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Kurzfassung

In der Grobplanungsphase vernetzter Logistik- und Produktionssysteme ist man
häufig daran interessiert, mit geringem Berechnungsaufwand eine zufriedenstel-
lende Approximation der Leistungskennzahlen des Systems zu bestimmen. Hier-
bei bietet die Modellierung mittels zeitdiskreter Methoden gegenüber der zeitkon-
tinuierlichen Modellierung den Vorteil, dass die gesamte Wahrscheinlichkeitsver-
teilung der Leistungskenngrößen berechnet werden kann. Da Produktions- und
Logistiksysteme in der Regel so konzipiert sind, dass sie die Leistung nicht im
Durchschnitt, sondern mit einer bestimmten Wahrscheinlichkeit (z.B. 95%) zu-
sichern, können zeitdiskrete Warteschlangenmodelle detailliertere Informationen
über die Leistung des Systems (wie z.B. der Warte- oder Durchlaufzeit) liefern.

Für die Analyse vernetzter zeitdiskreter Bediensysteme sind Dekompositions-
methoden häufig der einzig praktikable und recheneffiziente Ansatz, um sta-
tionäre Leistungsmaße in den einzelnen Bediensystemen zu berechnen. Hierbei
wird das Netzwerk in die einzelnen Knoten zerlegt und diese getrennt voneinander
analysiert. Der Ansatz basiert auf der Annahme, dass der Punktprozess des Ab-
gangsstroms stromaufwärts liegender Stationen durch einen Erneuerungsprozess
approximiert werden kann, und so eine unabhängige Analyse der Bediensys-
teme möglich ist. Die Annahme der Unabhängigkeit ermöglicht zwar eine ef-
fiziente Berechnung, führt jedoch zu teilweise starken Approximationsfehlern in
den berechneten Leistungskenngrößen.

Der Untersuchungsgegenstand dieser Arbeit sind offene zeitdiskrete Tandem-
Netzwerke mit Poisson-verteilten Ankünften am stromaufwärts liegenden Bedi-
ensystem und generell verteilten Bedienzeiten. Das Netzwerk besteht folglich
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Kurzfassung

aus einem stromaufwärts liegenden M/G/1-Bediensystem und einem stromab-
wärts liegenden G/G/1-System. Diese Arbeit verfolgt drei Ziele, (1) die De-
fizite des Dekompositionsansatzes aufzuzeigen und dessen Approximationsgüte
mittels statistischer Schätzmethoden zu bestimmen, (2) die Autokorrelation des
Abgangsprozesses desM/G/1-Systems zu modellieren um die Ursache des Ap-
proximationsfehlers erklären zu können und (3) einen Dekompositionsansatz zu
entwickeln, der die Abhängigkeit des Abgangsstroms berücksichtigt und so be-
liebig genaue Annäherungen der Leistungskenngrößen ermöglicht.

Im ersten Teil der Arbeit wird die Approximationsgüte des Dekompositionsver-
fahrens am stromabwärts liegenden G/G/1-Bediensystem mit Hilfe von Lin-
earer Regression (Punktschätzung) und Quantilsregression (Intervallschätzung)
bestimmt. Beide Schätzverfahren werden jeweils auf die relativen Fehler des
Erwartungswerts und des 95%-Quantils der Wartezeit im Vergleich zu den
simulierten Ergebnissen berechnet. Als signifikante Einflussfaktoren auf die
Approximationsgüte werden die Auslastung des Systems und die Variabilität des
Ankunftsstroms identifiziert.

Der zweite Teil der Arbeit fokussiert sich auf die Berechnung der Autokorrelation
im Abgangsstroms desM/G/1-Bediensystems. Aufeinanderfolgende Zwischen-
abgangszeiten sind miteinander korreliert, da die Abgangszeit eines Kunden von
dem Systemzustand abhängt, den der vorherige Kunde bei dessen Abgang zurück-
gelassen hat. Die Autokorrelation ist ursächlich für den Dekompositionsfehler, da
die Ankunftszeiten am stromabwärts liegenden Bediensystem nicht unabhängig
identisch verteilt sind.

Im dritten Teil der Arbeit wird ein neuer Dekompositionsansatz vorgestellt, der die
Abhängigkeit im Abgangsstroms desM/G/1-Systems mittels eines semi-Markov
Prozesses modelliert. Um eine explosionsartige Zunahme des Zustandsraums zu
verhindern, wird ein Verfahren eingeführt, das den Zustandsraum der eingebet-
teten Markov-Kette beschränkt. Numerischen Auswertungen zeigen, dass die mit
stark limitierten Zustandsraum erzielten Ergebnisse eine bessere Approximation
bieten als der bisherige Dekompositionsansatz. Mit zunehmender Größe des
Zustandsraums konvergieren die Leistungskennzahlen beliebig genau.
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Abstract

During draft planning of interconnected logistics and production systems, deci-
sion makers are often interested in determining a satisfactory approximation of
the system’s key performance indicators with little computational effort. Em-
ploying discrete-time queueing models offers an advantage over continuous-time
modelling in that the entire probability distribution of the performance parameters
can be calculated. Since production and logistics systems are typically designed
to guarantee performance not on average, but with a given probability (e.g. 95%),
discrete-time queueing models can provide more detailed information about the
system’s performance, such as waiting or throughput time.

When it comes to analysing open queueing networks, decomposition methods
often are the only feasible and computationally efficient approach to calculate
steady-state performance measures in the individual discrete-time queues. The
method decomposes the network into individual nodes, which are analysed in
isolation. The approach is based on the assumption that a renewal process can
approximate the point process of the departure stream of upstream stations, and
thus an independent analysis of the queueing systems is possible. Although the
assumption of independence is computationally attractive, performance results
obtained with the renewal decomposition approach might be subject to severe
approximation errors.

In this thesis, we study discrete-time open tandem networks with external Poisson
arrivals and generally distributed service times. The external Poisson arrival
stream makes the upstream queue of typeM/G/1 while the downstream queue
is of type G/G/1. This thesis pursues three goals, (1) to reveal the deficits of the
renewal decomposition approach and to determine its approximation quality by
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means of statistical estimation methods, (2) to model the auto-correlation of the
departure point process of theM/G/1-queue in order to explain the cause of the
approximation error, and (3) to develop a decomposition approach that takes into
account the dependence of the departure flow and thus allows for a converging
accurate calculation of the performance parameters.

In the first part of the thesis, we analyse the approximation quality of the renewal
decomposition method at the downstream queue based on linear regression (point
estimation) and quantile regression (interval estimation). The dependent variables
of the regression models are the relative error of the expected value and 95%-
percentile of the waiting time compared to a simulation. Based on the ANOVA,
we identify the system’s utilisation and the arrival stream’s variability as main
drivers influencing the approximation quality.

The second part of the thesis focuses on the computation of the auto-correlation in
the departure stream of the upstreamM/G/1-queue. Consecutive inter-departure
times are auto-correlated because the departure time of a customer depends on
the system state left behind by the previous customer. Auto-correlation in the
connecting stream is causal for the approximation error, as the arrival times at the
downstream station are not independently identically distributed.

In the third part of the thesis, we present a novel decomposition approach that
models the inter-dependency in the departure streamwith a semi-Markov process.
To prevent state-space explosion, we introduce a procedure to limit the state space
of the embedded Markov chain. Our numerical results show that the performance
measures obtained with a limited state space provide better approximations than
the renewal decomposition approach. As the state space increases, the novel
decomposition method converges arbitrarily accurate.
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1 Introduction

In queueing theory, interconnected systemsmay be used to represent the stochastic
behaviour of production systems and supply chains. For example, queuing network
analysis allows us to compute the throughput time of a shipment or the number of
buffer slots to be provided in front of a machine. Since production and logistics
systems are typically designed to guarantee performance not on average, but
with a given probability (e.g. 95%), logistics managers are often interested in
the entire probability distribution of key performance indicators (such as waiting
or throughput time). Having the entire probability distribution computed allows
us to make more detailed statements about the performance of the system. For
example, we can assess which percentage of orders are processed in 3h or less,
or what promised throughput time will be met in 95% of the cases (Schleyer and
Gue 2012). Applying discrete-time queueing models is appealing for the analysis
of real manufacturing or logistics systems as the entire probability distributions
of key performance indicators can be computed efficiently under very general
assumptions. Particular research interest is given to the analysis of discrete-time
queuing networks that may represent a supply chain or a production system,
composed of several value-adding stages.

When it comes to analysing interconnected systems, a natural approach is to
break the problem down into its component parts and study them in isolation.
This divide-and-conquer approach has led to considerable breakthroughs in many
scientific fields. For example, Gauss found that the sum over the first n integers
can be broken down into the sum of smaller components, which are significantly
easier to compute. Based on the observation that the sum of the first and the n-th
element is the same as the sum of the second and the (n− 1)-st element (and so
on), he found the following formula:
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1 Introduction

1 + 2 + ...+ n =
n · (n+ 1)

2
. (1.1)

In computer science, the quicksort (Hoare 1962) and the merge sort (invented by
John von Neumann (Knuth 1998)) algorithms are famous examples of efficient
sorting algorithms implementing the divide-and-conquer principle. In general,
divide-and-conquer is an appealing design paradigm for computer algorithms as
it allows for recurrence and parallelisation (Knuth 1998).

For the analysis of queueing networks, applying the divide-and-conquer concept
seems naturally promising. The queueing network decomposition approach par-
titions the network into individual queues and analyses them in isolation. By
being modular and scalable, this procedure is often the only feasible and compu-
tationally efficient approach to compute steady-state performance measures in a
network of queues.

The major premise of the decomposition approach is that an independent analysis
of the queues in the network is possible. By exploiting thememoryless property of
the exponential distribution, Jackson (1957) demonstrated that the decomposition
of a network of M/M/1-queues yields exact results. However, two simplifying
assumptions must be made to transfer this idea to networks with generally dis-
tributed inter-arrival and service times (Govil and Fu 1999): First, wemust assume
that the individual queueing systems can be treated as statistically independent
GI/G/1-queues. Second, we assume that a renewal process can approximate the
point process which forms the input to each GI/G/1-queue. However, the re-
newal assumption of arrival point processes leads to the fact that the performance
results computed with decomposition are approximate. While the existence of
this approximation error is an undebated fact, its magnitude and influencing fac-
tors present an open research question in the scientific literature. It also remains
of research interest to develop stochastic models that exploit point processes for
analysing queueing networks with a comparable computational efficiency of the
renewal decomposition approach.
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1.1 Research questions

In this thesis, we consider discrete-time open tandem networks with Poisson ar-
rivals and general service times to analyse the approximation error of the renewal
decomposition approach, investigate its causes, and introduce a refined decom-
position approach that converges arbitrarily accurate. A tandem queuing network
consists of an upstream and a downstream queue with infinite waiting rooms.
The external Poisson arrival stream makes the upstream queue of type M/G/1

while the downstream queue is of type G/G/1. Since the upstream queue can
be solved exactly, the research interest is in computing the performance mea-
sures of the downstream queue. As waiting time is a crucial key performance
figure for the network’s congestion and pace of order completion, the focus of this
thesis is on the computation of the waiting time distribution in the downstream
G/G/1-queue.

1.1 Research questions

Based on the pursued research contribution, we divide this thesis into three parts,
each of which considers one of the following research topics.

Approximation quality of the renewal decomposition approach
Although it is widely accepted in the literature that the renewal decomposition
approach yields approximate results, extensive studies on the approximation qual-
ity and their influencing factors are rare – especially in the discrete-time domain.
In the first part of the thesis, we therefore present a comprehensive study on the
approximation quality of the renewal decomposition approach in the discrete-
time tandem queue and reveal the major influencing factors on the approximation
quality. Our first research question is:

Which approximation quality should be expected when apply-
ing the renewal decomposition method in a discrete-time open
tandem network and which factors impact the approximations?

3
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Output dynamics of the upstream queue
The renewal decomposition approach assumes that the departure point process
of the upstream queue can be approximated by a renewal process. Therefore,
our research interest in the second part is to analyse the output dynamics of the
upstream queue. We investigate the self-dependent behaviour of the departure
point process and discuss how the renewal assumption impacts the approximation
of the performance measures at the downstream queue. The research question in
the second part is:

How does the auto-correlated departure stream of the upstream
queue impact the performance measures in the downstream
queue?

Refined decomposition approach for tandem queues
To overcome the renewal assumption, the third part of this thesis presents a refined
decomposition approach for the discrete-time tandem queue that considers the in-
terdependence among the connecting stream. The novelty of this decomposition
method is that a semi-Markov process is used to model the connecting stream
between the upstream and the downstream queueing system. However, stochastic
models capturing the entire state space are computationally extensive. Therefore,
we introduce a state space limitation method for the semi-Markov process that
observes the state of the embedded Markov chain only if the number of customers
in the queue does not exceed a given limit. This allows us to compute a satisfactory
approximate solution with little computational effort. When better approxima-
tions are needed, the performance measures converge arbitrarily accurate with
increasing computational expenditure. Our research question in the third part is:

How can a decomposition approach exploit auto-correlated ar-
rival streams to compute satisfactory approximations with ac-
ceptable computational efficiency?

4



1.2 Outline

1.2 Outline

The main body of this thesis is divided into three parts, each dedicated to an-
swering one of the above research questions. All three parts are intended to be
(or have already been) published as a stand-alone paper in the academic liter-
ature. Consequently, each main chapter is structured like a research paper and
presents the motivation, related literature, stochastic models, numerical results,
and conclusions bundled together. The three main chapters build on each other,
and reference the previous results and conclusions to motivate each of the next
research questions. In the following, we outline the structure of the thesis.

In Chapter 2, we briefly introduce the terms and methodologies of discrete-
time stochastic modelling that will be applied throughout the thesis. Chapter 3
provides a literature overview on queuing network decomposition approaches in
the continuous-time and the discrete-time domain.

Chapter 4 is taken from the paper “Point and interval estimation of decomposition
error in discrete-time open tandem queues” published in Operations Research
Letters (Jacobi and Furmans 2022b) and in the corresponding data article in
Data in Brief (Jacobi and Furmans 2022c). In this chapter, we analyse the
approximation quality of the discrete-time decomposition approach, compared
to simulation, and with respect to the expected value and the 95th-percentile of
waiting time. For both performance measures, we present regression models to
compute forecasts of decomposition error. The ANOVA reveals major influencing
factors on the approximation quality of the renewal decomposition approach.

Chapter 5 is based on the paper “On the output dynamics of the discrete-time
M/G/1-queue” which is under review at Annals of Operations Research (Jacobi
2023b). In this chapter, we investigate the auto-correlation of the upstream
queue’s departure process to find situations in which the renewal assumption is
not justified. We model theM/G/1-queue as a discrete-time Markov chain and
compute the joint probability distribution of two departure instances. We present
numerical results for the auto-correlation in the departure stream and discuss its
effect on the analysis of downstream performance measures.
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Chapter 6 is based on the working paper “A refined decomposition approach
with converging accuracy for discrete-time open tandem queues with Poisson
arrivals and general service times” (Jacobi and Shanthikumar 2023). This chapter
presents the semi-Markov arrivals decomposition approach (SMAD), a refined
decomposition approach, where the connecting stream between the upstream
and the downstream station is described by a semi-Markov process. We model
the departure process of the upstreamM/G/1-queue as a semi-Markov process
and introduce the state space limitation method of the embedded Markov chain.
The downstream queue is a discrete-time SM/G/1-queue (semi-Markov arrival
queue with general service times). We present numerical results to show that the
approach produces reasonably accurate results when the state space is limited and
converges arbitrarily accurate with increasing state space size.

Finally, Chapter 7 summarises the findings and contributions of this thesis and
gives an outlook on future research perspectives.

6



2 Discrete-time stochastic
modelling

Performance evaluation of stochastic systems necessitates the modelling of ran-
dom variables and their state transitions over time. For example, it is of interest
to know how many customers are in a queuing system at a given point in time or
how the probability distribution of a random variable describing the time gaps
between two arrival instances can be computed. Our objective is to develop
stochastic models that capture the behaviour of these kind of random variables.

This chapter provides an overview of discrete-time stochastic modelling and in-
troduces fundamental terms, definitions, and methodologies used throughout the
thesis. However, we do not provide a comprehensive introduction into the topic;
the interested reader is referred to Tran-Gia (1996) for the basics of discrete-time
modelling, Daley and Vere-Jones (2008) for the theory of point processes, and
Stewart (1994) and Limnios and Barbu (2008) for an introduction to discrete-
time Markov and semi-Markov processes, respectively. A detailed introduction to
queuing theory in the continuous-time domain can be found in the books written
by Kleinrock (1975), Wolff (1989), and Buzacott and Shanthikumar (1992).

The remainder of this chapter is as follows. Section 2.1 introduces discrete-time
modelling and defines stochastic processes. Section 2.2 defines discrete-time point
and renewal processes and distinguish their properties. Section 2.3 introduces
Markov and semi-Markov processes that will be used throughout the thesis to
model the stochastic processes. Finally, Section 2.4 discusses the advantages of
discrete-time modelling compared to stochastic models in the continuous-time
domain.

7



2 Discrete-time stochastic modelling

2.1 Discrete-time stochastic processes

Discrete-time modelling means that the time axis is divided into time slots of
equal length tinc, and events (such as the arrival, start of service, or departure of a
customer) are only observed at slot boundaries. Let N denote a random variable
observed over time (e.g. the number of customers in a queuing system). The
family N = {Nt, t ∈ Γ} of the discrete random variables Nt ∈ Ξ describes a
discrete-time stochastic process at time instance t (Tran-Gia 1996). The discrete
state space Ξ = {0, 1, 2, ...} may be countable (thus Ξ = N0), or bounded by
some upper bound. The index set Γ denotes the set of all observation times of the
stochastic system that are integer multiples of the slot parameter tinc (Tran-Gia
1996).

Often, we are interested in the probability distribution of the time the stochastic
process spends in stateNt. LetX denote the discrete random variable describing
the time the random process N spends in Nt. Since the process is observed only
at slot boundaries, this time is a multiple of the slot parameter tinc, as well, and
the probability for the discrete random variable X is described by

P (X = i · tinc) = xi ∀i ≥ 0. (2.1)

In the discrete-time stochastic models developed in this thesis, we describe the
service, inter-arrival and inter-departure times by discrete random variables. For
convenience, we do not include the slot parameter tinc in the formulas developed
in this thesis. In general, we assumeΓ = N0, and thus, the stochastic processN =

{Nt, t = 0, 1, 2, ...}. However, in the stochastic models developed throughout this
thesis, observing the system only at specific moments, for example, if a customer
arrives at or departs from the system, might be convenient. These event points will
be denoted as k, and we define the random processes N = {Nk, k = 0, 1, 2, ...}
that observes the stochastic process only at event points. This consideration leads
to the definition of discrete-time point processes, which will be discussed in the
following.

8



2.2 Discrete-time point and renewal processes

2.2 Discrete-time point and renewal processes

An essential question for analysing stochastic systems is how the time gaps be-
tween consecutive events are distributed over time. For example, we are interested
in modelling the inter-arrival or inter-departure times between two arrival / de-
parture instances at a queueing system. We can think of arrivals or departures as
discrete events that are randomly distributed along the time axis. The stochas-
tic modelling of the set of these event points is called a (discrete-time) point
process. In the following, we briefly define discrete-time point processes by intro-
ducing three different representations of the same point process. The definitions
in this section are adapted from Whitt (1982), Tran-Gia (1996), and Daley and
Vere-Jones (2008).

In general, we distinguish three representations of the same point process. A point
process can be described by

• the random sequence {Tk, k = 1, 2, 3, ...} of event points on a (positive)
time axis,

• the time differences {Xk, k = 1, 2, 3, ...} between two consecutive event
points, and

• the associated counting process {Nt, t = 0, 1, 2, ...} which counts the
events at any discrete time point t.

A discrete-time point process is a sequence of event points in time that lie on the
discrete-time axis. We consider point processes defined on the positive real line.
The total number of points on the time axis is infinite, however, we assume that
the number of points in any bounded interval is finite.

Let Tk, k ≥ 1 denote the position of the k-th point, and T0 = 0 (but with the
notion that T0 does not correspond to a point). We denoteXk the interval between
the k-th and (k − 1)-st points, such that Xk = Tk − Tk−1. Let the stochastic
process N = {Nt, t = 0, 1, 2, ...} denote the associated counting process of the
number of points in interval [0, t], such that

9
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t
Tk−2 Tk−1 Tk Tk+1

Xk−1 Xk Xk+1

t∗

Age U Residual time R

Figure 2.1: Point process on the discrete-time axis.

Nt = max
{
k ≥ 1 : Tk ≤ t

}
, t ≥ 0. (2.2)

Given {Nt}, we can construct the stochastic processes {Tk, k = 1, 2, 3, ...} and
{Xk, k = 1, 2, 3, ...} by setting T0 = 0, and compute

Tk = min
{
t ≥ 0 : Nt ≥ k

}
, k ≥ 1, (2.3)

andXk = Tk −Tk−1. Therefore, the stochastic processes {Nt}, {Tk} and {Xk}
are three different representations of the same point process.

Sometimes we are interested in observing the process not at an event point k, but
at a time point that lies between two event points. Assume we observe the system
at a random discrete observation point t∗. We call the time interval since the last
event occurred the age of the process U and the time interval until the next event
occurs the residual time R. Figure 2.1 shows the situation. A vital distinction
when calculating the age and the residual time is whether we put the observation
point t∗ immediately before or immediately after the discrete time point. In the
stochastic models developed in this thesis, we assume that the observation point
lies immediately after the event.

Point processes are characterised by the fact that the random variables Xk in
the interval sequence {Xk, k = 1, 2, 3, ...} do not share the same probability
distribution. We generally assume that each random variable Xk in the point
process has a unique probability distribution. In contrast, we call a point process

10



2.3 Discrete-time Markov and semi-Markov processes

in which the time intervals of successive observation points are described by an
i.i.d. random variable a renewal process. A renewal process is associated with
the notion that the process resets after the event occurs and initiates again from
the beginning. For example, replacing a defective component (the event) resets
the process, and the lifetime distribution of the new component is the same as in
the previous component. A renewal process is said to be memoryless if the time
interval between two events has the same distribution as the recurrence time. It
follows (Tran-Gia 1996) that the probability for event Tk to occur at a given time
point is described by a Bernoulli process, the counting process {Nt} is a Poisson
process, and the time between two events is geometrically distributed.

2.3 Discrete-time Markov and semi-Markov
processes

We model the state transitions in the discrete-time stochastic processes consid-
ered in this thesis using Markov processes (or Markov chains) and semi-Markov
processes. The introduction provided in the following is based on the books by
Stewart (1994) for Markov processes and Limnios and Barbu (2008) for semi-
Markov processes. We do not intend to give a general introduction to the topic.
Our aim is to provide the reader with a basic understanding of the modelling
approaches deployed in the rest of this thesis.

We call a stochastic process {Nt, t = 0, 1, 2, ...}, Nt ∈ Ξ a discrete-time Markov
process or discrete-time Markov chain if the conditional transition probability
function satisfies the Markov property

P
(
Nt+1 = nt+1 |Nt = nt, Nt−1 = nt−1, ..., N0 = n0

)
= P

(
Nt+1 = nt+1 |Nt = nt

)
.

(2.4)

TheMarkov property implies that the stateNt contains all relevant information for
the transition to the next state and this transition is independent of the transition
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t

Nk

0

Tk−1 Tk Tk+1 Tk+2

Xk

Xk+1

Xk+2

Figure 2.2: Sample path of a discrete-time semi-Markov process (Limnios and Barbu 2008).

path of the process in the past. We call this property memoryless, meaning that
the past and the future of the stochastic system are conditionally independent. The
conditional probabilityP (Nt+1 |Nt) is called single-step transition probability of
the Markov chain. The Markov chain is said to be homogeneous, if the transition
probability is independent of the observation point t, and we use the notation

pij = P
(
Nt+1 = j

∣∣Nt = i
)

i, j ∈ Ξ, t ∈ N0 (2.5)

to describe the transition from state Nt = i to state Nt+1 = j. The transition
probabilities form the entries of the transition probability matrixP = (pij)i,j∈Ξ.
Note that (depending on the state space size Ξ) matrixPmight be of infinite size.

As already stated above, the memoryless property of the Markov process implies
that the interval sequencesXk follow a geometric distribution. While this is intu-
itive for many applications, sometimes, we aim to relax the underlying assumption
in order to allow arbitrarily distributed interval sequences in any state, while still
having a “flexible” Markovian hypothesis. A process that has these properties is
called a semi-Markov process.

Consider the coupled discrete-time stochastic process Z = {(Nk, Xk), k =

1, 2, 3, ...} which is composed of the stochastic processes {Nk, k = 1, 2, 3, ...}
and {Xk, k = 1, 2, 3, ...}. The stochastic process {Nk}, Nk ∈ Ξ records the
visited states at all time points k. Let k = 1, 2, 3, ... denote all time points
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2.3 Discrete-time Markov and semi-Markov processes

where the state in {Nk} changes. As for the discrete-time point process, let
{Tk, k = 1, 2, 3, ...} denote the successive time points when the state changes
in {Nk}, and {Xk} the interval time the stochastic process spends in each state,
such that Xk = Tk − Tk−1. By convention, we set X0 = T0 = 0. Figure 2.2
shows a sample path of such a stochastic process.

The stochastic process Z = {(Nk, Xk), k = 1, 2, 3, ...} is called a semi-Markov
process if the conditional transition probability satisfies

P
(
Nk+1 = j,Xk+1 = x

∣∣Nk, Nk−1, ..., N0;Tk, Tk−1, ..., T0

)
= P

(
Nk+1 = j,Xk+1 = x

∣∣Nk). (2.6)

The similarity between equation (2.6) and equation (2.4) immediately catches the
eye. The property defined in equation (2.6) is what has been called earlier the
flexible Markovian hypothesis. The expression of this property is that if we know
the past visited states and interval times of the system, the next visited state and the
associated interval time depend only on the present state. The Markov property
therefore does not act on the discrete-time axis t, but on the time governed by the
jump process {Nk}.

Obviously, the semi-Markov process {(Nk, Tk)} describes a discrete-time point
process, where the composed stochastic processes {Nk} and {Xk} are condi-
tionally dependent. In the following, we describe how we can make use of this
dependency to analyse the stochastic behaviour of the point process.

If equation (2.6) is independent of k, we call Z = {(Nk, Xk), k = 1, 2, 3, ...}
(time) homogeneous. In this case, we can define the discrete-time semi-Markov
kernel Q = (qij(x); i, j ∈ Ξ, x ∈ N) by

qij(x) = P
(
Nk+1 = j,Xk+1 = x

∣∣Nk = i
)
. (2.7)

Similar to the transition probability matrix in a Markov chain, the semi-Markov
kernel Q is the essential quantity to define a semi-Markov process.
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2 Discrete-time stochastic modelling

The stochastic process {Nk, k = 1, 2, 3, ...} is called the embedded Markov
chain of the semi-Markov process. If condition (2.6) holds true, {Nk} is a
homogeneous Markov chain with probability transition matrix P = (pij)i,j∈Ξ,
where the transition probabilities

pij = P
(
Nk+1 = j

∣∣Nk = i
)

i, j ∈ Ξ, k ∈ N (2.8)

can be computed by

pij =
∑
x

qij(x) i, j ∈ Ξ. (2.9)

The interval time distributions of the semi-Markov chain is defined by the matrix
F = (fij(x)i,j∈Ξ,x∈N), where

fij(x) = P
(
Xk+1 = x

∣∣Nk = i,Nk+1 = j) i, j ∈ Ξ, k ∈ N (2.10)

denotes the conditional probability for an interval time of x time units, given that
the stochastic process transitions from state i to state j. Note the difference to the
definition of the semi-Markov kernel.

For any states i, j ∈ Ξ and non-negative integer x the condition

qij(x) = pij · fij(x) (2.11)

holds true. Given this condition, we can construct semi-Markov processes based
on a homogeneous Markov chain whose state interval times are conditioned by a
interval time distribution F.
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2.4 Advantages of discrete-time modelling

Discrete-time stochastic modelling – especially discrete-time queueing models –
arose in the 1980s with an increasing research interest in data transmission in
networks. Since data package transfer in networks such as ATM (Asynchronous
Transfer Mode) is usually organised in time slots, discrete-time models are well
suited to describe the stochastic behaviour of telecommunication networks. Es-
sential contributions in this research field have been published by Ackroyd (1980),
Bruneel and Kim (1993), and Hübner and Tran-Gia (1994).

The stochastic analysis of material handling and production systems also lends
itself to discrete-time stochastic modelling. The advantages of discrete-time
modelling for the analysis of production and material handling systems in terms
of accuracy, level of detail, and efficiency have been introduced and discussed in
detail by Schleyer (2007) and Epp (2018). In the following, we briefly summarise
the main beneficial aspects of discrete-time modelling. Further, we add another
aspect to the argument and examine the difficulties of continuous-time modelling
for computing the probability distribution of performance measures.

Concerning the practical application of queueing theory for the design and analy-
sis of production systems and material handling systems, it is of particular interest
to calculate the entire probability distribution of performance measures with rea-
sonable computational effort. This allows us to determine the 90%, 95%, or 99%
percentile of the probability distribution and thus to make more detailed state-
ments about the system’s performance. The main advantage is that discrete-time
modelling does not require any assumption to bemade about the distribution of the
inter-arrival and service time. For the G/G/1-queue, for example, we compute
the entire waiting time distribution by using the method by Grassmann and Jain
(1989) and the distribution of waiting customers with the method by Grassmann
and Tavakoli (2019). In contrast, continuous-time models of the G/G/1-queue
are usually limited to the computation of the first two moments (we discuss a
relaxation of this limitation later). This has two consequences. First, using
continuous-time models, we cannot report the system’s performance beyond the
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expected value and its variability. This is a disadvantage if the system is to be
designed to perform 90%, 95% or 99% of the time. Additionally, Schleyer (2007)
demonstrated in numerical examples for the G/G/1-queue that the accuracy of
the continuous-time models is flawed when computing performance values with
input distributions having the same mean and variance but different skewness
and kurtosis. Despite the higher level of detail in comparison to continuous-time
models, discrete-time models preserve the advantage of being computationally
efficient. Simulation models offering the same level of detail require considerable
effort for implementation, verification, validation, and performing the experi-
ments. Therefore, discrete-time models are well suited to analyse and report the
long-term steady-state performance of stochastic systems and to conduct extensive
“what-if” analyses.

In the past years, researchers developed stochastic models in the continuous-time
domain that compute the entire probability distribution of performance measures,
seeking to overcome the abovementioned limitation of reporting only the first
two moments. The remarks in the following aim to discuss these approaches,
identify their drawbacks and thus contribute another aspect to the advantage of
discrete-time modelling.

In the continuous-time domain, the computation of stationary performance dis-
tributions is generally computationally expensive. Approaches for the stationary
queue length distribution are based on the probability generating function given
by the Pollaczek–Khinchine transform equation (Harchol-Balter 2013), and by
the supplementary variable method (Cox 1955). Recently, Sherzer et al. (2022)
presented a deep-learning method to fit the steady-state probability distribution of
the number of customers in a continuous-time M/PH/1-queue. The approach
receives the arrival rate and the first l moments of the Phase-type service time
distribution as input and outputs the stationary queue length distribution.

However, deriving the steady-state distribution only on the basis of the first l
moments may lead to substantially large errors. Even if the first l moments of a
probability density function are appropriately defined, the asymptotic behaviour
of the distributionmay be unpredictable. The following example is borrowed from
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2.4 Advantages of discrete-time modelling

Shanthikumar (2022) and shall demonstrate the problem. Assume that random
variable X is a Phase-type distributed random variable that arbitrarily closely
approximates the given first l moments of an (unknown) probability distribution.
We further assume that the probability distribution is light-tailed, that is, X has
an exponentially decaying complementary density function fX (Gass 2013, p.
880), and fX generates moments that are bounded upwards.

Supposing that the given l moments are sufficient to predict the probability dis-
tribution of X , the error in this prediction can be substantial. It can be shown
that there exists a random variableX ′ that arbitrarily closely approximates the ob-
served lmoments, but the (l+1)-stmoment is asymptotically infinite,ml+1 →∞.
Let Y denote a random variable that has the probability density function fY of
the form

fY (x) = x−γ γ > 0, 0 < x <∞. (2.12)

We construct the probability density function f ′ of random variable X ′ by the
weighted sum of the distribution functions fX and fY with weighting factor ϕ,

f ′(x) = (1− ϕ) · fX(x) + ϕ · fY (x). (2.13)

Let ϕ be arbitrarily close to zero, such that f ′ generates the observed l moments,
as well. The momentml of function f ′ is computed by

ml =

∫ ∞
−∞

(x− c)l · f ′(x)dx

=

∫ ∞
−∞

(x− c)l ·
(

(1− ϕ) · fX(x) + ϕ · fY (x)
)
dx

=

∫ ∞
−∞

(x− c)l ·
(

(1− ϕ) · fX(x)
)

+ ϕ · (x− c)l · x−γdx.

(2.14)
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In equation (2.14), the asymptotic behaviour of the term (x− c)l · x−γ is

(x− c)l · x−γ →

{
0 γ ≤ l,
∞ γ > l.

(2.15)

Consequently, for m1,m2, ...,ml the integral in equation (2.14) is properly de-
fined, but asymptotically, the (l + 1)-st moment is infinite,ml+1 →∞.

This example illustrates that the first l moments of a probability distribution do
not necessarily uniquely define the distribution type. As a consequence, if we
derive properties of a probability function (e.g. the 90%, 95% or 99% percentiles)
to draw conclusions about the system’s performance solely based on knowing the
first l moments, the prediction error can be substantially large. As mentioned
above, Schleyer (2007) identified this phenomenon (for the G/G/1-queue) using
numerical experiments.

In conclusion, making service-oriented statements about the system’s perfor-
mance necessitates the computation of the distribution’s tail. Since continuous-
time models measure the first l moments of the distribution, deriving the steady-
state behaviour of the queue may lead to substantially large errors. In contrast,
discrete-time queueing models compute the entire probability distribution, re-
gardless of the shape and tail of the input values. Discrete-time queueing models
therefore are advantageous both compared to simulation models (in terms of com-
putational complexity) and compared to continuous-time queueing models (in
terms of accuracy).
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Performance analysis of queueing networks is a broad research field covering
numerous publications from over 50 years. Bitran and Tirupati (1988) roughly
divide the available methods into exact approaches, approximation methods, and
simulations. As already stated, simulation is a powerful tool for performance eval-
uation. However, it requires considerable effort for validation, and performance
evaluation is time-consuming. Exact results are obtained only under restrictive
conditions. Thus, the majority of the approaches presented in the literature are
approximate, and we can further distinguish (Bitran and Tirupati 1988):

• Diffusion approximation,

• Mean value analysis, and

• Decomposition methods.

Naturally, this chapter focuses on decomposition methods, both in the continuous-
and the discrete-time domain. Our aim in this chapter is to present the approaches
in the literature to approximate the point processes in the connecting inter-node
streams of queueing networks and to compare the expected accuracy of the per-
formance results. In Section 3.1 we start the literature review with a “look over
the edge of the plate” and briefly introduce diffusion approximation, mean value
analysis, and the product form solution for exact performance evaluation. Sec-
tion 3.2 focuses on decomposition methods of transfer lines and open queueing in
the continuous- and discrete-time domain. In Section 3.3, we briefly summarise
the main conclusion from the literature review.
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3.1 Diffusion approximation, mean value
analysis, and exact methods

Diffusion approximation is an early attempt to consider queueing models with
generally distributed service times. The approach is motivated by the heavy traffic
limit theorem and relies on the assumption that the queues under consideration
are almost never empty. Iglehart and Whitt (1970) demonstrate that under heavy
traffic conditions, congestion measures at the second node of a queueing network
are asymptotically the same as if the first queueing system was removed. This
implies that the arrival process to the second node can be approximated by the
arrival process at the first node. Diffusion approximationmethods use these results
to asymptotically approximate the point arrival processes as diffusion process
(which is a continuous-path Markov process). The interested reader is referred to
the papers published by Iglehart and Whitt (1970), Reiser and Kobayashi (1974),
Gaver and Shedler (1973b,a) and the books written by Cox and Miller (1965) and
Newell (1982).

Mean value analysis was initially introduced by Reiser and Lavenberg (1980)
and is a recursive approach for analysing closed queueing networks. Sevcik and
Mitrani (1981) develop the arrival theorem for this class of networks in case of
exponentially distributed service times. The arrival theorem states that in an
arrival instance, the distribution of customers seen (as an outside observer) by
this arriving customer is the same as the steady-state customer distribution of
the network with one less customer. This in an important finding as it enables
the recursive computation of the customer distribution. From the perspective of
material handling, deploying mean value analysis for performance evaluation of
closed queueing network is still of research interest, for example, to determine the
optimal fleet size and service availability of a fleet of automated guided vehicles
(George and Xia 2011) or performance evaluation of automated material handling
systems (Govind et al. 2010). We refer the interested reader to the work published
by Dallery and Cao (1992), Onvural (1990), and Lagershausen (2013) for a more
detailed study of this topic.

20



3.2 Decomposition methods

Jackson (1957) introduces an appealing approach to solve open queueing net-
works with external Poisson arrivals, exponentially distributed service times, and
Markovian job transfer between the queueing systems. Jackson (1957) demon-
strates that the steady-state probability distribution of the number of customers
in the network can be computed exactly using a product-form solution. This
approach generates exact results sinceM/M/1-queues with infinite waiting room
generate a Poisson output process (Burke 1956), and further, random splitting
and superposition of Markov processes again form a Markov process. Jackson’s
product-form solution is considered the first decomposition approach for open
queueing networks, and sets a landmark for the development of other decom-
position methods for the analysis of networks with generally distributed service
times.

3.2 Decomposition methods

Since the assumption of Poisson arrivals and exponentially distributed service
times in Jackson networks is restrictive for many applications, researchers de-
veloped methods to analyse queueing networks with generally distributed inter-
arrival and service times. The common idea of the methods presented in the
following is to decompose the original network of queues into a set of smaller
subsystems which are easier to analyse. Each decomposition method involves
three steps (Dallery and Gershwin 1992): First, the subsystems are appropriately
characterised, second, a set of equations is derived to determine the unknown
parameters in each subsystem, and third, an algorithm is developed to solve these
equations. In the following, we first consider transfer lines which employ tan-
dem queues as building blocks for the decomposition method, and then review
decomposition methods for open queueing networks in the continuous- and the
discrete-time domain.

21



3 Literature review

3.2.1 Transfer lines

Transfer lines are an important sub-class of networkswhich arise e.g. in the context
of manufacturing systems and chemical processes. In a transfer line, the material
flow is sequential and the service stations are decoupled by buffers with finite ca-
pacity. Each station encounters a probability to fail, whichmay cause the upstream
machine to block or the downstream machine to starve. With these characteris-
tics, transfer lines clearly distinguish themselves from open queueing networks
that have reliable queues with infinite buffers. The following descriptions shall
give a brief overview over the analysis of transfer lines using decomposition.
Extensive literature reviews that go into more detail are provided by Dallery and
Gershwin (1992) and Papadopoulos and Heavey (1996).

Early investigations on the analysis of transfer lines have been carried out by
Buzacott (1967) who investigates the effects of a given buffer capacity and the
distribution of buffers on the line efficiency. Exact results for the analysis of
transfer lines with two or three machines are presented by Gershwin and Schick
(1983) for the continuous-time, and Gebennini and Grassi (2015) for the discrete-
time domain. The analysis of longer lines relies on decomposition techniques.
Gershwin (1987) approximates a line of k machines by a set of k − 1 tandem
systemswith twomachines and presents an iterative algorithm to solve the resulting
set of equations. However, Dallery et al. (1988) point out that the proposed
algorithm may fail to converge. Therefore, Dallery et al. (1988) replace the
original set of equations by an equivalent one, which is again solved using an
iterative procedure. Extensions to these approaches focus on the analysis of
networks with splits and merges (cf. Gershwin (1991), Gershwin and Burman
(2000)). Gershwin (1991) presents a decomposition method where the network
is decomposed into two-machine lines with intermediate buffer. The machine
parameters are chosen so that the behaviour of the material flow in the buffers
of the two-machine lines closely matches that of the flow in the buffers of the
original line. Gershwin and Burman (2000) present a generalisation of this work
for inhomogeneous networks, where machines can operate with different speeds.
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3.2.2 Continuous-time open queueing networks

In contrast to transfer lines, open queueing networks are characterised by a flexible
network structure, which allows for example for the modelling of a dynamic job
shop manufacturing system. We distinguish three basic steps in each decomposi-
tion method of open queueing network models (Bitran and Dasu 1992):

1. Characterisation of the arrival process at each station,

2. Analysis of the queue based on the characteristics of the arrival process,

3. Determination of the departure process.

Decomposition approaches for open queueing networks generally rely on two ba-
sic assumptions (Govil and Fu 1999): First, it is assumed that the nodes of the
network (that is, the individual queueing systems) can be treated as being statisti-
cally independent. Second, it is assumed that the input to each queueing system
is a renewal process characterised by the mean and the variance of inter-arrival
time distribution of customers. In the continuous-time domain, this approach was
first by applied by Kuehn (1979) with modifications presented by Shanthikumar
and Buzacott (1981), Whitt (1983b), and Reiman (1990). In the discrete-time
domain, Haßlinger and Rieger (1996) proposed a refinement of these so-called
parametric decomposition which allows for the computation of the entire proba-
bility distributions of performance measures.

In the following, we briefly introduce the above-mentioned decomposition ap-
proaches, focusing (a) on the techniques to approximate the point arrival processes
and (b) the achieved accuracy of the performance measures. However, it must
be noted that there is a plethora of decomposition techniques to be found with
various adaptions, for example, multiple customer classes (Bitran and Tirupati
1988, 1989, Whitt 1994). For a broader overview over the related literature, the
interested reader is referred to the review articles written by Bitran and Tirupati
(1988), Bitran and Dasu (1992), Govil and Fu (1999), Shanthikumar et al. (2007),
and Worthington (2009).
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The first parametric decomposition approach was introduced by Kuehn (1979)
who presents an approximate analysis of open queuing networks with gener-
ally distributed inter-arrival and service times. The network is decomposed
into single-station GI/G/1-queuing systems which are independently analysed.
Kuehn (1979) uses conservation of flow to compute the mean arrival rates of
each queuing system, the formula by Kraemer and Langenbach-Belz (1976) to
compute mean waiting times, and the formula by Marshall (1968) to compute the
variability of the departure process of each queuing system. Kuehn (1979) reports
the method to yield generally an increasing accuracy under the conditions of

• low or heavy traffic,

• increasing randomness in the arrival and service processes (so that the
network is close to a Markovian network),

• increasing network complexity,

• decreasing closedness of the network (that is, number of feedback loops).

This is due to the fact that under these conditions, the renewal assumption is usually
better fulfilled. Kuehn (1979) presents numerical results of the approximations
of the decomposition approach, compared to simulation. He finds relative errors
in flow time (that is, the sum of waiting and service time at each queuing system)
in the range of -30.01% and 69.35% in case of a two-node network with feedback
loops. The high relative errors are observed for heavy traffic situations, where (in
combination with the closedness of the network) the renewal assumption becomes
critical. In another example of a network with 9 queuing systems, the flow times of
decomposition approach are within the 95% confidence interval of the benchmark
simulation.

Shanthikumar and Buzacott (1981) present a decomposition technique for dy-
namic job shop type open queuing networks with generally distributed service
times. The renewal approximations of the arrival point processes relies on two
types. The first type considered is general arrival processes which is represented
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by the mean flow rate and the coefficient of variation. Shanthikumar and Buza-
cott (1981) present approximation formulas to compute the scv-values for random
splitting and superposition of the general renewal processes, as well as for the
arrival and departure processes to and from the queues. The second type of arrival
streams considered is Poisson arrival processes which is defined uniquely by the
mean flow rate. Based on the definition of these arrival process approximations,
Shanthikumar and Buzacott (1981) introduce a set of equations to compute the
mean sojourn time for each node in the network in case of first-come-first-serve
and shortest-processing-time-first service disciplines. The observed computa-
tional results for the mean sojourn times are reported to be inside the simulated
95% confidence interval for most cases considered. The approximation of the
arrival processes by Poisson processes is reported to perform better for dynamic
job shops (compared to flow jobs), which is an important finding as it suggests
that the superposition of (numerous) renewal processes asymptotically forms a
Poisson process.

Whitt (1983b) introduced the Queueing Network Analyzer (QNA), a software
package for the analysis of open queuing networks with generally distributed
inter-arrival and service times. As a generalisation of the product-form solution
(Jackson 1957), the network is decomposed into GI/G/m-queuing systems. In
the QNA, flow rates are obtained via traffic rate equations, just as with Markov
models (Jackson 1957). To compute the variabilitymeasures for the internal flows,
QNAemployes twoprocedures presented byWhitt (1982) to approximate the point
departure processes by renewal processes: The stationary interval method equates
the moments of the renewal interval with the moments of the stationary interval in
the point process to be approximated. The asymptotic method takes into account
the dependence between successive intervals and determines the moments of
the renewal interval by matching the asymptotic behaviour of the moments of
the sums of successive intervals. Since neither the asymptotic method nor the
stationary interval method yields promising results for a wide range of variability
parameters, Whitt (1983b) introduces a hybrid procedure based on the work by
Albin (1984a,b). In the QNA, the analysis of the queueing performance relies on
the formula by Kraemer and Langenbach-Belz (1976) for values of the squared
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coefficient of variation in the arrival stream smaller than 1, and a corrected
expression in cases with variability values greater 1. Finally, the variability
of departure stream of the GI/G/1-queue is observed as approximation of the
stationary interval method (Whitt 1984) and the formula by Marshall (1968).

The performance of the Queueing Network Analyzer is investigated by Whitt
(1983a) with respect to several network structures (single GI/G/1-queue, su-
perposition of arrival processes, a couple two-node network as investigated by
Kuehn (1979), and several more complicated networks as suggested by vari-
ous authors). The results of investigations of GI/G/1-queues suggest that the
reliability of approximations decreases when variability in the arrival stream in-
creases. In general, Whitt (1983a) concludes that the maximum relative error
in the GI/G/1-queue might be approximated by 0.05 · c2a, that is, about 10%
for c2a = 2.0. Further, based on the insights from the heavy traffic bottleneck
phenomenon, Whitt (1983a) generally suggests the quality of the approximations
to improve with increasing utilisation (an assumption later disproved by Kim
(2004)). In a comparison against the decomposition method by Kuehn (1979),
the QNA yields about the same approximation quality.

Reiman (1990) presents two decomposition methods (the individual bottleneck
decomposition and the sequential bottleneck decomposition) to analyse open
queuing networks with generally distributed inter-arrival and service times. When
applied to a Jackson network or a M/G/1-queue, the decomposition method
yields exact results. Further, the approach is asymptotically exact in light traffic
situations, and in networkswith a single bottleneck station in heavy traffic. Reiman
(1990) deploys the results from heavy traffic behaviour of queues to determine
approximation formulae for mean waiting and sojourn times. He compares the
performance of both decomposition approaches to the results presented by Kuehn
(1979) and the QNA (Whitt 1983b). In the two-node feedback model introduced
byKuehn (1979), Reiman (1990) finds both decomposition approaches to perform
mostly better thanQNA (mean errors of sojourn time between -6.78%and 12.95%,
compared to simulation). In a second example (which is two queues in series as
investigated by Whitt (1983b)), QNA outperforms both approaches (-16.25% up
to 6.12% errors in sojourn time, compared to simulation).
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3.2.3 Discrete-time open queueing networks

Haßlinger andRieger (1996) present a refinement of the parametric decomposition
approach for the analysis of open queueing networks in the discrete-time domain.
The discrete distribution of superpositions of renewal processes is reversibly
obtained by the distribution of theminimumof the residual times of all superposed
flows. A recursive method and a faster approach based on the z-transform for
the computation of the stochastic split of a renewal process are presented. For
the analysis of discrete GI/G/1-queues, the algorithm by Grassmann and Jain
(1989) is applied to calculate the stationary waiting and idle time distributions.
The stationary distribution of the number of customers is computed based on
an polynomial factorisation approach (Haßlinger 1995). Haßlinger and Rieger
(1996) compare the results obtained with their decomposition approach with the
parametric decomposition approach by Kuehn (1979). Further, they compare the
congestion measures of the GI/G/1-queues with the formulae by Kraemer and
Langenbach-Belz (1976) and the QNA (Whitt 1983b). The results are reported
to be in good agreement for various combinations of different arrival and service
time distributions, except for deterministic service times.

Furmans (2004) presents a framework for stochastic finite elements tomodelmate-
rial handling systems in the discrete-time domain. In this decomposition approach,
the probability distribution of the superposition of independent flows is approxi-
mated by the minimum of the time to the next renewal period in each incoming
stream. The probability distribution of the inter-arrival time after a stochastic
split is obtained by the l-times iterative convolution of the inter-departure time
distribution with itself, weighted with the probability that l consecutive customers
are not routed to the respective direction. The waiting time distribution and
the inter-departure time distribution of the resulting GI/G/1-queueing system
are obtained with the algorithms presented by Grassmann and Jain (1989), and
Jain and Grassmann (1988), respectively. For the calculation of the probability
distribution of the number of customers in the queueing system, the algorithms
presented by Furmans and Zillus (1996), or Grassmann and Tavakoli (2019) may
be deployed.
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3.3 Chapter conclusion

To conclude the literature review, it is crucial to emphasise that congestion mea-
sures obtained by decomposition techniques that follow the renewal assumption
of the connecting streams are approximate. Below, we briefly discuss the impli-
cations for the analysis of open queuing networks and derive the research gap for
this thesis.

In the continuous-time domain, the problem is two-fold. First, the assumption
of independence among the queueing systems and the resulting approximation
of point processes by renewal processes introduces approximations in the per-
formance measures. While the computation of the first moment of the arrival
streams is straightforward, approximations are needed to compute the second
moment. Thus, several authors (Kuehn 1979, Buzacott and Shanthikumar 1993,
Whitt 1983a,b) demonstrate that inter-arrival time variability parameters are sig-
nificant for the approximation quality of the decomposition approach. The second
problem arises from the use of approximate formulas for performance analysis
(e.g. Kraemer and Langenbach-Belz (1976)) of the resulting GI/G/1-queues.

Decomposition methods in the discrete-time domain only face the problem of
the renewal assumption since performance measures can be computed with great
accuracy in the GI/G/1-queue. However, decomposition approaches in the
discrete-time domain are rare, and the approximation quality of the approach still
needs to be thoroughly investigated. Despite discussing the renewal assumption
and its implications, Haßlinger and Rieger (1996) state that “further study is
needed to construct [...] representations of non-renewal processes” in the discrete-
time domain that enable the computation of exact results.

This thesis aims to close this research gap for the discrete-time tandem queue with
Poisson arrivals. The contribution is three-fold: First, in Chapter 4, we quantify
the approximation quality of the renewal decomposition approach and identify
situations where the renewal assumption is critical. Based on the point and
interval estimates developed in Chapter 4, we can predict the approximation error
with great accuracy. Second, in Chapter 5, we investigate the output dynamics
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of the upstreamM/G/1-queue, demonstrating that the departure stream is auto-
correlated. We conclude that successive departures are dependent because the
inter-departure time of one customer depends on the state in the system that the
previous customer left behind. We discuss the implications for the approximation
error of the renewal decomposition approach identified in Chapter 4. Third, in
Chapter 6, we introduce a novel decomposition approach that is based on semi-
Markov arrivals. Semi-Markov arrivals capture the state-dependent behaviour
of the upstream departure process identified in Chapter 5. Therefore, the novel
decomposition approach does not rely on the renewal assumption, which allows
for a converging accurate queueing analysis in the downstream G/G/1-queue.
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4 Point and interval estimation of
decomposition error in
discrete-time open tandem
queues

This chapter is published under the title “Point and interval estimation of decom-
position error in discrete-time open tandem queues” in Operations Research
Letters (Jacobi and Furmans 2022b). The text in this chapter has been taken
from the paper with minor changes. The regression models appear in the ac-
companied data article in Data in Brief (Jacobi and Furmans 2022c), the data
is available in the KITopen Repository (Jacobi and Furmans 2022a).
The author of this thesis was responsible for the conceptualisation, methodol-
ogy, software programming, validation, formal analysis, writing (original draft
and review), and visualisation of the research presented in this chapter.

Chapter abstract

In this chapter, we analyse the approximation quality of the discrete-time de-
composition approach, compared to simulation, and with respect to the expected
value and the 95% percentile of waiting time. For both performance measures, we
present OLS regression models to compute point estimates, and quantile regres-
sion models to compute interval estimates of decomposition error. The ANOVA
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reveal major influencing factors on decomposition error while the regression mod-
els are demonstrated to provide accurate forecasts and precise confidence intervals
for decomposition error.

4.1 Introduction

Queuing models are widely used for performance evaluation of production and lo-
gistics systems which are subject to the influence of randomness (Shanthikumar et
al. 2007, Van Nieuwenhuyse and de Koster 2009,Wu et al. 2019, Yu and de Koster
2009, Lieckens and Vandaele 2012). When applying continuous-time queueing
models, engineers calculate the first and second moment of performance indica-
tors of interest (e.g. throughput, waiting time, and the number of customers in the
queue) using the well-known formulas for M/M/1 and M/G/1 queues as well
as approximation formulas for G/G/1-queues. Books that provide an overview
of continuous-time queueing models are written by Buzacott and Shanthikumar
(1993) and Wolff (1989).

However, production and logistics systems are typically designed to guarantee
performance not on average, but with a given probability (e.g. 95%), which
necessitates the calculation of the distribution of key performance indicators (such
as waiting time) to know, for example, which percentage of orders are processed
in 3h or less, or what promised throughput time will be met in 95% of the cases
(Schleyer and Gue 2012). Applying discrete-time queueing models allows for the
computation of the entire probability distributions of key performance indicators
under very general assumptions. Discrete-time modelling means that events are
only recorded at moments that are multiples of a constant time unit tinc. Thus,
the probability mass function of a discrete random variable x is denoted by

P (x = i · tinc) = xi ∀i = 0, ..., imax. (4.1)
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Given the discrete random variables for the inter-arrival and service time, the
probability distributions of performance measures can be computed, for example
the waiting time (Grassmann and Jain 1989) or the inter-departure time (Jain and
Grassmann 1988) distributions. A comprehensive introduction to discrete-time
queueing models can be found in the books by Ackroyd (1980) and Bruneel and
Kim (1993). The models have been successfully applied in various use cases
related to logistics and production systems (Schleyer and Gue 2012, Epp et al.
2017, Schwarz and Epp 2016, Schleyer and Furmans 2007, Schleyer 2010).

The analysis of discrete-time open queueing networks relies on a decomposition
approach. As in the continuous-time domain, the technique is known to yield
approximate results in the case of non-Poisson arrivals and generally distributed
service times. The drawback with approximations is that we cannot quantify the
deviation of the performance measures calculated with a decomposition approach
from their actual values. While the approximation quality of decomposition
approaches has been studied in the literature for the continuous-time domain (see
e.g. Suresh and Whitt (1990) and Kim et al. (2005)), decomposition error in the
discrete-time domain has not yet been comprehensively examined. So far, no
estimator is available to predict decomposition error for a given queueing network
in the discrete-time domain.

In this chapter, we investigate discrete-time open tandem queues to analyse and
forecast the approximation quality of the discrete-time decomposition technique,
compared to simulation. We limit ourselves to the analysis of tandem queues with
external Poisson arrivals that become non-renewal at the downstream queue with
the aim to reveal fundamental dependencies regarding the approximation quality
of the discrete-time decomposition approach.

The remainder of this chapter is organised as follows. In Section 4.2, we present
the theoretical background of the discrete-time decomposition approach. Sec-
tion 4.3 introduces the methodology to compute point and interval estimates for
decomposition error, defines statistical tests to evaluate their accuracy, and intro-
duces the design of experiments of this study. In Section 4.4, we show numerical
results for decomposition error and present the regression models for point and
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interval estimation of decomposition error. In Section 4.5, we discuss extensions
of the study presented. Section 4.6 discusses the main drivers on decomposition
error. Section 4.7 concludes the chapter.

4.2 Theoretical background

Open queueing networks allow for the analysis of systems with infinite buffer
capacity and generally distributed inter-arrival and service times. Generalisa-
tions of Jackson’s product form solution (Jackson 1957, 1963) with respect to
generally distributed inter-arrival and service times are proposed by Reiser and
Kobayashi (1974) with modifications presented by Kuehn (1979), Shanthikumar
and Buzacott (1981), Whitt (1983b), and Bitran and Tirupati (1988, 1989). Each
decomposition approach relies on two basic assumptions (Govil and Fu 1999):
First, it is assumed that the individual queueing systems can be treated as being
statistically independent GI/G/1-queues. Second, it is assumed that the point
process which forms the input to each GI/G/1-queue can be approximated by a
renewal process. It is therefore important to emphasise that congestion measures
obtained by decomposition techniques are approximate, since the assumption of
independence among queueing systems does not properly account for the corre-
lations of the arrival stream which have a significant effect on the performance
measures (Kim et al. 2005).

Decomposition approaches for discrete-time open tandem queues are based on
these conditions, as well. The arrival stream of a downstream queue is approxi-
mated as renewal process by the inter-departure time distribution of the upstream
queue, which can be efficiently computed with the algorithm by Jain and Grass-
mann (1988). The waiting time distribution of the resulting GI/G/1-queue is
obtained with the algorithm presented by Grassmann and Jain (1989). Further
performance measures, such as the distribution of customers, can be computed
with the approaches presented by Haßlinger (1995), and Grassmann and Tavakoli
(2019).
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In an effort to investigate the approximation quality of the decomposition tech-
niques, tandem lines have been studied extensively in the literature. Suresh and
Whitt (1990) examine the impact of non-renewal processes on the approximation
quality with different traffic intensities. Wu and McGinnis (2013) introduce the
intrinsic ratio, a fundamental property of tandem queues that is based on the in-
sight that some servers are directly affected by the external arrival process. Whitt
(1995) suggests using a variability function (instead of a single parameter as in
the QNA) for the arrival stream of the downstream queue, which is a function
of the traffic intensity of the incoming queue. Sagron et al. (2015) extend this
method to multi-class systems that address the scenario when the upstream server
in a tandem queue experiences downtimes (e.g. set-up, maintenance, and repair),
events that increase the station’s departure variability, while causing starvation
of a downstream bottleneck station. To achieve better computational efficiency,
Sagron et al. (2017) approximate the between-class effect (the variability caused
by interactions with other classes) in a queue with downtimes using a Regression-
Based Variability Function (RBVF). RBVF receives the squared coefficient of
variation of the arrival and service times, as well as the expected value of the
service process as input and approximates the variability function using methods
of linear regression.

4.3 Methodology

The object of investigation in this thesis is a tandem queue, that is, two discrete-
time queueing systems are arranged one after the other (see Figure 4.1). The
upstream queueing system is fed by an external arrival stream with arrival rate
1/E(AU ) of customers. If the service station is busy upon arrival of a customer,
this customer waits in the waiting room for the service to begin. After being
served at the upstream station with service rate 1/E(BU ), all customers enter
the waiting area of the downstream queueing system. The size of the waiting
area is infinite, meaning that all customers wait to be served with service rate
1/E(BD) at the downstream station and to hereafter leave the tandem queue.
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AU AD
BU BDW

Figure 4.1: Parameters in the tandem queue.

We only consider steady-state systems where the utilisation parameters ρU =

E(BU )/E(AU ) and ρD = E(BD)/E(AD) are smaller than 1. Since the arrival
process at the downstream queue is approximated as point process with inter-
arrival time distribution AD, only the downstream queueing system is prone
to decomposition error. For the sake of clarity, Table 4.1 defines the system
performance metrics of the tandem queue.

In our analyses, we assume that the random variables describing the service
processes are described by discretised gamma distributions. Let X be a gamma-
distributed random variable with shape parameter k and scale parameter θ. The
probability density function of X is given by (Bijma et al. 2017)

f(x; k, θ) =
xk−1e−x/θ

θkΓ(k)
, x, k, θ > 0, (4.2)

where Γ(k) is the gamma function. We use the squared coefficient of variation
(scv) as normalised measure of statistical dispersion to measure the process vari-
ability. Let E(X) define the expected value ofX , and V ar(X) its variance. The
variability of X is defined as

scv(X) = V ar(X)/E2(X). (4.3)

In order to generate gamma-distributed randomvariablesX with predefined values
for E(X) and scv(X), we use the well-known closed-form expressions for the
shape and scale parameters of the gamma distribution,

E(X) = kθ,

V ar(X) = kθ2.
(4.4)
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Table 4.1: Performance metrics of the tandem queue.

AU , AD Random variable describing the inter-arrival time of the external (down-
stream) arrival process

BU , BD Random variable describing the service time at the upstream (down-
stream) queue

ρU , ρD Utilisation of the upstream (downstream) queue
W Random variable describing the waiting time of a customer at the down-

stream queue

Finally, we define στX as the τ -percent percentile of the probability mass function
(pmf) of random variable X .

In this chapter, we are interested in the error of the waiting timeW at the down-
stream queue computed by the discrete-time decomposition approach, compared
to discrete-event simulation. We conduct two distinct studies with different de-
pendent variables. In Study I, let ∆(E) be the divergence of the expected value
of waiting time

∆(E) =
ESim(W )− EQueue(W )

ESim(W )
, (4.5)

where ESim(W ) and EQueue(W ) denote the expected value of waiting time,
computed with the discrete-time queueing approach and simulation, respectively.
In Study II, let ∆(σ) be the divergence of the 95% percentile of waiting time

∆(σ) =
σ95
W,Sim − σ95

W,Queue

σ95
W,Sim

, (4.6)

where σ95
W,Queue denotes the 95% percentile of waiting time, computed with the

discrete-time queueing approach, and σ95
W,Sim the 95% percentile of waiting time,

obtained with simulation.

In the following, we introduce themethodologies used for the computation of point
and interval estimates of decomposition error and briefly describe the empirical
evaluation criteria, the simulation model, and our design of experiments.
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4.3.1 Point and interval estimates

We use Ordinary Least Square (OLS) multiple linear regression to compute point
estimates, and quantile regression to compute interval estimates for decomposition
error. Themethodological background onOLS regression can be found e.g. in Sen
et al. (1990). Quantile regression aims at the estimation of conditional quantile
functions-models inwhich quantiles (percentiles) of the conditional distribution of
the dependent variable are expressed as functions of observed covariates (Koenker
and Bassett 1978, Koenker and Hallock 2001). Unlike OLS which is used to
compute the conditional mean of the dependent variable, quantile regression can
be used to explain the determinants of the dependent variable at any point of the
pmf of the dependent variable.

The dependent variables of the regression models in Study I and Study II are
∆(E) and ∆(σ), respectively. In both studies, we consider the same sample
of M observations for the estimation of decomposition error. To help simplify
the notations introduced in the following, we do not differentiate between both
studies, but instead set ym = ∆(E) in Study I, and ym = ∆(σ) in Study II for
a given data point m. The observations include y and X , where y denotes the
M -vector of decomposition error, and X is the (N × K) design matrix of the
independent variables, withK − 1 dependent (explanatory) variables.

Point estimates for decomposition error are computedwith thewell known formula
for multiple linear regression

y = Xβ + ε, (4.7)

where ε is the M -vector of the random error terms of the regression model.
The estimates β̂ for problem (4.7) are found by minimising the sum of squares
residuals

β̂ = min
β∈RK

N∑
n=1

(
ym − xᵀ

nβ
)2

. (4.8)
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In contrast toOLS, quantile regression finds the estimates β̂(τ) for a given quantile
τ ∈ (0, 1) by minimising the weighted sum of the absolute deviations

β̂(τ) = min
β(τ)∈RK

N∑
n=1

∣∣∣ym − xᵀ
nβ(τ)

∣∣∣ωn, (4.9)

where the weight ωn is defined as

ωn =

{
2τ ym − xnᵀβ(τ) > 0,

2− 2τ otherwise.
(4.10)

The quantile regression estimates β̂(τ) in problem (4.9) can be computed very
efficiently by linear programming methods. In this chapter, we use the modified
version of Barrodale and Roberts algorithm (Koenker and d’Orey 1987, 1994) to
calculate the quantile regression estimates.

We always consider the quantile regression models in pairs, so that they form
the upper and lower endpoints of the 90%, 95% or 99% confidence interval (CI)
of decomposition error, respectively. Consequently, we fit quantile regression
models Q(τ) for the pairs of τ = .05 and τ = .95 for the 90% CI, τ = .025 and
τ = .975 for the 95% CI, and τ = .005 and τ = .995 for the 99% CI.

4.3.2 Goodness of fit criteria and likelihood ratio tests

To evaluate the accuracy of the fitted OLS models, we are interested in the empir-
ical distribution of the error term ε in problem (4.7). A preliminary evaluation of
the data set shows that the Gauss-Markov conditions (Sen et al. 1990), and espe-
cially E(ε) = 0, hold for our data set. Consequently, mean error measurements
for the cumulated error terms of ε (such asMSE and RMSE) will be (nearly) zero
and therefore not meaningful for interpretation. Instead, we evaluate the absolute
values |εn|, n ∈ N and denote |εn| as forecasting error (FE) for observation m.
To arrive at the determination of the accuracy of the OLS model, we compute the
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relative frequency distribution function of FE for all observations in ε. Interpret-
ing the relative frequency distribution of FE, the higher the percentage of small
values, the better the model fits the data and thus the higher the accuracy of the
model.

The goodness of fit criterion of quantile regression is calculated with the algorithm
by Koenker and Machado (1999). Analogous to the conventional R2 statistic
of OLS regression, we call it Pseudo R2. Let β̂(τ) denote the minimiser of
problem (4.9), and V̂ (τ) the error sum of the conditional quantile function.
Further, let Ṽ (τ) denote the error sum of the corresponding conditional quantile
function, that is restricted to only consider the intercept parameter of β̂(τ).
Conventionally, the goodness of fit criterion is defined as

R2
Pseudo(τ) = 1− V̂ (τ)/Ṽ (τ). (4.11)

Note that PseudoR2 is not comparable to the standard coefficient of determination
R2 although it lies between 0 and 1. It is only useful for the comparison between
quantile regression models since it is based on the weighted sum of absolute
residuals, while R2 is based on residual variance. Finally, it should be noted
that Pseudo R2 may be a skewed measure as it is not corrected by the degrees of
freedom. However, a definition for the goodness of fit that follows the concept of
Adjusted R2 known from OLS regression is not available for quantile regression
analyses.

We use likelihood ratio tests to test the overall significance of the OLS regression
models (Sen et al. 1990). We are interested in testing whether all the indepen-
dent variables have any effect on decomposition error and test the general linear
hypothesis

H : Cβ − γ = 0, (4.12)
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where C is a (M × K) matrix of rank M < K and γ is a M -vector. Note
that hypothesis (4.12) allows us to test the overall significance of the OLS model,
where

H : β1 = 0, β2 = 0, ..., β(K−1) = 0, (4.13)

as well as the significance of elected independent variables (so-called nested
models), where

H : βm = γm, (4.14)

for arbitrary values ofm and γm. Hypothesis (4.12) is rejected if

M−1(Cb− γ)ᵀ[C(XᵀX)−1Cᵀ]−1(Cb− γ)

s2
≥ FM,N−K−1,α, (4.15)

where FM,N−K−1,α is the upper α-percent point of the F -distribution with
(M,N −K − 1) degrees of freedom,

b = (XᵀX)−1Xᵀy, and
s2 = (N −K − 1)−1yᵀ[I −X(XᵀX)−1Xᵀ]y.

(4.16)

We report the test statistic (4.15) as well as the p-value of the hypothesis test,
which is the probability of observing a value of F larger than the one observed
under H with degrees of freedom (M,N − K − 1) and significance level α.
Generally speaking, when the test statistic is large, and the p-value is small, we
can safely reject H and conclude that the OLS model provides a better fit to the
data than a model which contains no independent variables (hypothesis (4.13)) or
the nested model (hypothesis (4.14)).
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4.3.3 Simulation model

We use a discrete-event simulation model of a tandem queue to obtain the waiting
time distribution at the downstream station. Each simulation run is composed of
50 replications with 10,000,000 simulated time steps each. In each simulation
run, the first 100,000 time steps are discarded. The observed width of the 95%-CI
of the expected value of waiting time is 0.0286, which is less than 0.5% of the
average simulated waiting time. Therefore, the performance metrics obtained
with the simulation model are – despite being prone to some variance – valid
estimates for the waiting time.

4.3.4 Design of experiments

Each tandem queue is parameterised with rate and variability parameters of the
external arrival stream and the service processes in both queueing systems. For
the sake of conciseness, we limit ourselves to experiments where the arrival
process at the first queue is Poisson, and the service times at both queues are
gamma-distributed. Given its flexibility, the gamma distribution allows for the
modelling of a wide range of dispersion and is therefore well suited to represent
the stochastic behaviour of the service process. Further, it is well known that the
exponential distribution is a special case of the gamma distribution when the scv-
value equals 1. We first consider tandem queues where the utilisation parameters
at the upstream and the downstream queue are equal. This allows us to define a
generic utilisation parameter ρ for the tandem queue, ρ = ρU = ρD. A relaxation
of this assumption will be discussed in Section 4.5.

Based on these conditions, we parameterise each tandem queue with four param-
eters, the external arrival rate, the service rate, and the variability parameters of
both service processes. We use the algorithm described in Dupuy et al. (2015)
to generate 1,166 data points in a four-dimensional space-filling latin hypercube
design. The expected values of the external inter-arrival and the service times
are independently randomly selected from the interval [1.0, 30.0]. The variability
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Table 4.2: Summary statistics of the IVs and flow parameters in the training data set.

Mean STD Min Max

ρ 0.59 0.24 0.06 0.99
scv(BU ) 1.30 0.80 0.10 2.96
scv(BD) 1.45 0.79 0.10 2.95
scv(AD) 1.18 0.41 0.18 2.79

E(B) 12.32 6.35 1.23 29.00
E(AD) 21.22 6.27 2.72 30.00

parameters of the service time distributions are independently randomly selected
from the interval [0.1, 3.0]. We then use the closed-form expressions for the shape
and scale parameters of the gamma distribution (cf. equation 4.2) to compute the
probability distributions for the service and external arrival processes, leading to
a final data set of 1,166 data points. Following the rule of thumb established by
Jones et al. (1998) and investigated by Loeppky et al. (2009), this sample size is
considered sufficient.

We define the utilisation of the tandem queue ρ, the variability parameters of
both service processes scv(BU ) and scv(BD), and the variability of the arrival
process at the downstream queueing system scv(AD) as independent variables
(IVs) of the regression models. We partition the data set into two subsets, the
training data set which consists of 932 randomly chosen data points, and the test
data set which consist of the remaining 234 data points. Table 4.2 provides the
summarising statistics for the IVs in the training data set and the flow parameters
for the tandem queue. Note that the expected values for the service processes
at the upstream and the downstream queue are equal, and thus, we list E(B)

for both queues. We normalise the IVs of both subsets with the mean- and std-
values listed in Table 4.2. The data sets are accessible in a repository (Jacobi and
Furmans 2022a) and described in detail in the accompanied data article (Jacobi
and Furmans 2022c).
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Figure 4.2: Empirical cumulative distribution functions of the decomposition error of waiting time
regarding the expected value and 95% percentile.

4.4 Results

We first consider the distribution of decomposition error in the overall data set.
The empirical cumulative distribution of decomposition error reveals that both,
positive (meaning that discrete-time queueing theory underestimates the waiting
time) and negative errors (overestimation of the waiting time) are found. We
find the relative errors in the range of -21.9% and 32.5% (referring to Study I)
and -30.8% and 36.7% (referring to Study II). The mean absolute values of
decomposition error equal 3.93% and 4.51% regarding the expected value and the
95% percentile of waiting time, respectively (see Figure 4.2).

4.4.1 Study I: Expected value of waiting time

The OLS regression coefficients for Study I are presented in Table 4.3. Recall that
in Study I, the dependent variable is∆(E), cf. equation (4.5). The OLS regression
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4.4 Results

analysis is found to be statistically significant (F (10, 921) = 2123, p < .001),
explaining the majority of the variance of the relative error of the expected value
of waiting time (R2

Adj. = 0.958). The ANOVA reveals all direct and the majority
of the interaction effects to be statistically significant. Since the non-significant
coefficient is small, we did not find evidence for the regression model to perform
significantly better without incorporating this interaction (F (921, 922) = 1.234,
p = .267). We identify the service process variability at the upstream queueing
system and the arrival process variability at the downstream queueing system,
as well as the utilisation as major impact factors. Despite being statistically
significant, the effect of the variability of the service process at the downstream
queueing system is found to be a minor influencing factor.

The Pseudo R2 of each quantile regression model is well above 0.8. All quantile
regression equations show similar patterns of changes in coefficient values as
the OLS regression. We find the majority of direct and interaction effects to be
statistically significant. As in the OLS regression, the interaction effect between
the service process variability (at the upstreamqueueing system) and the utilisation
is found to be non-significant among each model. While the absolute sizes of the
coefficients for most factors vary little across the equations, it should be noted that
the weights of the service process variability at the upstream queueing system,
and the arrival process variability at the downstream queueing system rise with
increasing quantile.
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Table 4.3: OLS and quantile regression estimates in Study I.

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

const. 0.0048∗∗∗ -0.0068∗∗∗ -0.0065∗∗∗ -0.0039∗∗∗ 0.0228∗∗∗ 0.0309∗∗∗ 0.0361∗∗∗

0.0007 0.0012 0.0013 0.0011 0.0035 0.0034 0.0036

scv(BU ) -0.0668∗∗∗ -0.0460∗∗∗ -0.0471∗∗∗ -0.0551∗∗∗ -0.0713∗∗∗ -0.0770∗∗∗ -0.0768∗∗∗

0.0017 0.0033 0.0046 0.0037 0.0084 0.0072 0.0074

scv(BD) -0.0039∗∗∗ -0.0020∗∗∗ -0.0011∗ -0.0013∗∗ -0.0081∗∗∗ -0.0093∗∗∗ -0.0076∗∗

0.0005 0.0006 0.0005 0.0005 0.0015 0.0015 0.0024

scv(AD) 0.0591∗∗∗ 0.0437∗∗∗ 0.0424∗∗∗ 0.0530∗∗∗ 0.0585∗∗∗ 0.0676∗∗∗ 0.0731∗∗∗

0.0027 0.0056 0.0070 0.0058 0.0129 0.0111 0.0108

ρ -0.0325∗∗∗ -0.0306∗∗∗ -0.0301∗∗∗ -0.0311∗∗∗ -0.0300∗∗∗ -0.0291∗∗∗ -0.0283∗∗∗

0.0009 0.0014 0.0017 0.0015 0.0042 0.0041 0.0047

scv(BU ) -0.0048∗∗∗ -0.0087∗∗∗ -0.0081∗∗∗ -0.0064∗∗∗ -0.0057∗∗∗ -0.0052∗∗∗ -0.0043∗

× scv(BD) 0.0008 0.0013 0.0016 0.0013 0.0013 0.0011 0.0019

scv(BU ) 0.0194∗∗∗ 0.0128∗∗∗ 0.0133∗∗∗ 0.0128∗∗∗ 0.0241∗∗∗ 0.0229∗∗∗ 0.0291∗∗∗

× scv(AD) 0.0005 0.0008 0.0007 0.0007 0.0033 0.0031 0.0054

scv(BU ) -0.0441∗∗∗ -0.0293∗∗∗ -0.0292∗∗∗ -0.0366∗∗∗ -0.0475∗∗∗ -0.0488∗∗∗ -0.0475∗∗∗

× ρ 0.0011 0.0027 0.0033 0.0028 0.0052 0.0046 0.0058
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OLS and quantile regression estimates in Study I (continued).

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

scv(BD) 0.0080∗∗∗ 0.0049∗∗∗ 0.0057∗∗∗ 0.0052∗∗∗ 0.0112∗∗∗ 0.0107∗∗∗ 0.0058
× scv(AD) 0.0008 0.0014 0.0016 0.0012 0.0027 0.0025 0.0043

scv(BD) -0.0006 0.0008 0.0010 0.0017∗∗ -0.0005 -0.0014 0.0006
× ρ 0.0005 0.0007 0.0008 0.0008 0.0018 0.0017 0.0030

scv(AD) -0.0405∗∗∗ -0.0411∗∗∗ -0.0396∗∗∗ -0.0391∗∗∗ -0.0407∗∗∗ -0.0450∗∗∗ -0.0518∗∗∗

× ρ 0.0011 0.0023 0.0023 0.0019 0.0041 0.0043 0.0051

Adj. / Ps. R2 0.958 0.917 0.902 0.895 0.829 0.843 0.872

Notes: Standardised regression coefficients with standard errors listed below. The standard errors of quantile regression estimates
are based on 100 bootstrapping replications. The sample is training data set with sample size 932.
∗ p < .1

∗∗ p < .05

∗∗∗ p < .001
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Table 4.4: OLS and quantile regression estimates in Study II.

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

const. 0.0052∗∗∗ -0.0169∗∗∗ -0.0107∗∗∗ -0.0093∗∗∗ 0.0289∗∗∗ 0.0349∗∗∗ 0.0838∗∗∗

0.0012 0.0023 0.0022 0.0020 0.0033 0.0064 0.0163

scv(BU ) -0.0735∗∗∗ -0.0671∗∗∗ -0.0631∗∗∗ -0.0547∗∗∗ -0.0847∗∗∗ -0.0931∗∗∗ -0.1010∗∗∗

0.0028 0.0082 0.0089 0.0074 0.0109 0.0129 0.0146

scv(BD) -0.0046∗∗∗ -0.0036 0.0002 0.0004 -0.0093∗∗∗ -0.0120∗∗∗ -0.0413∗∗∗

0.0008 0.0031 0.0021 0.0012 0.0019 0.0044 0.0097

scv(AD) 0.0680∗∗∗ 0.0916∗∗∗ 0.0776∗∗∗ 0.0554∗∗∗ 0.0735∗∗∗ 0.0777∗∗∗ 0.0591∗∗∗

0.0046 0.0146 0.0163 0.0116 0.0169 0.0198 0.0236

ρ -0.0381∗∗∗ -0.0351∗∗∗ -0.0360∗∗∗ -0.0321∗∗∗ -0.0439∗∗∗ -0.0471∗∗∗ -0.0636∗∗∗

0.0015 0.0029 0.0031 0.0022 0.0052 0.0071 0.0120

scv(BU ) -0.0038∗∗∗ -0.0134∗ -0.0052∗∗ -0.0066∗∗∗ -0.0095∗∗ -0.0035 0.0254∗∗

× scv(BD) 0.0013 0.0062 0.0019 0.0014 0.0032 0.0069 0.0114

scv(BU ) 0.0189∗∗∗ 0.0078∗∗∗ 0.0091∗∗∗ 0.0113∗∗∗ 0.0241∗∗∗ 0.0322∗∗∗ 0.0263∗∗∗

× scv(AD) 0.0008 0.0012 0.0015 0.0013 0.0030 0.0050 0.0073

scv(BU ) -0.0476∗∗∗ -0.0291∗∗∗ -0.0378∗∗∗ -0.0338∗∗∗ -0.0649∗∗∗ -0.0676∗∗∗ -0.0342∗∗∗

× ρ 0.0019 0.0086 0.0067 0.0053 0.0072 0.0097 0.0128
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OLS and quantile regression estimates in Study II (continued).

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

scv(BD) 0.0092∗∗∗ 0.0089 0.0005 0.0049∗ 0.0148∗∗∗ 0.0090 -0.0046
× scv(AD) 0.0014 0.0063 0.0032 0.0019 0.0039 0.0058 0.0081

scv(BD) 0.0008 0.0109∗∗∗ 0.0056∗ 0.0030∗ 0.0038 0.0065 0.0218∗∗∗

× ρ 0.0008 0.0028 0.0022 0.0015 0.0026 0.0045 0.0071

scv(AD) -0.0522∗∗∗ -0.0740∗∗∗ -0.0597∗∗∗ -0.0520∗∗∗ -0.0468∗∗∗ -0.0476∗∗∗ -0.0503∗∗∗

× ρ 0.0019 0.0061 0.0055 0.0029 0.0048 0.0060 0.0110

Adj. / Ps. R2 0.920 0.809 0.798 0.807 0.698 0.681 0.635

Notes: Standardised regression coefficients with standard errors listed below. The standard errors of quantile regression estimates
are based on 100 bootstrapping replications. The sample is training data set with sample size 932.
∗ p < .1

∗∗ p < .05

∗∗∗ p < .001
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4 Decomposition error in discrete-time open tandem queues

4.4.2 Study II: 95% percentile of waiting time

The regression coefficients for Study II are presented in Table 4.4. In Study II, the
dependent variable is ∆(σ), cf. equation (4.6). We find a statistically significant
OLS regression equation (F (10, 921) = 1064, p < .001), which explains the
majority of the variance (R2

Adj. = 0.920) of decomposition error regarding the
95% percentile of waiting time. The impact patterns of the interaction effects are
the same as in Study I. Again, we did not find evidence for the OLS estimate to
better performwithout incorporating the non-significant interaction effect between
the service process variability and utilisation (F (921, 922) = 0.917, p = .339).
Analogous to Study I, the service process variability (at the upstream queueing
system), the arrival process variability (downstream queueing system), and the
utilisation are found to be the major direct effects. Despite being statistically
significant, the service process variability at the downstream queueing system is
a minor impact factor.

The Pseudo R2 of all quantile regression models is well above 0.6. Except
for the service process variability at the downstream queueing system, which is
non-significant for the models with τ 6 .05, all direct effects are found to be
statistically significant among each regression model. The majority of interaction
coefficients is found to be significant or marginally significant. However, we did
find non-significant coefficients among the interaction effect of the service process
variability and the arrival process variability (both at the downstream queueing
system), as well as in the Q(.975) model. As in Study I, the absolute sizes of
coefficients vary little for most factors across the equations. However, the weight
of the utilisation increases by rising quantiles, while (in contrast to Study I) the
weight of the arrival process variability decreases.

4.4.3 Performance of point and interval estimates

The accuracy of the point estimates is presented in Tables 4.5 and 4.6. For
the majority of data points, we find an absolute error of the OLS predictions
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4.4 Results

Table 4.5: Performance of point estimates: Relative frequency distributions and means of forecasting
error for training and test data in Study I.

FE Train Test Test (a) Test (b)

[0.000, 0.005] 40.5% 37.2% 41.9% 8.7%
(0.005, 0.010] 30.5% 30.8% 34.6% 13.0%
(0.010, 0.020] 20.5% 22.6% 18.4% 34.8%
(0.020, 0.050] 8.0% 9.0% 5.1% 39.1%
(0.050,∞) 0.5% 0.4% 0.0% 4.4%

Mean 0.0087 0.0092 0.0073 0.0210

Notes: Subsets (a) and (b) denote the subsets of test data with absolute decomposition error smaller
than 3% and above 10%. The sample sizes are 136 and 23.

of less than 1 percentage point from the simulated value. The mean absolute
forecasting errors are less than 1 percentage point in Study I and only slightly
above 1 percentage point in Study II. In both studies, this accuracy is achieved
for the training and the test data set, which indicates that our OLS prediction
approach is robust to overfitting.

Despite the minor mean errors, the results suggest that the accuracy of point
estimates decreases when forecasting severe values of decomposition error. To
investigate this effect, we examine the subsets of test data with minor decompo-
sition errors, that is, all data points with absolute decomposition errors smaller
than 3% (in the following referred to as subset (a)), and with severe decomposi-
tion errors, that is, all data points with absolute decomposition errors above 10%
(subset (b)). The sample sizes of subsets (a) and (b) are 136 and 23 in Study I,
and 127 and 33 in Study II, respectively. The relative frequency distributions of
FE and its mean errors (cf. Tables 4.5 and 4.6) suggest that subset (a) is forcasted
with significantly higher accuracy than the data points from subset (b) in both
studies. Further, the share of data points that is forecasted with a FE greater than
0.05 is significantly higher in subset (b). However, it cannot be concluded that
data points with severe absolute decomposition errors are frequently predicted
with minor accuracy. In the test data from Study I, we find 96% of the data points
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4 Decomposition error in discrete-time open tandem queues

Table 4.6: Performance of point estimates: Relative frequency distributions and means of forecasting
error for training and test data in Study II.

FE Train Test Test (a) Test (b)

[0.000, 0.005] 40.8% 30.8% 34.6% 11.8%
(0.005, 0.010] 36.5% 29.5% 33.1% 0.0%
(0.010, 0.020] 7.4% 23.9% 19.7% 35.3%
(0.020, 0.050] 12.7% 12.8% 11.8% 41.1%
(0.050,∞) 2.6% 3.0% 0.8% 11.8%

Mean 0.0118 0.0117 0.0095 0.0260
Notes: Subsets (a) and (b) denote the subsets of test data with absolute decomposition error smaller
than 3% and above 10%. The sample sizes are 127 and 33.

with an absolute decomposition greater than 10% to be forecasted with a FE less
than 0.05 (in Study II the share is 89%).

Interval estimation compensates for this effect. By providing the 90%, 95%,
and 99% confidence intervals, we evaluate the precision of the point estimates.
Table 4.7 presents the performance of the interval estimates for Study I and
Study II, listing the mean interval lengths and the actual shares of decomposition
errors included in the respective confidence intervals. As expected, the average
interval lengths increase with rising confidence in finding a data point in the
corresponding interval. In both studies, the average interval lengths differ only
marginally between training and test data which indicates that the approach of
interval estimation is robust to over-fitting. In the training data set, the confidence
intervals contain exactly the respective share of values they were determined for.
These shares are only slightly undermined for the test data.

The interval estimates are designed to indicate uncertainty in the forecast of point
estimates. The results are presented in Table 4.7. In subset (a), the precision
of interval estimations increases, compared to the entire test data set. This is
indicated by the narrower intervals, as well as the high shares of values that are
included in the respective intervals (which is especially to be emphasised for
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4.5 Extensions: Bottlenecks and longer lines

Table 4.7: Performance of interval estimates: Mean lengths and actual share of values for confidence
intervals (CI) in Study I and Study II, based on quantile regression models.

90% CI 95% CI 99% CI

Length Share Length Share Length Share

Study I Train 0.0348 90.58% 0.0416 95.07% 0.0506 98.93%
Study I Test 0.0345 86.32% 0.0415 91.45% 0.0509 94.02%
Study I Test (a) 0.0271 87.50% 0.0318 93.38% 0.0374 94.85%
Study I Test (b) 0.0692 78.26% 0.0810 82.61% 0.1006 91.30%

Study II Train 0.0467 90.26% 0.0661 95.50% 0.1343 98.82%
Study II Test 0.0473 91.45% 0.0658 92.74% 0.1303 95.73%
Study II Test (a) 0.0432 92.91% 0.0594 96.85% 0.1442 99.21%
Study II Test (b) 0.0689 81.82% 0.1006 81.82% 0.1281 84.85%

Notes: Subsets (a) and (b) denote the subsets of test data with absolute decomposition error smaller
than 3% and above 10%. The sample sizes are 136 and 23 (Study I), and 127 and 33 (Study II).

Study II). As discussed above, in subset (b), the forecast uncertainty of the point
estimates increases, which is indicated by longer mean intervals and a smaller
share of values contained in the intervals.

We conclude that minor decomposition errors are predicted with satisfactory
point estimation accuracy and great precision. Predicting severe decomposition
errors is subject to uncertainty: the absolute error of the point estimate might
be considerable, which is indicated by large confidence intervals. By combining
the methods, the regression models satisfy both, the aspect of an accurate point
estimation forecast, as well as the quantification of its uncertainty.

4.5 Extensions: Bottlenecks and longer lines

The investigations of the heavy-traffic bottleneck phenomenon in open queuing
systems (Suresh and Whitt 1990) suggest that the performance of bottleneck
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downstream queues is strongly related to the variability of the non-renewal arrival
process variability, which impacts the approximation quality of decomposition
methods. Therefore, we extend our analyses to tandem queues and longer lines
with bottlenecks. As Suresh and Whitt (1990) mention, in a narrower sense, the
bottleneck is the queue with the highest traffic intensity. However, increasing
the traffic intensity of a queue by only a small amount may shift the bottleneck
position. Therefore, it is intuitive to state that either of the queues is the bottleneck
if it’s utilisation is substantially greater than some ε, |ρU − ρD| > ε.

We create a further data set containing 969 data points, following the procedure
described in section 4.3.4, but with the relaxation that the expected values of
service times are now independent. We choose ε = 0.1 and find 403 data points
where the downstream queue is the bottleneck. We use OLS and quantile regres-
sion to identify the major and minor effects on decomposition error in bottleneck
queues. The coefficients of the regression analyses, where the dependent variables
are ∆(E) (Study I), and ∆(σ) (Study II) are provided in the accompanied data
article and in Appendix A. We find the previously identified major and minor
effects on decomposition error to apply in this analysis, as well. However, the
empirical distributions of the decomposition error show that the approximation
quality of the decomposition approach depends significantly on which of the
queues is the bottleneck. In the case of similar traffic intensities, we find mean
absolute values of decomposition error to be 5.45% (6.51%) for the expected
value (95% percentile) of waiting time, which is in line with the expectations of
previous examinations. When the bottleneck is downstream, the mean absolute
values of decomposition error regarding the expected value (95% percentile) of
waiting time equal 4.87% (5.50%). In contrast, when the bottleneck is upstream,
we find mean absolute values of decomposition error of 1.36% (1.46%) for the
expected value (95% percentile) of waiting time.

Similar results are observed in longer lines. We investigate a set of lines with
i queues in series, where i equals 3, 5, 7, and 9. For each line length i, we
evaluate 250 data points. The utilisation parameters of the first i − 1 queues
are equal, and the last queue in each case is the bottleneck. Table 4.8 shows the
mean absolute decomposition errors for the expected value (Study I), and the 95%
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4.6 Main drivers of decomposition error

Table 4.8: Absolute mean decomposition errors for Study I and Study II in longer lines.

Length 3 Length 5 Length 7 Length 9

Q. Study I Study II Study I Study II Study I Study II Study I Study II

1 0.23 0.39 0.24 0.26 0.24 0.22 0.17 0.16
2 2.43 2.43 2.16 2.32 2.43 2.55 2.18 2.39
3 8.94 10.94 2.56 2.38 2.61 2.39 2.72 2.67
4 2.50 2.45 3.12 3.05 2.82 2.83
5 9.68 12.53 3.04 3.22 2.86 3.11
6 3.24 3.36 3.49 3.28
7 9.24 10.67 3.54 4.10
8 3.48 3.03
9 10.91 12.91
Note: Values for decomposition error in percent.

percentile (Study II) of waiting time. It can be clearly seen that the last queues are
prone to significant decomposition errors with 9.69% on average in Study I, and
11.67% on average in Study II. This is significantly more than the decomposition
errors for the intermediate queues which are 2.82% on average in Study I, and
2.85% on average in Study II. The results confirm the long-range variability effect
formulated by Suresh and Whitt (1990), that states that variability in the external
arrival stream or the service times can have a dramatic effect on a downstream
queue with a much higher traffic intensity.

4.6 Main drivers of decomposition error

From the analyses of decomposition techniques in the continuous-time domain,
it is well known that utilisation and variability parameters for arrival and service
processes are significant for the approximation quality of congestion measures.
Based on the regression coefficients, we identify utilisation and arrival process
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Figure 4.3: Utilisation is the main driver for decomposition error.

variability as major impact factors on decomposition error. Service process
variability was revealed as a minor impact factor.

Utilisation is found to be the main driver for decomposition error (cf. Figure 4.3):
In low-traffic queueing systems, the mean absolute decomposition error is sig-
nificantly lower than the mean absolute errors in the entire data set. Severe
absolute decomposition errors are only observed in heavy-traffic systems. In tan-
dem queues with bottlenecks, we find the decomposition error to be significantly
higher when the bottleneck is downstream. This leads to the conclusion that
downstream bottlenecks are analysed with limited accuracy, which should be of
particular interest since the performance evaluation of bottlenecks is obviously
particularly critical. The arrival process variability determines the tendency (that
is, overestimation or underestimation of the waiting time) of the decomposition
technique. For scv-values of the arrival process at the downstream queue lower
than 1.0, the decomposition approach underestimates waiting time. Overesti-
mation of waiting time occurs for scv-values of the downstream arrival process
greater than 1.0. Variability of the service process is a minor impact factor. This
is indicated by the fact that when the arrival process at the downstream queue
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4.7 Chapter conclusion

is Poisson, we did not find considerable decomposition errors, regardless of the
utilisation of the queueing system nor the scv-value of the service process.

We conclude the discrete-time decomposition approach to analyse low traffic
queueing systems with high accuracy. In heavy-traffic systems, the approximation
quality depends on the arrival process variability. The analysis of queueing
systems with highly volatile as well as deterministic arrival processes is prone
to considerable decomposition errors. When the arrival process is Poisson, the
decomposition approach yields high accuracy, regardless of the service process
variability.

4.7 Chapter conclusion

In this chapter, we analyse the approximation quality of the renewal decomposition
approach in the discrete-time tandem queue with Poisson arrivals. In our design
of experiments, we combine variability parameters of the gamma-distributed
service times in the interval (0.1, 3.0) with the flow parameters to cover the
utilisation in the interval (0.3, 0.99). We compute the expected value (Study I)
and the 95% percentile (Study II) of waiting time using the renewal decomposition
approach and simulation, and define decomposition error as the relative error
between both measures, respectively. We deploy the variability parameters of the
service time distributions, the variability of the connecting stream, and utilisation
as independent variables for the point and interval estimates of decomposition
error. The point estimates are based on multiple linear regression, the interval
estimates are based on quantile regression. Both estimation methods are applied
for Study I and Study II, respectively. Using test data, we demonstrate that the
regression models provide accurate forecasts and precise confidence intervals for
decomposition error. Further, we use the ANOVA of the models to reveal major
influencing factors on the renewal approximation quality: We find utilisation to be
the main driver for decomposition error since in low-traffic queueing systems the
mean absolute decomposition error is significantly lower than the mean absolute
errors in the entire data set. Severe absolute decomposition errors are only
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observed in heavy-traffic systems. Finally, we find that the downstream arrival
process variability determines whether the decomposition approach overestimates
or underestimates the waiting time.

58



5 On the output dynamics of the
discrete-time M/G/1-queue

This chapter is based on the paper “On the output dynamics of the discrete-time
M/G/1-queue”which is under review atAnnals ofOperationsResearch (Jacobi
2023b). The software that has been used to compute the results presented here
is available in the KITopen Repository (Jacobi 2023a).
The author of this thesis was responsible for the conceptualisation, methodol-
ogy, software programming, validation, formal analysis, writing, and visualisa-
tion of the research presented in this chapter.

Chapter abstract

The departure process of the M/G/1-queue is a point process that results from
the interaction of Poisson arrivals with the renewal service process. Consecutive
departure instances are sequentially dependent as the inter-departure time of one
customer depends on the state that the previous customer left behind in the system.
However, decomposition methods often treat the departure point process as a
renewal process, which causes approximation errors in the analysis of downstream
queues. Therefore, in this chapter, we investigate the φ-lag auto-correlation of
the departure process of the discrete-time M/G/1-queue to find situations in
which the renewal assumption does not hold. To this end, we model theM/G/1-
queue as a discrete-time Markov chain and derive the serial covariance function
of the departure process for two inter-departure times that are φ > 0 departure
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5 On the output dynamics of the discrete-time M/G/1-queue

instances apart. Numerical results show that auto-correlation is positive and a
non-monotone function of the utilisation parameter. Short (long) inter-departure
times are therefore likely to be followed by another short (long) inter-departure
time. As this effect is not considered in an i.i.d. sampling of the inter-departure
time distribution, the renewal decomposition approach is approximate for the
analysis of downstream queues.

5.1 Introduction and problem description

We consider theM/G/1-queue in the discrete-time domain, that is, the time axis
is divided into time slots of equal length tinc, and events (such as the arrival,
start of service, or departure of a customer) are only observed at slot boundaries.
Consequently, service, inter-arrival, and inter-departure times are integermultiples
of tinc, and the probability for any discrete random variable Z is described by

P (Z = i · tinc) = zi ∀i ≥ 0. (5.1)

For convenience, we will refrain from including the slot parameter tinc in the
formula described in this chapter.

In the upstreamM/G/1-queue, the service time BU is an i.i.d. discrete random
variable, and the arrival of customers is characterised by a Poisson process with
mean λ. Let the random variable C describe the number of customers that arrive
at a slot boundary with probability function

P (C = c) =
e−λ · λc

c!
. (5.2)

Then, the inter-arrival timeAU ∼ Geo(q) is described by a geometric distribution
with parameter q = 1− e−λ.
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Figure 5.1: Discrete-time modelling of arrival and service processes in theM/G/1-queue.

The following example illustrates the cases that arise when computing the output
dynamics of the M/G/1-queue. We observe the queue only in time instants
immediately after the departure of a customer. For these instants, let the random
variable Nk denote the number of customers left in the queue immediately after
the departure of customer k. We assume that customer k arrives at the system at
time TAk , and upon arrival, customer k waits Wk ≥ 0 time units for the service
to begin. After being served with service time BUk > 0, customer k leaves the
queueing system at time instance TDk > TAk (see Figure 5.1). The dynamics of
this departure process are determined by two cases. First, we assume that after
the departure of customer k − 1, the system was starving, that is Nk−1 = 0. The
inter-departure timeDk = TDk − TDk−1 of customer k therefore equals the sum of
the idle time Ik = TAk −TDk−1 and the customer’s service timeBUk . In the second
case, we assume that the system was occupied by at least one customer after the
departure of customer k − 1. In this case, the inter-departure time Dk equals the
service time of customer k. In summary, we determine

Dk =

{
Ik +BUk Nk−1 = 0,

BUk Nk−1 > 0.
(5.3)

Equation (5.3) shows that the interaction of the renewal arrival and the renewal
service processes generates a non-renewal departure process. Indeed, consecutive
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5 On the output dynamics of the discrete-time M/G/1-queue

departure instances are sequentially dependent since the inter-departure time Dk

depends on the system state that the previous customer k − 1 left behind.

It iswell known that the departure processes of queuing systems are point processes
(Whitt 1981, 1982). However, a point process is usually difficult to deploy
for queueing analysis, so it is often approximated by a renewal process. For
decomposition methods, the renewal assumption is convenient as it allows for an
independent analysis of the queuing systems in a network of queues. Recently, it
has been shown that the renewal assumption can result in significant approximation
errors when using decomposition methods to compute performance measures in
a line of downstreamGI/G/1-queues (Jacobi and Furmans 2022b). This chapter
analyses the sequential dependencies in the departure stream of the discrete-time
M/G/1-queue and discusses the effects on the analysis of queues that receive this
point process as input.

The remainder of this chapter is organised as follows. We review the related
literature in Section 5.2. In Section 5.3, we introduce the embedded Markov
chain model for the analysis of the M/G/1-queue and derive the computation
of the φ-lag auto-correlation function based on the joint probability distribution
of the departure stream. In Section 5.4, we present numerical results for the
output dynamics of the discrete-timeM/G/1-queue and discuss these results in
Section 5.5. Section 5.6 concludes this chapter.

5.2 Literature review

The output process dynamics of stochastic systems have been studied in various
research fields, e.g. to determine buffer size requirements at a downstream node or
switch in an Asynchronous Transfer Mode (ATM) network (Mitchell et al. 1998,
Lee et al. 2000) and to study production systems subject to blocking (Hendricks
1992, Hendricks and McClain 1993, Tan and Lagershausen 2017). The output
dynamics of queuing models have been of research interest as well, e.g. the
analysis of the covariance structure of the departure process for aM/G/1-queue
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5.3 Discrete-time Markov chain

with finite waiting space (King 1971) or the special case M/D/1-queue (Pack
1975). Reynolds (1975) and Daley (1976) present surveys that discuss the related
theory. We detail the papers of particular interest to our study below.

Employing joint departure time distributions, Jenkins (1966a) studied the cor-
relation structure of the departure process for queues with Poisson arrivals and
Erlang service times. The results for auto-correlation of the departure streamwere
presented for lag 1 and 2. However, Jenkins (1966a) reported an extension of the
method proposed to be “unwieldy beyond the second order”. In a sequel, Jenkins
(1966b) showed how to exploit probability generating functions to relate the joint
distribution of the numbers of customers left behind by two successive departing
customers and the joint distribution of two customers arriving in two successive
departure intervals. Daley (1968) studied the correlation structure of the departure
sequence of several queueing systems in the continuous-time domain for, among
others, theM/G/1-queue. This chapter is closely related to this work since our
approach to the computation of the joint departure time distribution relies on the
considerations made by Daley (1968).

In conclusion, the literature analysing the output dynamics of queues focuses on
the continuous-time domain rather than discrete-time models, as in our case. Our
contribution is to efficiently compute the auto-correlation of the departure process
for lags φ ∈ [1, 9] and to use the output dynamics to explain the approximation
quality of downstream performance measures using decomposition.

5.3 Discrete-time Markov chain

We introduce the discrete-time Markov chain for steady-state analysis of the
M/G/1-queue. As in our introductory example, we observe the system state
only at departure instances of a customer. Let Nk denote the state of the Markov
chain immediately after the departure of customer k. The stochastic process
{Nk, k = 1, 2, ...} is an irreducible and aperiodic (see Neuts (1979a) for a proof)
embedded discrete-time Markov chain with transition matrix P,
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5 On the output dynamics of the discrete-time M/G/1-queue

P =



p0 p1 p2 p3 p4 · · ·
p0 p1 p2 p3 p4 · · ·
0 p0 p1 p2 p3 · · ·
0 0 p0 p1 p2 · · ·
0 0 0 p0 p1 · · ·
...

...
...

...
...

. . .


, (5.4)

where

pi =
∑
b

e−λb · (λb)i

i!
· P (B = b) ∀i ≥ 0 (5.5)

denotes the probability that during the service time b of a customer, i ≥ 0 cus-
tomers arrived at the queue. Recall that the system is only observed immediately
after the departure of a customer. This means that in each state of the Markov
chain, the queuing system has just completed a service period of length b. If i > 1

customers arrived during this service time b, the number of customers increases
by i − 1. If i = 1 customer arrived during service time b, the state remains
unchanged. If i = 0 customers arrived during service time b, the number of
customers decreases by 1 (or – if the system was starving after the last departure –
remains zero). Due to this behaviour, the number of customers in a state transition
can reduce by a maximum of one. This results in the triangular structure of the
transition matrix (5.4).

The stationary distribution π of the Markov chain can be computed if ρ =

λE(BU ) < 1. In this case, P is a stochastic matrix and has an invariant proba-
bility vector π that satisfies (Neuts 1979a)

π = Pπ,

πe = 1.
(5.6)
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However, the computation of the stationary distribution π is non-trivial since
the state space of {Nk} and thus the stochastic matrix P are infinite. Usually,
one would truncate the state space at a sufficiently large number of customers,
and compute the steady-state vector using the iterative Gauss-Seidel method.
However, for large instances, this approach is time-consuming, even on today’s
powerful computers. Instead of computing the steady-state vector iteratively, we
use the recursive formula that was introduced by Ramaswami (1988). We denote
π(r), r ≥ 0 the r-th entry of the steady-state vector. In the r-th recursion step,
π(r) is computed as follows:

π(r) = π(0) ·
(

1−
r−1∑
i=0

pi

)
+

r−1∑
n=1

π(n) ·
(

1−
r−n∑
i=0

pi

)
∀ r > n ≥ 0 (5.7a)

π(0) = 1−
∞∑
r=1

π(r). (5.7b)

In equation (5.7a), it can be seen that the computation of the r-th entry in the
steady-state vector only relies on the previously computed steady-state probabil-
ities π(n), n < r, and the transition probabilities pi, which can be computed
for any i using formula (5.5). The first entry of the steady-state vector π(0)

can be computed either as the inverse of the mean return time to state 0 in the
Markov chain (Ramaswami 1980), or using equation (5.7b), once the entries of
π(r), r > 0 have been computed in dependence of π(0). We briefly explain the
recursion method in the following.

Each recursion step r produces a reduced stochastic (r+ 1)× (r+ 1) matrixPr,
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Pr =



p0 p1 p2 p3 p4 · · · pr−1

∑
i=r pi

p0 p1 p2 p3 p4 · · · pr−1

∑
i=r pi

0 p0 p1 p2 p3 · · · pr−2

∑
i=r−1 pi

0 0 p0 p1 p2 · · · pr−3

∑
i=r−2 pi

0 0 0 p0 p1 · · · pr−4

∑
i=r−3 pi

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · p0

∑
i=1 pi


, (5.8)

where the transition probabilities pi, i < r are identical to the entries in the
original transition matrix P. The transition probabilities in the last column are
the row-sum probabilities pi, i ≥ r in each row i in P. Note these infinite sums
can be re-written as follows:

∞∑
i=r−n

pi = 1−
r−1−n∑
i=0

pi ∀r > n ≥ 0. (5.9)

Given Pr, we compute the entry of the steady-state vector π(r), r > 0 by finding
the last equation from the problem π = Prπ, i.e. the column sum of the last
column in Pr:
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π(r) = π(0) ·
∑
i=r

pi

+ π(1) ·
∑
i=r

pi

+ π(2) ·
∑
i=r−1

pi

+ · · ·

+ π(r − 1) ·
∑
i=2

pi

+ π(r) ·
∑
i=1

pi.

(5.10)

Using the relationship in equation (5.9), we can re-arrange equation (5.10) and
find the recursive formula (5.7):

π(r) = π(0) ·
∞∑
i=r

pi +

r−1∑
n=1

π(n) ·
∞∑

i=r−n+1

pi + π(r) · (1− p0)

⇔ p0 · π(r) = π(0) ·
∞∑
i=r

pi +

r−1∑
n=1

π(n) ·
∞∑

i=r−n+1

pi

⇔ π(r) = π(0) ·
(

1−
r−1∑
i=0

pi

)
+

r−1∑
n=1

π(n) ·
(

1−
i−n∑
i=0

pi

)
.

(5.11)

5.3.1 The stationary inter-departure time distribution

Based on the steady-state vector π, we can compute the output dynamics of the
M/G/1-queue. First, we focus on the stationary inter-departure time distribu-
tion. We assume that {Nk} is in steady-state, and thus the departure process
{Dk, k = 1, 2, ...} is stationary. Let the discrete random variable D denote the
inter-departure time. We obtain the probability distribution of D based on the
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5 On the output dynamics of the discrete-time M/G/1-queue

considerations made in equation (5.3). Thus, the inter-departure time is equal
to the service time, if at least one customer remains in the queue at a departure
instant. If the queue starves after a departure instant, the inter-departure time is
equal to the sum of the idle time and the service time. We compute the probability
P (D = d) as follows:

P (D = d) =



∞∑
i=1

π(i) · P (B = d) i > 0,

d∑
b=1

π(0) · P (A = d− b) · P (B = b) otherwise.
(5.12)

Given the fact that the departure process is stationary, the expected valueE(D) <

∞ and variance V ar(D) > 0 exist.

5.3.2 The serial covariance of the departure process

We compute the φ-lag auto-covariance function γ(φ) of the departure process for
two random inter-departure time instances Dk and Dk+φ. The auto-covariance
function γ(φ) is given by

γ(φ) = E
[
(Dk − E(D)) · (Dk+φ − E(D))

]
=
∑
x

∑
y

(
x− E(D)

)
·
(
y − E(D)

)
· P (Dk = x,Dk+φ = y). (5.13)

In order to find γ(φ), we have to compute the joint inter-departure time distribution
f (φ)(x, y) = P (Dk = x,Dk+φ = y). This problem has been studied in the
literature for theM/G/1-queue in the continuous-time domain (see Daley (1968),
Theorems 6 and 7). The joint inter-departure time probability is composed of
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t
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plm(x) p
(φ−1)
mn pn(y)

Figure 5.2: Discrete-time modelling of the joint inter-departure time distribution.

three components. Firstly, we compute the probability that the stochastic process
transitions from some state l to state m, which produces the first inter-departure
time of length x. Secondly, we compute the probability that the Markov chain
transitions in (φ − 1) steps from state m to an arbitrary state n. Thirdly, we
compute the probability that in state n, the queueing system outputs the second
inter-departure time of length y. Figure 5.2 shows the approach.

We explain the components in detail in the following. First, we define for some
states l,m, n ≥ 0, the lag φ > 0, and the inter-departure times x, y > 0:

plm(x) = P (Nk+1 = m,Dk = x |Nk = l), (5.14a)
p(φ)
mn = P (Nk+φ = n |Nk+1 = m), (5.14b)

pn(y) = P (Dk+φ = y |Nk+φ = n). (5.14c)

The probability plm(x) in equation (5.14a) is the probability that the stochastic
process {Nk} transitions from an arbitrary state l to state m, while the inter-
departure time of this transition equals x. If the queuing system is not starving
after the departure in state l, the probability plm(x) equals the one-step transition
probability from state l to state m, multiplied by the probability that the service
time equals x. If the queuing system is starving (i.e., l = 0), the one-step transition
probability to statem is pm, and the inter-departure time x is equal to the sum of
the service time and the idle time.

In summary, we compute plm(x) as follows:
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5 On the output dynamics of the discrete-time M/G/1-queue

plm(x) =


pm−l+1 · P (B = x) m ≥ l − 1 ≥ 0,

pm ·
∑x
b=1 P (A = x− b) · P (B = b) l = 0,

0 otherwise.

(5.15)

The probability p(φ)
mn in equation (5.14b) is theφ-step transition probability froman

arbitrary statem to state n, which can be observed from the transition probability
matrix P. Note that p(0)

mn = δmn, the Kroneker delta (Daley 1968),

p(0)
mn = δmn :=

{
1 m = n,

0 otherwise.
(5.16)

The probability pn(y) in equation (5.14c) is the dependent probability that the
stochastic process {Nk} is in state n, and the inter-departure time of the next
departure instance equals y. Again, for n > 0, the inter-departure time y equals
the service time, and for n = 0, the inter-departure time y is equal to the sum of
the service time and the idle time. In summary, we compute pn(y) as follows:

pn(y) =

{
P (B = y) n > 0,∑y
b=1 P (A = y − b) · P (B = b) n = 0.

(5.17)

Based on the probabilities in equations (5.14), we find the joint probability

f
(φ)
lmn(x, y) = P (Nk = l, Nk+1 = m,Dk = x,Nk+φ = n,Dk+φ = y)

= π(l) · plm(x) · p(φ−1)
mn · pn(y),

(5.18)

which leads to the joint inter-departure time distribution
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f (φ)(x, y) =

∞∑
l=0

∞∑
m=(l−1)+

∞∑
n=(m−φ+1)+

f
(φ)
lmn(x, y), (5.19)

where the notation (·)+ is equal to the expression max{· , 0}.

5.4 Numerical results

In this section, we present numerical results for the output dynamics of several
M/G/1-queues with different service time variability and utilisation parameters.
For convenience, we report the results using the auto-correlation as a normalised
measure of the auto-covariance. Based on γ(φ) derived in the last section, the
auto-correlation function r(φ) is defined as

r(φ) =
γ(φ)

V ar(D)
. (5.20)

We consider three types ofM/G/1-queues with different service time variability
parameters. We use the squared coefficient of variation scv(BU ) to measure
the service time variability. In the first case, scv(BU ) = 0, that is, the queue
is of type M/D/1. In the second and third case, the service time distribu-
tions are discretised gamma distributions with low (scv(BU ) = 0.79) and high
(scv(BU ) = 2.59) variability. The expected values of the service time distribu-
tions are equal in both cases, E(BU ) = 8.17. We vary the utilisation parameters
ρ ∈ {0.30, 0.45, 0.60, 0.80, 0.95} of the queues by increasing the flow parameters
λ ∈ {0.037, 0.055, 0.073, 0.098, 0.116}. In theM/D/1-queues, the service time
equals 8 time units, and the flow parameters are adjusted accordingly to obtain the
utilisation parameters above. In total, we consider 15 different M/G/1-queues,
classified into three groups according to their service time variability and compute
the inter-departure time auto-correlation for lags 1 to 9.

Figure 5.3 shows the effects of the service time variability and utilisation on the
departure stream auto-correlation for lags 1 to 9. It can be seen that in all queues,
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Figure 5.3: Auto-correlation for inter-departure times inM/G/1-queues with different service time
variability and utilisation parameters.
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Figure 5.4: Auto-correlation for inter-departure times inM/G/1-queues in dependence of utilisation.

72



5.4 Numerical results

auto-correlation is positive and decreases with increasing lags. In the M/D/1-
queues with high utilisation, auto-correlation is well above zero, even for large
lags. In the low-traffic M/D/1-queues (ρ ≤ 0.5), auto-correlation approaches
zero as the lag increases. In these cases, auto-correlation is negligible for φ ≥ 5.
In the second and third category of queues, where scv(BU ) > 0, auto-correlation
is positive, but considerably smaller compared to theM/D/1-type queues. Again,
auto-correlation decreases with increasing lags and approaches zero for most of
the queues when φ ≥ 5. However, when the service time variability is greater
than zero, it can be seen that auto-correlation is a non-monotone function of the
utilisation parameter ρ.

This effect becomes clearly visible in Figure 5.4, where we plot the same data
as before, with utilisation now on the x-axis. Note that due to the fact that for
higher lags, auto-correlation is close to zero, we only plot the data for φ ≤ 5.
In Figure 5.4, the increase of auto-correlation in the M/D/1-type queues for
increasing utilisation can be clearly seen. In theM/G/1-queues, auto-correlation
increases for all lags when utilisation is below 50 percent, reaches a peak, and
decreases as utilisation approaches 95 percent.

In summary, we have obtained twomajor effects in our numerical results. First, we
found that the inter-departure time auto-correlation is positive and decreases, as
the lag increases. Second, we found that inM/D/1-type queues, auto-correlation
monotonously increases for increasing utilisation while inM/G/1-type queues,
auto-correlation is a non-monotone function of the utilisation. In the following,
we discuss these findings.

The positive values of auto-correlation can be explained using the relationship
identified in equation (5.3). In equation (5.3), we distinguished two types of inter-
departure times, service times and the sum of idle and service times. We roughly
categorise them as short (i.e. service times) and long (i.e. service plus idle times)
inter-departure times. Since the inter-departure time of customer k depends on
the state that customer k− 1 left behind in the system, short inter-departure times
are likely to be observed in bulks. Consider for example a situation where n > 0

customers wait in the queue. In this case, (at least) the next n inter-departure
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times must be service times, i.e. short inter-departure times. Equivalently, long
inter-departure times are only observed after the queue has starved. As it can be
seen in the transition probability matrixP, it is more likely for the queue to starve
again after a long inter-departure time, than a large number of customers arriving
during the service time. Therefore, a short (long) inter-departure time is likely to
be followed by another short (long) inter-departure time, resulting in a positive
departure stream auto-correlation.

To explain the dependence of the inter-departure time auto-correlation from utili-
sation, we first consider the extreme cases: Assume the utilisation of theM/G/1-
queue to be zero, which means that the output stream of the queue is equal to the
input stream. In contrast, when the utilisation is equal to 1, the output stream is
equal to the service process. In both cases, the output stream is renewal and thus
auto-correlation is zero. When the queue is in steady-state, as described above, the
output is sequentially dependent, which results in alternating bulked sequences
of short and long inter-departure times. Given a low utilisation of the queue, it is
unlikely that a large number of customers waits in the queue. Thus, the output of
the queue is mainly determined by the arrival process, and observing a sequence
of short inter-departure times is unlikely. As a consequence, the auto-correlation
is rather low. However, when the queue is moderately utilised, sequences of short
and long inter-departure times become equally likely. In contrast to an i.i.d. sam-
pling of the inter-departure time distribution, however, the inter-departure times
are observed in alternating bulks of short and long times. As a consequence,
the inter-departure time auto-correlation reaches a peak for medium utilisation.
When the utilisation approaches 1, forM/G/1-type queues, the same explanation
applies as for low-utilised queues. When the queue is in heavy-traffic, the output
is mainly determined by the service process, which is renewal for M/G/1-type
queues. Thus, auto-correlation is low. In contrast, in M/D/1-type queues, the
service time is deterministic, and thus, inter-departure times are closely resem-
bling to themselves when the queue is in heavy-traffic. Therefore, auto-correlation
ever-increases forM/D/1-type queues, as the utilisation increases.
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5.5 The effect of auto-correlated arrivals on
the analysis of downstream queues

Consider a tandem network of two discrete-time queues, where the upstream
queueing system is a M/G/1-queue that feeds a downstream G/G/1-queue.
To analyse this tandem queue, we usually deploy a decomposition approach
that approximates the output point process of the M/G/1-queue as renewal
process and thus treats the downstream queue as GI/G/1-queue with inter-
arrival time distribution D. Jacobi and Furmans (2022b) showed that in this
type of tandem queue, the analysis of performance measures in the downstream
GI/G/1-queue can be subject to considerable approximation errors. Jacobi and
Furmans (2022b) identified two major drivers for the approximation quality of
the renewal decomposition approach. First, they found that severe approximation
errors are only observed in heavy-traffic queues and second, they found that the
decomposition approach over- or underestimates waiting time depending on the
variability of the connecting stream. In the following, we aim to explain these
results based on the findings of this chapter. We first derive the waiting time
computation of a downstream G/G/1-queue with auto-correlated arrivals, and
compare it to the waiting time computed with a renewal arrival stream. Then,
we discuss the effect of variability on the approximation quality of the renewal
decomposition approach.

5.5.1 Waiting time with auto-correlated arrivals

Consider the waiting time of a downstream GI/G/1-queue that is fed with the
i.i.d. distributed inter-departure time distribution D from the upstreamM/G/1-
queue. Let BD denote the i.i.d. random variable of the general service time
distribution, BD ∼ G, andW the corresponding waiting time of the downstream
queue, respectively. Consider the waiting timeWk+1 of customer k+1 arriving at
the downstream queue. Let BDk+1 denote the service time of this customer. If the
system is not empty upon arrival of customer k+1, the waiting time is determined
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by the sum of the waiting time of the previous customer k and the service time of
customer k, minus the time gapDk+1 between the arrival instances of customers
k + 1 and k. If the system is empty upon arrival, customer k + 1 does not have
to wait. In summary,Wk+1 is determined by

Wk+1 = max
{
Wk +BDk −Dk+1; 0

}
= max

{
max

{
Wk−1 +BDk−1 −Dk; 0

}
+BDk −Dk+1; 0

}
= max

{
Wk−1 +BDk−1 +BDk − (Dk +Dk+1);BDk −Dk+1; 0

}
.

(5.21)

In equation (5.21), the waiting time equals zero, if customer k+ 1 finds an empty
system upon arrival. If customer k + 1 finds one customer in the system upon
arrival, the waiting time is equal to the residual service time of customer k, that is,
BDk −Dk+1. If customer k+ 1 finds more than one customer in the system upon
arrival, the waiting process has not renewed, and the waiting time is determined
by the serial dependencies of the inter-arrival times Dk and Dk+1. In this case,
Wk+1 is computed by

Wk+1 = Wk−1 +BDk−1 +BDk − (Dk +Dk+1). (5.22)

Equation (5.22) shows the dependency of the waiting time from the serial inter-
arrival times Dk and Dk+1 in the case that customer k + 1 has to wait upon
arrival. Applying the decomposition approach for the computation of the waiting
time distribution, we assume that the arrival stream is renewal and sample the
inter-arrival timesDk andDk+1 from the i.i.d. random variableD. However, the
i.i.d. sampling of D does not account for the sequential dependence of the inter-
departure times identified above. Consider again the example, where a number of
n > 0 customers waits in theM/G/1-queue at a given observation point. In this
situation, the next n inter-departure times must be sampled from the service time
distribution. Therefore, the arrival stream at the downstream queue is determined
by the n-fold convolution of the service time distribution. In contrast, the analysis
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of theGI/G/1-queue using the inter-arrival time distributionD does not account
for the number of customers in the queue. Thus, for the situation described
above, the renewal decomposition approach determines the arrival stream as n-
fold convolution of the inter-arrival time distribution D. As a consequence, the
results for the downstreamwaiting time computedwith the renewal decomposition
approach are flawed.

5.5.2 The effect of variability on the approximation
quality of downstream queues

In a line of queues, the variability of the connecting streamhas amajor influence on
whether the renewal decomposition approach over- or underestimates waiting time
in the downstreamGI/G/1-queue (Jacobi and Furmans 2022b): When the arrival
stream variability is smaller than 1, the decomposition approach underestimates
waiting time in the downstream GI/G/1-queue (that is, the true waiting time is
longer). When the arrival stream variability is greater than 1, the decomposition
approach overestimates waiting time in the downstream GI/G/1-queue (that is,
the true waiting time is shorter).

To explain this finding, we consider again the example described above, where
a number n > 0 customer waits in the upstream M/G/1-queue. The M/G/1-
queue is assumed to be in heavy-traffic, so the variability of the departure stream is
mainly determined by the variability of the service process. First, we assume that
the service time variability at the upstreamM/G/1-queue is small, scv(BU ) < 1.
Since the variability of the external Poisson arrival process is equal to 1, we know
that the departure stream variability must be smaller than 1, as well. However,
as the departure stream is still influenced by the external arrival process, we can
safely assume that scv(BU ) < scv(D) < 1. As explained in equation (5.3), the
inter-departure times of the sequence of n customers departing from theM/G/1-
queue are solely determined by the service process. Since scv(BU ) < scv(D),
the sequence of n service times arriving at the downstreamG/G/1-queue is more
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5 On the output dynamics of the discrete-time M/G/1-queue

likely to contain short times than an i.i.d. sampling of the inter-departure time dis-
tributionD. The stream of n customers arriving at the downstreamG/G/1-queue
therefore (temporarily) brings more work to the downstream queue, thus leading
to a higher congestion as if the inter-departure times where i.i.d. sampled from the
inter-departure time distribution D. As a consequence, the waiting time in the
downstream G/G/1-queue is longer than the waiting time in the corresponding
GI/G/1-queue – The renewal decomposition approach underestimates waiting
time.

Now consider the opposite case, where a number of n > 0 customers waits in the
M/G/1-queue whose service time variability is greater than 1, scv(BU ) > 1.
TheM/G/1-queue is again assumed to be in heavy-traffic, so that the variability
of the departure stream is mainly determined by the service process, and therefore
scv(D) > 1. However, as the external Poisson arrivals also influences the depar-
ture process, we conclude that scv(BU ) > scv(D) > 1. Therefore, a sequence of
n customers arriving at the downstream G/G/1-queue is more likely to contain
longer times than an i.i.d. sampling of the inter-departure time distribution D.
Thus, the sequence of n service times (temporarily) brings less work to the down-
stream G/G/1-queue, compared to an i.i.d. sampling of the inter-departure time
distribution D. As a consequence, the waiting time in the downstream G/G/1-
queue is shorter than the waiting time in the correspondingGI/G/1-queue – The
renewal decomposition approach overestimates waiting time.

5.6 Chapter conclusion

In this chapter, we consider the output dynamics of the discrete-time M/G/1-
queue to analyse the auto-correlation of the inter-departure times. Consecutive
inter-departure times are sequentially dependent because the inter-departure time
Dk of customer k depends on the system state that customer k − 1 left behind.
Consequently, the overlay of the renewal arrival and the renewal service processes
generates non-renewal departures. To compute the φ-lag auto-correlation in the
departure stream, we model theM/G/1-queue as a discrete-time Markov chain.
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5.6 Chapter conclusion

Based on the stationary distribution, we derive formulas to compute the joint inter-
departure time distribution of two inter-departure times that are φ > 0 instances
apart. We present numerical results for the auto-correlation in M/D/1- and
M/G/1-queues for several lags and utilisation parameters. The numerical results
show that auto-correlation is positive and monotonically decreasing for increasing
lags φ and a non-monotone function of the utilisation.

Based on these results – and taking into account the findings from the previous
chapter – we explain the reasons for the approximation errors of the renewal de-
composition approach when analysing downstream queues. For steady-state sys-
tems, we identify the dependency of the waiting time from the serial dependency
of inter-arrival times at the downstream queue. The positive auto-correlation in the
departure stream affect the flow factor and variability compared to an i.i.d. sam-
pling of inter-departure times since a long (short) inter-departure time is likely to
be followed by another long (short) inter-departure time. Consequently, results
computed with the renewal decomposition approach are flawed and – depending
on the departure stream variability – overestimate or underestimate the waiting
time.
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6 A refined decomposition
approach with converging
accuracy for discrete-time open
tandem queues with Poisson
arrivals and general service
times

This chapter is based on a working paper entitled “A refined decomposition
approach with converging accuracy for discrete-time open tandem queues with
Poisson arrivals and general service times” (Jacobi and Shanthikumar 2023).
The software that has been used to compute the results presented in this chapter
is available in the KITopen Repository (Jacobi 2023a).
The author of this thesis was responsible for the conceptualisation, methodol-
ogy, software programming, validation, formal analysis, writing, and visualisa-
tion of the research presented in this chapter.

Chapter abstract

Decomposition often is the only feasible and computationally efficient approach
to compute steady-state performance measures for queueing networks. However,
performance results may be subject to severe approximation errors as decomposi-
tion methods usually assume that the connecting streams can be approximated by
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renewal processes. In this chapter, we study the discrete-time tandem queue with
external Poisson arrivals and generally distributed service times. To overcome
the renewal assumption, we present the semi-Markov arrivals decomposition ap-
proach (SMAD), a refined decomposition approach, where the connecting stream
between the upstream and the downstream station is described by a semi-Markov
process. Using this modelling approach, the auto-correlation of the upstream
inter-departure times is preserved for downstream queuing analysis. To avoid
state space explosion, we demonstrate how to limit the state space of the embed-
ded Markov chain in the upstream queue to an upper bound κ. Limiting the state
space is computationally efficient, but leads to approximations as the departure
point process depends on the state of the Markov chain. We present numerical
results for several state space limits to demonstrate that the approach produces
reasonably accurate results when the state space limit is tight, and converges
arbitrarily accurate with increasing state space size.

6.1 Introduction and problem description

Closed-form solutions to analyse the discrete-time tandem queue with Poisson
arrivals and general service times usually require great computational effort. De-
composition is often the only feasible and computationally efficient approach to
compute steady-state performance measures (such as the probability distribution
of the number of customers and waiting time) in the queues. This approach parti-
tions the network into individual queuing systems and analyses them in isolation.
It is based on the assumption that the output stream of the upstream M/G/1-
queue – which is fed into the downstreamGI/G/1-queue – can be approximated
by a renewal process. However, it is well known that the departure process is
a point process that is generally difficult to deploy for queueing system analysis
(Whitt 1981, 1982). Recently, it has been shown that the renewal assumption
of the departure point process may result in severe approximation errors when
computing performance measures in downstream queues (Jacobi and Furmans
2022b).
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6.1 Introduction and problem description

The renewal assumption ignores the fact that the inter-departure times of the up-
streamM/G/1-queue are auto-correlated (Jacobi 2023b). Inter-departure times
are sequentially dependent because the inter-departure time of customer k de-
pends on the state that the previous customer k − 1 left behind in the queueing
system (Jacobi 2023b): If the system starves after the departure of customer k−1,
the next inter-departure time is the sum of the queue’s idle time and the service
time of the next service period. If the upstream queue did not starve after the
departure of customer k − 1, the next inter-departure time is equal to the service
time of customer k. The i.i.d. sampling of the inter-departure time distribution,
however, does not account for this effect. Therefore, performance results obtained
with the renewal decomposition approach are approximate.

To overcome the renewal assumption for the analysis of tandem queues with
Poisson arrivals and general service times, this chapter presents the semi-Markov
decomposition approach (SMAD). The novelty of this decomposition method
is that a semi-Markov process (SMP) is used to model the connecting stream
between the upstream M/G/1- and the downstream G/G/1-queue. SMAD
does not rely on the renewal assumption of the inter-departure time distribution
because the SMP allows to compute the conditional probability distribution of
inter-departure times based on the system’s state in the upstreamM/G/1-queue.
For downstream queueing analysis, we deploy the discrete-time SM/G/1-queue
(semi-Markov arrival queue with general service times) which was introduced by
Rieger and Haßlinger (1994). To avoid state space explosion and computational
inefficiency, we demonstrate how to limit the state space of the embeddedMarkov
chain in the SMP to an upper bound κ. Our numerical results show that the
approach produces reasonably accurate results when the state space is limited and
converges arbitrarily accurate with increasing state space size.

The remainder of this chapter is organised as follows. In Section 6.2, we present
the related literature. Section 6.3 introduces the stochastic models for the up-
stream and downstream queues and describes how to reduce the computational
complexity of the decomposition method by limiting the state space of the SMP.
Section 6.4 presents numerical results and compares SMAD with the renewal
decomposition approach and simulation. Section 6.5 concludes the chapter.
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6.2 Literature review

Approaches to solve queuing systems with auto-correlated arrivals have been
worked on for decades in both the continuous-time (Lucantoni and Neuts 1994,
Ferng and Chang 2001b, Lee et al. 2003, Shioda 2003, Kim et al. 2008) and the
discrete-time domains. In the continuous-time domain, starting with the work
from Neuts (1979b) on so-called versatile processes (later called Neuts-flows
(Ramaswami 1980)), researchers developed queueing models with Markovian
Arrival Processes (MAP), MarkovModulated Poisson Process (MMPP), and their
generalisation, the Batch Markovian Arrival Processes (BMAP) (Vishnevskii and
Dudin 2017). A definition of the BMAP and its stochastic properties, as well as
a literature review on their applications in the continuous-time domain, has been
written by Vishnevskii and Dudin (2017).

BMAP-flows have been deployed to analyse tandem queues in the continuous-
time domain and helped overcome the drawbacks of the renewal assumption. Lian
and Liu (2008) study the tandem queue with MAP inputs and exponential service
times and computed the joint queue length distribution for both servers. Gómez-
Corral (2002) considers a tandem queue with external MAP flows and exploited
the phase-type distribution of the upstream service time to model the output
process as MAP. Heindl and Telek (2002) present a similar approach for large
open networks. Ferng and Chang (2001a) propose a moment matching scheme
to emulate the tagged output process as a MMPP that is fed into the intermediate
queues. Heindl (2001) considers a decomposition approach with external MMPP,
where the internal traffic processes are described as semi-Markov processes which
are subsequently converted to aMMPP.Heindl (2003) later extends this framework
to allow the splitting of SMPs and superposition of MMPPs for general queuing
network analysis.

In the discrete-time domain, the analysis of queues with auto-correlated arrivals
focuses on developingmodels with semi-Markov arrivals. While early approaches
have been limited to special cases (Arjas 1972, de Smit 1986), Rieger and
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Haßlinger (1994) present a Markov-chain model for the discrete-time SM/G/1-
queue and derived the distribution for the number of customers in the queue. We
deploy this model in our decomposition approach and thus present it in detail in
Section 6.3. An algorithm for the stationary distributions of the waiting and idle
time for the discrete-time SM/G/1-queue is presented by Haßlinger (2000). This
approach performs aWiener–Hopf factorisation and is an extension of the efficient
algorithm for the waiting time distribution of the discrete-time GI/G/1-queue
by Grassmann and Jain (1989).

Haßlinger and Rieger (1996) present a decomposition approach for general
discrete-time open queuing networks. The authors outlined the renewal assump-
tion of the inter-node flows, developed methods for splitting and superposition
of discrete-time renewal processes, and present an approach for the computation
of the distribution of the number of customers in the GI/G/1-queues. Further,
Haßlinger and Rieger (1996) discuss the generalisation of the decomposition
approach to auto-correlated arrivals using semi-Markov processes for the inter-
connection of queues. However, they conclude that “further study is needed to
construct optimum SMP representations of non-renewal processes, regarding state
space limitations for a tractable analysis.”

The decomposition approach presented in this chapter addresses this research
gap. We model the output process of the discrete-timeM/G/1-queue as a semi-
Markov process and introduce a straightforward method to limit the state space
of the embedded Markov chain in order to increase the computational efficiency
of the decomposition method.

6.3 The semi-Markov arrival decomposition
approach

In this section, we introduce the semi-Markov arrival decomposition approach
(SMAD). We present the stochastic model for the upstream M/G/1-queue that
generates a semi-Markov departure stream in Section 6.3.1. In Section 6.3.2, we
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show how to limit the state space of the embedded Markov chain to reduce the
computational complexity in the downstream queue. Finally, in Section 6.3.3, we
introduce the downstream SM/G/1-queueing model that is fed with the (limited
state space) semi-Markov departure process.

6.3.1 The upstream M/G/1-queue with semi-Markov
departures

We model the upstreamM/G/1-queue as a discrete-time semi-Markov process.
We extend the investigations on the output dynamics of theM/G/1-queue from
Chapter 5 to connect the state transitions of the embedded Markov chain with
the computation of the state-dependent inter-departure times. As described in
Section 2.3, “if we know the past visited states and interval times of the system, the
next visited state and the associated interval time depend only on the present state”.
Since we have investigated the embedded Markov chain model of the M/G/1-
queue in detail in Chapter 5, our focus here is on the conditional probability
function to compute the state-dependent inter-departure times. From this, we
derive the computation of the semi-Markov kernel which eventually forms the
input to the downstream queue.

Let the stochastic processZU = {(NU
k , Dk), k = 1, 2, ...} denote a semi-Markov

process where NU
k ∈ N0 is the number of customers in the M/G/1-queue

immediately after the departure instance of customer k, and Dk ∈ N is the
inter-departure time between customers k and k+ 1. Let the probability function

f(t | i) = P (D = t |NU = i) (6.1)

denote the conditional probability that the inter-departure time is equal to t,
given that the embedded Markov chain of the semi-Markov process Zk is in state
NU
k = i. The probability function f(t | i) is equal to the service time, if the

system is not empty immediately after the departure instance (that is, i > 0), and
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equal to the sum of the remaining inter-arrival time and the service time, if the
system is starving after departure instance k (that is, i = 0):

f(t | i) =

{∑
b P (A = t− b) · P (BU = b) i = 0,

P (BU = t) i > 0.
(6.2)

The semi-Markov kernelQ = {qij(t); i, j ∈ N0, t ∈ N} is defined based on these
considerations, where

qij(t) = P (NU
k+1 = j,Dk+1 = t |NU

k = i) (6.3)

denotes the conditional probability that the number of customers in the system
transitions from i to j with inter-departure time t. For all j ∈ N0, the kernel
entries are defined as

qij(t) =



∑
b

e−λb(λb)j

j!
· P (A = t− b) · P (BU = b) i = 0,

e−λt(λt)j−i+1

(j − i+ 1)!
· P (BU = t) j + 1 ≥ i > 0,

0 otherwise.
(6.4)

Recall that the state of the stochastic process is only observed immediately after a
departure instance. In equation (6.4), we therefore distinguish the same cases as
for the definition of the conditional probability function f(t | i). If the system was
starving after the departure instance (i = 0), the departure time t is the sum of
the idle time of the system and the service time of the next customer. Assume that
this service time is equal to b. Thus, the probability that the system is idle for t−b
time units is computed by the inter-arrival time distribution P (A = t− b). After
this customer arrived at the system, j additional customers may arrive during the
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service period of this customer. The probability is computed with the well-known
formula for the Poisson arrival process.

In the second case considered in equation (6.4), the system is not starving after
the departure instance. Therefore, the next customer can immediately start the
service, and the next inter-departure time is equal to the service time of this
customer. During the service period, more customers may arrive at the system. In
order to observe j customers at the next departure instance, j − i + 1 customers
have arrived during the service period. In case that zero customers arrived during
the service time, j = i− 1 customers remain in the system at the next departure
instance.

Given the semi-Markov kernel Q, we compute the transition matrix P =

(pij)i,j∈N0
of the embedded Markov chain NU = {NU

k , k = 1, 2, ...} by

pij =

∞∑
t=0

qij(t) ∀i, j ∈ N0, (6.5)

and equivalently, the equation

qij(t) = pij · f(t | i) (6.6)

holds. Equation (6.6) is the central result of the considerations made in this
section. With this expression, we can connect the computation of state-dependent
inter-departure times (cf. equation (6.2)) with the transition probability matrix
P. Since the computation of the transition probabilities is straightforward (also
compare equation (5.5) from the previous chapter), the SMP is clearly defined,
and the computation of the semi-Markov kernel entries is straightforward, as
well. However, from equation (6.6), it can be seen that the semi-Markov kernel
is infinite, because the transition probability matrix P is infinite. Thus, we recall
the computation of the stationary distribution below, and derive the state space
limitation method from this in the following section.
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Let π denote the stationary distribution of the embedded Markov chain NU =

{NU
k , k = 1, 2, ...}, such that

π = Pπ,

πe = 1.
(6.7)

The state space of the discrete-time Markov chain NU and the stochastic matrix
P are infinite and thus, the computation of π using the Gauss-Seidel method
is non-trivial. However, the stationary distribution can be efficiently computed
using the recursion method introduced by Ramaswami (1988). This procedure
was introduced in detail in Section 5.3.

6.3.2 State space limitation

To prevent state-space explosion during performance analysis in the downstream
queue, we limit the state space of the embedded Markov chain NU to an upper
bound κ > 0. Intuitively, the upstream queue’s departure stream is determined by
whether or not the queue has starved after a departure instant (cf. equation (6.2)).
In the most restricted case, κ = 1, the state space Ω of the embedded Markov
chain is limited to two states only, Ω = {0, κ}, representing an empty system and
a system occupied by any number of customers. As the upper bound κ increases,
the state space of the embedded Markov chain tracks an increasing number of
customers Ω = {0, 1, 2, ..., κ}, where the state κ again represents all states where
at least κ customers are in the system, NU ≥ κ.

On the one hand, an SMP with a large state limit models the queue’s departure
behaviour with increasing accuracy. This is since κ successive inter-departure
times can be tracked. Consider again the example described in Chapter 5 where a
number of n customers waits in the upstreamM/G/1-queue, thus producing an
output sequence of n service times. In this situation, the SMP can only accurately
track the sequence of n service times if κ ≥ n. On the other hand, the SMP forms
the input for the downstream queue and thus, limiting the state space increases the
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Figure 6.1: State space limitation method in the upstreamM/G/1-queue.

computational efficiency of the decomposition method. However, approximations
must be found for the stochastic behaviour of the limited transition probability
matrix and therefore, the performance results obtained with a limited state space
are approximate. In the following, we describe the state space limitation method.

LetN ′ denote the limitedMarkov chain with state spaceΩ = {0, 1, 2, ..., κ}. The
discrete-time Markov chain N ′ observes the stochastic process NU only when it
is in one of the states in Ω. Let Tl denote the observation points of the associated
point process N ′, such that

T1 = inf
{
k : NU

k ∈ Ω
∣∣NU

0 ∈ Ω
}
,

Tl = inf
{
k : k > Tl−1, N

U
k ∈ Ω

}
, l = 2, 3, 4, ...

(6.8)

Without loss of generality, we assume T0 = 0 and define the discrete-timeMarkov
chain N ′ = {NU

Tk
, k = 0, 1, 2, ...}.

Figure 6.1 shows the number of customers NU
k over time and visualises the state

space limitation approach. In Figure 6.1, each observation point k corresponds
to a departure instant of a customer from the M/G/1-queue. The change of
the number of customers over time follows the same dynamics as described in
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Chapter 5: During a service period, any number j ≥ 0 of customers may arrive
at the system, according to the Poisson arrival process. Since we only observe the
state of the system immediately after the departure of a customer, the number of
customersNU can only reduce step-wise (as seen e.g. for the sequence (2, 3, 4, 5)

of observation points k). In observation point k = 0, the number of customers
is smaller than κ, and therefore NU

0 ∈ Ω. During the following service period,
more customers arrive at the system. In the next departure instances at k = 1

and k = 2, we find (κ+ 1) customers in the system, and thereforeNU
1 , N

U
2 6∈ Ω.

At instance k = 3, the number of customers is NU
3 = κ, thus NU

3 ∈ Ω. As
described above, the limited Markov chain N ′ observes the state of the original
Markov chain NU only if the number of customers lies in Ω. Consequently, the
first two observation points Tl of the limitedMarkov chain are T0 = 0 and T1 = 3.
For the observation points k = 4 and k = 5, NU

k ∈ Ω, and thus T2 = 4 and
T3 = 5. In point k = 6, the number of customers exceeds the state limit κ again
and declines back into the boundary for k = 8. Therefore, the next observation
point of the limited Markov chain is at T4 = 8.

Since κ > 0, the stochastic process N ′ has a transition probability matrix P′ =

(p̂ij)i,j∈Ω of size (κ+1)×(κ+1). As we have demonstrated above, the stochastic
behaviour of the limited Markov chain N ′ is equal to the stochastic behaviour
of the original Markov chain when the system is in a state NU < κ. However,
approximations must be found for the transition probabilities from and to state κ.
Based on the invariant probability vector π of the original Markov chainNU , we
define P′ as follows:

91



6 A refined decomposition approach with converging accuracy for discrete-time open tandem queues

P′ =



p00 p01 p02 · · · p0,κ−1 p̂0,κ

p10 p11 p12 · · · p1,κ−1 p̂1,κ

0 p21 p22 · · · p2,κ−1 p̂2,κ

0 0 p32 · · · p3,κ−1 p̂3,κ

...
...

...
. . .

...
...

0 0 0 · · · pκ−1,κ−1 p̂κ−1,κ

0 0 0 · · · p̂κ,κ−1 p̂κ,κ


. (6.9)

In the stochastic matrixP′, the probabilities pij are identical to those in the matrix
P. Approximations must be found for the transition probabilities in the last row
and the last column. The values p̂i,κ in the last column of matrix P′ are the row
sum probabilities of all pij , j ≥ κ in each row i < κ,

p̂i,κ =

∞∑
j=κ

pij = 1−
κ−1∑
j=0

pij ∀i = 0, 1, ..., κ− 1. (6.10)

As in the original matrix P, the first (κ − 1) entries in row κ equal zero. The
value p̂κ,κ−1 in line κ is computed by solving

p̂κ,κ−1 = π(κ) · pκ,κ−1 ·

( ∞∑
j=κ

π(j)

)−1

, (6.11)

where π(j) is the j-th entry of the stationary distribution vector π. Finally, we
compute the probability p̂κ,κ by

p̂κ,κ = 1− pκ,κ−1. (6.12)

Given the stochastic matrixP′, we compute the invariant probability vector π̂ that
satisfies
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π̂ = P′π̂,

π̂e = 1,
(6.13)

and approximates the stationary distribution π of the stochastic process NU . A
proof that π̂(i) = π(i) for all i = 0, 1, ..., κ− 1 can be found in Appendix B.

Based on this observation, we conclude that the stochastic process N ′ and its
limited transition probability matrix P′ appropriately approximate the stochastic
behaviour of the original Markov chain NU . Given the limited transition matrix
P′, we can efficiently approximate the kernel entries of the original semi-Markov
process defined in equation (6.6) by solving

q̂ij(t) = p̂ij · f(t | i). (6.14)

Recall the importance of equation (6.6) defined above. The kernel entries q̂ij(t)
efficiently approximate the stochastic behaviour of the original SMP on the limited
state space Ω. However, as stated above, tight state space limits lead to approxi-
mations. Consider again the example κ = 1, where the limited transition matrix
P′ is a (2×2) matrix. In this case, the semi-Markov process only distinguishes if
the system is starving or non-starving after the departure of a customer. However,
longer sequences of state-dependent inter-departure times cannot be tracked. This
is due to the fact that the embedded Markov chainN ′ may always transition from
state κ to state 0, regardless of the number of customers in the queue. In contrast,
the number of customers in the original stochastic process N can only decrease
step-wise with each transition. As a consequence, the approximation of the SMP
improves, as the state limit κ increases.

6.3.3 The downstream SM/G/1-queue

The discrete-timeSM/G/1-queue has been studied in the literature by Rieger and
Haßlinger (1994), who derive an analytical solution for the stationary distribution,
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the distribution of the number of customers, and the idle time distribution. We
will briefly introduce the embedded Markov chain model as described by Rieger
and Haßlinger (1994) and derive the computation of the waiting time distribution
based on the stationary distribution.

Let the stochastic processND = {(ND
k , rk, N

U
k ), k = 1, 2, ...} denote the states

of the SM/G/1-queue at all instants k when a customer arrives at or departs from
the system. The state of the stochastic process is given by Zk = (ND

k , rk, N
U
k ) ∈

N × {1 − R, ..., R − 1} × {0, ..., κ}. Note that the parameters NU
k and κ stem

from the upstream M/G/1-queue and will be used to model the arrival process
at the SM/G/1-queue.

The embedded stochastic process ND forms a homogeneous Markov chain (see
Rieger and Haßlinger (1994) for a proof). The transition from state k to state k+1

is caused by an arrival, a departure, or a simultaneous event of both. Accordingly,
the random variable ND

k is incremented, decremented, or remains unchanged,
and the residual time rk until the next event is updated. The semi-Markov arrival
process is state-dependent and is determined by the state NU

k of the governing
chain. The decomposition method proposed here computes the state-dependent
inter-arrival times according to the approximation formula (6.14).

The state components are denoted as follows:

ND
k The number of customers in the SM/G/1-queue at instant k,

rk > 0 A customer departs at instant k, and the residual arrival time is rk time
units,

rk < 0 A customer arrives at instant k, and the residual departure time is |rk|
time units,

rk = 0 Simultaneous arrival and departure of a customer,
NU
k The state of the governing chain at instant k.
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6.3 The semi-Markov arrival decomposition approach

6.3.3.1 Transition probabilities

The following descriptions are based on the considerations made by Rieger and
Haßlinger (1994). Before introducing the transition probabilities, we define the
probability function

uij(r) = P (BD −D = r) =

{R,R−r}−∑
t={1,1−r}+

q̂ij(t) · P (BD = r + t), (6.15)

which denotes the likelihood that a simultaneous arrival and departure event leaves
a residual time r ∈ {1 − R, ..., R − 1} in the system. Note that the probability
function uij(r) considers state-dependent arrivals q̂ij(k) from the (limited) semi-
Markov arrival process (cf. equation (6.14)). The function will be exploited to
compute the transition probabilities presented in the following.

As stated above, the transition from state k to state k+1 is caused by the arrival of
a customer, the departure of a customer, or the simultaneous arrival and departure
of a customer. As a consequence, we observe the state of the Markov chain only
if the service process renews or the arrival process generates a new point. For the
computation of the transition probabilities, we distinguish four transition types,

1. a departure event that leaves a non-empty system behind,

2. an arrival event,

3. a simultaneous arrival and departure event, and

4. a departure event that leaves a starving system behind.

We use the probability functions uij(r) (cf. equation (6.15)), q̂ij(t) (cf. equa-
tion (6.14)), and P (BD) to compute the transition probabilities. It will be shown
that the first three transition types defined above are similar in the sense that they
apply these probability functions to different cases. In the fourth transition type,
the SM/G/1-queue starves, which requires additional considerations.
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6 A refined decomposition approach with converging accuracy for discrete-time open tandem queues

Type 1: Departure event that leaves a non-empty system behind
The first transition type considers the departure event of a customer that leaves a
non-empty system behind. Let N ≥ 1 and r ≥ 1. Let the state of the stochastic
process before the transition be described by Zk = (N + 1, r + l, i). Thus, in
instant k, we have ND

k = N + 1, rk = (r + l), and NU
k = i. Equivalently, let

the state of the stochastic process after the transition be described by Zk+1 =

(N, r, j), so that ND
k+1 = N , rk+1 = r, and NU

k+1 = j. As we consider the
departure of a customer, it can be seen that the customer count in the SM/G/1-
queue decreases by 1, ND

k+1 = ND
k − 1.

The transition probability from state k to state k + 1 depends on one of three
cases, the departure, arrival, or simultaneous event of both in the previous state
k. In the first case, rk = (r + l) > 0, which means that in state k, a customer
departs from the system and thus, the service process renews. Since in state k+1,
another customer departs, the transition from state k to state k + 1 is a service
period of length l. Thus, the transition probability is equal to P (BD = l). Note
that in this transition, the state of the SMP must not change, therefore i = j, and
the residual arrival time is updated to rk+1 = r.

In the second case, rk = (r + l) < 0, which means that in state k, a customer
arrives at the system. Since in state k + 1 a customer departs from the system,
the residual service time must be smaller than the next inter-arrival time. In state
k + 1, the residual arrival time remaining in the system is rk+1 = r, and thus,
the inter-arrival time in state k is | l | time units. Note that l < 0 since r > 0, and
therefore, the transition probability is equal to q̂ij(−l).

In the third case, rk = (r + l) = 0, which means that in state k, one customer
arrived at the system, as simultaneously another customer departed from the
system. Therefore, the service process renews while simultaneously, the arrival
process generates a new arrival event in state k. Since in state k + 1, a customer
departs from the system, the systemhas completed an entire service period, and the
renewed service time in k must be smaller than the inter-arrival time. Therefore,
we use equation (6.15) to compute the probability that the residual arrival time
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6.3 The semi-Markov arrival decomposition approach

rk+1 = r remains in the system. Note that in equation (6.15), r < 0 forBD < D,
and therefore we compute uij(−r).

In summary, the transition probability for a departure event that leaves a non-
empty system behind is computed by

P
(
Zk+1

∣∣Zk) =


P (BD = l) (r + l) > 0, i = j,

q̂ij(−l) (r + l) < 0,

uij(−r) (r + l) = 0,

0 otherwise.

(6.16)

Type 2: Arrival event
The second transition type considers an arrival instant of a customer. Let N ≥ 2

and r ≥ 1. Let the state of the stochastic process before the transition be
described by Zk = (N − 1,−r− l, i). Thus, in instant k, we haveND

k = N − 1,
rk = (−r − l), and NU

k = i. Equivalently, let the state of the stochastic process
after the transition be described by Zk+1 = (N,−r, j), so that ND

k+1 = N ,
rk+1 = −r, andNU

k+1 = j. Aswe consider the arrival of a customer, it can be seen
that the customer count in the SM/G/1-queue increases by 1,ND

k+1 = ND
k + 1.

As before, the transition probability from state k to state k+ 1 depends on one of
three cases, the departure, arrival, or simultaneous event of both in the previous
state k. In the first case, rk = −(r + l) > 0, which means that in state k, a
customer departs from the system and thus, the service process renews. Note that
l < 0 and | l | > r. The residual service time remaining after the arrival instance
in state k + 1 is rk+1 = −r. Therefore, the service period has a total length of
r+ | l | time units, and thus the transition probability is equal toP (BD = r+ | l |).
Note that in this transition, the state of the SMP must not change, and thus i = j.

In the second case, rk = −(r + l) < 0, which means that in state k, a customer
arrives at the system. Since in state k+ 1, another customer arrives, the transition
from state k to state k + 1 is an inter-arrival period of length l > 0. Thus, the
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6 A refined decomposition approach with converging accuracy for discrete-time open tandem queues

transition probability is equal to q̂ij(l). In state k+ 1, the residual service time is
updated to rk+1 = −r.

In the third case, rk = −(r + l) = 0, which means that in state k, one customer
arrived at the system, as simultaneously another customer departed from the
system. Therefore, the service process renews while simultaneously, the arrival
process generates a new arrival event in state k. Since in state k + 1, a customer
arrives at the system, the inter-arrival time in state k must be smaller than the
service time. Therefore, we use equation (6.15) to compute the probability
that the residual service time rk+1 = −r remains in the system. Note that in
equation (6.15), r > 0 for BD > D, and therefore we compute uij(r).

In summary, the transition probability for an arrival event is computed by

P
(
Zk+1

∣∣Zk) =


P (BD = r + | l |) −(r + l) > 0, i = j,

q̂ij(l) −(r + l) < 0,

uij(r) −(r + l) = 0,

0 otherwise.

(6.17)

Type 3: Simultaneous arrival and departure event
The third transition type considers the simultaneous arrival and departure of a
customer. Let N ≥ 2. Let the state of the stochastic process before the tran-
sition be described by Zk = (N, r, i). Thus, in instant k, we have ND

k = N ,
rk = r, andNU

k = i. Equivalently, let the state of the stochastic process after the
transition be described by Zk+1 = (N, 0, j), so that ND

k+1 = N , rk+1 = 0, and
NU
k+1 = j. As we consider the simultaneous arrival and departure of a customer,

it can be seen that the customer count in the SM/G/1-queue does not change,
ND
k+1 = ND

k = N .

As before, the transition probability from state k to state k + 1 depends on
one of three cases, the departure, arrival, or simultaneous event of both in the
previous state k. In the first case, r > 0, which means that in state k, a customer
departs from the system. As in state k + 1, another customer departs, the system
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has completed an entire service period of length r. Therefore, the transition
probability is equal to P (BD = r). Note that during the service process, the state
of the SMP arrival process must not change, and therefore i = j.

In the second case, r < 0, which means that in state k, a customer arrives at the
system. As in state k + 1, another customer arrives, the time between both states
is equal to the inter-arrival time r. Therefore, the transition probability is equal
to q̂ij(r).

In the third case, r = 0, which means that in state k, one customer arrived at the
system, as simultaneously another customer departed from the system. Therefore
in both states, the service process renews while simultaneously, the arrival process
generates a new point. Thus, the transition probability is equal to the likelihood
that a simultaneous event in state k leaves a residual time of zero in the system in
state k + 1, uij(0).

In summary, the transition probability for a simultaneous arrival and departure
event is computed by

P
(
Zk+1

∣∣Zk) =


P (BD = r) r > 0, i = j,

q̂ij(r) r < 0,

uij(0) r = 0,

0 otherwise.

(6.18)

Type 4: Departure event that leaves a starving system behind
The fourth transition type considers state transitions where the systems starves
after the departure event. In the state transitions defined above, we assured that
the number of customers in the system is always greater than zero. However, the
system can only starve if the number of customers in the queue in a departure event
is equal to one and the residual time r is non-negative. To increase computational
efficiency, the Markov chain immediately transitions to the next arrival event,
where the customer count is again one. Therefore, we do not explicitly model the
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6 A refined decomposition approach with converging accuracy for discrete-time open tandem queues

idle phase of the SM/G/1-queue, and thus, the customer count ND
k is always

greater than zero.

Let the state of the stochastic process before the transition be described by ZDk =

(1, r, i). Thus, in instant k, we haveND
k = 1, rk = r, andNU

k = i. Equivalently,
let the state of the stochastic process after the transition be described by ZDk+1 =

(1, 0, j), so that ND
k+1 = 1, rk+1 = 0, and NU

k+1 = j. As described above, the
customer count remains unchanged, ND

k = ND
k+1 = 1, but with the notion that

the queue starves in between the state transition. Therefore, in state k + 1, the
service process renews while simultaneously the arrival process generates a new
point, and thus rk+1 = 0.

The transition probability from state k to state k + 1 depends on two cases, the
departure of a customer, or simultaneous arrival and departure of a customer in
state k. In the first case, r > 0, which means that in state k, a customer departs
from the system, and the service process of the last remaining customer begins.
The system starves only if the service time elapses before the next customer arrives.
Since the residual arrival time is rk = r, the transition probability is equal to the
sum of all service time probabilities, where the service time is smaller than or
equal to r (see first case in equation (6.19)). Note that if the service time equals r,
the SM/G/1-queue starves for zero time units. As before, the state of the arrival
SMP must not change, thus i = j.

In the second case, r = 0, which means that in state k, the last customer in the
queue departs from the system, and simultaneously, another customer arrives.
Since the customer count in state k equals one, the service process of the new
customer immediately begins. As described above, the system starves only if this
service time elapses before the next customer arrives. Therefore, the transition
probability is the cumulative probability that the simultaneous arrival and depar-
ture event in state k leaves a negative residual time (that isBD < D) in the system
(see second case in equation (6.19)).

Note that states Zk where r < 0 cannot exist because the arrival of a customer
immediately causes a transition to state Z = (1, 0, j). In summary, the transition
probability for a departure event with starvation is defined as
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P
(
Zk+1

∣∣Zk) =



r∑
b=1

P (BD = b) r > 0, i = j,

R−1∑
a=0

uij(−a) r = 0,

0 otherwise.

(6.19)

6.3.3.2 The waiting time distribution

We consider the distribution of waiting time at the arrival instants of cus-
tomers. Let the probability π(Z) denote the stationary probability of state
Z = (ND, r,NU ). Since we only consider the system at arrival instants (that is,
{Z = (ND, r,NU ) | r ≤ 0}), a normalisation constant θ is required, such that

1

θ

κ∑
NU=0

(
π
(
1, 0, NU

)
+

∞∑
ND=2

R−1∑
r=0

π
(
ND,−r,NU

)) !
= 1. (6.20)

LetP (W = w) denote the probability that an arriving customer has to waitw ≥ 0

time units upon arrival. The probability that an arriving customer does not have
to wait is equal to the probability that a customer enters an empty system (that is,
ND = 1),

P (W = 0) =
1

θ

κ∑
NU=0

π
(
1, 0, NU

)
. (6.21)

If the arriving customer finds another customer in the system upon arrival (that
is, ND = 2), the arriving customer has to wait the residual service time of that
customer,
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P (W = |r|) =


1

θ

κ∑
NU=0

π
(
2,−r,NU

)
r < 0,

1

θ

κ∑
NU=0

π
(
2, 0, NU

)
· P (B = r) r = 0.

(6.22)

In equation (6.22), we distinguish two cases. First, upon arrival, a customer is
already in service, and the residual service time is |r| time units. In the second
case, a departure instant coincides with the arrival of the customer. Thus, the
service process renews in the arrival instant and the arriving customer has to wait
the entire service time.

If the arriving customer finds more than one customer already present in the
system (ND > 2), he has to wait the residual service time of the customer in
service and the sum of the service times of all customers waiting ahead in the
queue. The probability that l consecutive service operations require n time units
is denoted with the l-fold convolution of the service time vector, bl⊗n . The waiting
time probability is computed as follows:

P (W = |r|+ n) =


1

θ

κ∑
NU=0

π
(
ND,−r,NU

)
· b(N

D−2)⊗
n r < 0,

1

θ

κ∑
NU=0

π
(
ND, 0, NU

)
· b(N

D−1)⊗
n r = 0.

(6.23)

In equation (6.23), we again distinguish the cases of a sole arrival event and a
simultaneous arrival and departure event. In the first case, we obtain the residual
service time |r| from the state and compute the (ND − 2)-fold convolution of the
service time distribution. In the second case, the service process renews at the
arrival instant, and thus, we compute the residual service time as (ND − 1)-fold
convolution of the service time distribution.
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6.4 Numerical results

6.4 Numerical results

In this section, we verify the semi-Markov decomposition approach and present
numerical results for the performance and computational efficiency of SMAD.
We compute the waiting time in the downstream SM/G/1-queue using SMAD
for the set of state limits κ ∈ {1, 5, 10, 20, 50} and compare these results with the
discrete-time renewal decomposition approach (DTQA), and simulation.

It is crucial for the comparison of these methods to carefully define the input
parameters. Recall that the discrete-time queuingmethods receive the inter-arrival
time distribution as input, whereas SMAD receives the flow rate λ as input. As
stated above (cf. equation (5.1)), the geometric inter-arrival time distribution is
defined by the flow rate λ, and the state space of the Markov chain is infinite.
However, the vector of the inter-arrival times that is input to DTQA must be of
finite length. Therefore, we have to truncate the inter-arrival time vector. We set
the truncation epsilon to 10−10, and compute the corrected flow rate λ̃ = 1/E(Ã),
where E(Ã) is the expected value of the truncated inter-arrival time vector.

6.4.1 Verification

We consider a tandem queue where the service time distributions are equal at the
upstream and the downstream station, P (B = 15) = P (B = 16) = 0.5, and the
arrival stream is defined by λ = 0.0613. The utilisation of the tandem queue is
ρ = 0.950. We compute the probability distribution of waiting timewith five state
space limits κ and compare the results to the waiting time distributions obtained
with the renewal decomposition approach and simulation. Table 6.1 shows the
first ten positions of the waiting time distributions, their expected values, and 95%
percentiles.

The probability distributions in Table 6.1 indicate that the results of the novel
decomposition approach improve with increasing accuracy parameter κ. As κ
increases, the probabilities of finding the system empty, the expected waiting
times, and the 95% percentile of the distributions converge towards the respective
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Table 6.1: Distributions of waiting time (truncated) in the downstream queue, obtained with the re-
newal decomposition approach (DTQA), the semi-Markov arrival decomposition approach
(SMAD) for five state limits κ, and simulation.

SMAD(κ)

W DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 50 Sim

0 0.3420 0.2976 0.2368 0.2260 0.2229 0.2219 0.2219
1 0.2259 0.2013 0.1537 0.1431 0.1399 0.1391 0.1387
2 0.1492 0.1434 0.1150 0.1057 0.1025 0.1019 0.1014
3 0.0984 0.1022 0.0904 0.0827 0.0798 0.0791 0.0788
4 0.0648 0.0728 0.0727 0.0669 0.0642 0.0636 0.0635
5 0.0425 0.0520 0.0590 0.0553 0.0529 0.0523 0.0522
6 0.0278 0.0371 0.0482 0.0462 0.0441 0.0436 0.0436
7 0.0181 0.0265 0.0396 0.0390 0.0373 0.0368 0.0368
8 0.0117 0.0190 0.0326 0.0332 0.0318 0.0314 0.0312
9 0.0075 0.0136 0.0270 0.0285 0.0275 0.0272 0.0268
∼ ... ... ... ... ... ... ...

EV 1.88 2.46 4.14 5.03 5.64 5.90 5.96
Q-95 6 8 14 18 21 22 22

Note: The probability distributions are truncated after 10 positions. The .999-percentile of the simu-
lated probability distribution is 64.

simulation results. For κ = 50, we do not find evidence for the waiting time
distribution to be significantly different from the simulated distribution. We
performed a Chi-Square Goodness-of-Fit Test and found a significant relationship
between both distributions

(
χ2(11; 612,682) = 5.69, p = .893

)
.

In terms of accuracy, the novel decomposition approach outperforms the renewal
decomposition technique. Figure 6.2 plots the first ten positions of the waiting
time distributions obtained with SMAD(50) alongside the results obtained with
the renewal decomposition approach. It visualises the difference between both
approaches, which Table 6.1 specifies.
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Figure 6.2: Distributions of waiting time (truncated) for the SM/G/1-queue (κ = 50, black bars)
and the corresponding GI/G/1-queue (white bars).

Besides the apparent approximation error found for the renewal decomposition
approach, the semi-Markov arrival decomposition approach notably outperforms
the renewal decomposition technique not only for κ = 50, but for any state limit κ.
This is an important finding as it suggests that the state space limitation method
yields better approximations than the renewal assumption, even for tight state
limits.

6.4.2 Performance results

We compute the waiting time distributions for a design of experiments where
the service times are gamma-distributed. Given its flexibility, the gamma dis-
tribution allows for the modelling of a wide range of dispersion and is therefore
well suited to represent the stochastic behaviour of the service process. Fur-
thermore, the gamma distribution is well-defined by its shape and scale, which
translates to the expected value and variance (see definitions in Chapter 4). We
define two gamma distributions that share the same expected value, E(B) = 10.
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Table 6.2: Expected values of waiting time in the downstream queue for several combinations of util-
isation and service time variability parameters, obtained with the renewal decomposition
approach (DTQA), the semi-Markov arrival decomposition approach (SMAD) for five state
space limits κ, and simulation.

SMAD(κ)

ρ scv DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 50 Sim

0.30 L /L 2.71 2.76 2.74 2.74 2.75 2.74 2.76± 0.04

0.45 L /L 4.96 5.01 5.03 5.04 5.04 5.04 5.12± 0.08

0.60 L /L 8.84 9.51 9.50 9.31 9.31 9.31 9.38± 0.15

0.80 L /L 21.76 21.61 25.14 25.54 25.44 25.44 24.96± 0.59

0.90 L /L 41.91 49.25 57.22 56.13 54.37 (n.a.) 55.41± 1.97

0.30 H /L 3.84 3.93 3.87 3.86 3.86 3.86 3.81± 0.13

0.45 H /L 7.30 7.68 7.57 7.47 7.48 7.48 7.40± 0.09

0.60 H /L 13.64 14.95 14.69 13.86 13.80 13.79 13.53± 0.46

0.80 H /L 35.86 32.54 36.20 35.62 37.22 36.77 36.50± 1.49

0.90 H /L 67.65 75.87 81.76 81.37 81.24 (n.a.) 82.39± 3.48

Notes: The service time variability parameters are encoded as L = Low (scv(B) = 0.50) and H =
High (scv(B) = 1.51) at the upstream / downstream station, respectively. Simulation results show
the 95% confidence interval, bold numbers lie within the confidence interval.

The first service time distribution has a low variability, scv(B) = 0.50, the
second one has high variability, scv(B) = 1.51. We define five flow parameters
λ ∈ {0.030, 0.044, 0.058, 0.077, 0.086} to observe the tandem queue for five util-
isation parameters, ρ ∈ {0.30, 0.45, 0.60, 0.80, 0.90}. We consider two tandem
queue configurations. In the first configuration, the service time distribution at
both queues has a low variability (L /L), in the second configuration, the down-
stream queue is unchanged and the upstream queue has a high variability service
time (H /L). The performance results for the variability configurations (L /H)
and (H /H) are presented in Appendix C.

Tables 6.2 shows the results for the expected values of waiting time at the down-
stream queue obtained with DTQA, SMAD(κ), and simulation. The utilisation
parameters are varied as described above, the service time variability parameter
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configurations are (L /L) and (H /L). The 95% percentiles of waiting time are
listed in the corresponding Table 6.3. The simulation results show the upper and
lower bound of the 95% confidence interval. Bold numbers in both tables indicate
that this value lies inside this confidence interval.

Comparing the results obtained with DTQA and simulation, we can identify the
decomposition error defined and discussed in Chapter 4. Most of the expected
waiting times computed with DTQA are outside of the confidence intervals.
We again find that utilisation is the driving factor for decomposition error. For
tandem queues with utilisation smaller than or equal to 80%, the decomposition
error is smaller than 6%. We identify three cases where the decomposition error
is greater than 10%. In the first configuration (L /L), decomposition error for
the queues with utilisation ρ = 0.8 and ρ = 0.9 is 13% and 24%, respectively.
In the second configuration (H /L), the decomposition error for the queue with
utilisation ρ = 0.9 is 18%.

The results computed with SMAD converge towards the simulation results as the
state space limit κ increases. In the first configuration of the design of experiments
(L /L), the waiting times are already inside the confidence intervals for κ = 1 in
the queues where ρ = 0.30 and ρ = 0.60. The expected waiting times for queue
ρ = 0.45 are barely outside the confidence interval, however, the 95% percentiles
are inside. For κ = 10 and κ = 20, all values lie inside their respective confidence
intervals. We can see that the waiting times computed with SMAD only slightly
differ forκ = 20 andκ = 50. This can especially be seen in the 95%percentiles of
waiting times which indicates the robustness of the waiting time vectors computed
with SMAD.

In summary, the waiting times computed with SMAD are approximate for small
κ (that is, a tight state space limits). However, in our numerical examples, we only
found few cases where SMAD(1) performs worse than DTQA. In general, when
DTQA produces satisfactory approximations, the waiting times computed with
SMAD(1) are similar to those computed with DTQA. However, in cases where
DTQA produces low accuracy, SMAD(1) is a better approximation. Based on
the performance results presented, we conclude that SMAD computes reasonably
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Table 6.3: 95% percentiles of waiting time in the downstream queue for several combinations of util-
isation and service time variability parameters, obtained with the renewal decomposition
approach (DTQA), the semi-Markov arrival decomposition approach (SMAD) for five state
space limits κ, and simulation.

SMAD(κ)

ρ scv DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 50 Sim

0.30 L /L 17 17 17 17 17 17 17± 0

0.45 L /L 26 26 26 25 25 25 26± 1

0.60 L /L 37 40 40 39 39 39 40± 1

0.80 L /L 76 78 92 95 94 94 89± 2

0.90 L /L 219 184 187 182 176 (n.a.) 184± 11

0.30 H /L 21 22 22 22 22 22 20± 1

0.45 H /L 33 36 35 34 34 34 33± 1

0.60 H /L 53 57 56 53 53 53 52± 2

0.80 H /L 118 111 126 125 130 127 121± 5

0.90 H /L 202 237 254 254 254 (n.a.) 256± 12

Notes: The service time variability parameters are encoded as L = Low (scv(B) = 0.50) and H =
High (scv(B) = 1.51) at the upstream / downstream station, respectively. Simulation results show
the 95% confidence interval, bold numbers lie within the confidence interval.

accurate results of waiting time for κ = 10, if the tandem queue is low-traffic,
and κ = 20 for heavy-traffic queues. In Tables 6.2 and 6.3 it can be seen that
the results for κ = 50 are missing for ρ = 0.90. In these cases, the state space
became too large to compute the stationary distribution of the Markov chain.

6.4.3 Computational complexity

After evaluating the performance of SMAD,we investigate its computational com-
plexity. It is intuitive that the computational complexity increases with increasing
state space limit κ. To explore this effect, we collected the computer times for the
computation of the performance results presented above. The results have been
computed on an Intel Core i7-8550U 64-bit machine, with 16 GB of RAM and
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6.4 Numerical results

Table 6.4: Computer times in seconds for the renewal decomposition approach (DTQA) and the
semi-Markov arrival decomposition approach (SMAD) for five state space limits κ.

SMAD(κ)

ρ DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 50

0.30 1 181 485 854 1,678 4,143
0.45 1 167 403 654 1,246 3,293
0.60 4 215 459 750 1,426 3,799
0.80 31 187 453 758 1,335 4,336
0.90 102 248 555 989 2,100 (n.a.)

2.8 gigahertz processor. Table 6.4 shows the computer times in seconds for the
renewal decomposition approach (DTQA), and SMAD for five state space limits.

Table 6.4 shows that DTQA is the most efficient decomposition approach. For
most queues, the computer time is well below one minute. On average, DTQA
requires 38 seconds to compute the waiting time distribution. However, it should
be noted that the computational complexity of DTQA increases with growing
utilisation of the system. In the high-traffic queue (ρ = 0.9), the computational
time required by DTQA is 1:42 minutes. This is due to the fact that the waiting
time vector grows exponentially in high-traffic queues. Table 6.4 shows that the
computational complexity of SMAD increases exponentially with growing state
space limit κ. For κ = 1, the approach requires an average computer time of 3
minutes. For κ = 10, the average compute time is 14 minutes, for κ = 20 it is
26 minutes, and for κ = 50, it is 65 minutes. In contrast to DTQA, however,
the computational complexity of SMAD only slightly increases with increasing
utilisation of the queue.

As seen above, the computational efficiency of SMAD can be drastically in-
creased by limiting the state space with small values of κ. However, as with any
Markov chain, the computational complexity of SMAD depends on the entire
state space, not just one component. Since the state space is three-dimensional,
(ND, r,NU ) ∈ N×{1−R, ..., R−1}×{0, ..., κ}, appropriate upper and lower
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bounds must be defined for the state dimensions ND and r. Therefore, two ad-
ditional factors affect computational efficiency. First, the number of customers
in the downstream queue ND increases as the utilisation increases. As defined
above, the maximum number of customers in the queue is unlimited. Thus,
an upper bound N̂D

max must be found in order to compute the stationary distri-
bution. The upper bound N̂D

max must be increased when analysing high-traffic
queues, compared to the analyses of queues with low traffic intensity. Second,
the maximum residual time R for the next event is influenced by the length of
the probability vectors describing the inter-arrival and service times. For efficient
implementation, it is useful to define an upper (R̂U ) and a lower bound (R̂L) for
R. The upper bound R̂U is set to the maximum inter-arrival time and the lower
bound R̂L is set to the maximum service time. Note that R̂L < 0, thus, the
maximum service time is multiplied by (−1).

To assess the complexity class of the algorithm, we first assume that the number of
customers in the upstreamM/G/1-queue is unbounded, aswell. Therefore, equiv-
alently to the upper bound N̂D

max, we define an upper bound N̂U
max for the number

of customers in the upstream queue. Letm = max{N̂D
max, (R̂U + |R̂L|), N̂U

max}.
Since the state space of the embedded Markov chain is three-dimensional, the
computational complexity class of the SM/G/1-queue is O(m3). However, due
to the state space limitation method, the state component describing the number
of customers in the upstream queue is bounded upwards by κ. With κ being a
constant value, the computational complexity is directly proportional to κ and
therefore, the algorithmic complexity reduces to O(m2).

6.5 Chapter conclusion

Decomposition approaches for open queueing networks approximate the inter-
connecting streams as renewal processes. While this assumption allows for com-
putationally efficient models, performance results obtained at downstream queues
might be prone to considerable approximation errors. To overcome this problem,
we propose SMAD, a decomposition method for tandem queues with Poisson

110



6.5 Chapter conclusion

arrivals and general service times. The novelty of this decomposition method is
that a semi-Markov process (SMP) is used to model the connecting stream be-
tween the upstreamM/G/1- and the downstream G/G/1-queue. Thus, SMAD
captures the state-dependent inter-departure times in the upstreamM/G/1-queue
departure process.

To prevent state space explosion in theMarkov chain of the downstreamSM/G/1-
queue, we introduce a state space limitation method for the embedded Markov
chain of the SMP. The limitedMarkov chain observes the SMP only if the number
of customers in the M/G/1-queue is smaller than or equal to the upper bound
κ. We demonstrate that the stationary distribution of the limited embedded
Markov chain is equal to the original stationary distribution, π̂(i) = π(i) for all
i = 0, 1, ..., κ − 1. Therefore, tight space limits are computationally attractive,
but lead to approximations in the computation of the state-dependent departure
stream.

Our numerical results show that the waiting times in the downstream queue ob-
tained with SMAD are reasonably accurate when the state space is limited and
converge arbitrarily accurate with increasing state space size. Compared to the
renewal decomposition approach (DTQA), SMAD computes better approxima-
tions than DTQA when the state space limit is tight (that is, κ is small). This is an
important finding as it suggests that the state space limitation method yields better
approximations than the renewal assumption, even for tight state limits. Increasing
the state limit κ generally improves the quality of the results. In contrast to DTQA
(which is prone to decomposition error), the waiting times computed with SMAD
lie inside the confidence interval of the simulationmodel for reasonably large state
limits. In conclusion, the semi-Markov arrival decomposition approach allows us
to determine a satisfactory approximate solution that requires little computational
effort. When better approximations are needed, SMAD converges arbitrarily
accurate with increasing computational expenditure.
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7 Conclusion

This chapter summarises the major research contributions of the thesis and gives
an outlook on further research directions.

7.1 Summary

Discrete-time queueing models are well suited to compute key performance in-
dicators of a stochastic system with little computational effort. For example,
discrete-time queuing models allow to compute the throughput time of a ship-
ment or the number of buffer slots to be provided in front of a machine. Applying
discrete-time queueing models offers an advantage over continuous-time mod-
elling in that the entire probability distribution of the performance parameters can
be calculated. Thus, we can determine the performance of the system in more
detail since we can report not only the averages but the 95%- or 99%-percentiles
of the probability distribution.

To compute steady-state performance measures in the queueing systems of an
open queueing network, decomposition methods are often the only feasible and
computationally efficient approach. A decomposition approach partitions the
network into individual queues and analyses them in isolation. The approach is
based on the assumption that a renewal process can approximate the point process
of the departure stream of upstream stations, and thus an independent analysis
of the queueing systems is possible. Although the assumption of independence
allows for highly efficient computation, performance results may be subject severe
approximation errors.
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This thesis considers discrete-time open tandem networks with Poisson arrivals
and general service times to analyse the approximation error of the renewal decom-
position approach, investigate its origins, and introduce a refined decomposition
approach that converges arbitrarily accurate.

Approximation quality of the renewal decomposition approach
In the first part of the thesis, we conduct a simulation study to analyse the
approximation quality of the renewal decomposition approach. In our design of
experiments, the service times are gamma-distributed with variability parameters
in the interval (0.1, 3.0). We define the expected service times and the flow
parameter of the external Poisson arrival process to cover low, medium and high
utilisation in the tandem queue. We compute the expected value (Study I) and
the 95th-percentile (Study II) of waiting time in the downstream queue using the
renewal decomposition approach and simulation, and define decomposition error
as the relative error between both measures, respectively. We find the relative
errors in the range of -21.9% and 32.5% (referring to Study I) and -30.8% and
36.7% (referring to Study II). The mean absolute values of decomposition error
equal 3.93% (4.51%) in Study I (Study II).

We deploy the variability parameters of the service time distributions, the variabil-
ity of the connecting stream, and utilisation as independent variables for the point
and interval estimates of decomposition error. The point estimates are based on
multiple linear regression, the interval estimates are based on quantile regression.
Both estimation methods are applied for Study I and Study II, respectively. Using
test data, we demonstrate that the regression models provide accurate forecasts
and precise confidence intervals for decomposition error. Further, we use the
ANOVA of the models to reveal major influencing factors on the renewal approx-
imation quality: We find utilisation to be the main driver for decomposition error
since in low-traffic queueing systems the mean absolute decomposition error is
significantly lower than the mean absolute errors in the entire data set. Severe
absolute decomposition errors are only observed in heavy-traffic systems. Finally,
we find that the downstream arrival process variability determines whether the
decomposition approach overestimates or underestimates the waiting time.
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7.1 Summary

Output dynamics of the upstream queue
The second part of the thesis focuses on the analysis of the output dynamics
of the upstream M/G/1-queue. It is well known that the departure stream is
a point process which is approximated as a renewal process in the decomposi-
tion approach. By observing the state of the queueing system only in departure
instances, we show that consecutive departure times are sequentially dependent
since the inter-departure time Dk of customer k depends on the system state that
customer k − 1 left behind. Consequently, the overlay of the renewal arrival and
the renewal service processes generates non-renewal departures. To compute the
φ-lag auto-correlation in the departure stream, we model theM/G/1-queue as a
discrete-time Markov chain. Based on the stationary distribution, we derive for-
mulas to compute the joint inter-departure time distribution of two departure times
that are φ instances apart. We present numerical results for the auto-correlation in
M/D/1- andM/G/1-queues for several lags and utilisation parameters. The nu-
merical results show that auto-correlation is positive and monotonically decreases
for increasing lags φ and is a non-monotone function of the utilisation parameter.

Based on these results – and taking into account the findings from the previous
chapter – we can explain the reasons for the approximation errors in the renewal
decomposition approach. Since auto-correlation is non-monotone for the util-
isation parameter, we conclude that downstream performance measures can be
computed exactly for the extreme cases ρ = 0 and ρ = 1. In these cases, the
downstream arrival process is renewal since it is only determined by the exter-
nal arrival process (for the case ρ = 0) or the renewal upstream service process
(for the case ρ = 1). This finding is consistent to the heavy-traffic bottleneck
phenomenon described in the literature. For steady-state systems, ρ ∈ (0, 1), we
can identify the dependency of the waiting time from the serial dependency of
inter-arrival times at the downstream queue. The positive auto-correlation in the
departure stream affect the flow factor and variability compared to an i.i.d. sam-
pling of inter-departure times since a long (short) inter-departure time is likely to
be followed by another long (short) inter-departure time. Consequently, results
computed with the renewal decomposition approach are flawed and – depending
on the arrival stream variability – overestimate or underestimate the waiting time.
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Refined decomposition approach for tandem queues
In the third part of the thesis, we present the semi-Markov decomposition approach
(SMAD) for the discrete-time tandem queue. The novelty of this approach is that
we do not assume the connecting stream to be renewal, but model the output
process of the upstream M/G/1-queue as a semi-Markov process (SMP). The
SMP captures the sequential dependencies of the departure times described in
the previous chapter. For the downstream system, we deploy a discrete-time
SM/G/1-queue, which receives the SMP as input and thus considers the state-
dependent departure times from the upstream queue for queueing analysis.

The SMP is composed of an embedded discrete-time Markov chain and a condi-
tional probability function that describes the state-dependent inter-departure time.
The departure time of the upstream queue is equal to the service time if the system
is not empty after the departure instance, and equal to the sum of the residual
arrival time and the service time if the system starves after the departure instance.
To avoid state space explosion in the downstream queue, we limit the state space
of the embedded Markov chain model to an upper bound κ. We demonstrate how
to compute the corresponding limited transition probability matrix and proof that
the stationary distribution of the limited embedded Markov chain is equal to the
original stationary distribution, π̂(i) = π(i) for all i = 0, 1, ..., κ− 1.

The state space limit κ introduces approximations to the performance results,
but increases the computational efficiency of the decomposition approach. We
present numerical results where we compare the waiting time computed with
SMAD for several state limits κ with the renewal decomposition approach and
simulation. SMAD computes better approximations than the renewal decompo-
sition approach, even when the state space limit is tight (that is, κ is small). This
is an important finding as it suggests that the state space limitation method yields
better approximations than the renewal assumption. Increasing the state limit κ
generally improves the quality of the results. In conclusion, SMAD produces rea-
sonably accurate results when the state space is limited. For increasing state limit
κ, we conclude that the performance results computed with SMAD are arbitrarily
accurate.
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7.2 Conclusion of the thesis

7.2 Conclusion of the thesis

To conclude the thesis, computing accurate performance measures for queueing
networks with little computational effort is crucial. The computational results
presented in this thesis demonstrate that the renewal decomposition approach is
the most efficient one. However, the performance measures may be prone to
considerable approximation errors in high-traffic queues with highly fluctuating
downstream arrivals. To overcome the problem of reporting potentially flawed
data, we introduce point and interval estimates to predict decomposition error
efficiently. These statistical estimates allow a highly accurate forecast of the
approximation quality of the decomposition technique only based on the input
parameters of the queues.

With SMAD, we present a suitable alternative decomposition approach for the
tandem queue in case the approximation quality achieved with the renewal de-
composition is found to be unsatisfactory. Our numerical results show that the
accuracy of SMAD outperforms the renewal decomposition approach, even if
the state space is limited, and converges arbitrarily accurate with increasing state
space limit. Increasing the accuracy accomplished with SMAD, however, requires
substantial computational effort. Therefore, the renewal decomposition approach
is not redundant and instead should be applied whenever decomposition error is
estimated to be reasonably small. In conclusion, SMAD introduces a trade-off
as to whether the parameter κ should be set small to increase computational
efficiency or large so that converging accurate results are obtained.

7.3 Outlook

Based on the research questions answered in this thesis and the conclusions drawn,
we identify future research perspectives in three areas.

Firstly, as discussed in detail in the thesis, SMAD is at a disadvantage compared
to the renewal decomposition approach regarding computational efficiency. Since
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the approach is based on a Markov chain with a three-dimensional state space, the
computational complexity grows exponentially as the state space limit increases.
Therefore, we identify the need to study alternative stochastic models for the
downstream queue. Haßlinger (2000) has presented a computational method for
the waiting time distribution in the SM/G/1-queue based on a Wiener-Hopf
factorisation. This approach has already led to solid efficiency gains for the
computational efficiency for the waiting time distribution of the GI/G/1-queue
(Grassmann and Jain 1989). The open research question is whether the state space
limitation method presented in this thesis is compatible with Haßlinger’s model.

Secondly, additional research is needed to transfer the approximation estimators
of the renewal decomposition approach to general network types. It might be
valuable for practitioners to be alert if the expected approximation quality is low.
For tandem queues, this thesis identified the conditions under which the renewal
decomposition approach produces low accuracy. Since we found reasonable ex-
planations based on the analysis of auto-correlation in the connecting stream,
we expect to transfer these findings to general network types, as well. However,
it is interesting to investigate the approximation errors behind splits and super-
positions since Poisson flows conditionally approximate thinned and superposed
flows very well. Furthermore, the estimation methods based on regression models
presented here require substantial effort for training and validation, which is no
longer feasible for general network types. Stochastic ordering is an alternative
approach to develop valid estimates for the approximation quality for the renewal
decomposition approach (Shaked and Shanthikumar 2007).

Thirdly, research is needed to develop a general framework for decomposing
discrete-time queueing networks with general service times and semi-Markov
interconnecting streams. The results presented in this thesis demonstrate that
considering sequential dependencies in the connecting streams is essential for
better approximations. Haßlinger and Rieger (1996) discuss a framework for
general discrete-time network types, including splitting and superposition of auto-
correlated streams. This approach, however, is unfeasible due to state space
explosion. Therefore, there is a need to transfer the state space limitation method
presented in this thesis to the discrete-time SM/G/1-queue.
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A Regression analyses for
decomposition error in tandem
queues with bottlenecks

The regression tables presented here appear in Data in Brief (Jacobi and Furmans
2022c).

Table A.1 shows the regression coefficients for the analysis of decomposition error
for tandem queues with downstream bottlenecks, where the dependent (explana-
tory) variable is ∆(E), see equation (4.5).

Table A.2 shows the regression coefficients for the analysis of decomposition error
for tandem queues with downstream bottlenecks, where the dependent (explana-
tory) variable is ∆(σ), see equation (4.6).

Note that, in contrast to the regression analyses presented in Chapter 4 (Tables 4.3
and 4.4), the regression analyses presented here differentiate the impact of the
upstream (ρu) and downstream (ρd) utilisation parameter, respectively.
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Table A.1: OLS and quantile regression estimates in Study I with downstream bottlenecks.

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

const. -0.0704∗∗∗ -0.2019∗∗∗ -0.1530∗∗∗ -0.1332∗∗∗ -0.0426∗∗ -0.0184 -0.0184
0.0072 0.0492 0.0359 0.0266 0.0130 0.0176 0.0211

scv(Bu) 0.1314∗∗∗ 0.1222 0.2307∗∗ 0.2125∗ 0.1324∗∗ 0.0767 0.1116
0.0233 0.1615 0.0989 0.0720 0.0411 0.0542 0.0708

scv(Bd) 0.0082∗∗∗ -0.0210 0.0079 0.0099∗ 0.0059 0.0057 0.0052
0.0015 0.0230 0.0116 0.0051 0.0036 0.0041 0.0044

scv(Ad) -0.3605∗∗∗ -0.4273 -0.5899∗∗ -0.5556∗∗∗ -0.3532∗∗∗ -0.2373∗∗ -0.2985∗∗

0.0473 0.3194 0.1963 0.1492 0.0847 0.1126 0.1434
ρu 0.1000∗∗∗ 0.1741∗ 0.1725∗∗ 0.1558∗∗ 0.0964∗∗∗ 0.0680∗∗ 0.0848∗∗

0.0145 0.0961 0.0619 0.0477 0.0249 0.0321 0.0407
ρd -0.0255∗∗∗ -0.0738∗∗∗ -0.0442∗∗∗ -0.0361∗∗∗ -0.0090∗∗ -0.0098∗∗ -0.0036

0.0020 0.0121 0.0094 0.0055 0.0040 0.0048 0.0049
scv(Bu) 0.0019 -0.0319∗ -0.0087 -0.0071∗∗ 0.0054∗∗ 0.0075∗∗ 0.0056∗

× scv(Bd) 0.0022 0.0182 0.0127 0.0035 0.0020 0.0026 0.0032
scv(Bu) 0.0097∗∗∗ 0.0071 0.0006 0.0009 0.0259∗∗∗ 0.0261∗∗∗ 0.0242∗∗∗

× scv(Ad) 0.0018 0.0087 0.0074 0.0049 0.0064 0.0062 0.0063
scv(Bu) 0.1006∗∗∗ 0.1671 0.1721∗∗ 0.1668∗∗ 0.0914∗∗ 0.0486 0.0786
× ρu 0.0189 0.1234 0.0694 0.0546 0.0324 0.0420 0.0551
scv(Bu) 0.0045∗ -0.0202 0.0058 0.0004 0.0071∗∗∗ 0.0059∗∗ 0.0049∗

× ρd 0.0020 0.0208 0.0138 0.0056 0.0018 0.0021 0.0025
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OLS and quantile regression estimates in Study I with bottlenecks (continued).

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

scv(Bd) 0.0142∗∗∗ 0.0329∗∗ 0.0229∗∗ 0.0204∗∗ 0.0028 0.0005 0.0037
× scv(Ad) 0.0024 0.0159 0.0103 0.0067 0.0060 0.0066 0.0067
scv(Bd) -0.0058∗∗ 0.0313 0.0026 0.0009 -0.0061∗ -0.0057 -0.0064
× ρu 0.0018 0.0192 0.0111 0.0044 0.0033 0.0036 0.0043
scv(Bd) 0.0091∗∗∗ -0.0107 0.0020 0.0039 0.0082∗∗∗ 0.0064∗∗∗ 0.0059∗∗∗

× ρd 0.0017 0.0147 0.0079 0.0030 0.0014 0.0014 0.0017
scv(Ad) 0.1022∗∗∗ 0.0953 0.1661∗∗ 0.1548∗∗∗ 0.0931∗∗∗ 0.0675∗∗ 0.0743∗∗

× ρu 0.0108 0.0784 0.0518 0.0383 0.0202 0.0265 0.0314
scv(Ad) -0.0712∗∗∗ -0.0356 -0.0700∗∗∗ -0.0647∗∗∗ -0.0643∗∗∗ -0.0673∗∗∗ -0.0584∗∗∗

× ρd 0.0044 0.0281 0.0192 0.0133 0.0109 0.0115 0.0120
ρu 0.0008 -0.0080 -0.0038 -0.0048∗ 0.0097∗∗ 0.0107∗∗ 0.0117∗∗

× ρd 0.0023 0.0053 0.0042 0.0028 0.0036 0.0034 0.0042

Adj. / Ps. R2 0.8329 0.6982 0.6870 0.7168 0.7146 0.7592 0.8241

Notes: Standardised regression coefficients with standard errors listed below. The standard errors of quantile regression estimates
are based on 100 bootstrapping replications. The sample size 534.
∗ p < .1

∗∗ p < .05

∗∗∗ p < .001
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Table A.2: OLS and quantile regression estimates in Study II with downstream bottlenecks.

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

const. -0.0831∗∗∗ -0.2828∗∗∗ -0.2213∗∗∗ -0.1591∗∗∗ -0.0492∗∗ -0.0275 -0.0156
0.0087 0.0695 0.0560 0.0414 0.0149 0.0173 0.0186

scv(Bu) 0.1549∗∗∗ 0.2868 0.3651∗∗ 0.2204∗ 0.1474∗∗ 0.0941∗ 0.0841
0.0281 0.2243 0.1577 0.1132 0.0479 0.0549 0.0580

scv(Bd) 0.0101∗∗∗ -0.0162 0.0099 0.0097 0.0033 0.0041 0.0056
0.0018 0.0250 0.0137 0.0074 0.0041 0.0039 0.0043

scv(Ad) -0.4181∗∗∗ -0.7720∗ -0.8768∗∗ -0.5957∗∗ -0.3892∗∗∗ -0.2792∗∗ -0.2494∗∗

0.0569 0.4493 0.3167 0.2368 0.1006 0.1145 0.1197
ρu 0.1184∗∗∗ 0.2926∗∗ 0.2665∗∗ 0.1663∗∗ 0.1078∗∗∗ 0.0805∗∗ 0.0773∗∗

0.0175 0.1410 0.1032 0.0751 0.0301 0.0333 0.0343
ρd -0.0322∗∗∗ -0.0818∗∗∗ -0.0535∗∗∗ -0.0457∗∗∗ -0.0117∗∗ -0.0146∗∗ -0.0165∗∗

0.0025 0.0130 0.0107 0.0084 0.0043 0.0044 0.0055
scv(Bu) 0.0014 -0.0181 -0.0086 -0.0085 0.0068∗∗ 0.0060∗∗ 0.0075∗∗

× scv(Bd) 0.0026 0.0182 0.0152 0.0057 0.0025 0.0028 0.0032
scv(Bu) 0.0068∗∗ 0.0046 0.0004 -0.0015 0.0225∗∗∗ 0.0218∗∗ 0.0215∗∗

× scv(Ad) 0.0022 0.0115 0.0086 0.0068 0.0065 0.0067 0.0071
scv(Bu) 0.1202∗∗∗ 0.3086∗ 0.2814∗∗ 0.1779∗∗ 0.1013∗∗ 0.0594 0.0535
× ρu 0.0227 0.1856 0.1211 0.0827 0.0368 0.0421 0.0441
scv(Bu) 0.0053∗ -0.0228 0.0085 -0.0025 0.0064∗∗ 0.0077∗∗∗ 0.0074∗∗

× ρd 0.0025 0.0236 0.0185 0.0091 0.0020 0.0020 0.0025
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OLS and quantile regression estimates in Study II with bottlenecks (continued).

OLS Q(.005) Q(.025) Q(.050) Q(.950) Q(.975) Q(.995)

scv(Bd) 0.0197∗∗∗ 0.0287∗ 0.0254∗∗ 0.0273∗∗∗ 0.0069 0.0071 0.0064
× scv(Ad) 0.0029 0.0166 0.0114 0.0070 0.0061 0.0061 0.0082
scv(Bd) -0.0054∗ 0.0334 0.0054 -0.0008 -0.0083∗∗ -0.0074∗∗ -0.0055
× ρu 0.0022 0.0243 0.0150 0.0068 0.0027 0.0031 0.0039
scv(Bd) 0.0087∗∗∗ -0.0120 -0.0010 0.0041 0.0060∗∗∗ 0.0052∗∗∗ 0.0056∗∗

× ρd 0.0021 0.0168 0.0097 0.0045 0.0016 0.0016 0.0018
scv(Ad) 0.1162∗∗∗ 0.1625 0.2289∗∗ 0.1711∗∗ 0.1048∗∗∗ 0.0827∗∗ 0.0728∗∗

× ρu 0.0130 0.0987 0.0789 0.0646 0.0256 0.0278 0.0295
scv(Ad) -0.0830∗∗∗ -0.0385 -0.0854∗∗ -0.0841∗∗∗ -0.0675∗∗∗ -0.0740∗∗∗ -0.0761∗∗∗

× ρd 0.0052 0.0354 0.0290 0.0209 0.0096 0.0091 0.0111
ρu -0.0001 -0.0077 -0.0047 -0.0022 0.0091∗∗ 0.0082∗∗ 0.0074∗

× ρd 0.0028 0.0075 0.0061 0.0050 0.0030 0.0031 0.0038

Adj. / Ps. R2 0.8263 0.6366 0.6020 0.6260 0.7030 0.7529 0.8218

Notes: Standardised regression coefficients with standard errors listed below. The standard errors of quantile regression estimates
are based on 100 bootstrapping replications. The sample size 534.
∗ p < .1

∗∗ p < .05

∗∗∗ p < .001
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B Proof for the state space
reduction method

In the following, we present a proof for π̂(i) = π(i) for all i = 0, 1, ..., κ − 1 in
the state space reduction method. We first consider the case κ = 1, that is, the
reduction of the stochastic matrixP to a 2×2 matrixP′, and then the case κ > 1

for larger matrices P′.

Case 1: κ = 1

Consider the reduction of the stochastic matrix P to a 2 × 2 matrix P′, such
that

P′ =

[
p00 1− p00

p̂10 1− p̂10

]
, (B.1)

where

p̂10 = π(1) · p10 ·
( ∞∑
j=1

π(j)

)−1

= π(1) · p10 · (1− π(0))−1.

(B.2)

Suppose P′ has an invariant probability vector π̂ that satisfies

π̂ = P′π̂,

π̂e = 1.
(B.3)
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B Proof for the state space reduction method

It follows that

π̂(0) = π̂(0) · p00 + π̂(1) · p̂10

= π̂(0) · p00 + π̂(1) · π(1) · p10 · (1− π(0))−1.
(B.4)

Since in the original problem π = Pπ,

π(0) = π(0) · p00 + π(1) · p10

⇔ π(1) =
π(0) · (1− p00)

p10

(B.5)

holds, and therefore equation (B.4) can be re-written as

π̂(0) = π̂(0) · p00 + π̂(1) · π(0) · (1− p00) · (1− π(0))−1

⇔ π̂(0) = π̂(0) · p00 +
1− π̂(0)

1− π(0)
· π(0) · (1− p00)

⇔ π̂(0) · (1− p00) =
1− π̂(0)

1− π(0)
· π(0) · (1− p00)

⇔ π̂(0) · (1− p00)

1− π̂(0)
=
π(0) · (1− p00)

1− π(0)

⇔ π̂(0) = π(0) �
(B.6)

Case 2: κ > 1

We will first show that π̂(i) = π(i) for all i = 0, 1, 2, ..., κ − 2, and then proof
π̂(κ− 1) = π(κ− 1).

Consider the reduction of the stochastic matrix P to a (κ+ 1)× (κ+ 1) matrix
P′, where κ > 1, such that
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B Proof for the state space reduction method

P′ =



p00 p01 p02 · · · p0,κ−1 p̂0,n

p10 p11 p12 · · · p1,κ−1 p̂1,n

0 p21 p22 · · · p2,κ−1 p̂2,n

0 0 p32 · · · p3,κ−1 p̂3,n

...
...

...
. . .

...
...

0 0 0 · · · pκ−1,κ−1 p̂κ−1,n

0 0 0 · · · p̂κ,κ−1 p̂κ,κ


, (B.7)

where

p̂κ,κ−1 = π(κ) · pκ,κ−1 ·

( ∞∑
j=n

π(j)

)−1

= π(κ) · pκ,κ−1 ·

(
1−

κ−1∑
j=0

π(j)

)−1

.

(B.8)

We first show that π̂(i) = π(i) for i = 0, 1, ..., κ−2. SupposeP′ has an invariant
probability vector π̂ that satisfies

π̂ = P′π̂,

π̂e = 1.
(B.9)

It follows that

π̂(0) = π̂(0) · p00 + π̂(1) · p10

⇔ p00 =
π̂(0)− π̂(1) · p10

π̂(0)
.

(B.10)

Since
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B Proof for the state space reduction method

π̂(1) =
π̂(0) · (1− p00)

p10
, (B.11)

we find

p00 =
π̂(0)− π̂(0) · (1− p10)

π̂(0)
. (B.12)

Equations (B.10), (B.11), and (B.12) also hold for P and π, therefore

π̂(0)− π̂(0) · (1− p10)

π̂(0)
=
π(0)− π(0) · (1− p10)

π(0)

⇔ π̂(0) = π(0).

(B.13)

Starting with equation (B.11), we exploit the triangular form of the matrix P′ to
iteratively solve the linear equilibrium equations for π(i) for all i = 1, 2, ..., κ−2,
and come to the conclusion that

π̂(i) = π(i) ∀i = 1, 2, ..., κ− 2. (B.14)

In the following, we proof π̂(κ− 1) = π(κ− 1). Due to proposition (B.3),

π̂(κ− 1) =

κ−1∑
i=0

π̂(i) · pi,κ−1 + π̂n · p̂κ,κ−1

=

κ−2∑
i=0

π̂(i) · pi,κ−1 + π̂(κ− 1) · pκ−1,κ−1 + π̂n · p̂κ,κ−1.

(B.15)

From finding (B.14) it follows

κ−2∑
i=0

π̂(i) · pi,κ−1 =

κ−2∑
i=0

π(i) · pi,κ−1 (B.16)
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and for reasons of simplicity, we substitute

X =

κ−2∑
i=0

π̂(i) · pi,κ−1 =

κ−2∑
i=0

π(i) · pi,κ−1

Y = 1− pκ−1,κ−1.

(B.17)

Equation (B.15) can be re-written as:

π̂(κ− 1) = X + π̂(κ− 1) · pκ−1,κ−1 + π̂n · p̂κ,κ−1

= X + π̂(κ− 1) · pκ−1,κ−1 + π̂n · π(κ) · pκ,κ−1 ·
(

1−
κ−1∑
j=0

π(j)

)−1

⇔ π(κ) =

(
π̂(κ− 1) ·

(
1− pκ−1,κ−1

)
−X

)
·
(

1−
κ−1∑
j=0

π(j)

)
·
(
π̂n · pκ,κ−1

)−1

=

(
π̂(κ− 1) · Y − X

)
·
(

1−
κ−1∑
j=0

π(j)

)
·

((
1−

κ−1∑
j=0

π̂j

)
· pκ,κ−1

)−1

=

(
π̂(κ− 1) · Y − X

)
·
(

1−
(
X + π(κ− 1)

))
·
((

1−
(
X + π̂(κ− 1)

))
· pκ,κ−1

)−1

(B.18)

In the original problem π = Pπ, and therefore

π(κ− 1) =

n∑
i=0

π(i) · pi,κ−1

=

κ−2∑
i=0

π(i) · pi,κ−1 + π(κ− 1) · pκ−1,κ−1 + π(κ) · pκ,κ−1

= X + π(κ− 1) · pκ−1,κ−1 + π(κ) · pκ,κ−1

(B.19)
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holds and can be re-written as

π(κ) =

(
π(κ− 1) ·

(
1− pκ−1,κ−1

)
−X

)
·
(
pκ,κ−1

)−1
. (B.20)

Therefore we can state (B.18) = (B.20), and it follows:

(
π̂(κ− 1) · Y − X

)
·
(
1−

(
X + π(κ− 1)

))(
1−

(
X + π̂(κ− 1)

))
· pκ,κ−1

=
π(κ− 1) · Y − X

pκ,κ−1

⇔ π̂(κ− 1) · Y − X(
1−

(
X + π̂(κ− 1)

))
· pκ,κ−1

=
π(κ− 1) · Y − X(

1−
(
X + π(κ− 1)

)
· pκ,κ−1

⇔ π̂(κ− 1) · Y − X
1−

(
X + π̂(κ− 1)

) =
π(κ− 1) · Y − X

1−
(
X + π(κ− 1)

)
⇔ π̂(κ− 1) = π(κ− 1) �

(B.21)
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C Continued performance results
of the semi-Markov arrival
decomposition approach

In the following, we present continued performance results for the semi-Markov
arrival decomposition approach for the variability configurations (L /H) and
(H /H). Note that, in contrast to the results presented in Section 6.4.2, the maxi-
mum state space limit is κ = 30, and not κ = 50.

Table C.1 shows the expected values of waiting time in the downstream queue
obtained with DTQA, SMAD, and simulation. Continuing the results presented
in Table 6.2, in this table the variability parameter at the downstream queue is
high (scv(BD) = 1.51).

Table C.2 shows the .95 percentile of waiting time in the downstream queue
obtained with DTQA, SMAD, and simulation. Continuing the results presented
in Table 6.3, in this table the variability parameter at the downstream queue is
high (scv(BD) = 1.51).
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Table C.1: Expected values of waiting time in the downstream queue for several combinations of
utilisation and service time variability parameters, obtained with the renewal decompo-
sition approach (DTQA), the semi-Markov arrival decomposition approach (SMAD) for
five state space limits κ, and simulation (cont. Table 6.2).

SMAD(κ)

ρ scv DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 30 Sim

0.30 L /H 4.93 5.05 5.01 5.01 5.01 5.01 5.02± 0.10

0.45 L /H 9.22 9.57 9.50 9.47 9.47 9.46 9.55± 0.23

0.60 L /H 16.46 17.19 17.90 17.81 17.79 17.78 17.51± 0.35

0.80 L /H 40.84 46.72 50.73 49.60 49.57 49.49 49.93± 1.12

0.90 L /H 77.57 99.84 109.76 113.91 115.05 114.49 113.47± 5.31

0.30 H /H 5.93 6.10 6.06 6.04 6.04 6.04 5.95± 0.10

0.45 H /H 11.43 11.74 11.66 11.52 11.51 11.51 11.48± 0.28

0.60 H /H 23.38 22.39 24.07 23.87 23.74 23.72 21.26± 0.47

0.80 H /H 54.53 53.55 58.91 58.76 56.77 56.27 57.66± 1.71

0.90 H /H 96.47 102.06 114.41 119.79 122.71 (n.a.) 122.55± 5.94

Notes: The service time variability parameters are encoded as L = Low (scv(B) = 0.50) and H =
High (scv(B) = 1.51) at the upstream / downstream station, respectively. Simulation results show
the 95% confidence interval, bold numbers lie within the confidence interval.
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Table C.2: 95% percentiles of waiting time in the downstream queue for several combinations of
utilisation and service time variability parameters, obtained with the renewal decompo-
sition approach (DTQA), the semi-Markov arrival decomposition approach (SMAD) for
five state space limits κ, and simulation (cont. Table 6.3).

SMAD(κ)

ρ scv DTQA κ = 1 κ = 5 κ = 10 κ = 20 κ = 30 Sim

0.30 L /H 31 32 32 32 32 32 31± 1

0.45 L /H 48 49 49 49 49 49 49± 1

0.60 L /H 72 75 79 78 78 78 76± 2

0.80 L /H 145 165 177 176 176 175 169± 6

0.90 L /H 245 321 352 366 371 370 392± 27

0.30 H /H 35 36 36 36 36 36 35± 1

0.45 H /H 55 57 56 56 56 56 55± 1

0.60 H /H 93 92 100 99 98 98 96± 2

0.80 H /H 184 186 205 206 198 197 197± 6

0.90 H /H 294 333 373 395 408 (n.a.) 388± 22

Notes: The service time variability parameters are encoded as L = Low (scv(B) = 0.50) and H =
High (scv(B) = 1.51) at the upstream / downstream station, respectively. Simulation results show
the 95% confidence interval, bold numbers lie within the confidence interval.
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Acronyms and symbols

Acronyms

DTQA Discrete-time queueing analysis

BMAP Batch Markovian Arrival Process

MMPP Markov Modulated Poisson Process

MAP Markovian Arrival Process

OLS Ordinary Least Square

SMAD Semi-Markov Arrival Decomposition Approach

SMP Semi-Markov Process

Discrete random variables

A Inter-arrival time

Ak Inter-arrival time of customer k

AU/AD Inter-arrival time at the upstream / downstream system

B Service time

Bk Service time of customer k

BU/BD Service time at the upstream / downstream system
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Acronyms and symbols

C Number of customers arriving at a slot boundary with Poisson prob-
ability distribution

D Inter-departure time at the upstream system

Dk Inter-departure time of customer k at the upstream system

Nt Discrete random variable of the family N at time instance t

Nk Discrete random variable of the family N at observation point k

NU/ND Number of customers in the upstream / downstream queue

W Waiting time at the downstream queue

Wk Waiting time of customer k at the downstream queue

R Residual time until the next event occurs in a discrete-time point
process

RL /RH Lower and upper bound of the residual time until the next event
occurs in SMAD

Tk Position of the k-th point in a discrete-time point process

U Time since the last event occurred in a discrete-time point process

Xk Interval sequence the associated stochastic process N spends in
state Nk

Sets

Ξ Discrete state space of a discrete-time stochastic process

Γ Set of all observation points of a discrete-time stochastic process

Ω Reduced state space of the discrete-time Markov chain describing
the number of customers in the discrete-time M/G/1-queue at
departure instances
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Acronyms and symbols

Families of random variables

N Stochastic process, family of discrete random variables

NU/ND Discrete-time Markov chain describing the number of customers in
the upstream / downstream queue

Z SMP, family of tuples of discrete random variables

ZU SMP describing the number of customers and departure times in
the upstream queue

Matrices

F Interval time distribution of a discrete-time SMP

P Probability transition matrix of a discrete-time Markov chain

Pr Reduced probability transition matrix of a discrete-time Markov
chain in recursion step r

P′ Approximated probability transitionmatrix of a discrete-timeMarkov
chain

Q Semi-Markov kernel of a SMP

Queuing parameters

λ Flow rate of the external Poisson process

ρ Utilisation of the tandem queue

ρU/ρD Utilisation of the upstream / downstream system
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Acronyms and symbols

Stationary probabilities

π Vector of the stationary distribution of a discrete-timeMarkov chain

π(i) Stationary probability of state i in a discrete-time Markov chain
with one-dimensional state space

π(Z) Stationary probability of state Z in a discrete-time Markov chain
with higher-dimensional state space

Constants and iterators

τ Quantile of the quantile regression method

φ Lag of auto-correlation in the upstream system’s departure stream

κ State space limit in SMAD

θ Normalisation constant in SMAD for the computation of thewaiting
time distribution

Measures of decomposition error

∆(E) Decomposition error with respect to the expected value of waiting
time

∆(σ) Decomposition error with respect to the 95th-percentile of waiting
time
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