP values were selected from all extracted heights and were determined
according to the maximum value of the mean absolute average importance by the
tree explainer from the Python shap module. The SHAP values are presented in
Fig. 7.3. The Venn diagram in Fig. 7.4 shows the relationships between the six
different feature sets.

Multi-height classification was performed as described in the previous section
(Section 7.2.2) with the same classifiers and the same training scheme: 10-fold
stratified cross validation with consistent splits across all classifiers and the same
seed for the random noise generator on 6 · 6 · 10 = 360 classification runs (6 feature
scenarios, 6 classifiers, 10 cross-validation runs). All scenario were evaluated using
accuracy, G-mean, and macro F1-score.
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Figure 7.5: Distribution of cephalic index (CI) and cranial vault asymmetry index (CVAI) values across the
subjects with respect to the extraction height. The background visualizes the values on the extracted
height on the mean shape of the control group, i.e., the extracted height is aligned with the background
and the resulting distribution of CI and CVAI is placed on the x-axis. The mean value is shown as a solid
line, the 25th and 75th percentiles are shown as dotted lines for each class.

7.3 Results

7.3.1 Height Dependency Analysis

The resulting CI and CVAI values are displayed in Fig. 7.5. CVAI values were plotted
as absolute values to prevent the plagiocephaly-biased split of the control group into
two different groups. Alternative statistics (including classification results) explicitly
defining the plagiocephaly groups are presented in the appendix in Chapter B.

Several observations could be made:
• Divergence for h > 0.9: Both CI and CVAI diverge with increasing height and

above h > 0.9 as the measurement values become less robust.
• CI notch: The CI values showed a “notch” around h = 0.2. According to

Fig. 7.5, this was close to the orbit (eye cavity) and the ear. This was an artifact
and the values should therefore only be considered correct above h = 0.3.

• CI values: Except for the sagittal synostosis, CI values were larger the higher
they were extracted. The most robust values could be observed at the height
from h ∈ [0.3, 0.5].

• CVAI values: CVAI values were mostly constant except for the control group
which contained many cases of plagiocephaly. Plagiocephaly values peaked
in h ∈ [0.6, 0.7].

Regarding the single-height classification, Fig. 7.6 shows that the accuracy in-
creased with the relative height and peaked for most classifiers at approximately
h = 0.4. Fig. 7.6 shows accuracy, F1-score, and G-mean for classifiers trained on
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Figure 7.6: Classification performance of clinical parameters classifiers over the extraction height of
CI and CVAI. The orbit artifact at h = 0.2 lead to a decrease in classification performance. Otherwise,
classification performance increased until it reached a maximum between h ∈ [0.6, 0.8].
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Figure 7.7: Mean classification performance for different classification approaches and different clas-
sifiers using 10-fold cross-validation. Each column shows a different classifier, colors show different
mean performance metrics, while the symbols show different features.

different heights. For G-mean, only the kNN obtained results of 0.4 or higher, while
SVM, LDA, and NB classifiers almost permanently remained at 0. The reason was
that one of the classes (which turned out to be the least present class, coronal suture
fusion) was never classified correctly in a single cross-validation run. Best F1-scores
were mostly achieved in the interval of h ∈ [0.4, 0.5] by the kNN classifier. Multiple
classifiers such as SVM and NB score consistently a G-mean of 0 despite large ac-
curacy values (for the SVM even larger than 0.9), indicating that accuracy alone is
misleading to consider classification performance.

7.3.2 Multi-Height Classification

Fig. 7.7 shows the results for all metrics, classifiers, and features (the same results can
be found in tabular form in a more conventional but possibly less clear manner in
Tab. B.1 in Section B.1 in the appendix). The two single-height features “Middle” and
“Max” were almost consistently outperformed by feature selection using multiple
height values in all three metrics. Only LDA and kNN yielded F1-scores above 0.8
with LDA scoring the best F1-scores using the Steps features. The mean accuracy
was between 0.61 and 0.95 for all approaches, but F1-score and G-mean varied to a
larger degree (between 0.37 and 0.88 and between 0 and 0.78).

Fig. 7.8 shows the F1-score in detail. Multi-height approaches yielded better
F1-scores results than single-height results. Additionally, kNNs, as an intuitive
and explainable classification approach, could cope with most other classification
approaches when used in conjunction with the Center-Steps. The easiest explainable
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Figure 7.8: Boxplots for the classification approaches using F1-score. The two single-height classifica-
tion methods score consistently lower performance values compared to the multi-height features.

classifiers DT, RF, and kNN showed similar performance despite their simple struc-
ture compared to more sophisticated approaches such as the SVMs. The standard
deviations and general spread of all multi-height methods were larger than for the
single height methods, showing that some runs achieved only low results. However,
no methods scored F1-scores above 0.88.

7.4 Discussion

The measurement height showed an influence on the two cephalometric parameters
CI and CVAI and consequently on the classification performance. A common frame
of reference is therefore important to ensure comparability of CI and CVAI values
among subjects. The naïve single-height classification features on the CI and CVAI
values could not discriminate well between the four classes. A similar pattern could
be observed if the control group was replaced with a left and right plagiocephaly
class (see Chap B in the appendix) which even increased performance slightly.
However, this cannot be compared quantitatively, because the dataset size was also
reduced.

Overall, classification performance using only cephalometric parameters was
poor, but using multiple height values instead of single-height cephalometric mea-
surements increased classification performance for almost all classifiers. No feature
selection clearly outperformed another. For head assessment with an automatic
classification, multiple height measurements should be used which supports related
studies on CT imaging [23, 146] including suggestions to add additional parame-
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ters [150, 151]. Although the “Full-Heights” features technically contain the most
information about the patient geometry (since the most height values are used), it
only scored average classification results. The cause of this is likely a high redun-
dancy in the measurements due to the close proximity.

The white box kNN classification performed similar to the competing approaches,
indicating that in such a scenario, white box classification is indeed an attractive
possibility. However, as it will be revealed during the course of this thesis, when
comparing with more sophisticated approaches (such as the ones developed in
Chapter 8 and Chapter 9 using a statistical shape model and a convolutional neural
network), the cephalometric approach is outperformed. This is not surprising per
se, but rather consistent with the observations of this study, namely that multiple
height-based measurements improve classification performance as those classifiers
similarly use a 3D representation of the patient.

7.5 Conclusion

In this work it was shown that when assessing cephalometric parameters and classi-
fying different types of craniosynostosis using ML approaches, the extraction height
of the CI and CVAI has an influence on the classification results. Using multiple
extraction heights increased classification performance, especially if using the Steps,
Center-Steps, or SHAP features and LDA. kNN-based classifiers showed a simi-
lar performance compared to non-explainable models on the same cephalometric
parameters. Overall, F1-scores were comparatively low which suggests that more
sophisticated methods are required for an adequate classification of craniosynostosis.
While an explainable classification is important, a high classification performance is
the most important prerequisite.



Chapter 8
Classification Using a Statistical

Cranium Model

This chapter quotes partly in verbatim from the related open-access publication licensed
under CC-BY in Diagnostics [140]. The original publication comprises both the publicly
available model [141] and the statistical shape model (SSM)-based classification approach
based on the model, originally published with a reduced dataset of 367 samples. For this
thesis, they were separated into two different chapters, one for the SSM (Chapter 6) and one
for the classification approach (Chapter 8).

8.1 Introduction

As outlined in the introduction of this thesis (see Section 1.1), the usage of data-
driven machine learning (ML) models is a popular and versatile approach for
diagnostic classification tasks. Additionally, as outlined in Chapter 6, statistical
shape modeling is a popular method to combine geometric modeling and statis-
tical analysis, which has been successfully applied for shape quantification and
statistical analysis of craniosynostosis patients. However, a combination of the two
modalities, i.e., an ML classifier making use of the extracted statistical information
of the SSM, has not been proposed on 3D surface scans. The most similar approach
used an SSM and handcrafted features with computed tomography (CT) data for
classification [29].

The goal of this chapter is to develop an SSM-based classification approach for
3D surface scans. It builds on the proposed SSM (see Chapter 6) and fuses some
ideas of the CT-based approach [29], such as the cranium segmentation, and the
usage of the shape parameter vector with the proposed morphing pipeline (see
Chapter 6).

69
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Morphed templates Cranium extraction Statistical modeling Classification

Figure 8.1: The craniosynostosis classification is based on a statistical model of the cranium. From the
SSM in Chapter 6, the morphed templates were used, the craniums were extracted, the SSM was built
and the classification could be performed.

8.2 Methods

Fig. 8.1 gives an overview of the pipeline from the morphed templates result-
ing from Chapter 6 to the creation of a cranium-only SSM and the subsequent
classification of craniosynostosis.

8.2.1 Dataset and Preprocessing

For the description of the dataset, recordings, pathologies, class distribution, pre-
processing steps, and landmarks, it is referred to Chapter 5. The dataset resulted in
496 samples of four classes: control, coronal suture fusion, metopic suture fusion,
and sagittal suture fusion. The pipeline yielding the morphed templates is described
in Chapter 6. The N = 496 samples from the original dataset, which had been mor-
phed with the Laplace-Beltrami regularized projection (LBRP) morphing approach,
were used for the classification approach in this chapter.

Intuitively, it is apparent that for the classification approach it is desirable to
reduce the classifier input to only the relevant features. In this case, the cranium
was required and the other parts of the scan such as face, ears, and neck had to
be removed. The cranial part was defined manually on the reference head shape.1

Points below the eyes and closer than 25mm to ears and eyes were discarded. After
extracting cranium points of all templates, an SSM of the cranium (a cranium model)

1As the morphed templates shared the same point identifiers due to correspondence estab-
lishment, once defined regions were applicable to all morphed templates.
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Figure 8.2: Mean shape of the SSM of the cranium. The ears have been removed to have the principal
components focus on the cranium alone.

was computed.2 This resulted in the number of points pCr = 2711 for each morphed
template. The mean shape of the cranium model is depicted in Fig. 8.2.

8.2.2 Statistical Modeling

The SSM was created on the extracted cranium to obtain the principal components
of the SSM using weighted principal component analysis (WPCA) as described
in the fundamentals (see Chapter 4) and the statistical model of the full head (see
Chapter 6). From the observation matrix SCr ∈ R3pCr×N , the shape parameter vector
α ∈ RN should be obtained which would be fed into the classifiers.

SCrZM = sCr − ¯sCr (8.1)

SCrZM denotes the zero mean observation matrix of the cranium models, s the shape,
and s̄Cr the mean shape.

sCr = s̄Cr +VCrΛ
1
2
CrαCr (8.2)

VCr the model’s principal components, ΛCr the eigenvalues of the sample covariance
matrix, and αCr the shape parameter vector.

The first principal components of the statistical model (see Fig. 8.3) depicted the
expected shape changes and pathologies: shape size, sagittal and metopic pathology,
and asymmetric plagiocephaly shape deformities can be observed in the first three
principal components. Compared to the SSM of the full head (see Chapter 6), the
plagiocephaly shape differences were more pronounced. From the SSM, the shape
parameter vector α could be computed as

2Two inferior alternatives would have been possible to compute the cranium model: The
first option would have been to extract the cranium before shape morphing, but this would
be a difficult landmark-free morphing on a rather homogeneous surface, likely worsening
the morphing results. The second option would have been to remove the facial points after
computing the principal components, in this case the principal components would have
been the same as in the head model (with reduced expressiveness on the cranium).
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Figure 8.3: Principal components of the cranium SSM, the colorbar indicates the Euclidean differences
to the mean shape. From left to right: −2σ, µ, and 2σ. From top to bottom: the first three principal
components.
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α = Λ− 1
2V−1 (s− s̄) , (8.3)

and served as the input for the classification approaches.

8.2.3 Classification Setup

Using the coefficient vector as shape descriptors and as a direct input for a support
vector machine (SVM) had been successfully tested in a different domain [152].
Since during the creation of the SSM, principal component analysis (PCA) was
employed, the shape parameter vector α had already been normalized assuming
a Gaussian distribution. Normalization is generally beneficial for non-probability-
based classifiers (i.e., SVM, k-nearest-neighbors (kNN), decision tree (DT), and
random forest (RF)), which are known to be sensitive with respect to the scaling of
the input features.

For the description of the classifiers, it is referred to Chapter 3 in the fundamen-
tals. The used classifiers were SVM, linear discriminant analysis (LDA), naïve Bayes
(NB), DT, RF, and kNN. All classifiers were implemented using the Python module
scikit-learn [153]. For the SVMs, a linear kernel was chosen and non-binary
classification was modeled using six one-versus-one binary classifiers. LDAs did not
have tunable hyper-parameters and used a multivariate Gaussian distribution with
a different mean, but the same covariance matrix for each class. Each prediction
was assigned to the class whose mean was the closest in terms of the Mahalanobis
distance taking into account the prior probability of each class. NB did not have
tunable hyper-parameters and assumed conditional independence between input
variables. As for LDA, a Gaussian model was used to distinguish between classes.
kNN classification assigned the test sample according to the k = 5 closest neighbors
in Euclidean space. For tie-breaking, the nearest neighbor among the tied classes
was selected. DTs and RF used a hierarchical, tree-like structure with a maximum
depth of six.

During PCA or WPCA, the principal components were ordered according to
their variance, so the first principal components described the overall shape while
the last components contained mostly noise. This is a process inherent to PCA with
the goal to extract the directions of highest variance. The noise could arise from real
noise (such as incorrect morphing, limited mesh resolution, or acquisition errors
during scanning), or from small variation in the data which is perceived as noise
from the PCA (such as less frequent geometric variation in the dataset or minor
morphology changes influencing only a limited number of points). However, based
on the assumption that geometric changes in the pathology have an impact on a
large part of the geometry, it was expected that the parameters responsible for a
good classification were concentrated in the first components. The optimal number
of principal components was systematically increased by iterating over the first 100
principal components and using only the most principal components up to each
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iteration.3 For each run, three different metrics were used: accuracy, G-mean, and
F1-score. While accuracy is the most intuitive metric for many people, it does not
take into account the dataset imbalance. G-mean, on the other hand, is strongly
influenced by a misclassification of minority classes, while the F1-score is influenced
by both (see also Chapter 3.4).

The classification was performed using stratified 10-fold cross validation with a
fixed seed for the random number generator and reproducible splits for all classifier.

8.2.4 Data-Augmented Classification Setup

In addition to the stratified 10-fold cross validation, the dataset was augmented
with the mirrored samples from the SSM from Chapter 6. Instead of the 496 samples,
the doubled amount, 496 · 2 = 992 samples were therefore available. This required
the creation of a statistical cranium model composed of all 992 samples which was
created with the same parameters as the original model. To enable a quantitative
comparison of the metrics without data leakage, the following data subdivision was
used: For each split, the test set was only composed of the original, non-mirrored
samples. However, the training set was augmented with the mirrored training
samples. This way, each of the samples from the original set was used only once for
testing without the possibility of data leakage (i.e., a mirrored instance from the test
set appearing in the training). A total of 2 · 100 · 6 · 10 = 12000 (2 dataset scenarios,
100 principal components, 6 classifiers, and 10 cross-validation splits) classification
runs were performed in total.

8.3 Results

8.3.1 Principal Components Dependency

First, the results without data augmentation with a varying number of the principal
components are presented. The most visible is a rapid increase of classification
performance from 0 to 10 principal components across all three metrics when more
shape information was revealed to the classifiers. For accuracy and F1-score of kNN
and RF classification (see Fig. 8.4 and Fig. 8.6), a rapid decrease could be observed
if more than 20 components were used. G-mean showed the most rapid decrease
and the highest jitter (see Fig. 8.5). NB classification performed best according to
F1-score (0.939), G-mean (0.926), and accuracy (0.966). RF classification and the DT
performed worst.

3Successively increasing the number of principal components is a brute-force approach, but
as PCA inherently limits the search space to the first components, it is a scalable approach
even for large datasets.
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Figure 8.4: Accuracy as a function of the number of principal components used for the Laplace-Beltrami
regularized projection (LBRP) classifier. Shown is the mean value and in lighter color the 25th and 75th
percentiles.

Figure 8.5: G-mean as a function of the number of principal components used for the Laplace-Beltrami
regularized projection (LBRP) classifier. Shown is the mean value and in lighter color the 25th and 75th
percentiles.
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Figure 8.6: F1-score as a function of the number of principal components used for the Laplace-Beltrami
regularized projection (LBRP) classifier. Shown is the mean value and in lighter color the 25th and 75th
percentiles.

8.3.2 Data Augmentation

The results for the augmented dataset which includes the mirrored samples were
consistently below the results on the original data for all classifiers on all metrics (see
Tab. 8.1). Without data augmentation, the SVM, LDA, NB, and kNN classification
yielded higher F1-scores than the results for the best multi-height approach (LDA
with “Steps”, see Chapter 7).

In the published initial classification study on the smaller dataset [140], LDA
scored the highest accuracy (0.978, but on a smaller dataset, therefore not quantita-
tively comparable).

The same classification experiment was performed with the other morphing
approaches and is available in the appendix in Chapter C. The model performance
and error metrics showed slightly different values for classification performance,
but the same trends could be observed: LDA, NB, and SVM classification performed
best and classification performance decreased when increasing the number of com-
ponents. Some results were even slightly higher, but the main trends were the
same.
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Table 8.1: Comparison of the classifiers on the cranium model. Displayed is cross validation mean
± standard deviation. On top are results without data augmentation and on the bottom are results
including the mirrored dataset for evaluation.

Classifier # components Accuracy G-mean F1-score

Best classification run without patient mirroring
SVM n=40 0.958±0.029 0.918±0.086 0.931±0.058
LDA n=56 0.962±0.032 0.718±0.365 0.891±0.101
NB n=12 0.966±0.022 0.926±0.053 0.939±0.049
KNN n=7 0.950±0.020 0.823±0.279 0.904±0.072
DT n=7 0.851±0.047 0.667±0.235 0.773±0.076
RF n=9 0.907±0.041 0.632±0.321 0.821±0.095

Best classification run with patient mirroring
SVM n=33 0.907±0.034 0.524±0.352 0.792±0.084
LDA n=42 0.936±0.025 0.721±0.254 0.860±0.063
NB n=13 0.938±0.031 0.858±0.083 0.897±0.066
KNN n=8 0.809±0.055 0.522±0.273 0.703±0.119
DT n=7 0.750±0.051 0.283±0.287 0.576±0.096
RF n=5 0.798±0.031 0.049±0.147 0.575±0.038

Comparison with multi-height-classification (see Chapter 7)
LDA Steps 0.948±0.043 0.772±0.274 0.876±0.102

8.4 Discussion

This work proposed the first classification pipeline for craniosynostosis based on
an SSM, tested on the largest dataset used for a study related to craniosynostosis to
date. Multiple authors [30, 31] have shown that statistical shape modeling enables
a quantitative analysis of the head shape with respect to craniosynostosis. In this
work, it was demonstrated that SSM can not only quantify, but also classify head
deformities. The classification results were better than multi-height approaches
introduced in Chapter 7. Including the mirrored samples into the classification as
data augmentation decreased classification performance.

Compared with the same study performed on an earlier version of the dataset
with 367 subjects, the mean accuracy dropped slightly to 94% indicating that some
dataset variation lead to slightly different results. However, the main conclusions
of the original work remained the same [140], namely a good performance of the
LDA and NB classifications and the inclusion of too many principal components
lead to a performance reduction of the classifiers. As the classification approach of
this thesis was tested with multiple morphing approaches and multiple classifiers
on the largest currently available dataset, it was demonstrated that it is robust and
does not rely on heavy hyper-parameters tuning.

Compared with other approaches from the literature, this approach performs
similar, but slightly worse: Mendoza et al. [29] achieved a classification accuracy of
95.7% on 141 subjects using CT data and de Jong et al. [13] obtained an accuracy of
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99.5 % on 196 samples using a feedforward neural network (FNN) in combination
with ray casting and stereophotographs. As the classification approaches from
the literature used different datasets, quantitative comparisons between different
approaches are dataset dependent. For example, the datasets could systematically
differ due to the usage of different scanning devices, admission protocols, or inclu-
sion criteria of subjects favoring an “easier” or “more difficult” dataset.

One strength of an approach using an SSM is that they are a flexible and versatile
modeling approach, which can aid clinicians in a variety of other tasks (such as
patient counseling, visualization, or surgical guidance) as well. However, the
control class of this study was assembled by the scans of children who visited
the hospital without indication to be treated surgically. This included patients who
were diagnosed with positional plagiocephaly. Thus, the control model represents
a mixed group of children. The classifier might therefore have learned different
decision functions as if the groups were separated.

Using PCA assumes that the training data follows a multivariate normal dis-
tribution. This assumption does not hold up for a head model which includes
different pathology classes. With respect to the classification, PCA served as a re-
parameterization and ultimately as a dimensionality reduction procedure preferring
less noisy input data in the first principal components. This seemed to be one of the
key elements contributing to the success of this classification approach.

8.5 Conclusion

This work presented a craniosynostosis classification pipeline using the parameter
vector of an SSM. State-of-the-art results comparable to both CT data and 3D surface
scans were achieved and tested on the largest craniosynostosis-specific dataset to
date. Morphing approaches showed little influence on the classification results, more
important were the number of principal components and the classification approach.
Data augmentation using the mirrored twins from the dataset lead to a performance
drop. SSMs are flexible and versatile tools when working with clinical data and this
approach expands the current use-cases of SSMs for classifying subclasses of head
deformities. While using the shape parameters of a SSM for classification was only
tested on head shapes for the classification of craniosynostosis, it is likely applicable
to other shape families as well.



Chapter 9
CNN-Based Classification Using

2D Distance Maps

This chapter quotes partly in verbatim from the related open-access publication licensed
under CC-BY in IEEE Transactions on Biomedical Engineering [154].

9.1 Introduction

In the introduction (see Chapter 1.2), it has been established that craniosynostosis is
a condition affecting young infants and that the focus of this thesis is to improve
radiation-free diagnosis of craniosynostosis. One already existing machine learning
(ML) and successful approach for classifying craniosynostosis used a ray-based
distance extraction scheme in combination with a feedforward neural network
(FNN) [13], using a manually defined center point and achieving an accuracy of
99.5 % on an in-house dataset. It has to be noted that the values of metrics are dataset-
dependent and cannot be compared quantitatively to other datasets. Furthermore,
some disadvantages of classifying directly on the 3D data becomes apparent when
considering data augmentation on 3D data. Data augmentation was limited to
adding noise to the input features, while 3D transformations such as left-right patient
mirroring and rotational misalignment had to be applied before training and cannot
be randomized during training because the distance extraction is computationally
expensive. The data augmentation is therefore not applicable dynamically during
training.1

A popular choice for the classification of 2D images are convolutional neural
networks (CNNs). They offer a flexible model design, and the easy adaption of
many pre-trained models facilitating transfer learning. On head deformities, some

1Randomization before training leads to re-sampling of the generated instances during each
epoch and is therefore inferior to dynamically employing randomization during training,
in which all samples are truly random and different during each epoch.
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CNN approaches include multiple viewpoints from different perspectives for cran-
iosynostosis [38, 39] as well as a combination of segmentation and classification
on plagiocephaly patients [143] with the goal of developing a mobile application.
However, 2D photographs do not represent the full 3D head geometry. If CNNs
were to be applied on the 3D geometry, a transformation from 3D to 2D is required,
which had not been proposed for classifying head deformities. A suitable 2D image
representation of the 3D head geometry could make use of the full head and combine
3D data with CNNs.

The contribution of this work is a mapping approach to obtain 2D images from
3D surface scans of the head which combined two ideas: asymmetry maps for
plagiocephaly patients [34], and ray casting for distance extraction [13]. Those two
ideas will be merged to create 2D distance maps and combined with a CNN classifier.
Using 2D images instead of the original 3D geometry has some desirable properties
when dealing with 3D patient data: patient anonymity is preserved (back-conversion
would only yield a 3D scatter plot), and typical 2D image-based processing steps
using filter kernels (such as interpolation, up-sampling with an under-sampled
resolution, smoothing, or gradient computation) are enabled. As the 2D distance
maps are subject to a defined coordinate frame, location-specific image processing
can be applied, for example stronger smoothing in certain regions. The encoding
of the 3D geometry into a 2D image enables using CNNs on the image domain for
classification. Sophisticated network structures have been tested extensively on
CNNs and there is a wide range of pre-trained networks available enabling transfer
learning, which is usually considered helpful when dealing with small datasets.
Image-based data augmentation strategies such as horizontal flipping, or horizontal
shifting give more flexibility to the applicant. Data augmentation can be applied
without much computational cost during training and enables additional random-
ization. 2D images can be re-scaled easily and it will be shown that classification
performance can be maintained while systematically reducing image resolution. For
the benefit of the community, the Python modules for the distance map creation
were released, which can also be used on the previously published statistical shape
model (SSM) [141].

This is the last chapter of this thesis concerned with introducing classification
approaches and therefore compares the already employed classifiers of Chapter 7
and Chapter 8 as well as the FNN approach [13]. This enables a quantitative
comparison of the current state-of-the-art classification approaches under the same
conditions.

9.2 Methods

Figure 9.1 gives a full overview of the pipeline from the raw data to the distance
map creation and the craniosynostosis classification. The dataset resulted in 496
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Figure 9.1: 2D distance map classification pipeline. Each dataset sample is preprocessed to remove
corruptions. After distance extraction according to themapping approach, the image can be assembled,
and a CNN-based classification can be performed.

samples of four classes: control, coronal suture fusion, metopic suture fusion, and
sagittal suture fusion. For the clinical acquisition of the dataset, the data distribution,
and the preprocessing, it is referred to Chapter 5.

9.2.1 Distance Mapping

The patients’ anatomic landmarks were used for the creation of a common coordinate
system similar to the frontal, sagittal, and median planes. For a coordinate system,
the sellion tragion orientation (STO) was chosen (see Section 5.4), as the sellions
were located on different ends of the head and the midpoint between the two ears is
approximately in the center of the head.

9.2.1.1 Spherical Mapping

The spherical mapping used a spherical coordinate transform for the ray creation to
obtain the direction vectors ds

ds =
[
cosφ cos θ, sinφ cos θ, sin θ

]T
. (9.1)

The start point ps of the ray was defined as the origin pc:

ps = pc (9.2)

The two angle intervals were 0 ≤ φ < 2π and 0 ≤ θ < π/2 in the image domain.
To retain the up-down relation of the distance map image, the image origin was
placed in the bottom left corner and the direction for θ was defined from bottom to
top (see Fig. 9.2, top right panel).
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Figure 9.2: Visualization of themapping types. Left: Angle definitions and coordinate frames. Hit points
from the rays resulting from a 20×20 sampling are visualized. Right: Distancemaps corresponding from
the mapping with angle axes.
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9.2.1.2 Arch-Spherical Mapping

The arch-spherical transform was designed to retain a frontal-vertical relationship
when looking at the head from the top perspective and to provide a more regular
sampling of the tip of the head with the direction da

da =
[
sinφ cos θ, cosφ, sinφ sin θ

]T
, (9.3)

and the start point again being placed in the origin:

ps = pc (9.4)

The corresponding angle intervals for φ and θ both ranged from 0 ≤ φ < π, but
the φ direction was defined clockwise (mathematically negative) to retain the left-
right relation. This way, the left part of the 2D image corresponded to the left part of
the head when viewed from above and the back part of the head corresponded to
the bottom of the 2D image.

9.2.1.3 Cylindrical Mapping

For the two spherical-based mappings, a grayscale gradient could be observed from
the top to the bottom of the 2D image. By using a cylindrical-based mapping instead
of a spherical one, the distance variation could be reduced for a larger part of the
image. One key feature was that the center point was not constant, but moved
toward the tip of the head hmax for each pixel row. Thus, the direction dc was
defined as

dc =
[
cosφ, sinφ, 0

]T
, (9.5)

and contrary to the previous approaches, the start point for each ray was defined as

ps = pc + h · uz. (9.6)

The φ angle ranged from 0 ≤ φ < 2π and h from 0 to the tip of the head hmax.
Regardless of the mapping type, the angle intervals were sampled equidistantly. As
with the spherical image, the reversed image direction (x-axis from bottom to top)
of h was used to retain an up-down relationship.2

9.2.2 Image Creation

Each angle interval was sampled equidistantly in 224 steps, resulting in one ray
direction for each of the 2D image pixels. The intersection of the 3D mesh surface
2A variant of the cylindrical approach with hmax = 1 was also used in the cephalometric
parameter extraction for the multi-height classification in Chapter 7.



84 Chapter 9. CNN-Based Classification Using 2D Distance Maps

with each ray was determind and the distance from the starting point to the hit point
was extracted. Oriented bounding boxes trees from the vtk Python package [148]
were used to speed up computation. The extracted distances were arranged in a
2D image grid, corresponding to the angle directions (e.g., φ and θ in the spherical
mapping approach, see also Fig. 9.2). If multiple hit points were encountered (for
example at the auricula, the outermost part of the ear), the minimal distance was
chosen as the “correct” distance. If no hit point could be determined (for example
due to corruptions in the scans), missing values were interpolated on the equally-
spaced image grid as the mean of its four neighbors (which models missing pixels
according to Laplace’s equation) [155]. Small artifacts resulted from the tip of the
head which were left unchanged. However, if required, they could be minimized on
the image domain using smoothing. The actual image was created by converting the
distances to integer pixel intensity values from 0 to 255. Two different normalization
schemes were performed to transform the distance range to the required image
intensity range: Linear re-scaling and per-pixel-based re-scaling.

Linear re-scaling used only one linear transformation for all images and pixel
values. Mean distance and standard deviation were computed across all scans and
distances (regardless of their ray orientation) to obtain one transformation to map the
distances of [−3σ,+3σ] to the image domain of [0, 255]. This way, the relationship
between image intensity and distance is preserved, so short distances between
center point and 3D surface correspond to low image intensities and, consequently,
intensity gradients within the same image correspond to distance changes in the
underlying 3D geometry.

The second approach, per-pixel re-scaling, used one linear transform for each
pixel position (corresponding to one transformation per ray direction). This way, the
relationship between image intensity and distance is not preserved, but the intensity
range is better sampled for each pixel. The mapping is non-uniform, meaning that
intensity gradients within one image do not correspond to distance changes in the
3D geometry, but instead correspond to intensity values relative to this pixel in the
other images.

Fig. 9.3 shows the different scaling approaches for the same distance map for
each pathology and Fig. 9.4 the different mapping types for one subject. Other
normalization approaches might also be possible, e.g., scaling with respect to a
control group or min-max scaling irrespective to other subjects. The Python source
code3 [156] for the distance map creation was made publicly available and can be
combined with the previously published synthetic dataset [141].

3https://github.com/KIT-IBT/cd-map

https://github.com/KIT-IBT/cd-map
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Figure 9.3: Linear and per-pixel scaling applied to the different pathologies using the spherical mapping.
For the visualization of the hit points, 20×20 rays were used instead of 224×224. For visualization
purposes, a blue-yellow colormap was used instead of grayscale.
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Figure 9.4: Mapping methods with different scalings for one subject. For the visualization of the hit
points, 20×20 rays were used instead of 224×224. From left to right: Spherical, arch-spherical, and
cylindrical. From top to bottom: Linear scaling and per-pixel scaling. For visualization purposes, a blue-
yellow colormap was used instead of grayscale.
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9.2.3 Experimental Setup and Network Training

The last step consisted of training a CNN on distance maps. Five test scenarios
were considered and described in the next paragraphs: The first three evaluated
classifier performance, while the forth and fifth scenarios studied the properties of
the proposed method.

9.2.3.1 Classification Comparison

The first test was designed as a comparison between different CNNs using the
proposed distance maps and alternative approaches from the literature.

A vanilla CNN trained from scratch only on the image data was considered. To
find the optimal number of convolutional layers, it was trained with an increasing
number of layers starting from 1 until 18. The highest metrics were scored by the
CNN with 5 convolutional layers which is the one which was considered further. For
the pre-trained CNNs, this included ResNet18 [157], AlexNet [94], GoogLeNet [158],
and small and large MobileNet [159].

As alternative approaches, the white box SHAP-based multi-height approach
using kNN classification (see Chapter 7) and SSM-based classification using naïve
Bayes (NB) (see Chapter 8) and FNN-based classification [13] were considered. The
FNN classifier [13] was re-implemented according to the original paper [13]. After
initial testing, the dropout and batch-norm-layers were removed, which increased
the performance metrics on the particular dataset used in this thesis. The FNN-
based approach was tested on an icosphere-based extraction scheme as originally
proposed [13] and on the distances extracted using the proposed mapping. This
way, the FNN could be tested on both inputs.

9.2.3.2 Mapping Comparison

The three mappings and two scaling approaches were compared using the same
network (pre-trained ResNet18) to test if the mapping had a substantial influence
on the performance metrics. An exemplary set of images derived with the different
mappings is shown in Fig. 9.4.

9.2.3.3 Data Augmentation Strategy

The image-based data augmentation was tested on pre-trained ResNet18, the vanilla
CNN, and the FNN on the linear, spherical mapping. Four types of data augmen-
tation were considered relevant: pixel noise, intensity noise, random flipping and
random horizontal shift. Pixel noise was applied to each pixel as white Gaussian
noise with standard deviation of σ = 1/255. Intensity-noise was applied to the full
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image (making the image brighter or darker) as white Gaussian noise with σ = 5/255
and could be interpreted as enlarging or shrinking the full head. Random flipping
in horizontal direction was applied with a probability of p = 0.5 and corresponded
to a symmetric mirroring of the patients. The horizontal shift was designed as white
Gaussian noise with standard deviation of σ = 20/360 · 2π, shifting the image to
one direction and inserting the cut-off part on the other side. This corresponded to a
misaligned head rotation during recording, as if the subjects were looking slightly
left or right.

Note that mirroring and shifting of 2D images could be performed “on the fly”
during each training epoch. Before, mirroring and rotating on 3D data had to be
performed before the training had started, could not be adjusted during training,
and the data loaders were required to make sure that the mirrored samples stayed in
the same training or test set. On 2D images, the created images were different during
each epoch and the randomization could be adjusted during training, making it
overall more flexible.

Fig. 9.5 visualizes the resulting data augmentation methods applied onto one
subject and the resulting points back-transformed onto the 3D geometry.

9.2.3.4 Resolution

The resolution reduction comparison was designed to reduce computational cost for
the distance map creation. As 224 × 224 is a standard size for CNN input images,
the original approach used one ray per pixel. Using only n× n rays with n ranging
from 7 to 224 in steps of 7 was tested. The smaller images were interpolated with
intermediate points to obtain the CNN input dimension of 224. Three interpolation
methods were tested: nearest-neighbor-mapping, bilinear and bicubic image inter-
polation (Fig. 9.6). Again, a pre-trained ResNet18 and the linearly scaled spherical
mapping were used to ensure comparability among the experiments.

9.2.3.5 Attribution Maps

To make the model more interpretable, integrated gradients [160] were chosen as
a visualization method to project the network’s decision to the input image. Addi-
tionally, interpretability approaches might be able to rule out possible overfitting
caused by a focus on unimportant parts of the head such as the ears (which are
only expected to play a major role for coronal synostosis or plagiocephaly). The
Python captum package [161] was used for computing integrated gradients. For
visualizing the heatmap resulting from the integrated gradients on the 3D head
surface, each point of the 3D surface was projected onto the image, was bilinearly
interpolated, and the attribution value was back-projected to each 3D point. The
following three different back-transformations for the spherical, arch-spherical, and
cylindrical transformation yielded:
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original

pixel noise

intensity scaling

horizontal shift

Figure 9.5: Data augmentation of the 2D images visualized and back-transformed into the 3D space,
visualizing, how the extracted points from the 2D distance maps would appear as 3D scans. From top
to bottom: Original, pixel noise (with standard deviation σ = 5), intensity noise making the head appear
larger or smaller (with standard deviation σ = 10), horizontal shift (19pixel ≈ 30 ◦) which translates
into 3D as rotational noise.
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Figure 9.6: True 224×224 image in comparison with the three different interpolation methods nearest
neighbors, bilinear, and bicubic from a 7×7 image.
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9.2.3.6 General Training Strategy

All classification scenarios were carried out using stratified 10-fold cross validation.
The same random number generator was used for each experiment ensuring a
consistent split of train and test samples across all different classifiers for the same
fold. All networks were trained with cross entropy loss, adaptive moment estimation
(ADAM) optimizer, a batch size of 32, and weight decay of 0.63. The initial learning
rate for AlexNet was 1 ·10−4 and for all other networks 1 ·10−3. Pre-trained networks
were trained with 300 epochs and a step size of 10, while from-scratch networks were
trained with 1000 epochs and a step size of 100. The SSM-based classifier was trained
with the same hyperparameters as in the previous work (see Chapter 8 or [140] on
the new dataset). The python packages pytorch [89] and scikit-learn [153]
were used for the implementation and pytorch’s pre-trained models had been
trained on ImageNet [162]. Accuracy, G-mean, and macro F1-score were used for
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model evaluation. Mean values and standard deviations were computed across all
cross validation splits.

9.3 Results

9.3.1 Classification Comparison

As summarized in Table 9.1, all neural network (NN) classifiers showed good
performance with mean accuracies above 0.95. CNN-based classifiers generally
performed better than the competing approaches. The highest accuracies, G-means,
and F1-scores were achieved by GoogLeNet and ResNet18. Standard deviations for
F1-score computed across the ten folds were lowest for GoogLeNet and ResNet18
(indicating smaller disturbances for different training conditions) and increased for
the other networks. The CNNs scored higher accuracies, G-means, and F1-scores
than the FNNs. In general, accuracy ranged from 0.948 to 0.984 which corresponded
to 18 fewer misclassified test samples. The confusion matrix with sensitivities and
specificities of the pre-trained ResNet18 classifier is presented in Table 9.2.

Training times for each cross validation split measured on a high performance
cluster running Red Hat Enterprise Linux using an Nvidia Tesla V100 were also in-
cluded in Table 9.1. GoogLeNet required the longest training (306 s). In comparison,
distance extraction for a 224× 224 image took on average 102 s using a single thread
on an Intel Xeon Gold 6230 processor. However, multiple scans could be processed
in parallel since they were independent of each other.

9.3.2 Mapping Comparison

Classification results for different mapping approaches using the pre-trained
ResNet18 are displayed in Table 9.3. All accuracies were 0.976 or above. All three
metrics were consistently higher than the classification approaches in Table 9.1
except GoogLeNet. For the arch-spherical and cylindrical approach, the per-pixel
mappings performed slightly better than the linear approach, but were in the range
of one standard deviation.

9.3.3 Data Augmentation Strategy

Table 9.4 shows the classifier performance using “on the fly” 2D image-based data
augmentation, compared to the networks without data augmentation (Table 9.1).
All classifiers improved G-mean and F1-score. FNN showed the largest increase in
all three metrics.
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Table 9.1: Classifier comparison on linear, spherical mapping. For each metric, cross validation mean±
standard deviation is displayed.

Classifier Training
time

Accuracy G-mean F1-score

Alternative methods developed during this thesis (Chapter 7 and 8)
Multi-height
LDA-Steps

0.5 s 0.948±0.043 0.772±0.274 0.876±0.102

NB on SSM 5 s 0.966±0.022 0.926±0.053 0.939±0.049
Alternative methods from the literature

FNN [13] on
semi-icosphere

130 s 0.954±0.031 0.696±0.355 0.876±0.104

FNN [13] on
distance maps

180 s 0.960±0.033 0.729±0.370 0.895±0.110

CNN-based methods using distance maps
MobileNet small
(pre-trained)

195 s 0.964±0.032 0.737±0.375 0.900±0.110

MobileNet large
(pre-trained)

225 s 0.964±0.025 0.824±0.284 0.921±0.081

AlexNet (pre-trained) 241 s 0.970±0.016 0.829±0.287 0.923±0.076
Vanilla CNN 213 s 0.974±0.022 0.864±0.291 0.943±0.077
GoogLeNet
(pre-trained)

306 s 0.982±0.014 0.938±0.078 0.962±0.042

ResNet18
(pre-trained)

210 s 0.984±0.020 0.943±0.070 0.964±0.043

Table 9.2: ResNet18 accumulated confusion matrix with linear, spherical mapping. For sensitivity and
specificity, mean and standard deviations computed across all folds are depicted.

True
class

Predicted class Sensitivity Specificity

Control Coronal Metopic Sagittal
Control 276 0 1 1 0.993±0.014 0.977±0.031
Coronal 4 20 0 0 0.833±0.211 1.000±0.000
Metopic 0 0 70 0 1.000±0.000 0.995±0.014
Sagittal 1 0 1 122 0.984±0.033 0.997±0.008
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Table 9.3: Mapping and scaling approaches using ResNet18. Displayed is cross validation mean ±
standard deviation.

Mapping Scaling Accuracy G-mean F1-score
Spherical Linear 0.984±0.020 0.943±0.070 0.964±0.043

Per-pixel 0.976±0.012 0.944±0.035 0.962±0.018
Arch-spherical Linear 0.976±0.018 0.938±0.078 0.959±0.044

Per-pixel 0.986±0.018 0.959±0.069 0.974±0.041
Cylindrical Linear 0.976±0.020 0.958±0.038 0.960±0.032

Per-pixel 0.984±0.012 0.971±0.037 0.978±0.020

Table 9.4: Classifier comparison on linear, spherical mapping using image-based data augmentation.
Displayed is cross validation mean± standard deviation.. The second line for each classifier shows the
increase compared to Table 9.1.

Classifier Accuracy G-mean F1-score
FNN [13] on distance maps 0.968±0.024 0.888±0.083 0.928±0.055
(Mean improvement w.r.t. Table 9.1) (+0.008) (+0.159) (+0.033)
Vanilla CNN 0.974±0.026 0.926±0.086 0.949±0.053
(Mean improvement w.r.t. Table 9.1) (+0.000) (+0.062) (+0.006)
ResNet18 (pre-trained) 0.986±0.016 0.969±0.041 0.975±0.029
(Mean improvement w.r.t. Table 9.1) (+0.002) (+0.026) (+0.011)

9.3.4 Resolution

In Fig. 9.7, the cross validation mean of accuracy, G-mean, and F1-score over pixel
resolution are displayed for the ResNet18 classifier with spherical mapping and
linear scaling. Starting with a pixel resolution of 14 and higher, G-mean was 0.81 or
higher, accuracy 0.96 or higher, and F1 score 0.92 or higher. Using 14 steps in the
interval of φ and θ instead of 224 steps in a 256-fold computation reduction of rays
while bicubic image interpolation still yielded a G-mean larger than 0.95. All three
interpolation methods jittered slightly and with similar amplitudes.

9.3.5 Attribution Maps

Fig. 9.8 visualizes the mean attribution across all scans for the different mappings.
All three mappings assigned attribution to the frontal part of the head where typical
deformations of sagittal and metopic craniosynostosis can be observed. The precise
location varied on the mapping and was slightly shifted to the right for the spherical
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Figure 9.7: Mean cross validationmetrics as functions of the number of pixels p to create a p× p image.
Three different interpolation methods were used to create an up-scaled image: Nearest neighbors,
bilinear, and bicubic interpolation.
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and cylindrical mappings, and slightly shifted to the left for the arch-spherical
mapping.

9.4 Discussion

A flexible mapping approach to create 2D distance maps from 3D head ge-
ometries was introduced, which was used for the classification of craniosynostosis.
Multiple mapping variants with different coordinate systems and scaling approaches
were proposed. While CNNs had been used for camera pictures from above [39], the
proposed conversion encoded 3D data into intensity values on a 2D grid and enabled
the first CNN for classifying craniosynostosis on the implicit 3D geometry. This was
also used for the first systematic study to investigate the effects of reducing the 2D
image resolution (and consequently sampling frequency of the 3D head surface) for
classifying craniosynostosis. The 2D distance maps enable the usage of “on the fly”
data augmentation methods typically employed for CNNs and can be used as an
intermediate visualization before a machine learning classifier is employed, which
preserves patient anonymity.

Using pre-trained networks was effective, especially ResNet18 showed good
performance and scored highest in all three metrics. However, a vanilla CNN
trained from scratch could outperform MobileNet and AlexNet and showed that
pre-training is beneficial, but not a prerequisite for good classification performance.
The network choice showed a larger influence on the three metrics than mapping
choice (spherical, arch-spherical, or cylindrical) or scaling choice (linear or per-pixel
scaling). This indicates that there is no “better” transformation, for the CNN, as
long as the geometry is represented in the image. The mapping type might be more
relevant when considering data augmentation methods, as only the spherical and
cylindrical mapping allow a horizontal shift for rotation misalignment. Image-based
data augmentation lead to an increase of G-mean and F1-score for all three tested
classifiers. The original FNN classifier could be improved when using 2D image
data and even more when introducing data augmentation during training. Taking
into account the standard deviations, ResNet18 and GoogLeNet showed the most
consistent performances across all ten folds while other classifiers showed higher
standard deviations for G-mean and F1-score.

Using different image resolutions revealed that a low-resolution sampling of the
head surface with a resolution of 14 steps per angle interval still showed classifi-
cation results with G-mean and accuracy above 0.95 for bicubic up-scaling. This
corresponds to a 256-fold ray-reduction of triangular ray intersection. Classification
could be performed with substantially lower resolution than previously performed
on 3D surface scans. Since low-resolution images represent low spatial frequencies
well and suppress high spatial frequencies, it suggests that low spatial frequencies



96 Chapter 9. CNN-Based Classification Using 2D Distance Maps

Figure 9.8: Mean attribution for all subjects in the image domain with a transparent overlay of the
map (left) and projected onto the 3D surface for the respective mapping (right). From top to bottom:
Spherical, arch-spherical, and cylindrical mapping. The 2D image shows a transparent overlay of the
grayscaled distance map as a visual guide, while attribution is colored in blue. A larger value means
higher attribution.
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are most relevant for the classifiers. High-resolution artifacts (which may result
from the ears or the often visible tip resulting from the caps) might be weakened.
The reduction of input parameters for machine-learning-based classifiers might be
a promising follow-up study and pave the way toward an interpretable classifier
trained on few, carefully selected features. Although the resolution study was per-
formed only on the spherical linear mapping, the results are likely valid for the other
mappings as they showed little influence on the classification performance overall.
The observed accuracy fluctuation of 1–1.5 % for the different resolutions was likely
caused by different network training conditions, although all samples among splits
were kept consistent. Low-resolution images might reduce the required precision of
scanning devices or enable domain transfer to computed tomography (CT) imaging,
even with high slice thickness.

One reason for the success of the CNNs might be that the filter kernels on the 2D
image ensure that the classifier is trained on locally confined features. This impedes
the simple correlation of spatially not connected input pixels and might be beneficial
for classification performance. In contrast, FNNs interpret the image as a large 1D
feature vector, thus allowing the creation of features based on random correlations
across the image. A second reason might be that pre-trained networks might cope
more easily with the small amount of data often present in medical classification
problems. Especially ResNet18 and GoogLeNet seemed to be able to effectively
fine-tune the fully connected layers after pre-training. However, the vanilla CNN
proved to be an effective classifier without using pre-training and even surpassed
some of the pre-trained network architectures.

Attribution maps intend to provide insights of how the classifier made its de-
cision and suggest that the CNN was indeed triggered by features specific to the
condition. Qualitatively, parts of the head which would be considered less impor-
tant by humans (such as the ears) were assigned only little attribution. Higher
attributions were assigned to the forehead with a prominent spot on either the left
or right side of the head, corresponding to pathological differences between the
classes, suggesting that the network makes use of geometric relevant parts of the
head. It has to be noted that attribution mapping is generally not a replacement for
explainable classification and generalizations from attribution mapping need to be
interpreted carefully [163].

There are also limitations to this study. As with many studies in biomedical
engineering, the used dataset contains only some hundred samples, even though it is
the largest dataset of craniosynostosis patients used in a classification study to date.
Optimally, multiple datasets should be used to further validate the models, which
might increase trust in parents and physicians. However, as craniosynostosis head
scans show the face of the patients, there are currently no publicly available clinical
datasets and data sharing is complicated due to patient data regulations. Other
groups might make use of the publicly available SSM [141]. Data augmentation or
data synthesis might be an option to make the classification models as robust as



98 Chapter 9. CNN-Based Classification Using 2D Distance Maps

possible. It was shown that image-based random horizontal flipping and a random
horizontal shift during training increased classification performance for CNNs and
FNNs alike.

The three proposed distance map variants sample the 3D geometry with equidis-
tant angle intervals which leads to non-equidistant sampling intervals on the 3D
surface, resulting in more points at the tip of the head (see Fig. 9.4). However, this
apparently did not hamper classification performance. One disadvantage of the
2D distance mapping is the reliance on the three manually annotated landmarks.
Future work should focus on automatic registration of the scans, for example using
random sample consensus (RANSAC).

In general, this mapping approach is not tied to 3D surface scans and might be
used in other domains, for example for CT scans, head shape analysis or any shape
analysis for spherical-like objects. Distance maps from magnetic resonance imaging
(MRI) and CT could be used for classification purposes or combined with surface
scans to obtain a cross-domain dataset from all three modalities. Especially the
domain transfer to CT scans seems promising: It seems likely that low-resolution-
maps from existing CT or x-ray imaging can achieve similar results, potentially
reducing ionizing radiation if a radiography is still desired or inevitable.

9.5 Conclusion

Distance mapping approaches to transform 3D head shape information to 2D
intensity-encoded images were presented which were combined with CNN-based
classifiers for craniosynostosis. The conversion to 2D images enables the usage of
“on the fly” data augmentation (horizontal mirroring and shifting) and pre-trained
CNNs, and preserves patient anonymity. Resolution of the images was reduced
systematically which showed that using the 2D image structure, low-resolution
images could be used for classification without a substantial decrease of classifi-
cation accuracy. ResNet18 achieved the best classification performance, showing
that 3D surface scans are suitable for a reliable classification of the most common
types of craniosynostosis. Although this mapping encoded 3D surface scans, it is
not inherently confined to this domain and could be used for a combined image-
based classification dataset. To facilitate this process, the Python source code was
published as free and open source software.
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Chapter 10
Classification of Craniosynostosis

Using Synthetic Training Data

This chapter quotes partly in verbatim from the submitted publication “Impact of Data
Synthesis Strategies for the Classification of Craniosynostosis” which is currently under
review.

10.1 Introduction

As stated in the introduction (see Chapter 1) and the clinical fundamentals (see Chap-
ter 2), craniosynostosis is a rare disease and is included in the list of rare diseases
by the American National Organization for Rare Disorders. Due to the low preva-
lence, strict patient data regulations, and difficulties in anonymization (3D surface
recordings show head and face), there are no publicly available clinical datasets of
craniosynostosis patients available online. Synthetic data could potentially be used
as a substitute to develop algorithms and approaches for the assessment of cran-
iosynostosis, but only one synthetic dataset based on a statistical shape model (SSM)
developed during this thesis [141] has been made publicly available. Scarce training
data and high class imbalance due to the different prevalences of the different types
of craniosynostosis [12] call for the usage of synthetic data to support or even replace
clinical datasets as the primary resource for deep-learning-based assessment and
classification. The inclusion of synthetic data could facilitate training due to the re-
duction of class imbalance and increase the classifier’s robustness and performance.
Additionally, synthetic data may also be used as a cost-effective way to acquire the
required training material for classification models without manually labeling and
exporting a lot of clinical data. Using synthetic data for classification studies in a
supporting manner or as a full replacement for clinical data has gained attraction in
several fields of biomedical engineering (e.g. [164, 165]), especially if clinical data
is not abundant. While classification approaches of craniosynostosis on computed
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tomography (CT) data [29], 2D images [143], and 3D surface scans [13, 140, 154]
have been proposed, the dataset sizes were below 500 samples and contained a high
class imbalance. Using synthetic data is a straightforward way to increase training
size and stratify class distribution.

However, although the need for synthetic data had been acknowledged [13],
synthetic data generation for the classification of head deformities has not been sys-
tematically explored yet. In this work, it is aimed to test the effectiveness of multiple
data synthesis methods both individually and as multi-modal approaches for the
classification of craniosynostosis. As described in the fundamentals in Chapter 4
and during the development of the SSM during this thesis in Chapter 6, SSMs have
been used successfully for quantification and classification of craniosynostosis and
are a straightforward way to synthesize data. Although their value in the clinical
assessment of craniosynostosis has been shown, the impact of SSM-based data
augmentation for the classification of craniosynostosis has not been evaluated yet.
With the introduction of a conversion of the 3D head geometry into a 2D image,
image-based convolutional neural network (CNN)-based classification [154] can be
applied on low-resolution images. This enables image generation using principal
component analysis (PCA) or generative adversarial networks (GANs) [99]. GANs
have been suggested as a data augmentation tool [13] and have been able to increase
classification performance for small datasets [166].

The goal of this work is to employ a classifier based on synthetic data, using
three different types of data synthesis strategies: SSM, GAN, and image-based
PCA. The three modalities are systematically compared regarding their capability
in the classification of craniosynostosis when trained only on synthetic data. It
will be demonstrated that the classification of craniosynostosis is possible with a
multi-modal synthetic dataset performing similarly to a classifier trained on clinical
data. Additionally, a GAN design is proposed, tailored toward the creation of
low-resolution images for the classification of craniosynostosis. Both the GAN, the
different SSMs, and PCA, were made publicly available along all the 2D images
from the synthetic training, validation and test sets.

10.2 Methods

10.2.1 Dataset and Preprocessing

The resulting data consisted of 496 samples of four classes: control, coronal suture
fusion, metopic suture fusion, and sagittal suture fusion. Information about the
dataset such as the data distribution and head shapes of each class are described in
Chapter 5. In Chapter 9, a 2D encoding of the 3D head shape (“distance maps”) was
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defined which was also included in the pre-processing pipeline with the spherical
and linear variant of Chapter 5.

10.2.2 Data Subdivision

Three data generators were defined (GAN, SSM, and PCA) to synthesize synthetic
data, on which the classifier should be trained. Only half of the clinical dataset
(the validation set, see Fig. 10.1) was used as training data for the data generation
models.

If the test set had also been included in the synthetic data sources, this would
have lead to leakage (an overestimation of the model performance due to statistical
information “leaking” into the test set). Instead, the schematic displayed in Fig. 10.1
was used, which comprised a stratified 50–50 split of the clinical data and used one
half of the samples as the validation set and the other half as the test set.

The test set was separated from the validation set, only to be used for the final
evaluation of the classifier. Following this approach, the test set did neither have
any influence on the synthetic data, nor was it incorporated in the validation set
and should therefore be a true representation of unknown data to the classifier.
The validation set was used to select the best network during training and for
hyperparameter tuning, but not as training material. Additionally it was used as
the original (training) data which the synthetic image generators were built on. The
synthetic training set was created from the validation set according to the three data
synthesis approaches described below: SSM, GAN, and PCA. The three approaches
operated on different domains (also depicted in Fig. 10.1): While the SSM was
applied directly on the 3D surface scans, the GAN and the PCA used the 2D distance
map images. All images were created as 28×28-sized craniosynostosis distance
maps which was found to be sufficient for a good classification in the resolution
study in Section 9.3.4. Each of the three individual approaches SSM, GAN, and PCA
are described below.

10.2.3 Data Synthesis

10.2.3.1 Statistical Shape Model

To create the SSM data, the submodels of Chapter 6 were used. The pipeline for the
SSM creation consisted of initial alignment, dense correspondence establishment,
and statistical modeling to extract the mean shape and the principal components
from the sample covariance matrix (see also Chapter 6 for more information).

For each submodel, the coefficient vectors were cut off after 95 % of the nor-
malized variance to remove noise which ensured that only the most important
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Figure 10.1: Data subdivision for the synthetic-data-based classification and the creation of synthetic
data. The test set was separated initially from the dataset, while the validation set was used to produce
the synthetic samples onwhich the CNNwas trained. Green: data, blue: 3D-2D image conversion, dark
red: generative models.
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components were included in the SSMs. The synthesis of the model instances s
could be performed as

s = s̄+VsΛ
1
2s αs, (10.1)

with s̄ denoting the mean shape, Vs the principal components, Λs the sample
covariance matrix, and αs the shape coefficient vector. 1000 random shapes were
created of each class using a Gaussian distribution of the shape coefficient vector
and for each sample, a craniosynostosis distance map was created.

10.2.3.2 Image-Based Principal Component Analysis

Ordinary PCA was used as another modality to generate 2D image data. While the
SSM also made use of PCA in the 3D domain, image-based PCA operated directly
on the 2D images. This was a computationally inexpensive and less sophisticated
alternative to both GANs and SSMs since neither extensive model training, nor
hyperparameter tuning, nor 3D morphing, nor correspondence establishment was
required. Ordinary PCA was employed for each of the four classes separately and
was performed as

i = ī+ViΛ
1
2
i αi, (10.2)

with ī denoting the mean image in vectorized shape, Vi again the principal compo-
nents, Λi the sample covariance matrix, and αi the coefficient vector of the principal
components. Again, the principal components were cut off after 95 % of the variance
and 1000 random images were created by drawing from a Gaussian distribution.

10.2.3.3 Generative Adversarial Network

The GAN was designed as a conditional [105] deep convolutional [100] Wasser-
stein [106] GAN with gradient penalty [107]. It was trained for 1000 epochs using
the Wasserstein distance [106] which is considered to stabilize training [167]. In-
stead of the originally proposed weight clipping, a gradient penalty [107] of λ = 1
was used. 10 critic iterations were employed before updating the generator and a
learning rate of 3 · 10−5 was used for both networks. The loss L could be described
as follows [107]:

L = Ex̃∼pzD(x̃|y)− Ex∼prD(x|y) + λ(||∇x̂D(x̂)||2 − 1)2 (10.3)

with x denoting the real samples, x̃ denoting the generator samples G(z|y), and
x̂ = ϵx+ (1− ϵ)x̃ with ϵ denoting a uniformly distributed random variable between
0 and 1 [107]. The design in terms of the intermediate image sizes is visualized
in Fig. 10.2. The full design including all layers is described in the appendix in
Chapter D.2.
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Figure 10.2: Visualization of the intermediate image sizes from the used GAN model. Left: generator,
right: critic (discriminator). The filter kernel sizes are described in the appendix in Chapter D.2.

Epoch no. 1 Epoch no. 10 Epoch no. 100 Epoch no. 1000

Figure 10.3: Progression of random images created from the GAN generator during different stages of
training visualized as a 2×2 grid.

The network design was crafted using a mixture of transposed, interpolation,
and normal convolutional filter kernels, aimed to prevent checkerboard artifacts and
large patches. During the initial model design, checkerboard artifacts were observed
using only transposed convolutions (present in a previous publication [168]), and
large patches were observed using only upscaling layers (interpolations). The
combination of interpolation layers and transposed convolutional layers lead to
better images than each of the approaches alone (see Fig. 10.3 for the training image
and Fig. D.1 in the appendix for the artifacts in other GAN images). The conditioning
of the GAN was implemented as an embedding vector controlling the image label
that was supposed to be synthesized.
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10.2.4 Image Assessment

As a metric to assess the similarity of the synthetic images to the clinical images,
structural similarity index measure to closest clinical sample (SSIMcc) was defined
as the structural similarity index measure for each synthetic sample by using the
minimum SSIMcc with respect to each clinical sample of the same class N :

SSIMcc,i = min∀n∈N SSIM(psynthetic,i, pclinical,n) (10.4)

It has to be noted that the SSIMcc itself did not assess the quality of the synthetic
images, but was rather designed to evaluate the similarity to the clinical images.
This approach had the goal to quantify a “good” data generator: The synthesized
data should on the one hand not be “too” similar to the original data (because
otherwise simply the original data could be used), but on the other hand, not too
different either (because otherwise they might not be a true representation of the
underlying class anymore). “Good” images should not be “too close” to 1, and not
“too low”.

10.2.5 CNN Training

All training data used in this study was made publicly available: The synthetic and
clinical samples of this study were made available in its distance maps representation
on Zenodo.1 [169] The synthetic data generators (GAN, SSM, and PCA) were made
available as pickle and pytorch files.2 A Python script was included to create
synthetic samples for all three image modalities, enabling users to create a large
number of samples.

Resnet18 was used as a classifier since it showed the best performance on this
type of distance maps [154]. The publicly available pre-trained Resnet18 model
by pytorch [89] was used and the weights were fine-tuned during training. All
images were bilinearly reshaped to a size of 224×224 to match the input size of
Resnet18. Different runs of CNN training were performed on all seven combinations
(three times one data source, three combinations of two data sources, and one
combination of all data sources) of the synthetic data. The CNN was trained only on
synthetic data (except for the clinical scenario which was trained on clinical data
for comparison). During training, the model was evaluated on both the (purely
synthetic) training data and the (clinical) validation set (see also Fig. 10.4). The
best-performing network during training was chosen according to the maximum
F1-score on the validation set. The test set was never touched during training and
only evaluated in a final run after training.

1https://zenodo.org/record/8117499
2https://github.com/KIT-IBT/craniosource-gan-pca-ssm

https://zenodo.org/record/8117499
https://github.com/KIT-IBT/craniosource-gan-pca-ssm
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Figure 10.4: Classifier training using the synthetic data, the validation data, and the test set. The CNN
classifier using clinical data uses the validation data as a training set. Green: data, violet: classification
models.

Figure 10.5: Number of training samples in each classification scenario. The color for the synthetic
samples are darker. The clinical scenario has less than 500 samples while all synthetic scenarios have
4000, 8000, or 12000 samples.
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As multiple data sources were used, the models had a different number of
training samples (see Fig. 10.5) and all synthetically-trained models were trained
for 50 epochs. The adaptive moment estimation (ADAM) optimizer, cross entropy
loss, a batch size of 32 with a learning rate of 1 · 10−4, and weight decay of 0.63 after
each 5 epochs was used as hyperparameters. To evaluate the synthetically-trained
models against a clinically trained model, one additional CNN was trained on the
clinical validation data with the same parameters except a higher learning rate of
1 · 10−3.

The following types of data augmentation were used during training: Adding
random pixel noise (with σ = 1/255), adding a random intensity (with σ = 5/255)
across all pixels, horizontal flipping, and shifting images left or right (with σ =
12.44 pixels). All those types of data augmentation corresponded to real-world
patient and scanning modifications: Pixel noise corresponded to scanning and
resolution errors, adding a constant intensity was equal to a re-scaling of the patient’s
head, horizontal flipping corresponded to the patients as if they were mirrored in
real life, and shifting the image horizontally modeled an alignment error in which
the patients effectively turned their head 20◦ left or right during recording.

10.3 Results

10.3.1 Image Evaluation

Fig. 10.6 shows images of each of the different data synthesis types compared with
the clinical images. From a qualitative, visual examination, the synthetic images had
similar color gradients, shapes, and intensities as the clinical images. GAN images
appeared slightly noisier than the other images and did not show the left and right
ear visible in the other images.

From the quantitative comparison (see Fig. 10.7), ordinary PCA images were
substantially and consistently more similar to the clinical images than the other
two modalities (differences of the medians larger than 0.02), while SSM and GAN
images were characterized by lower SSIMcc values with the SSM and the GAN being
comparable except for the coronal class in which the SSM created the most dissimilar
samples.

10.3.2 Classification Results

All presented runs were carried out on the untouched test set. Convergence was
achieved already during the first ten epochs, indicating that there was sufficient
training material for each model. According to the classification results for the
synthetic training in Tab. 10.1, the SSM was the best single source of synthetic data
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Figure 10.6: Images of all three data modalities and clinical samples. From top to bottom the image
modalities: SSM, GAN, PCA, clinical. From left to right the four classes: Control, coronal, metopic,
sagittal.

with an F1-score higher than 0.85. All combinations of synthetic models showed
F1-scores higher than 0.78. The classifier on the clinical data scored an accuracy
above 0.96, but was surpassed by the combination of GAN and SSM. F1-score was
highest for the clinical classification with a value of 0.9533, but the combination of
SSM and GAN scored a slightly lower F1-score of 0.9518. Including a second data
source always increased the F1-score compared to a model with a single data source.
The combination of SSM and GAN even scored a higher G-mean than the clinical
data.
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Figure 10.7: Boxplots of SSIMcc of each class for each of the synthetic data generators.

Table 10.1: CNN-classification comparison on the test set trained on different synthetic data sources.
Boldface: best results among the synthetic data sources.

Synthetic data source Accuracy G-mean F1-score

GAN 0.4274 0.0000 0.4930
PCA 0.7581 0.7910 0.6997
SSM 0.9153 0.9004 0.8547
GAN-PCA 0.8508 0.8543 0.7823
GAN-SSM 0.9677 0.9609 0.9518
PCA-SSM 0.9153 0.9125 0.8595
GAN-PCA-SSM 0.9597 0.9552 0.9445

Clinical 0.9637 0.9481 0.9533
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10.4 Discussion

Without being trained on a single clinical sample, the CNN trained from the com-
bination of the SSM and the GAN was able to correctly classify 95 % of the data.
Classification performance with training on the synthetic data proved to be equal
to or even slightly better than training on the clinical data, at least for the data
generated using the SSM and the GAN (and optionally also including PCA). This
suggests that certain combinations of synthetic data might be indeed sufficient for a
classification algorithm to distinguish between types of craniosynostosis. Compared
with the classification results from Chapter 8 and Chapter 9, the purely synthetic-
data-based classification performs in a similar range and sometimes even better
than other approaches on clinical data [13, 29, 39, 140, 154].

The SSM appeared to be the data source contributing the most to the improve-
ment of the classifier: Not only did it score highest among the unique data sources,
but it was also present in the highest scoring classification approaches. One reason
for this might be that, according to the SSIMcc, it was also the least similar data
source for most of the classes. Due to the inherent modeling of the geometric shape
in 3D, the created 2D distance maps were always created from 3D samples, while
PCA and the GAN could, in theory, create 2D images which did not correspond
to a morphologically correct 3D shape. In contrast, the GAN-based classifiers only
showed a good classification performance when combined with a different data
modality and its synthesized images seemed to show less pronounced visual fea-
tures than the other two modalities. However, the SSIMcc-based metric showed no
substantial difference between the GAN images and the other two modalities. How-
ever, since the GAN training included images from all classes and the image label
was determined by an embedding, features from different classes might appear in
images from other classes. The PCA images were neither required, nor detrimental
for a good classification performance. According to the SSIMcc, the PCA images
were the most similar images to their clinical counterparts.

Overall, a combination of different data modalities seemed to be the key element
for achieving a good classification performance. Both SSM and PCA model data ac-
cording to a Gaussian distribution, while the GAN uses an unrestricted distribution
model. The different properties of modeling the underlying statistical distribution of
a Gaussian distribution (SSMs and PCA) on the one hand, and without an assumed
distribution (GAN) on the other hand might have lead to a symbiotic effect and
compensation of their respective disadvantages increasing overall performance for
the combination.

One limitation of this study is the small dataset. Using a smaller test set makes
the results more prone to “lucky” dataset distribution. Cross-validation is costly
and would have required training a differnt GAN and conducting the seven data
source scenario during each of the cross-validation splits, which would have made
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this study even more computationally expensive. Another piece of criticism can
be made to the clinical classification scenario. As the clinical classification uses the
same dataset for training and validation, this might make it prone to over-fitting.
However, the resulting classification metrics achieved in this study were similar to
a classification study on clinical data alone [154] which suggests that over-fitting
has not been an issue. Another limitation is that the data from the SSM, GAN, and
PCA were not synthesized dynamically during training. Since for each modality,
the images were pre-generated, this limits the overall randomness. However, the
data augmentation was dynamic, so the samples during each epoch were different.

10.5 Conclusion

It was shown that it is possible to train a classifier for different types of craniosynos-
tosis based solely on artificial data synthesized by an SSM, a PCA model, and a GAN.
Without having seen any clinical samples, a CNN was able to classify four types of
head deformities with an F1-score higher than 0.95 and performed comparable to a
classifier trained on clinical data. The key component in achieving good classifica-
tion results was using multiple, but different data generation models. Overall, the
SSM was the data source contributing most to the classification performance. For the
GAN, using a small image size and alternating between transposed convolutions
and interpolations were identified as key elements for suitable image generation.
The datasets and generators were made publicly available along with this work.
Clinical data are not required for the training of craniosynostosis classifiers, paving
the way into cost-effective usage of synthetic data for automated diagnosis systems.
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FINAL REMARKS





Chapter 11
Outlook

Automated clinical assessment of craniosynostosis and other head deformities will
likely rely on multiple tools, for example automatic diagnosis using a convolutional
neural network (CNN) and a visualization in clinical practice using a statistical
shape model (SSM). Some specific steps toward further clinical applicability re-
sulting from this thesis are outlined in this chapter. First, a path toward clinical
applicability in the diagnosis of head deformities is presented, and second, a path
toward related engineering challenges building on some of the developed methods
during this thesis is presented.

The following list comprises some of the most important milestones for clinical
applicability:

• Multi-label classification:
Multi-suture synostosis and syndromic conditions should be included into the
classifier. This could be implemented with a multi-label approach using an
ensemble network with binary one-vs.-rest classifiers specialized to distinguish
one pathology from everything else.

• Distinction between healthy subjects and plagiocephaly patients:
Healthy subjects without plagiocephaly should become a large part of the
database. Routine recordings of cleft lip or cleft palate patients might be a
suitable and readily available data source.

• Clinical prototype testing:
A prototype for usage during clinical admission should be constructed and
tested. The recording of the patient could directly be classified and combined
with an SSM for parent counseling showing the strongest deformations.

The following list compiles directions away from a classification problem, but still
related to head deformities and to the research conducted during this work:

• Time-dependent statistical modeling:
Multiple recordings of the same subject across multiple points of time could
be used for a time-dependent statistical model. The model could predict head
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growth after skull remodeling (for craniosynostosis patients) or during helmet
therapy (for plagiocephaly patients). Related topics for SSMs are motion
modeling for magnetic resonance imaging (MRI) tracking [170] and attribution
modeling [110].

• Skull inference of craniosynostosis patients using statistical coupling of
shape and skull:
A common SSM of skull and head surface could be created on computed
tomography (CT) scans. Using a posterior shape modeling [108] approach, the
skull could be predicted from the 3D surface scan to estimate surgical incisions
for therapy planning. A coupled skull-head model has been proposed [171],
but was not applied to craniosynostosis.



Chapter 12
Conclusion

Three different classification approaches for craniosynostosis have been developed
during this thesis. While the cephalometric multi-height approach combines clin-
ically established parameters with simplicity and explainability using k-nearest-
neighbors (kNN) classification, the approach failed to achieve the high classification
performance of the other classifiers. This shows that the simple translation of es-
tablished parameters to machine learning (ML) approaches is not enough for good
classification performance. The statistical shape model (SSM) classifier achieved
high classification metrics by re-parameterization of the 3D subject into its principal
components, with 10 to 40 components achieving good performance, especially
using naïve Bayes. Instead of selecting cephalometric parameters, this approach
incorporated the full cranium into the classification which increased performance.
The different morphing approaches showed little influence on the classification
results. On the one hand, this implies classification robustness, but on the other
hand, this might indicate that further improvements might be challenging, which
falls in line with the observation that including the mirrored samples into the dataset
did not improve performance. Classification using a convolutional neural network
(CNN) scored the best performance metrics and showed attribution of the classifica-
tion decision on areas of the head associated with craniosynostosis. Due to the 2D
grid in which the distance maps are arranged, a low-resolution mapping could be
designed which lead to a similar performance to the original images with a decrease
in processing time. In the final experiment, clinical training data for the CNN could
be replaced with data from multiple synthetic data sources without a performance
drop. Overall, the CNN scored the best results, was the most flexible method in
terms of data augmentation, and was able to classify clinical data without having
seen a single clinical sample during training. As such, it is a likely contender for
future diagnostic devices.

Two hypotheses had been proposed. The first hypothesis stated:
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Hypothesis I

An F1-score of 0.95 or higher can be obtained by neural-network-based meth-
ods and non-neural-network-based methods.

During this thesis, multiple data-driven classification methods have been devel-
oped and compared. ResNet18 and GoogLeNet yielded F1-scores of 0.964 and
0.962 without data augmentation. The best non-neural-network-based approach
was the SSM classification which yielded F1-score of 0.939, so the hypothesis has
to be rejected. Including the mirrored samples for the SSM-based classifier could
not improve classification performance. However, using neural networks was not
a guarantee for a good classification performance, for example many CNNs and
the feedforward neural network (FNN) did not yield an F1-score above 0.95 either.
Especially the imbalanced dataset might have been a difficulty for the classifiers and
their performance might therefore improve with a stratified dataset. However, the
dataset distribution in this study is a snapshot from the real-world prevalences of
craniosynostosis. As this was the largest classification study of craniosynostosis to
date, it seems likely that the main findings hold up for other datasets as well.

The second hypothesis stated:

Hypothesis II

If trained on synthetic data, the F1-score of the classifier is at most 0.05 smaller
compared to the classifier trained on clinical data.

The CNN classification approach was trained on multiple synthetic data sources
and tested on clinical data. Compared with the training on clinical data, the F1-score
slightly increased by 0.015 when using synthetic training data from an SSM and a
generative adversarial network (GAN), so the hypothesis can be accepted. However,
this is only valid for the two cases in which data was generated by an SSM and a
GAN, and optionally using image-based principal component analysis (PCA). All
other cases using synthetic data showed a performance drop of F1-score larger than
0.05. Their different approaches to modeling the underlying data distribution might
be a reason why the combination of the two methods worked well.

Similar to the scientific hypothesis, four engineering milestones were initially pro-
posed and achieved:

• Systematically evaluate classification approaches:
The first systematic evaluation on the same dataset revealed that the proposed
CNN-based classification on the 2D distance map outperformed competing
approaches developed during this thesis and from the literature. This thesis
also incorporated the first systematic evaluation of different classification
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methods for craniosynostosis on the same dataset including methods from the
literature.

• Encode the 3D geometry into an anonymous representation:
The 3D-2D distance conversion proposed during this thesis proved to make
head and face anonymous without losing classification ability. The 3D-2D
conversion enabled additional benefits such as data augmentation during
training and the usage of pre-trained CNNs. Multiple types of distance maps
were developed, none of which was superior compared to the others. This
suggests that enabling the usage of CNNs is actually more important for classifi-
cation performance than the type of mathematical conversion. The FNN-based
classification approach from the literature [13] also benefited from using the
proposed 2D distance maps.

• Synthesize pathology-specific data:
Using the pathology-specific submodels of an SSM, the first pathology-specific
data synthesis for craniosynostosis was enabled. The SSM showed state-of-
the-art performance. Combined with a GAN and an image-based PCA model,
the SSM could be combined for a CNN-based classification based on synthetic
data. In general, using multiple types of synthetic data sources lead to a
better performance than relying on a single synthetic data source when using
synthetic training data.

• Increase data availability:
During this thesis, the first SSM of craniosynostosis patients was made publicly
available including Python modules for data synthesis and 2D distance maps
creation. As of September 2023, the model was downloaded more than 290
times. Additionally, the synthetic training data (GAN, SSM, and PCA) and
the clinical 2D distance maps were made available which allows anyone
to reproduce and improve the classification approach which adheres to the
principles of the open science movement [172].

With the developed CNN-based classification, a versatile, accurate, and robust
classification approach is now available which can exploit pre-trained CNNs and
incorporate 2D data augmentation methods during training. In the long run, a diag-
nostic prediction tool for craniosynostosis requires trust of parents and physicians.
To increase acceptance, the training of ML models could be performed on publicly
available data. This data could be checked by clinical experts or even the public for
quality and patient diversity in a collaborative process. As clinical data is unlikely
to be made available in its raw format, the reliance on synthetic data is an important
cornerstone for this approach. The synthetic classification study of this thesis and
its data can be accessed and reproduced by anyone and is hopefully an incentive
for other groups to publish synthetic or anonymized clinical data. As soon as other
SSMs recorded from other hospitals are published, testing could be performed on
other datasets to reduce potential biases in a single dataset. As the 3D-2D conversion
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using 2D distance maps is easily applicable to other 3D meshes, a cross-domain 2D
distance map dataset including CT-scans seems likely.

In this thesis, it was shown that classification of craniosynostosis can be performed
on 3D surface scans. A CNN approach which outperformed competing approaches
from the literature was proposed, which was able to classify clinical data even when
it was only trained on synthetic data alone. These findings are important corner-
stones for the development of data-driven and accurate radiation-free diagnostic
tools for craniosynostosis. By translating the proposed methods into clinical practice,
the treatment of head deformities can be organized in an open, effective, objective,
and cost-effective manner.



Appendix A
Description of Alternative

Morphing Algorithms

A.1 Iterative Coherent Point Drift

The iterative coherent point drift (ICPD) was proposed by [33] and iteratively uses
nonrigid coherent point drift (CPD) [127] and consists of an initial morph using
the Laplace-Beltrami regularized projection (LBRP) and a main loop in which the
CPD alternates with a k-nearest-neighbors (kNN) selection. Some modifications
were performed, e.g. instead of affine CPD, rigid CPD was used which increased
robustness for the dataset. The algorithm is shown in Table A.1 with initial alignment
of the reference shape Xr ∈ RpX×3 and target Y ∈ RpY×3. The main loop breaks
out as soon as the change in each iteration of the nearest neighbors idi of Xi is very
small. Finally, a last LBRP step with low stiffness is performed.

Table A.1: Pseudocode of ICPD as used in this work, slighly adapted from the original authors [33].

1: Xi = LBRP(Xr,Y) with high regularization
2: idi = knnsearch(Y,Xi)
3: Until d/ len(X) < 0.01:
4: Xrig,i = cpdRigid(Xi,Y[idi, :])
5: Xi = cpdNonrigid(Xrig,i,Y[idi, :])
6: idold = idi
7: idi = knnsearch(Y,Xi)
8: d = sum(bool(diff(idxi, idxold)))
9: X = LBRP(Xi,Y) with low regularization
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A.2 Nonrigid Optimal-Step Morphing Methods

The nonrigid iterative closest points affine (ICPA) and nonrigid iterative closest
point translation (ICPT) methods were presented by [120] who base their work
mostly on [130]. The core idea is to use an affine transformation for each point and
locally regularize transformations of connected points. A stiffness term penalizes
differences between transformations between adjacent nodes. A distance term
controls how close the template vertices are transformed to the target points and
a landmark term requires that the landmark points of template and target match
each other. All three terms, stiffness term, distance term, and landmark term,
are optimized simultaneously using an iterative approach starting with a high
stiffness. For each stiffness, a correspondence search is performed and the optimal
deformation with respect to the found correspondences is computed. As soon as
the transformation changes little, the stiffness parameter is decreased and repeated
for the reduced stiffness until convergence. For detailed explanations, the reader is
referred to [120].

To be consistent with the notation in the original paper [120] for the description
of the optimal-step nonrigid iterative closest points methods, the notation was
changed. The np template points are expressed as V ∈ Rnp×3.

The unknown affine transformations are defined as X ∈ R4np×3. The full cost
function can be expressed as

E(X) = αEs(X) + Ed(X) + βEl(X). (A.1)

The stiffness term Es(X) can be described as the Kronecker product ⊗ of the
mesh topology matrix M ∈ Rne×np with ne denoting the number of edges and np the
number of points. The weight matrix G ∈ R4×4 = diag(1, 1, 1, γ) between rotational
and skew parts against translational parts [120] leads to:

Es(X) = ||(M⊗G)X||2F . (A.2)

M describes the connections between neighboring vertices (the node-arc inci-
dence matrix [173], in which for each edge r was set to M(r, i) = −1 and M(r, j) = 1).
The distance term Ed(X) describes how close the displaced template vertices are to
the target vertices and can be written as:

Ed(X) = ||W(DX−U)||2F . (A.3)

W ∈ Rnp×np is a diagonal weighting matrix which allows assigning different
weights to each transformation. The sparse displacement matrix D ∈ Rnp×4np is
a diagonal matrix with the homogeneous points vi = [xi, yi, zi, 1]T as its diago-
nal elements mapping the homogeneous template points to the respective affine
transforms. U ∈ Rnp×3 denotes the found correspondences from the target points.
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Finally, the landmark term El(X) is similar to the distance term while only the
landmark points are considered:

El(X) = ||(DLX−UL)||2F . (A.4)

The complete cost function for ICPA can be written as:

E(X) =

∥∥∥∥∥∥∥
αM⊗G

WD
βDL
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 0
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(A.5)

For the translation-only variant ICPT, the unknown transformations are defined
as translations X ∈ Rnp×3. The cost function is changed accordingly:

E(X) =
∥∥∥∥∥
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(A.6)

A.3 Hyperparameters for Template Morphing

Table A.2 lists the hyperparameters used in each method.
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Table A.2: Hyperparameters used for the template morphing approaches.

Laplace-Beltrami regularized projection (LBRP) (notation of [33])
Stiffness first morphing step λ1 = 10
Stiffness second morphing step λ2 = 0.1
Iterative coherent point drift (ICPD)
(notation of [33])
Stiffness first morph λ1 = 10
Iterative coherent point drift (ICPD)-Loop For each iteration, perform first cpdRigid,

then cpdNonrigid
cpdNonrigid smoothing weight: 3
cpdNonrigid tolerance 1 · 10−5

Exit condition fewer than 1% of nearest neighbors be-
tween iterations change

Stiffness second morph λ2 = 0.1 with Laplace matrix resulting from
first morph

Nonrigid iterative closest points affine (ICPA) and
nonrigid iterative closest point translation (ICPT) (notation of [120])
Iterations n = 80
Stiffness parameter α in iteration n αn = 108 · 0.8n
Landmark weight in iteration n β if n ≤ 50 βn = 1, else βn = 0
Exit condition ϵ for each fixed stiffness α ϵ < 100

Valid normals for correspondence establish-
ment φ

φ < 45◦

Rotation weight γ γ = 1



Appendix B
Additional Results of

Cephalometric Multi-Height
Classification

B.1 Quantitative Classification Results

The quantitative comparison of mean and standard deviations of all classifiers and
feature extraction methods are displayed in Table B.1, which is a quantitative and
more conventional display of the data compared to Fig. 7.7.

B.2 Cephalometric Multi-Height Classification
Including Plagiocephaly

This section presents additional statistics of the cephalic index (CI) and cranial vault
asymmetry index (CVAI) distribution and classification results if the plagiocephaly
left and right groups are subdivided. Fig. B.1 shows an almost symmetric distribu-
tion of the values, while the classification results are shown in Fig. B.2 and Fig. B.3.
While the trends observed in both experiments (with and without plagiocephaly) are
similar, the classification performance even increased slightly with the plagiocephaly
classes. It has to be noted however, that only the subjects in the dataset defined as
left or right plagiocephaly were included in this study, so the number of samples is
lower (484 instead of 496 with 12 fewer samples) and the results are therefore not
quantitatively comparable.
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Table B.1: Comparison of the classifiers and feature extraction methods. Displayed is cross validation
mean ± standard deviation. This is the same as Fig. 7.7 in Chapter 7 but in a more conventional (but
also less clear) manner.

Classifier Features Accuracy G-mean F1-score
SVM Full Heights 0.927±0.026 0.321±0.395 0.769±0.091
SVM Steps 0.929±0.024 0.377±0.377 0.775±0.076
SVM Center Steps 0.927±0.027 0.394±0.402 0.776±0.103
SVM SHAP 0.915±0.027 0.235±0.360 0.735±0.088
SVM Middle 0.899±0.026 0.000±0.000 0.671±0.025
SVM Max 0.696±0.024 0.000±0.000 0.369±0.021

LDA Full Heights 0.613±0.045 0.299±0.301 0.510±0.061
LDA Steps 0.948±0.043 0.772±0.274 0.876±0.102
LDA Center Steps 0.940±0.042 0.683±0.350 0.846±0.109
LDA SHAP 0.927±0.038 0.564±0.375 0.817±0.102
LDA Middle 0.875±0.026 0.000±0.000 0.649±0.039
LDA Max 0.734±0.036 0.000±0.000 0.441±0.079

NB Full Heights 0.766±0.078 0.512±0.347 0.673±0.115
NB Steps 0.780±0.071 0.361±0.363 0.644±0.111
NB Center Steps 0.784±0.052 0.203±0.310 0.609±0.082
NB SHAP 0.804±0.042 0.263±0.322 0.636±0.087
NB Middle 0.796±0.022 0.000±0.000 0.550±0.032
NB Max 0.655±0.023 0.000±0.000 0.376±0.070

KNN Full Heights 0.901±0.027 0.378±0.380 0.745±0.097
KNN Steps 0.893±0.031 0.296±0.364 0.719±0.088
KNN Center Steps 0.928±0.037 0.558±0.370 0.804±0.103
KNN SHAP 0.895±0.030 0.212±0.324 0.703±0.068
KNN Middle 0.889±0.034 0.434±0.357 0.724±0.091
KNN Max 0.683±0.027 0.042±0.125 0.436±0.059

DT Full Heights 0.833±0.035 0.404±0.332 0.673±0.075
DT Steps 0.837±0.060 0.421±0.346 0.670±0.116
DT Center Steps 0.837±0.040 0.436±0.364 0.684±0.096
DT SHAP 0.857±0.041 0.421±0.345 0.684±0.086
DT Middle 0.822±0.040 0.070±0.211 0.599±0.075
DT Max 0.708±0.039 0.101±0.202 0.455±0.079

RF Full Heights 0.871±0.034 0.220±0.341 0.677±0.108
RF Steps 0.855±0.025 0.204±0.316 0.648±0.083
RF Center Steps 0.879±0.038 0.287±0.352 0.694±0.103
RF SHAP 0.887±0.021 0.278±0.343 0.708±0.086
RF Middle 0.855±0.039 0.068±0.204 0.633±0.065
RF Max 0.708±0.028 0.000±0.000 0.425±0.060
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Figure B.1: Distribution of cephalic index (CI) and cranial vault asymmetry index (CVAI) including plagio-
cephaly with respect to the extraction height. The background visualizes the values on the extracted
height on the mean shape of the control group, i.e., the extracted height is aligned with the background
and the resulting distribution of CI and CVAI is placed on the x-axis. The mean value is shown as a solid
line, the 25th and 75th percentiles are shown as dotted lines for each class.

Figure B.2: Mean classification performance including plagiocephaly for different classification ap-
proaches and different classifiers using three-dimensional data for a 10-fold cross-validation approach.
Each column shows a different classifier, colors show different mean performance metrics, while the
symbols show different classification approaches.
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Figure B.3: Boxplots for the classification approaches including plagiocephaly using F1-score. Number
of points on the head decreases monotonically from left to right.



Appendix C
Additional Results of Shape

Model Classification

In this chapter, additional results for other morphing methods are presented. These
are mainly classification plots of the other morphing methods, to undermine the
claim in Chapter 8 that the classifiers and number of principal components show
the same trend: Linear discriminant analysis (LDA), support vector machine (SVM),
and naïve Bayes (NB) remain the most robust classifiers with regards to correctly
classifying samples of the less represented classes in the dataset (indicated by the
highest values of G-mean). The choice of principal components of 10 to 40 yields
high performance metrics. The plots are represented in Figs. C.1, C.2, and C.3.
Tab. C.1 shows the best performance metrics across all morphing methods.
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Figure C.1: Accuracy, G-mean, and F1-score as functions of the number of principal components used
for the nonrigid iterative closest points affine (ICPA) classifier. Shown is the mean value and in lighter
color the 25th and 75th percentiles.
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Figure C.2: Accuracy, G-mean, and F1-score as functions of the number of principal components used
for the nonrigid iterative closest point translation (ICPT) classifier. Shown is the mean value and in
lighter color the 25th and 75th percentiles.
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Figure C.3: Accuracy, G-mean, and F1-score as functions of the number of principal components used
for the iterative coherent point drift (ICPD) classifier. Shown is the mean value and in lighter color the
25th and 75th percentiles.
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Table C.1: Comparison of the classifiers on the cranium model across all morphing methods. Displayed
is cross validation mean ± standard deviation.

Classifier # components Accuracy G-mean F1-score
Best individual classification run according to F1-score

LBRP
SVM (n=40) 0.958±0.029 0.918±0.086 0.931±0.058
LDA (n=56) 0.962±0.032 0.718±0.365 0.891±0.101
NB (n=12) 0.966±0.022 0.926±0.053 0.939±0.049
KNN (n=7) 0.950±0.020 0.823±0.279 0.904±0.072
DT (n=7) 0.851±0.047 0.667±0.235 0.773±0.076
RF (n=9) 0.907±0.041 0.632±0.321 0.821±0.095

ICPA
SVM (n=24) 0.966±0.016 0.924±0.074 0.943±0.036
LDA (n=26) 0.972±0.019 0.893±0.078 0.934±0.047
NB (n=31) 0.952±0.029 0.896±0.071 0.922±0.044
KNN (n=11) 0.934±0.042 0.659±0.338 0.846±0.100
DT (n=6) 0.853±0.054 0.461±0.381 0.724±0.119
RF (n=5) 0.907±0.021 0.537±0.354 0.792±0.069

ICPT
SVM (n=22) 0.972±0.022 0.922±0.106 0.946±0.057
LDA (n=85) 0.964±0.028 0.899±0.086 0.932±0.054
NB (n=66) 0.956±0.027 0.891±0.076 0.915±0.056
KNN (n=11) 0.944±0.025 0.749±0.261 0.880±0.067
DT (n=31) 0.897±0.034 0.624±0.321 0.797±0.088
RF (n=12) 0.920±0.028 0.555±0.365 0.806±0.084

ICPD
SVM (n=75) 0.952±0.030 0.898±0.099 0.925±0.061
LDA (n=86) 0.962±0.030 0.886±0.086 0.926±0.056
NB (n=9) 0.954±0.031 0.902±0.062 0.920±0.052
KNN (n=10) 0.952±0.019 0.843±0.081 0.904±0.043
DT (n=61) 0.873±0.065 0.707±0.254 0.807±0.086
RF (n=9) 0.907±0.041 0.608±0.315 0.807±0.096





Appendix D
Description of Generative

Adversarial Network Structure

This chapter contains the appendix of Chapter 10 and consists of the structure of the
generative adversarial network (GAN) and information about the image artifacts
which resulted from poor GAN designs.

D.1 GAN Artifacts

Fig. D.1 shows artifacts arising from only using transposed convolutional layers
(ConvTranspose2d), using only up-scaling interpolation layers (Interpolate),
or from large gradient penalties which prohibited training.

checkerboard artifacts
(transposed convolutions)

large patches
(interpolation)

strong noise 
(high gradient penalty)

Figure D.1: Artifacts arising from a poor GAN design, displayed are four images, arranged in a 2×2 grid.
From left to right: Deconvolution artifacts (checkerboard transposed convolution artifacts), interpola-
tion (up-scaling) artifacts, and noise artifacts.
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D.2 Network Structure

This is the GAN structure of generator and discriminator employed for the creation
of the synthetic data. Output created using models’ __str__ attribute.

Generator28(

(embed): Embedding(4, 100)

(gen): Sequential(

(0): Sequential(

(0): ConvTranspose2d(200, 256, kernel_size=(5, 5), stride=(1, 1),

bias=False)

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(1): Sequential(

(0): Interpolate(size=(8, 8),bilinear,align_corners=True)

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(2): Sequential(

(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(3): Sequential(

(0): Interpolate(size=(15, 15),bilinear,align_corners=True)

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(4): Sequential(

(0): ConvTranspose2d(128, 128, kernel_size=(3, 3), stride=(1, 1),

bias=False)

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(5): Sequential(

(0): Interpolate(size=(30, 30),bilinear,align_corners=True)

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

)

(6): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1),

bias=False)

(7): Tanh()
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)

)

Discriminator28(

(net): Sequential(

(0): Sequential(

(0): Conv2d(2, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1),

bias=False)

(1): InstanceNorm2d(32, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=False)

(2): LeakyReLU(negative_slope=0.2)

)

(1): Sequential(

(0): Conv2d(32, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1),

bias=False)

(1): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=False)

(2): LeakyReLU(negative_slope=0.2)

)

(2): Sequential(

(0): Conv2d(128, 256, kernel_size=(5, 5), stride=(2, 2), padding=(1, 1),

bias=False)

(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=False)

(2): LeakyReLU(negative_slope=0.2)

)

(3): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1))

)

(embed): Embedding(4, 784)

)
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