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Abstract

Researchers increasingly turn to explainable artificial intelligence (XAI) to analyze omics data and gain insights into the underlying
biological processes. Yet, given the interdisciplinary nature of the field, many findings have only been shared in their respective
research community. An overview of XAI for omics data is needed to highlight promising approaches and help detect common issues.
Toward this end, we conducted a systematic mapping study. To identify relevant literature, we queried Scopus, PubMed, Web of Science,
BioRxiv, MedRxiv and arXiv. Based on keywording, we developed a coding scheme with 10 facets regarding the studies’ AI methods,
explainability methods and omics data. Our mapping study resulted in 405 included papers published between 2010 and 2023. The
inspected papers analyze DNA-based (mostly genomic), transcriptomic, proteomic or metabolomic data by means of neural networks,
tree-based methods, statistical methods and further AI methods. The preferred post-hoc explainability methods are feature relevance
(n = 166) and visual explanation (n = 52), while papers using interpretable approaches often resort to the use of transparent models
(n = 83) or architecture modifications (n = 72). With many research gaps still apparent for XAI for omics data, we deduced eight research
directions and discuss their potential for the field. We also provide exemplary research questions for each direction. Many problems
with the adoption of XAI for omics data in clinical practice are yet to be resolved. This systematic mapping study outlines extant
research on the topic and provides research directions for researchers and practitioners.

Keywords: explainable artificial intelligence; omics; biomedical data; machine learning; interpretable artificial intelligence; systematic
mapping study

INTRODUCTION
With the ever-increasing availability of biomedical data, novel
and more advanced data analysis approaches, especially artificial
intelligence (AI) and its sub-areas of machine learning (ML) and
deep learning (DL), have emerged [1–3]. Biomedical data range
from patient information (e.g. date of birth, sex) and routine
medical data (e.g. height, weight, blood pressure) to more spe-
cialized laboratory data (e.g. genetic data, proteins, metabolites)
[4, 5]. In particular, laboratory data from the omics sciences have
gained widespread interest among researchers in recent years

due to their complexity, availability and potential for generating
new medical insights (i.e. understanding underlying biological
processes) [6, 7].

While AI models offer improved predictive performance com-
pared to traditional expert analysis, the high dimensionality of
omics data results in highly complex models with their inner
workings and outputs being opaque to humans (black box models)
[8, 9]. Consequently, AI models for omics data analysis are often
hard to interpret and lack understandability [4, 10]. Understand-
ing the inner workings of black box models, however, is necessary
to justify AI-based decisions [11, 12]. Especially in healthcare,
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where these decisions affect human lives, experts require far
more information than simple binary decisions (e.g. cancer being
present or not) to support a diagnosis or treatment recommen-
dation [13, 14]. Additionally, our lack of understanding regarding
the biological processes from which omics data emerge makes
understanding an AI model, its inner workings and its outputs
evermore important [6].

Building on the need for understandability and transparency
of AI models, research on explainable AI (XAI) has surged
recently [4, 15, 16]. XAI research aims at producing more human-
understandable AI models while maintaining or improving
their performance (e.g. accuracy, precision, runtime) [4, 17,
18]. To achieve this, XAI offers two main paradigms. For one,
researchers aim to augment black box models into interpretable
(i.e. transparent) models, for example, through simplification or
architecture modification [10, 19]. For another, AI models can be
extended with post-hoc explanations, which are implemented to
clarify or detail their internal functions, such as feature relevance
or visual explanations [10, 11].

Although XAI research has shown the potential to increase
understandability, for example, through providing insights into
the underlying biological processes, many problems of applying
AI in clinical practice are still unresolved due to open medical,
legal, ethical and societal questions, even though they promise
better results [11, 14, 20, 21].

OBJECTIVES
Recently, various research streams investigating the topic of XAI
for omics data have emerged. Coming from diverse viewpoints,
research areas applying XAI to omics data include but are not
limited to the information and computing sciences (e.g. [22]), the
biomedical and clinical sciences (e.g. [23]), the natural sciences
(e.g. [24, 25]) and engineering (e.g. [26]). Because many of the omics
communities operate isolated on their specific data, innovative
XAI advances and helpful findings are often not transferred. This
has resulted in a scattered literature landscape on the application
of XAI for omics data.

When broadening our view to the biomedical or healthcare
domain in general, there are some reviews (e.g. [16, 21, 27]) that
capture current use cases of XAI for biomedical and healthcare
data, as well as the ethical and legal debate surrounding the
topic. However, research that synthesizes the scattered literature
on XAI for omics data is scarce. While there exist some general
reviews on AI/ML for omics data (e.g. [28, 29]), most reviews in
this area focus on a single omics field, like genomics (e.g. [20, 30]),
proteomics (e.g. [31]), microbiomics (e.g. [32]) or metabolomics
(e.g. [33]) and single omics data types, such as single-nucleotide
polymorphism (SNP) data (e.g. [34]), 3D-genomic data (e.g. [35]) or
ribonucleic acid (RNA) sequence data (e.g. [36, 37]). Other reviews
focus on AI research within typical omics data use cases such
as oncology (e.g. [38, 39]) and gene expression analysis (e.g. [40]).
More importantly, however, most of these studies do not focus on
explainability of omics data analysis but, if at all, merely call for
more research on the topic. Reviews with a focus on XAI for omics
data are few and far between and limited to specific subareas.
For example, Novakovsky et al. [41] as well as Talukder et al. [42]
review the current use of explainability methods on DL while only
considering genomic data. Further, Miotto et al. [7] present a review
with a narrow focus on DL methods for biomedical data and
healthcare in general, highlighting opportunities and challenges,
including the use of XAI.

Given the interdisciplinary nature of the topic, the scattered
landscape of extant literature, the lack of omics sciences-
traversing reviews and thus, shortcomings of existing knowledge
on XAI for omics data, an overview of the existing literature on
XAI for omics data is sorely needed. Such an overview can provide
insights into the isolated advances in the omics sciences, highlight
promising XAI approaches and help detect common issues in
applying XAI to omics data. Additionally, with multi-omics data
analysis rapidly gaining in importance for healthcare [43], an
overarching understanding of the current state of XAI for omics
data in a systematic manner is required to enable targeted future
research across multiple omics sciences. Consequently, our study
aims to answer the following research questions (RQs):

RQ1: How does extant literature apply XAI to omics data?
RQ2: What are possible future research directions of XAI for
omics data?

METHODS
For our review, we chose the systematic mapping approach
because it is established in medical research and provides a well-
defined methodology (e.g. [44–47]). It entails the development of
a classification scheme and subsequent classification of relevant
literature. Toward that end, we followed the five-step procedure
by Petersen [48] and adapted it to our needs (Figure 1). Hereafter,
we briefly explain each step.

Identifying relevant studies
Having identified the relevant research questions, we first con-
ducted a search of available literature. To find all available lit-
erature concerning XAI for omics data, we specified a search
string representing the three important aspects of this research:
explainability, AI and omics data. With respect to the interdis-
ciplinary nature of this research field, we investigated multiple
databases, namely, Scopus, Web of Science and PubMed, as well
as the preprint databases arXiv, MedRxiv and BioRxiv. Our initial
search, limited to title, abstract and keywords, was conducted on
7 May 2023 and resulted in a set of 6234 publications. Table 1 sum-
marizes our search strategy, including the detailed search string.

Study selection
From this initial set, each publication was assessed for relevance
to our topic. After removing 2355 duplicates based on title, DOI
and authors, we excluded publications before 2010 (n = 133) and
preprints if they were published before 2017 (n = 6). This left us
with 3740 potentially relevant publications.

Next, three researchers assessed the eligibility of the pub-
lications based on title, abstract and keywords with predeter-
mined inclusion and exclusion criteria. For the regular databases,
we included only peer-reviewed full-paper articles published in
scientific journals or conferences. Studies should focus on the
application of AI or XAI methods for omics data. We thus excluded
publications with no or weak focus on omics data (n = 1826), those
with no focus on XAI (n = 571) and those with no focus on either
(i.e. off-topic; n = 348). If the assessments differed, the respective
publications were discussed among the three researchers to reach
an agreement. Further, papers that were not articles, such as
conference summaries or not peer-reviewed manuscripts, were
excluded (n = 203). A non-English publication (n = 1) was also
excluded.

Last, the same researchers analyzed the full text of the remain-
ing 791 publications for eligibility. During this full-text analysis,
we again excluded publications with no focus on XAI (n = 170),
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Figure 1. Overview of the systematic mapping process adapted from Petersen [48].

Table 1: Overview of the search strategy.

Search string (explainab∗ OR interpretab∗) AND (‘artificial intelligence’ OR ‘machine
learning’ OR ‘deep learning’) AND
(∗omic∗ OR biomedical OR ‘life science’ OR genom∗ OR genetic∗ OR
metagenom∗ OR neurogenom∗ OR pangenom∗ OR epigenom∗ OR
lipidom∗ OR proteom∗ OR glycom∗ OR foodom∗ OR transcriptom∗ OR
metabolom∗ OR nutrigenetic∗ OR nutrigenomic∗ OR
pharmacogenomic∗ OR pharmacomicrobiomic∗ OR toxicogenomic∗)

Fields Title; abstract; keywords
Databases Regular databases: Scopus, PubMed, Web of Science

Preprint databases: BioRxiv, MedRxiv, arXiv
Publication types Journal articles, conference papers, preprints
Date range Peer-reviewed publications: January 2010 to May 2023

Preprints: January 2017 to May 2023

Table 2: Developed classification scheme with 10 facets.

Facet Explanation

AI method Learning architecture/algorithm used
AI task Type of task the AI model performs
Model approach Whether a new model is proposed or an existing model used
XAI model Whether the model is directly interpretable or post-hoc explainable
Explainability method Which explainability technique the XAI model uses
XAI generalizability Whether the XAI approach can be transferred to other AI methods
Omics field Concerned discipline from the omics sciences
Omics data Input data for the XAI model
Medical use case The specific use case that the XAI model aims to solve
Medical field The medical field in which the XAI model is applied

omics data (n = 166) or both (n = 50) that were not apparent by
assessing title, abstract and keywords. Therefore, we included
405 publications in the systematic mapping process. The study
selection process is depicted in Figure 2. A full list of relevant
studies is included in Supplementary Material 1.

Keywording using abstracts
The next step was to develop a classification scheme by utilizing
keywording. For this, a subset of the included studies’ abstracts
was sampled and searched for keywords. These keywords were
then used to deduct relevant facets for the topic of interest. Due
to the interdisciplinary nature of this study, the classification
scheme needed to represent dimensions regarding AI, XAI and
omics data. Three researchers each analyzed the abstracts of 45
papers (11.1%) for keywords, from which we then formed 10 facets
in a discussion among all authors. Additionally, we also consulted
scientific literature to determine possible characteristics (i.e. the
manifestations of a facet). Table 2 provides an overview of the
classification scheme, including an explanation for each facet. A
more detailed explanation of the classification scheme develop-
ment, together with all possible categories (manifestations) per
facet and a detailed overview of different explainability methods,
can be found in Supplementary Material 2.

Data extraction and mapping process
The last step was the classification of all included studies
according to the classification scheme. Following an initial

independent coding and subsequent discussion of 20 papers
by three researchers to ensure the same understanding of the
classification scheme and task at hand, the remaining papers
were single-coded by one researcher each. The complete coding
of all 405 papers was then discussed with all authors and further
used to collate and chart systematic maps as well as further
analyses. We present the main findings resulting from this
process in the following section. Additional charts can be found
in Supplementary Material 3. A glossary of abbreviations used in
this article can be found in Supplementary Material 4.

RESULTS
Descriptive results
We included 405 studies in this systematic mapping study, all
published after 2010. Being below 10 prior to 2017, the number of
publications per year has continuously grown from 12 to 92 stud-
ies in 2022, with 2023 likely to achieve similar numbers (Figure 3).
The studies are published in 137 outlets, with the top five outlets
accounting for over 40% of all publications. The majority of the
manuscripts are published in preprint databases. BioRxiv alone
accounts for 102 (25.2%) of all studies, and MedRxiv holds 13
(3.2%) relevant publications. Excluding the preprint databases,
biomedical outlets like BMC Bioinformatics (n = 20), Bioinformat-
ics (n = 20), PLOS Computational Biology (n = 15), Briefings in
Bioinformatics (n = 12) and Nature Communications (n = 10) are
most prevalent (Figure 4A). 95 out of the 137 outlets have only
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Figure 2. PRISMA flow diagram of the study selection process.

published one relevant study. Examining the scientific fields, the
majority of studies (n = 181) emerge from the sciences (i.e. mostly
biology-, chemistry- or mathematics-related outlets), while 144
stem from the information and computing science disciplines.
Also, 34 studies can be attributed to the biomedical and clin-
ical sciences, as well as nine studies to the field of engineer-
ing (Figure 4B). Lastly, 37 publications have a multidisciplinary
background encompassing at least two of the prior scientific
fields. Although all included studies follow a design approach
(i.e. design, implementation and evaluation of specific AI models),
four studies [49–52] also conduct an extensive literature review
and/or case study, qualifying them as mixed methods approaches.
247 studies only provide an implementation or prototype, while
158 develop a general concept in addition to implementation.
Lastly, slightly more than half of the studies (n = 225) invent
new model approaches, while the remaining 180 studies rely on
existing model approaches.

As seen in Figure 5A, the most used explainability method
is feature relevance (n = 166), followed by the use of inherently
transparent models (n = 83) and applying architecture modifica-
tion (n = 72). Visual explanations are utilized in 52 studies, while
local explanations and simplifications are only employed 16 and
14 times, respectively. We also identified two studies providing
text explanations. Regarding the AI tasks (Figure 5B), multi-class
classification (n = 156) and binary classification (n = 105) predom-
inate. Prediction tasks are performed in 117 studies, while nine

Figure 3. Number and document type of publications by year.

other studies also conduct classification. Lastly, 18 papers carry
out clustering.

The studies can be attributed to 17 different medical fields
(Figure 5C). The three largest are medical research (n = 164), oncol-
ogy (n = 121) and clinical laboratory sciences (n = 48). All sub-
sequent categories were identified for 18 studies or fewer. As
for the omics data (Figure 5D), gene expression data are most
frequently used in the considered studies (n = 103), followed by
DNA sequence data (n = 83) and multi-omics data (n = 48), which
use a combination of at least two data categories. 46 studies
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Figure 4. Top five outlets (A) and scientific fields (B) of included publications.

Figure 5. Distribution of explainability method (A), AI task (B), medical field (C) and omics data (D) of included publications.

use proteomic data, and 45 studies analyze RNA sequence data.
Further, the least used data types are SNP data (n = 24), single-cell
ribonucleic acid (sc-RNA) sequence data (n = 20), microbiomic data
(n = 19), gene mutation data (n = 14) and 3D-genomics data (n = 3).

Further, the included studies can be divided into two categories
for the XAI model used (Figure 6). In total, 168 studies designed
an interpretable model, while 237 opted for an explainable model
(i.e. post-hoc procedures). It should be noted that 72 of the
studies coded as interpretable models achieve interpretability
through architecture modification or simplification. As for
post-hoc explainable XAI models, 44 papers have underlying
transparent AI models but nonetheless apply post-hoc explain-
ability procedures to improve understandability. Additionally,
19 studies developing new interpretable models also added

post-hoc explainability methods to their otherwise transparen
t models.

AI methods used for omics data
Combinations of multiple facets can be visualized and analyzed
as bubble charts. We first combine the applied AI method with the
underlying omics data to investigate which data and AI method
combinations have been considered for use with XAI (Figure 7).
These charts outlay the number of studies that each share a spe-
cific combination of categories (e.g. six papers used a statistics-
based approach as the AI method and DNA sequence as their
omics data). Supplementary Material 2 provides a detailed expla-
nation of the different AI methods.
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Figure 6. Distribution of XAI models found in our literature set.

DNA-based omics data
DNA sequence data are the second most used omics data in our
review (n = 83). Therefore, it is not surprising that many different
AI methods are applied for various analyses. Some approaches
use models generally considered transparent, like linear/logistic
regression (n = 4), generalized linear models (GLMs; n = 1), gradient
boosting (n = 7) or rule mining (n = 6). However, the majority
of studies (53.0%) focus on non-transparent models, including
random forests (n = 5), support vector machines (SVMs; n = 1) and
neural networks (NNs; n = 38). In fact, DNA sequences analyzed
by means of convolution neural networks (CNNs) are the most
common combination overall, with 22 instances (5.4%). For exam-
ple, Zuallaert et al. [53] utilize a CNN for splice site prediction on
DNA sequence data. The found motifs are then visualized for the
explainability of the network.

With 103 studies (25.4%), gene expressions are the most used
omics data type in our study. Each AI method, with the exception
of transformers, has been implemented at least once for gene
expression data. Nonetheless, the most prominent approaches
are multiple AI methods (n = 15), rule mining (n = 14) and deep
neural networks (DNNs; n = 14). For example, Shams et al. [54]
develop REM, a rule extraction methodology, by applying rule
mining to DNNs and decision trees. Anguita-Ruiz et al. [55] apply
rule mining to deduce temporal patterns in gene expression data
of obesity patients, while Calvo-Dmgz et al. [56] build a knowledge
and feature selection enhanced rule mining model for cancer type
classification. An example of the use of DNNs is the study by
Tang and Gottlieb [57], who predict the drug sensitivity of cancer
patients from gene expression data. To explain their DNN, they
apply the feature relevance method SHapley Additive exPlana-
tions, commonly known as SHAP.

Per our literature set, gene mutation data have been ana-
lyzed rather sparsely with XAI (n = 14). Cramer et al. [58] use
linear regression to predict the drug response of cancer patients,
whereas Sah et al. [59] apply a logistic regression for cancer
classification, and Fuji [60] as well as Warrell et al. [61] utilize a
DNN for pathogenicity and cancer type prediction, respectively.

We also identified 24 studies (5.9%) focusing on SNP data. Most
studies here utilize a DNN (n = 6) or shallow artificial neural
network (ANN; n = 5) as their AI method. For example, Sun et al.
[62] build a DNN to predict eye disease progression from SNP data.
Notably, Reyes et al. [63] develop a transformer to discover SNP–
SNP interactions for Parkinson’s disease. Most remaining papers
focus on transparent models (41.7%), such as statistics-based
approaches (n = 4), decision trees (n = 2) or rule mining (n = 2).

Our review also resulted in three studies analyzing 3D-genomic
data, of which two utilize NNs for Hi-C maps. Highsmith and

Cheng [64] design an adversarial network that is capable of
enhancing these maps for chromosome structure detection, while
Bigness et al. [65] use a GNN to deduce gene expressions. Xi and
Beer [66], on the other hand, use a multiple AI method pipeline to
predict CTCF gene interactions.

Transcriptomic data
In total, 45 studies investigate RNA sequence data. While some
use transparent models such as gradient boosting (e.g. [67]), clus-
tering algorithm (e.g. [68]) or rule mining (e.g. [22]), the majority
of papers (71.1%) present a non-transparent approach such as
CNNs (n = 11), DNNs (n = 7) or GNNs (n = 4). We also found three
studies like Pan and Shen [69], which utilize multiple AI methods,
in particular, a CNN and a deep belief network, to classify binding
site motifs from RNA sequences with their iDeep prototype.

Further, 20 studies focus on sc-RNA sequences (4.9%). These
do not use any other AI methods compared to general RNA
sequence analyses. Most studies apply DNNs (n = 5) or variational
autoencoders (n = 5). For example, Seninge et al. [70] present a
variational autoencoder for the analysis of sc-RNA sequence data.

Microbiomic, proteomic and multi-omics data
Another seldomly analyzed data type is microbiomic data (n = 19).
The most popular approach for our set is using multiple AI meth-
ods (n = 5), followed by DNNs (n = 3) and random forests (n = 3).
For example, Yang and Zou [71] utilize an AutoML pipeline, where
the model chooses the most suitable AI method based on the
provided microbiomic input data and specific classification task.
Five studies utilize transparent models, including rule mining
(n = 2), gradient boosting (n = 1) and decision trees (n = 1).

With 46 studies, proteomic data are the fourth most analyzed
data type of our review. While multiple AI methods (n = 7) (e.g. [72,
73]) and statistics-based approaches (n = 6) are predominant (e.g.
[74, 75]), most methods are implemented by at least one paper.
We further identified three studies utilizing transformers, such
as Sokhansanj et al. [76], aiming to predict COVID-19 infection
severity.

Lastly, we also identified 48 studies (11.9%) using multi-omics
data. These papers usually argue that one omics data type is not
sufficient to achieve their results and thus apply a second data
type for additional input information. The applied AI methods are
fairly diverse. In fact, multiple AI methods is the most used AI
method for multi-omics data (n = 10). While some studies, such
as Liu et al. [77], strive to combine multiple AI methods into one
linear model pipeline (e.g. first CNN and then RNN), the majority
of these studies actually compare different AI models, which also
require different data types (i.e. one AI method is only used for
one omics data type). For example, Xu et al. [78] compare NNs
and tree-based methods with RNA sequence and proteomic data
to predict protein abundance. DNNs follow second with seven
studies (14.6%). For example, Levy-Jurgenson et al. [79] use DNA
sequence and gene expression data to predict DNA methylation.
Their DNN architecture is modified with an attention mechanism
to gain insights into the model. It should also be noted that
multi-omics is the only data type where every non-transparent
AI method in our coding scheme, including transformers (n = 4),
has been applied.

Explainability methods used for AI methods
Having investigated the use of AI methods on different types of
omics data, we subsequently analyze the applied explainability
methods for the different AI methods. Figure 8 provides a bubble
chart of all explainability methods used on certain AI methods
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Figure 7. Bubble chart of applied AI method and used omics data.

to visualize the frequency of the combinations found in our
literature set.

Neural networks
We found 184 (45.4%) articles using explainability methods on
NNs to analyze omics data, the overall most used AI method.
Therein, DNNs (n = 57) and CNNs (n = 49) are predominant. Across
all NNs, feature relevance is applied in 87 studies (47.3%). Many
approaches utilize SHAP values to identify the feature relevance
of the NNs, like Tang and Gottlieb [57], who use a DNN on gene
expression data to predict the drug sensitivity of cancer patients.
A more sophisticated approach was conducted by Shrikumar
et al. [80], who develop a framework called DeepLIFT to analyze
the feature relevance of DNNs. To validate their framework, the
authors utilize DNA sequence data. Next to the 31 manuscripts
applying feature relevance on DNNs, 20 and 15 manuscripts use
feature relevance for CNNs and ANNs, respectively. For example,
Sabando et al. [81] apply post-hoc feature analysis to support the
prediction of cytochrome interactions.

50 articles (27.2%) apply architecture modification on NNs to
achieve interpretability. These architecture modifications change
the network layout to represent biological connections like Fuji

et al. [60], who include knowledge graphs in DNNs to infer genetic
mutations. Besides DNNs (n = 17), these modifications are espe-
cially present in ANNs (n = 11) and CNNs (n = 9).

An emerging variation of NNs are variational autoencoders
(n = 19) and transformers (n = 8), which mostly use feature rel-
evance or architecture modifications. One especially promising
approach is VEGA, a variational autoencoder architecture with
enhanced transparency provided by including gene annotations
[82]. Transformers also build on visual explanations (n = 3, 37.5%),
for example, when diagnosing Parkinson’s disease [63].

The most frequent AI method using visual explanations are
CNNs (n = 18, 36.7%). For example, Ghanbari and Ohler [83] provide
consensus motifs to represent the attribution of different binding
sites. Visual explanations are used for other NNs as well but less
frequently (DNN = 4, GNN = 3, transformer = 3).

Tree-based methods
The second group in our mapping applies explainability methods
to tree-based methods. According to the taxonomy of Barredo
Arrieta et al. [10], decision trees are transparent models. Hence, all
nine articles implementing decision trees do not apply additional
explainability methods.
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Figure 8. Bubble chart of applied AI method and explainability method.

For other tree-based methods, a common post-hoc approach
is feature relevance, for instance, random forests (55.0%) and
gradient boosting (78.3%). One article develops an explainability
framework to analyze highly multiplexed spatial data in the
context of spatial gene expression profiles in a breast cancer data
set [84].

For five studies (25.0%), explainability is improved by simplify-
ing random forests. Pliakos and Vens [85] develop an approach to
aggregate an ensemble of bi-clustering random forests to fit into
one tree, preserving interpretability.

Statistical methods
In total, 64 articles apply statistical methods to omics data. 40
articles rely on transparent models (62.5%) like Bayesian networks
and linear or logistic regression and do not apply additional
post-hoc approaches. While 12 out of 13 articles using Bayesian
networks focus on their transparent nature, other transparent

methods, like logistic regression, include additional explainability
methods such as feature relevance. In all five identified arti-
cles using feature relevance on logistic regression algorithms,
the feature relevance was conducted post-hoc to increase the
explainability of the results after the regression was completed.

Other statistics-based approaches apply architecture modi-
fication (n = 3), like Alexander and Lange [86], who adapt the
loss function of the existing ADMIXTURE algorithm to improve
predictions of individual ancestry estimation or feature relevance
(n = 7), like Pai et al. [24] who use patient similarity networks for
cancer subtype classification.

Further AI methods
Rule mining approaches (n = 30) are the third most used AI method
besides NNs (n = 184) and manuscripts using multiple AI methods
(n = 57). 21 articles considered rule mining approaches as trans-
parent (70.0%). However, despite their transparent nature, nine
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articles apply additional explainability measures by visual expla-
nation (10.0%) or architecture modification (16.7%). For example,
biological knowledge of DNA gene expressions improved the pre-
dictive performance of rule mining approaches by adapting the
model architecture to suit this knowledge [56].

Six articles apply different explainability approaches to
clustering algorithms. One of the two transparent clustering
algorithms includes non-negative decompositions, which results
in sparser clustering for cancer detection [87]. Architecture
modification helped another approach to build hierarchical
clustering based on different data sets [68]. The other three arti-
cles increase explainability by applying simplification or visual
explanation.

Further, we also found 12 articles applying explainability meth-
ods to SVMs. The most prominent method is architecture modifi-
cation (41.7%). For example, Johannes et al. [88] iteratively remove
low-impact features for improved interpretability while main-
taining high predictive performance for cancer risk stratification.
Additionally, four articles apply feature relevance to SVMs, for
example, by conducting an additional clustering step to assess
feature relevance [89].

In our sample, a large share of articles applies multiple
AI methods (n = 57). Most of these articles use feature rel-
evance methods (57.9%) like SHAP to assess and compare
the explainability of different AI methods (e.g. [90–92]). Other
manuscripts compare transparent models (n = 7) or support
the investigation by visual explanations (n = 7), as in Chen
et al. [93], who develop a framework to compare multiple AI
methods.

Relationships between omics data, ai method
and explainability method
The alluvial chart in Figure 9 combines the insights from our
two-dimensional mappings shown in Figures 7 and 8 and unveils
an overview of the connections of the investigated mapping
dimensions. With the different omics types shown on the left side,
we see the heavy focus in the literature on DNA-based data like
DNA sequence data and gene expression data. The central column
shows the AI methods with large use of DNNs, CNNs and multiple
AI methods. The column on the right-hand side shows the
applied explainability methods to the corresponding AI methods.
Therein, we see the predominant use of feature relevance as well
as the limited use of simplification, text explanations or local
explanations.

From this overview, we can identify the frequently used AI
methods. Hence, we see the use of CNNs for DNA sequence data,
rule mining and DNNs for gene expression data and multiple AI
methods for multi-omics data. Across all other omics data types,
no clear indications of a predominantly used AI approach can
be made.

On the right side, we see that most AI method and explain-
ability method combinations are present. There are, however, a
few combinations that stand out. For example, most rule mining,
Bayesian network and statistics-based approaches are consid-
ered transparent models. Nevertheless, a few approaches also
apply visual explanations or architecture modifications. DNNs
and multiple AI methods are frequently explained by applying
feature relevance or architecture modification. While both are
also present in papers using CNNs, the focus of explainability
methods in CNNs lies with visual explanations. Most gradient
boosting algorithms rely on feature relevance to improve the
model’s explainability.

DISCUSSION
Analysis of our systematic maps outlines not only current
research trends of XAI for omics data but also reveals important
research gaps. In particular, the bubble charts can be used to
identify potential research gaps through the absence of certain
facet combinations (e.g. ANN, CNN or RNN and gene mutation
data). Moreover, sparse combinations may indicate new and
upcoming trends (e.g. CNNs and simplification). We also utilized
the findings of the alluvial chart (Figure 9) and our thematic
insights gained during the classification scheme development
and literature classification to deduce possible future research
directions. Hence, we present and discuss eight directions for
future research that emerged as a result of our literature review.
For each direction, we also present illustrative RQs to motivate
future investigation and provide actionable guidance for further
research. These exemplary RQs are intended to serve as starting
points, and future research should expand on them as well as our
research directions in general to develop additional RQs relevant
to their specific XAI and omics data research projects. Table 3
provides an overview of the research directions as well as derived
potential RQs.

Apply XAI-supported neural networks to omics
data
Within our dataset, the most frequent AI models are NNs.
Every examined data type has at least one variation of an NN
approach where explainability methods were included. There
are many different types of NNs, ranging from relatively simple
three-layer ANNs, over multi-layer DNNs, to specialized NNs
such as variational autoencoders, RNNs or transformers. Since
all NNs share common architectural features, we believe that
research and practice could benefit from applying explainability
approaches across NNs. For example, motif extraction, as pre-
sented by Amilpur and Bhukya [94], could benefit not only GNNs
but also other approaches like RNNs or DNNs with only minor
adaptations. Other papers propose the development of simplified
interpretable NNs, for example, by including prior knowledge
into the models so each node represents biological knowledge
[95]. This interpretability approach could also be introduced
into DNNs, which might produce even better results due to
their increased number of connections. Because NNs belong to
the most complex AI methods, they usually lack transparency
and understandability. Recently, research has also focused on
architecture modification to create knowledge-enhanced and
more transparent NNs, like Nguyen et al. [96], who include a novel
monotonicity constraint between the layers of their DNN.

The frequent use of DL also comes with challenges when
analyzing omics data. As illustrated by the above-mentioned
examples, there are potential approaches to include explainability
methods in NNs. However, the number of studies developing
NNs without attempting to understand their inner workings is
far greater, and not all explainability approaches are equally
well suited for different omics use cases and different NNs. For
example, CNNs are mainly applied to DNA and RNA sequence
data. A starting point for further research might be to look into
other types of sequence data, such as sc-RNA sequence data.
Other studies have demonstrated the applicability of DNNs or
transformers to gene mutation and SNP data, indicating that
other NNs may also be suitable. Especially the latter have been
gaining momentum within AI research. However, our review
resulted in only eight studies applying transformers to omics data.
Nonetheless, four of these studies focus on multi-omics data (e.g.
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Figure 9. Alluvial chart mapping omics data on AI method and explainability method.

Tang et al. [97] include DNA and RNA sequence data as well as
proteomic data), highlighting the versatility and applicability of
transformers to other omics data. Because NNs are among the
most popular and best-performing AI methods for omics data
analysis, despite the current lack of understandability, we pose
the potential research question:

RQ A-1: How can XAI-supported NNs (especially transform-
ers) be utilized to analyze omics data?

While CNNs can be used for one-dimensional data such as
DNA sequence data, their strength lies in the analysis of two-
dimensional input data in particular images [10]. In fact, our
mapping has shown that many studies adapt their omics data
into two-dimensional data. For example, Karim et al. [98] utilize
the DeepInsight framework to transform their gene expression
data into images, which are then classified with a CNN, allowing
for visual post-hoc explanations via SHAP pixel maps. The main
advantage of CNNs and image input data is that they allow for
a visual explanation, which is possibly the best comprehensi-
ble explanation technique to date. On the downside, however,
additional data preparation or conversion may be required to
allow for meaningful analysis when using CNNs for omics data
in this way. Therefore, we call on research that investigates the
following:

RQ A-2: Which data preparations are necessary to apply XAI-
enhanced CNNs to omics data?

Moreover, choosing a suitable NN for a given use case can be
very challenging, given that they can be laid out for diverse data
types and applications. This is especially problematic in the omics
sciences, where the data themselves and possible outputs may
not be fully comprehensible (i.e. underlying biological processes
are unclear). We, therefore, pose the question:

RQ A-3: Which XAI approaches are the most promising for
NNs applied to omics data to understand the underlying
biological processes?

Add post-hoc analysis to transparent models
In principle, transparent models such as Bayesian networks
or decision trees do not require post-hoc explainability as the
models themselves are interpretable. However, transparent
models can also get very complex when dealing with vast
amounts of high-dimensional data like omics data. Therefore,
applying additional post-hoc explanations to, in principle, already
transparent models can help reduce complexity and improve
the understandability of these models and their outputs. For
example, our results show that feature relevance is especially
used in statistics-based approaches (25.0%) and gradient boosting
(78.3%), approaches that are regarded transparent. Most rule
mining approaches are considered transparent (70.0%), but
post-hoc explainability methods like architecture modifications
(16.7%) are used as well. For most transparent models, we also
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Table 3: Summary of research directions and illustrative research questions.

Research direction Illustrative RQs

A. Apply XAI-supported neural networks to omics data RQ A-1: How can XAI-supported NNs (especially transformers) be
utilized to analyze omics data?
RQ A-2: Which data preparations are necessary to apply XAI-enhanced
CNNs to omics data?
RQ A-3: Which XAI approaches are the most promising for NNs applied
to omics data to understand the underlying biological processes?

B. Add post-hoc analysis to transparent models RQ B-1: How can post-hoc explanations improve the understandability
of transparent models for omics data?
RQ B-2: How can visual explanations aid the analysis of omics data
with transparent AI models?

C. Use simplification and local explanations for post-hoc analysis of
omics data

RQ C-1: How can NNs be simplified to improve the transparency of
omics data analysis?
RQ C-2: How can DL models (such as CNNs) for omics data be explained
through local explanations?

D. Develop new interpretable models for omics data and adapt existing
post-hoc explainability methods

RQ D-1: Which measures are necessary to construct post-hoc
explainable models with omics data that are deployable in healthcare
practice?
RQ D-2: How can current non-transparent models be modified (e.g.
through architecture modification) into novel interpretable models?

E. Combine different explainability methods RQ E-1: How can different explainability methods be combined for
AI-based omics data analysis?

F. Apply explanations by example and text explanations to omics data RQ F-1: How can explanations by example improve post-hoc analysis of
omics data?
RQ F-2: How can text explanations improve post-hoc analysis of omics
data?

G. Investigate XAI for novel omics data RQ G-1: How can XAI foster analysis of novel omics data?
H. Explore the role of XAI for omics data in decision-making processes RQ H-1: How does XAI afford (bio)medical experts to gain new insights,

and how does it impact experts’ decision-making in omics use cases?

found some studies using visual explanations. For example, four
studies visualized their statistics-based approach, while three
studies added visual explanations on top of their rule mining
model. Therefore, it might be worth investigating extant and
novel transparent models with post-hoc explainability techniques
to improve understandability. This investigation should also
include guidelines on best-suited post-hoc explainability methods
depending on the different ML models. Therefore, we pose the
exemplary RQ:

RQ B-1: How can post-hoc explanations improve the under-
standability of transparent models for omics data?

Visual explanations are some of the most helpful post-hoc
explainability methods to improve human understandability, as
they allow for the interpretation of vast amounts of data in a
single (or a select few) images. In our review, visual explanations
account for 52 of 250 post-hoc approaches (20.8%) and are applied
to 14 different AI methods. Additionally, many studies having
other primary explainability methods (such as feature relevance
or architecture modification) nonetheless use visual explanations
as an auxiliary measure. For example, Patel-Murray et al. [99]
visualize their clustering results, although their focus lies on
model simplification. Similarly, results and performance graphs
could also be seen as visual explanations. We argue that all AI
methods, and in particular transparent models, do benefit from
visualizing the input, model or output and thus propose the
following exemplary RQ:

RQ B-2: How can visual explanations aid the analysis of
omics data with transparent AI models?

Use simplification and local explanations for
post-hoc analysis of omics data
Within our literature set, we only identified a limited number of
studies that employed simplification (n = 14) and local explana-
tions (n = 16) as their explainability methods. This finding is not
surprising as implementing such methods is often more complex
than, for example, feature relevance.

Simplification, for one, not only requires a good understanding
of how AI methods can be simplified, but researchers must also
be adept with the use case and omics data at hand. While random
forests are the most popular (n = 5), one other group of meth-
ods seemingly suited for simplification is NNs, as attempting to
reduce the number of hidden layers and nodes should be a natural
first step. However, we only saw five out of 184 publications apply-
ing simplification to NNs. While DNNs usually improve predictive
performance, they often lack interpretability due to their depth
and black box characteristics [9, 10]. Exactly those characteristics
often hinder the simplification of NNs. Nonetheless, simplifying
DNNs into shallow ANNs could maintain sufficient predictive
performance while increasing interpretability. This is especially
relevant for omics data, as simplifying network structures often
allows for more biological interpretability by unveiling how cer-
tain processes are connected. For instance, simplification could
be introduced by iteratively splitting the network into subnet-
works that fulfill specific sub-tasks. Warrell et al. [61] apply this
simplification approach to cancer-type detection, but it should be
applicable to other use cases as well. Hence, we pose:

RQ C-1: How can NNs be simplified to improve the trans-
parency of omics data analysis?
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Similarly, local explanations offer increased explainability
by explaining only parts of the model. While this does not
reduce model complexity, it allows researchers to investigate
smaller parts at once. This is especially helpful for imaging tasks.
For example, the LIME framework (Local Interpretable Model-
Agnostic Explanations) can highlight the most important regions
contributing to a CNN’s output decision [100]. Hence, we propose
the following RQ:

RQ C-2: How can DL models (such as CNNs) for omics data
be explained through local explanations?

Develop new interpretable models for omics data
and adapt existing post-hoc explainability
methods
Although AI has been a prominent research topic for several
decades now, XAI research for omics data has only recently gained
momentum. When dissecting the XAI models used by publication
year, we see that almost all studies from 2010 to 2014 in our review
followed an interpretable model approach. Starting in 2015, how-
ever, there has been a steady increase in post-hoc explainable
approaches, outnumbering the interpretable approaches since
2018 and with nearly twice as many approaches in 2022 (31 inter-
pretable versus 61 explainable, cf. Supplementary Material 3).
These observations are in line with previous findings on XAI
research in general, highlighting the fast increase of XAI-focused
studies and increasing post-hoc explainability approaches [10].
These post-hoc explainability approaches, especially feature rel-
evance approaches like SHAP, are most often applied to DL tech-
niques established in practice. This may be the case because it
is often easier to add additional post-hoc explainability methods
than to develop new interpretable models, for example, through
architecture modification. However, most DL techniques are only
sparsely established in healthcare practice. Therefore, it remains
unanswered how these post-hoc explainability approaches could
be included in practice at clinical sites. Hence, we propose the
following RQ:

RQ D-1: Which measures are necessary to construct post-
hoc explainable models with omics data that are deployable
in healthcare practice?

Especially for non-transparent models (e.g. NNs or SVMs), post-
hoc explainability models are more common (73.6%). Nonethe-
less, there are first attempts in literature, such as Young and Lu
[101], who propose to modify the architecture of a DNN into a so-
called redundant input NN, allowing them to achieve partial inter-
pretability of the hidden layers. Their approach allows them to
investigate the genomic alterations in cancer cell signaling. Mod-
ifying model architectures may offer a higher potential of fully
incorporating existing knowledge and understanding the under-
lying biological processes. To achieve this, however, researchers
must develop new interpretable models altogether or achieve
interpretability through alteration (i.e. architecture modification
or simplification) of existing DL methods. Therefore, we propose:

RQ D-2: How can current non-transparent models be modi-
fied (e.g. through architecture modification) into novel inter-
pretable models?

Combine different explainability methods
When choosing a post-hoc approach, usually multiple methods
are tested for fit with the given use case. In fact, we presume
that many researchers included in our study have tested different

explainability methods but only presented the most suitable ones.
Occasionally, we found some authors using multiple explainabil-
ity methods, especially when dealing with multiple AI methods.
However, we are not aware of many instances where multiple
post-hoc explainability methods are combined (e.g. merged or
executed in sequence) but are rather used separately. Certain
frameworks such as DeepShap combine different explainabil-
ity methods, for example, by first calculating Shapley values
(i.e. feature relevance) and then visualizing them onto an image
(i.e. visual explanation). Our review showed that using multiple
AI methods is one of the most common approaches (n = 57).
Some of these studies create performance-improved multi-model
pipelines, a strategy we propose could also be applied to multiple
explainability techniques (e.g. [72, 102]). With first promising
approaches in that direction, it might be worth investigating how
different explainability methods can be combined to improve the
human understandability of black box models. Consequently, we
pose the RQ:

RQ E-1: How can different explainability methods be com-
bined for AI-based omics data analysis?

Apply explanations by example and text
explanations to omics data
While our mapping mainly includes four types of post-hoc
explainability methods (i.e. feature relevance, simplification,
local explanation, visual explanation), the original coding based
on Barredo Arrieta et al. [10] includes two further post-hoc
methods, namely, explanation by example and text explanations.
The very low representation of these methods, however, is not
surprising to us, as both approaches are also seldom found in
other research domains. Nonetheless, research has already shown
the applicability and advantages of both explanations by example
(e.g. [103]) and text explanations (e.g. [104]).

Applying explanations by example to omics data could, for
example, help experts determine the correct classification or
prediction of a model by selecting single data examples that
represent a certain class, thus providing an understanding of
how the model classifies certain input data. With this theoretical
applicability and potential benefits to omics data analysis, we
pose the following RQ:

RQ F-1: How can explanations by example improve post-hoc
analysis of omics data?

Similarly, the semantic properties of text explanations make
output results understandable in human-readable terms and may
thus help doctors and practitioners not familiar with the inner
workings of an AI method interpret its results. Additionally, text
explanations may also aid omics data researchers in produc-
ing human-readable output explaining the underlying biological
processes. Based on the rapid improvements in large language
models, the generation of text explanations could be facilitated. In
fact, our review did include two recent approaches applying text
explanations [105, 106], demonstrating the applicability for omics
data. Therefore, we pose:

RQ F-2: How can text explanations improve post-hoc analysis
of omics data?

Investigate XAI for novel omics data
Our review also highlighted that more novel data types like 3D-
genomic data (n = 3) or certain gene mutation data (n = 14) appear
to be analyzed less frequently by means of XAI. We found some
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omics data types not to be analyzed with the help of XAI in
the literature at all, such as cellular lipids, cellular carbohy-
drates, ribosomal and messenger RNA sequence or genotyping
data. Especially the latter is gaining momentum, with direct-to-
consumer genetic testing becoming popular for personal health
[107]. With XAI showing promising results for many omics data
types, research should continue investigating XAI not only for
existing use cases and data but also, especially for novel omics
data. Hence, we pose:

RQ G-1: How can XAI foster analysis of novel omics data?

Explore the role of XAI for omics data in
decision-making processes
Lastly, within our study, we noticed that contemporary research
on XAI for omics data is mostly dedicated to the implementation
of diverse XAI approaches. Only four studies in our reviewed liter-
ature followed a mixed methods approach, with the rest focusing
merely on design and implementation (cf. the research approach
and research method columns in Supplementary Material 1).
While these are highly valuable and desired research efforts, we
currently lack an understanding of how XAI approaches actually
afford (bio)medical experts to gain new insights and how they
impact their decision-making in omics use cases. There is a
nascent stream of literature that investigates experts’ cognitive
processes in joint human–AI decision-making settings (e.g. [108,
109]). However, these studies usually take the stance of opaque,
black box AI models providing recommendations to experts. They
thus mostly neglect XAI methods’ potential to increase the under-
standability and transparency of black box AI models (e.g. through
providing insights into the underlying biological processes [14])
and how this might impact human cognition and decision-making
processes. Recognizing this gap in extant research, we raise the
following research question:

RQ H-1: How does XAI afford (bio)medical experts to gain
new insights, and how does it impact experts’ decision-
making in omics use cases?

Limitations and contributions
Our research is not without limitations. First, the systematic
mapping method is subjective to some degree and depends on the
facets and categories deduced during the keywording and data
extraction steps. We strived to minimize subjectivity by including
multiple researchers in the analyses. Second, we only considered
peer-reviewed research articles and preprints from select sources.
This excluded non-scientific publications such as white papers
and blog posts, which can often entail more recent findings on XAI
and omics data. Nevertheless, we are confident that, together with
the inclusion of preprints, our systematic mapping study includes
a broad range of XAI applications for omics data.

Our study makes important contributions to research and
practice. First, we contribute to the different and interdisciplinary
research streams of XAI for omics data by synthesizing the knowl-
edge and contributions of the various research communities to
this field of research. In doing so, we summarize and highlight
the main findings of current XAI implementations for omics data
found in extant literature. Moreover, our results can help make
researchers aware of other fields with similar interests, transmit
previously isolated knowledge, bridge the gap and foster collabo-
ration between these distinct research communities. Second, we
utilize our overview to deduct and present eight directions for
future research on XAI for omics data. These research directions
outline open and interesting future issues in the field that, based

on our review, need to be addressed to move the field forward.
We also provide exemplary RQs per research direction, which may
serve as concrete starting points for future research. Third, we
developed a systematic mapping scheme, which can be utilized to
classify and map future implementations of XAI for omics data.
Our classification scheme can aid developers as an orientation as
to which approaches have already been tried and how their XAI
implementation may contribute to omics research. With slight
alterations of the classification scheme to the data-related dimen-
sions, it can also be easily adapted to other healthcare-related
fields where XAI is of interest.

CONCLUSION
In this study, we investigated extant literature on the application
of XAI for omics data by means of a systematic mapping study. We
identified 405 relevant publications; developed a coding scheme
with 10 facets focusing on AI, XAI and omics data aspects; and
mapped all studies accordingly. We investigated frequent patterns
in the combination of AI methods, omics data and explainability
methods. Subsequently, we deduced eight future research direc-
tions for research on XAI for omics data as a contribution to
research and practice. With our mapping study, we, therefore,
shed light onto this interdisciplinary and quickly growing research
stream, seeking to bridge the gap between isolated islands of
research on the topic. Further, this review may support the trans-
fer of knowledge between the omics sciences and XAI research
and thus enable a more targeted progression of the literature on
XAI for omics data.

Key Points

• Systematic mapping study of 405 papers with a 10-
facet classification scheme addressing the used AI
and explainability methods as well as the underlying
omics data.

• We analyzed the AI methods used for omics data and
the explainability method per AI method, from which
we derived eight research directions and a total of 14
exemplary research questions for future investigation.

• Most approaches in our sample applied explainability
methods on neural networks, so we call for additional
research on the application of explainability methods on
other AI models or data types.

• Our sample showed only a few approaches applying
simplification, local explanations or text explanations.
Therefore, future research should investigate the use of
previously unused explainability methods.

• With mostly post-hoc explainable approaches present in
our sample, we argue for more transparent approaches
or a combination of both.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxford
journals.org/.

FUNDING
The present contribution is supported by the Helmholtz Associ-
ation under the joint research school ‘HIDSS4Health—Helmholtz
Information and Data Science School for Health’. We acknowledge
support by the KIT-Publication Fund of the Karlsruhe Institute of
Technology.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad453/7477798 by KIT Library user on 29 D

ecem
ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad453#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad453#supplementary-data
http://bib.oxfordjournals.org/


14 | Toussaint et al.

DATA AVAILABILITY
The data underlying this article are available in the article and in
its online supplementary material.

References
1. Adadi AB, M. Peeking inside the black-box: a survey on explain-

able artificial intelligence (XAI). IEEE Access 2018;6:52138–60.
2. Rong G, Mendez A, Bou Assi E, et al. Artificial intelligence

in healthcare: review and prediction case studies. Engineering
2020;6:291–301.

3. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare.
Nat Biomed Eng 2018;2:719–31.

4. Han H, Liu X. The challenges of explainable AI in biomedical
data science. BMC Bioinformatics 2022;22:443.

5. Shortliffe EH, Chiang MF. Biomedical data: their acquisition,
storage, and use. In: Shortliffe EH, Cimino JJ (eds). Biomedical
Informatics: Computer Applications in Health Care and Biomedicine.
Cham: Springer International Publishing, 2021, 45–75.

6. Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome
and proteome: the rise of omics data and their integration in
biomedical sciences. Brief Bioinform 2018;19:286–302.

7. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare:
review, opportunities and challenges. Brief Bioinform 2018;19:
1236–46.

8. Kaur P, Singh A, Chana I. Computational techniques and tools
for omics data analysis: state-of-the-art, challenges, and future
directions. Arch Comput Methods Eng 2021;28:4595–631.

9. Martorell-Marugan J, Tabik S, Benhammou Y, et al. In: Husi H
(ed). Deep Learning in Omics Data Analysis and Precision Medicine.
Brisbane: Computational Biology, 2019.

10. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, et al. Explainable
artificial intelligence (XAI): concepts, taxonomies, opportuni-
ties and challenges toward responsible AI. Inf Fusion 2020;58:
82–115.

11. Amann J, Blasimme A, Vayena E, et al. Explainability for artifi-
cial intelligence in healthcare: a multidisciplinary perspective.
BMC Med Inform Decis Mak 2020;20:310.

12. Goodman B, Flaxman S. European Union regulations on algo-
rithmic decision-making and a “right to explanation”. AI Mag
2017;38:50–7.

13. Tjoa E, Guan C. A survey on explainable artificial intelligence
(XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst
2021;32:4793–813.

14. Lötsch J, Kringel D, Ultsch A. Explainable artificial intelligence
(XAI) in biomedicine: making AI decisions trustworthy for
physicians and patients. BioMedInformatics 2021;2:1–17.

15. Chaddad A, Peng J, Xu J, Bouridane A. Survey of explainable AI
techniques in healthcare. Sensors 2023;23:634–52.

16. Malinverno L, Barros V, Ghisoni F et al. Explainable AI in
Biomedical Research: A Systematic Review and Meta-Analysis.
Lancet. London, UK. https://doi.org/10.2139/ssrn.4335108
(27 July 2023, date last accessed).

17. Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need
to build explainable AI systems for the medical domain? arXiv.
New York, USA. https://arxiv.org/abs/1712.09923 (7 December
2022, date last accessed).

18. Samek W, Wiegand T , Müller K-R. Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep
Learning Models. arXiv. New York, USA. https://arxiv.org/
abs/1708.08296 (7 December 2022, date last accessed).

19. Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for
explaining black box models. ACM Comput Surv 2018;51:1–42.

20. Caudai C, Galizia A, Geraci F, et al. AI applications in functional
genomics. Comput Struct Biotechnol J 2021;19:5762–90.

21. Rasheed K, Qayyum A, Ghaly M, et al. Explainable, trustworthy,
and ethical machine learning for healthcare: a survey. Comput
Biol Med 2022;149:106043.

22. Potie N, Giannoukakos S, Hackenberg M, et al. On the Need
of Interpretability for Biomedical Applications: Using Fuzzy
Models for Lung Cancer Prediction with Liquid Biopsy. In: 2019
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). New
Orleans, LA, USA. 2019, 1–6. IEEE, New York, NY, USA.

23. Chen T, Wang X, Chu Y, et al. T4SE-XGB: interpretable
sequence-based prediction of type IV secreted effectors
using extreme gradient boosting algorithm. Front Microbiol
2020;11:580382.

24. Pai S, Hui S, Isserlin R, et al. netDx: interpretable patient classi-
fication using integrated patient similarity networks. Mol Syst
Biol 2019;15:e8497.

25. Deng L, Cai Y, Zhang W, et al. Pathway-guided deep neural
network toward interpretable and predictive modeling of drug
sensitivity. J Chem Inf Model 2020;60:4497–505.

26. Shen YW, Wu C, Liu C, et al. Oriented feature selection SVM
applied to cancer prediction in precision medicine. IEEE Access
2018;6:48510–21.

27. Yang G, Rao A, Fernandez-Maloigne C et al. Explainable AI
(XAI) in biomedical signal and image processing: promises
and challenges. In: 2022 IEEE International Conference on Image
Processing (ICIP). Bordeaux, France. 2022, p. 1531–5. IEEE, New
York, NY, USA.

28. Li R, Li L, Xu Y, Yang J. Machine learning meets omics: applica-
tions and perspectives. Brief Bioinform 2022;23:1–22, bbab460.

29. Zeng ISL, Lumley T. Review of statistical learning methods in
integrated omics studies (an integrated information science).
Bioinform Biol Insights 2018;12:117793221875929.

30. Libbrecht MW, Noble WS. Machine learning applications in
genetics and genomics. Nat Rev Genet 2015;16:321–32.

31. Swan AL, Mobasheri A, Allaway D, et al. Application of machine
learning to proteomics data: classification and biomarker iden-
tification in postgenomics biology. OMICS 2013;17:595–610.

32. Ghannam RB, Techtmann SM. Machine learning applications
in microbial ecology, human microbiome studies, and environ-
mental monitoring. Comput Struct Biotechnol J 2021;19:1092–107.

33. Kim Y, Kim GB, Lee SY. Machine learning applications in
genome-scale metabolic modeling. Current Opinion in Systems
Biology 2021;25:42–9.

34. Ho DSW, Schierding W, Wake M, et al. Machine learning SNP
based prediction for precision medicine. Front Genet 2019;
10:267.

35. Yang M, Ma J. Machine learning methods for exploring
sequence determinants of 3D genome organization. J Mol Biol
2022;434:167666.

36. Qi R, Ma A, Ma Q, Zou Q. Clustering and classification methods
for single-cell RNA-sequencing data. Brief Bioinform 2020;21:
1196–208.

37. Wang Z, Jiang Y, Liu Z et al. Machine learning and ensemble
learning for transcriptome data: principles and advances. In:
2022 5th International Conference on Advanced Electronic Materials,
Computers and Software Engineering (AEMCSE). Wuhan, China.
2022, p. 676–83. IEEE, New York, NY, USA.

38. Samal BR, Loers JU, Vermeirssen V, de Preter K. Opportunities
and challenges in interpretable deep learning for drug sensitiv-
ity prediction of cancer cells. Front Bioinform 2022;2:1036963.

39. Shreve JT, Khanani SA, Haddad TC. Artificial intelligence
in oncology: current capabilities, future opportunities, and

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad453/7477798 by KIT Library user on 29 D

ecem
ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad453#supplementary-data
https://doi.org/10.2139/ssrn.4335108
https://doi.org/10.2139/ssrn.4335108
https://doi.org/10.2139/ssrn.4335108
https://doi.org/10.2139/ssrn.4335108
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296


XAI for omics data | 15

ethical considerations. Am Soc Clin Oncol Educ Book 2022;42:
1–10.

40. Oller-Moreno S, Kloiber K, Machart P, Bonn S. Algorithmic
advances in machine learning for single-cell expression analy-
sis. Curr Opin Syst Biol 2021;25:27–33.

41. Novakovsky G, Dexter N, Libbrecht MW, et al. Obtaining genet-
ics insights from deep learning via explainable artificial intel-
ligence. Nat Rev Genet 2022;24:125–37.

42. Talukder A, Barham C, Li X, Hu H. Interpretation of deep learn-
ing in genomics and epigenomics. Brief Bioinform 2021;22:22.

43. Reel PS, Reel S, Pearson E, et al. Using machine learning
approaches for multi-omics data analysis: a review. Biotechnol
Adv 2021;49:107739.

44. Chlioui I, Idri A, Abnane I. Data preprocessing in knowledge
discovery in breast cancer: systematic mapping study. Comput
Methods Biomech Biomed Eng Imaging Vis 2020;8:547–61.

45. Lozano-Rojas D, Free RC, McEwan AA et al. A systematic liter-
ature review of machine learning applications for community-
acquired pneumonia. In: Su R, Zhang YD, Liu H (eds.).
Proceedings of 2021 International Conference on Medical Imaging
and Computer-Aided Diagnosis (MICAD 2021). Singapore, 2022,
p. 292–301. Springer, Singapore.

46. Mehta N, Pandit A, Shukla S. Transforming healthcare with big
data analytics and artificial intelligence: a systematic mapping
study. J Biomed Inform 2019;100:103311.

47. Sadoughi F, Behmanesh A, Sayfouri N. Internet of things
in medicine: a systematic mapping study. J Biomed Inform
2020;103:103383.

48. Petersen K, Robert F, Shahid M, Mattsson M. Systematic map-
ping studies in software engineering. In: Visaggio GB, Teresa
M, Linkman S et al. (eds). Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering,
Vol. 784. Bari, Italy: BCS Learning & Development Ltd., 2008,
68–77.

49. Bernaola N, Michiels M, Larrañaga P, et al. Learning massive
interpretable gene regulatory networks of the human brain by
merging Bayesian networks. bioRxiv. 2020; 2020.02.05.935007.

50. Pai S, Bader GD. Patient similarity networks for precision
medicine. J Mol Biol 2018;430:2924–38.

51. Danis D, Jacobsen JOB, Carmody LC, et al. Interpretable pri-
oritization of splice variants in diagnostic next-generation
sequencing. Am J Hum Genet 2021;108:1564–77.

52. Yagin FH, Cicek IB, Alkhateeb A, et al. Explainable artificial
intelligence model for identifying COVID-19 gene biomarkers.
Comput Biol Med 2023;154:106619.

53. Zuallaert J, Godin F, Kim M, et al. SpliceRover: interpretable con-
volutional neural networks for improved splice site prediction.
Bioinformatics 2018;34:4180–8.

54. Shams Z, Dimanov B, Kola S, et al. REM: an integrative
rule extraction methodology for explainable data analysis in
healthcare. medRxiv. 2021; 2021.01.25.21250459.

55. Anguita-Ruiz A, Segura-Delgado A, Alcala R, et al. eXplain-
able artificial intelligence (XAI) for the identification of bio-
logically relevant gene expression patterns in longitudinal
human studies, insights from obesity research. PLoS Comput Biol
2020;16:e1007792.

56. Calvo-Dmgz D, Gálvez JF, Glez-Peña D, et al. Using variable
precision rough set for selection and classification of biological
knowledge integrated in DNA gene expression. J Integr Bioinform
2012;9:1–17.

57. Tang Y-C, Gottlieb A. PathDSP: explainable drug sensitivity
prediction through cancer pathway enrichment. bioRxiv. 2020;
2020.11.09.374132.

58. Cramer D, Mazur J, Espinosa O, et al. Genetic interactions and
tissue specificity modulate the association of mutations with
drug response. Mol Cancer Ther 2020;19:927–36.

59. Sah AK, Mishra A, Reddy US. Machine learning approach
for feature interpretation and classification of genetic muta-
tions leading to tumor and cancer. In: Sengodan T, Muru-
gappan M, Misra S (eds.). Advances in Electrical and Computer
Technologies, Vol. 672. Singapore: Springer, Singapore, 2020,
387–95.

60. Fuji, Hajime M, Keisuke G, et al. Explainable AI through com-
bination of deep tensor and knowledge graph. Fujitsu Sci Tech J
2019;55:55–64.

61. Warrell J, Mohsen H, Gerstein M. Compression-based network
interpretability schemes. bioRxiv. 2020; 2020.10.27.358226.

62. Sun T, Wei Y, Chen W, Ding Y. Genome-wide association study-
based deep learning for survival prediction. Stat Med 2020;39:
4605–20.

63. Reyes DM, Kim M, Chao H, et al. Genomics transformer for
diagnosing Parkinson’s disease. IEEE EMBS Int Conf Biomed Health
Inform 2022;2022:10.1109/bhi56158.2022.992 6815. https://doi.
org/10.1109/bhi56158.2022.9926815

64. Highsmith M, Cheng J. VEHiCLE: a Variationally encoded hi-C
loss enhancement algorithm. bioRxiv. 2020; 2020.12.07.413559.

65. Bigness J, Loinaz X, Patel S, et al. Integrating long-range reg-
ulatory interactions to predict gene expression using graph
convolutional networks. bioRxiv. 2021; 2020.11.23.394478.

66. Xi W, Beer MA. Loop competition and extrusion model predicts
CTCF interaction specificity. Nat Commun 2021;12:1046.

67. Bi Y, Xiang D, Ge Z, et al. An interpretable prediction model for
identifying N(7)-Methylguanosine sites based on XGBoost and
SHAP. Mol Ther Nucleic Acids 2020;22:362–72.

68. Caldas J, Kaski S. Hierarchical generative biclustering for
microRNA expression analysis. J Comput Biol 2011;18:251–61.

69. Pan X, Shen HB. RNA-protein binding motifs mining with a new
hybrid deep learning based cross-domain knowledge integra-
tion approach. BMC Bioinformatics 2017;18:136.

70. Seninge L, Anastopoulos I, Ding H, et al. Biological network-
inspired interpretable variational autoencoder. bioRxiv. 2020;
2020.12.17.423310..

71. Yang F, Zou Q. mAML: an automated machine learning pipeline
with a microbiome repository for human disease classification.
Database 2020;2020:1–8, baaa050.

72. Jiang M, Zhao B, Luo S, et al. NeuroPpred-Fuse: an inter-
pretable stacking model for prediction of neuropeptides by
fusing sequence information and feature selection methods.
Brief Bioinform 2021;22:bbab310.

73. Momenzadeh A, Kreimer S, Guo D, et al. Machine learning
identifies plasma proteomic signatures of descending thoracic
aortic disease. bioRxiv 2023; 2023.04.26.538468.

74. Cunningham JM, Koytiger G, Sorger PK, AlQuraishi M. Bio-
physical prediction of protein-peptide interactions and signal-
ing networks using machine learning. Nat Methods 2020;17:
175–83.

75. Sampson DL, Parker TJ, Upton Z, Hurst CP. A comparison
of methods for classifying clinical samples based on pro-
teomics data: a case study for statistical and machine learning
approaches. PloS One 2011;6:e24973.

76. Sokhansanj BA, Zhao Z, Rosen GL. Interpretable and predic-
tive deep modeling of the SARS-CoV-2 spike protein sequence.
medRxiv. 2021; 2021.12.26.21268414.

77. Liu Q, He D, Xie L. Identifying context-specific network features
for CRISPR-Cas9 targeting efficiency using accurate and inter-
pretable deep neural network. bioRxiv. 2018; 505602.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad453/7477798 by KIT Library user on 29 D

ecem
ber 2023

https://doi.org/10.1109/bhi56158.2022.9926815
https://doi.org/10.1109/bhi56158.2022.9926815
https://doi.org/10.1109/bhi56158.2022.9926815
https://doi.org/10.1109/bhi56158.2022.9926815


16 | Toussaint et al.

78. Xu F, Wang S, Dai X, et al. Ensemble learning models that
predict surface protein abundance from single-cell multimodal
omics data. Methods 2021;189:65–73.

79. Levy-Jurgenson A, Tekpli X, Kristensen VN, Yakhini Z. Predict-
ing Methylation from Sequence and Gene Expression Using
Deep Learning with Attention. In: Holmes I, Martín-Vide C,
Vega-Rodríguez MA (eds.). Algorithms for Computational Biology.
Cham: Springer International Publishing, 2019, 179–90.

80. Shrikumar A, Greenside P, Kundaje A. Learning important fea-
tures through propagating activation differences. In: Doina P,
Yee WT (eds). Proceedings of the 34th International Conference on
Machine Learning. Sydney, Australia: PMLR, 2017, 3145–53.

81. Sabando MV, Ponzoni I, Soto AJ. Neural-based approaches to
overcome feature selection and applicability domain in drug-
related property prediction. Appl Soft Comput 2019;85:105777.

82. Seninge L, Anastopoulos I, Ding H, Stuart J. VEGA is
an interpretable generative model for inferring biological
network activity in single-cell transcriptomics. Nat Commun
2021;12:5684.

83. Ghanbari M, Ohler U. Deep neural networks for interpreting
RNA-binding protein target preferences. Genome Res 2020;30:
214–26.

84. Tanevski J, Flores ROR, Gabor A, et al. Explainable multi-view
framework for dissecting intercellular signaling from highly
multiplexed spatial data. bioRxiv. 2021: 2020.05.08.084145.

85. Pliakos K, Vens C. Network inference with ensembles of bi-
clustering trees. BMC Bioinformatics 2019;20:525.

86. Alexander DH, Lange K. Enhancements to the ADMIXTURE
algorithm for individual ancestry estimation. BMC Bioinformat-
ics 2011;12:246.

87. Badea L. Multirelational consensus clustering with non-
negative decompositions. In: De Raedt L, Bessiere C, Dubois
D, Doherty P, Frasconi P (eds.). Proceedings of the 20th European
Conference on Artificial Intelligence. Montpellier, France, 2012, p.
97–102. IOS Press, Amsterdam, Netherlands.

88. Johannes M, Brase JC, Frohlich H, et al. Integration of pathway
knowledge into a reweighted recursive feature elimination
approach for risk stratification of cancer patients. Bioinformatics
2010;26:2136–44.

89. Rahimi A, Gonen M. A multitask multiple kernel learning
formulation for discriminating early- and late-stage cancers.
Bioinformatics 2020;36:3766–72.

90. Hasan MM, Alam MA, Shoombuatong W, et al. NeuroPred-
FRL: an interpretable prediction model for identifying neu-
ropeptide using feature representation learning. Brief Bioinform
2021;22:bbab167.

91. Janizek JD, Dincer AB, Celik S, et al. Uncovering expression
signatures of synergistic drug responses via ensembles of
explainable machine-learning models. Nat Biomed Eng 2023;7:
811–29.

92. Kalyakulina A, Yusipov I, Bacalini MG, et al. Disease classifica-
tion for whole-blood DNA methylation: meta-analysis, missing
values imputation, and XAI. Gigascience 2022;11:giac097.

93. Chen RJ, Lu MY, Wang J, et al. Pathomic fusion: an integrated
framework for fusing histopathology and genomic features for
cancer diagnosis and prognosis. IEEE Trans Med Imaging 2022;41:
757–70.

94. Amilpur S, Bhukya R. EDeepSSP: explainable deep neural net-
works for exact splice sites prediction. J Bioinform Comput Biol
2020;18:2050024.

95. van Hilten A, Kushner SA, Kayser M, et al. GenNet frame-
work: interpretable neural networks for phenotype prediction.
bioRxiv. 2021: 2020.06.19.159152.

96. Nguyen AP, Moreno DL, Le-Bel N, et al. MonoNet: enhancing
interpretability in neural networks via monotonic features.
Bioinform Adv 2023;3:vbad016.

97. Tang X, Zhang J, He Y, et al. Explainable multi-task learn-
ing for multi-modality biological data analysis. Nat Commun
2023;14:2546.

98. Karim A, Su Z, West PK, et al. Molecular classification and
interpretation of amyotrophic lateral sclerosis using deep con-
volution neural networks and Shapley values. Genes 2021;12:
1754–67.

99. Patel-Murray NL, Adam M, Huynh N, et al. A multi-omics inter-
pretable machine learning model reveals modes of action of
small molecules. Sci Rep 2020;10:954.

100. Ribeiro MT, Sameer S; Guestrin C. "Why should I trust you?":
Explaining the predictions of any classifier. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. San Francisco, California, USA, 2016, p.
1135–44. Association for Computing Machinery, New York, NY,
USA.

101. Young JD, Lu X. Revealing the impact of genomic alterations on
cancer cell signaling with a partially transparent deep learning
model. bioRxiv 2020; 2020.05.29.113605.

102. Sobhan M, Mondal AM. Explainable machine learning to iden-
tify patient-specific biomarkers for lung cancer. bioRxiv. 2022;
2022.10.13.512119.

103. Papernot N, McDaniel P. Deep k-Nearest Neighbors: Towards
Confident Interpretable and Robust Deep Learning. arXiv. New
York, USA. https://arxiv.org/abs/1803.04765 (7 December 2022,
date last accessed).

104. Dong Y, Hang S, Zhu J, Zhang B. Improving Interpretability of
Deep Neural Networks with Semantic Information. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA. IEEE Computer Society, New York, NY, USA.
2017, 975–83.

105. Wang Y, Hou Z, Yang Y, et al. Genome-wide identification and
characterization of DNA enhancers with a stacked multivariate
fusion framework. PLoS Comput Biol 2022;18:e1010779.

106. Yamada K, Hamada M. Prediction of RNA-protein inter-
actions using a nucleotide language model. Bioinform Adv
2022;2:vbac023.

107. Toussaint PA, Thiebes S, Schmidt-Kraepelin M, Sunyaev A. Per-
ceived fairness of direct-to-consumer genetic testing business
models. Electron Mark 2022;32:1621–38.

108. Jussupow E, Spohrer K, Heinzl A, Gawlitza J. Augmenting
medical diagnosis decisions? An investigation into physicians’
decision-making process with artificial intelligence. Inf Syst Res
2021;32:713–35.

109. Lebovitz S, Lifshitz-Assaf H, Levina N. To engage or not to
engage with AI for critical judgments: how professionals deal
with opacity when using AI for medical diagnosis. Organ Sci
2022;33:126–48.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad453/7477798 by KIT Library user on 29 D

ecem
ber 2023

https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765

	 Explainable artificial intelligence for omics data:   a systematic mapping study
	INTRODUCTION
	OBJECTIVES
	METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	Key Points
	SUPPLEMENTARY DATA
	FUNDING
	DATA AVAILABILITY


