
The Journal of Systems and Software 208 (2024) 111906

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Monitoring tools for DevOps and microservices: A systematic grey literature
review✩

L. Giamattei a, A. Guerriero a, R. Pietrantuono a,∗, S. Russo a, I. Malavolta b, T. Islam b, M. Dînga b,
A. Koziolek c, S. Singh c, M. Armbruster c, J.M. Gutierrez-Martinez d, S. Caro-Alvaro d,
D. Rodriguez d, S. Weber e, J. Henss e, E. Fernandez Vogelin f, F. Simon Panojo f

a University of Naples Federico II, Italy
b Vrije Universiteit Amsterdam, The Netherlands
c Kastel - Karlsruhe Institute of Technology, Karlsruhe, Germany
d University of Alcalá, Alcalá de Henares, Madrid, Spain
e FZI Research Center for Information Technology, Karlsruhe, Germany
f Panel Sistemas Informaticos, Madrid, Spain

A R T I C L E I N F O

Dataset link: https://github.com/uDEVOPS202
0/Monitoring-Tools-for-DevOps-and-Microserv
ices-a-Systematic-Study, https://doi.org/10.52
81/zenodo.8212052

Keywords:
Monitoring
Microservice
DevOps
MSA
Tools

A B S T R A C T

Microservice-based systems are usually developed according to agile practices like DevOps, which enables rapid
and frequent releases to promptly react and adapt to changes. Monitoring is a key enabler for these systems,
as they allow to continuously get feedback from the field and support timely and tailored decisions for a
quality-driven evolution. In the realm of monitoring tools available for microservices in the DevOps-driven
development practice, each with different features, assumptions, and performance, selecting a suitable tool is
an as much difficult as impactful task.

This article presents the results of a systematic study of the grey literature we performed to identify, classify
and analyze the available monitoring tools for DevOps and microservices. We selected and examined a list of
71 monitoring tools, drawing a map of their characteristics, limitations, assumptions, and open challenges,
meant to be useful to both researchers and practitioners working in this area. Results are publicly available
and replicable.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

It is well-known in both academia (Di Francesco et al., 2019)
and practice (Waseem et al., 2021) that developing and operating
microservice-based systems is a difficult task, mainly due to their
distributed nature, complex and dynamic deployments, and technolog-
ical heterogeneity (Soldani et al., 2018). Having a stable monitoring
infrastructure is a strong requirement for operating microservice-based
systems where relevant incidents (e.g., faults, performance issues, se-
curity breaches) are promptly detected and diagnosed (Waseem et al.,
2020).

Various monitoring tools are currently widely-used by DevOps teams
for collecting, aggregating, and analyzing metrics in order to give

✩ Editor: Alexander Serebrenik.
∗ Corresponding author.
E-mail address: roberto.pietrantuono@unina.it (R. Pietrantuono).

1 https://prometheus.io
2 https://www.jaegertracing.io
3 https://www.elastic.co/elasticsearch

meaningful insights about the system’s overall health and behavior
at runtime. In the context of DevOps, monitoring tools continuously
collect system-level metrics (e.g., CPU load, network traffic statistics,
failures), aggregate them into higher-level metrics (if needed), and
analyze them, primarily with the goal of alerting DevOps teams when
a relevant signal is detected, so that they can take corrective ac-
tions (Ebert et al., 2016; Hernantes et al., 2015). Representative ex-
amples of such monitoring tool include Prometheus,1 Jaeger,2 and
Elasticsearch.3

However, the current landscape of monitoring tools for DevOps and
microservices is extremely fragmented, with tens of available tools,
each with different goals, monitored entities, produced metrics, techni-
cal constraints, underlying technologies, applied monitoring patterns,
vailable online 22 November 2023
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2023.111906
Received 9 August 2023; Received in revised form 15 November 2023; Accepted 1
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

9 November 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
mailto:roberto.pietrantuono@unina.it
https://prometheus.io
https://www.jaegertracing.io
https://www.elastic.co/elasticsearch
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1016/j.jss.2023.111906
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111906&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

m
m
t
p
t
b
i
v
p
t
T
v
m
p
m

a
t
l
t
t
a
w
w
t
e
p
i
c
v
c
t
a
g
q
m
t
a

M

p
i
m
s
n
c
a
d
n
o
b

etc. As an indication, a recent study targeting microservices practition-
ers identified 23 different monitoring tools used by practitioners when
monitoring microservices systems (Waseem et al., 2021). In this con-
text, choosing the right monitoring tool for DevOps and microservices
is definitely not trivial and can lead to severe consequences in terms of
tool lock-in and systems’ quality of service.

The goal of this study is to systematically identify, classify, and
analyze available monitoring tools for DevOps and microservices. In
particular, we are interested in those tools that allow developers to dy-
namically gather, interpret, and act upon information about a running
microservice-based system in the context of DevOps.

The design of this study follows the grey literature review research
ethod (Rothstein and Hopewell, 2009). We opted for this research
ethod in order to keep the study in scope and well aligned with

he objects of analysis (i.e., the tools). Since our study is primarily
ractitioner-oriented, the objects under analysis are the monitoring
ools, which are by definition primarily developed and maintained
y practitioners (i.e., the tool vendors). Moreover, today it is becom-
ng common practice that Software Engineering practitioners publish
arious types of grey literature (e.g., tools documentation, white pa-
ers, technical reports, blog posts) besides formal academic litera-
ure (Garousi et al., 2019) (e.g., conference and journal publications).
o the best of our knowledge, this study is the first systematic in-
estigation into the landscape of monitoring tools for DevOps and
icroservices. The map emerging from this study provides a com-
rehensive, elaborated, and replicable picture of the current offer of
onitoring tools for DevOps and microservices.

The execution of this study follows three main phases: (i) search
nd selection, (ii) data extraction, and (iii) synthesis. Specifically, in
he search and selection phase we firstly mined GitHub and the grey
iterature in search of repositories or web pages mentioning monitoring
ools in the context of microservices or DevOps; this initial phase led
o a total of 94 potentially-relevant sources. After rigorously applying

set of selection criteria we identified 81 data sources from which
e then selected an initial set of 181 potentially-relevant tools. Then,
e applied a second set of selection criteria specific to monitoring

ools, leading to the final set of 71 tools to analyze. In the data
xtraction phase, in addition to demographics, four teams of multi-
le researchers iteratively categorized the 71 tools according to 26
ndividual parameters organized into three main facets: (i) general
haracteristics (e.g., main goal of the tool, its assumptions, support for
isualization, addressed challenges), (ii) what the tool monitors (e.g.,
ollected metrics, support for distributed tracing, targeted quality at-
ributes), and (iii) how the tool implements the monitoring process (e.g.,
pplied monitoring patterns, required services instrumentation, inte-
ration with testing frameworks). Finally, the four teams of researchers
uantitatively and qualitatively analyzed the extracted data for all 71
onitoring tools, cross-checked their results (both between and within

ools), and synthesized the map of the emerging characteristics of the
nalyzed tools.

In summary, the main contributions of this study are:

• a systematic map of the landscape of available monitoring tools
for DevOps and microservices;

• a reusable classification framework for categorizing monitoring
tools for DevOps and microservices;

• a discussion about the main implications of the emerging map
for both researchers and practitioners working on monitoring
methods and techniques for DevOps and microservices;

• a publicly-available archived replication package for the inde-
pendent verification and replication of this study as Open Science
material (uDEVOPS2020, 2023).4

4 https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-
icroservices-a-Systematic-Study
2

The target audience of this study consists of both researchers and
ractitioners. Specifically, researchers can use our map of 71 monitor-
ng tools to get a detailed overview of the characteristics of existing
onitoring tools for DevOps and microservices and use it to either (i)

teer their own research towards aspects/characteristics that are still
ot covered by existing tools or (ii) identify monitoring tools which
an be reused as building blocks in their own research on DevOps
nd microservices (e.g., for identifying which monitoring tool supports
istributed tracing and how). Similarly, DevOps engineers (i.e., engi-
eers who maintain and monitor a specific system) can use our map
f 71 monitoring tools as a decision guidance to identify those that
etter fit their needs in terms of targeted quality attributes (e.g., per-

formance, security), monitored metrics (CPU usage, network latency,
energy consumption), applied monitoring patterns (e.g., health check
API, log aggregation), etc. Tool vendors, i.e., those entities maintaining
a monitoring tool (e.g., the Cloud Native Computing Foundation, which
maintains the tool Prometheus) can use our map of 71 monitoring tools
not only to identify competing tools, but also to identify gaps within the
monitoring tools landscape and thus anticipate the features of their next
generation monitoring tools. Also, researchers and tool vendors can
use the emerged classification framework as an instrument for putting
their own monitoring tools in context within the current landscape of
available monitoring tools for DevOps and microservices; this helps
researchers and tools vendors in avoiding to reinvent the wheel and
in better understanding what are the differentiating factors of their
proposed monitoring techniques, methods, and tools.

The remainder of this paper is structured as follows. Section 2
presents background information on DevOps, microservices, and their
monitoring process. Section 3 described the design of this study, while
Sections Section 4, 5, 6, and 7 report the obtained results. Section 8
discusses the main implications of the obtained results for researchers
and practitioners. Section 9 elaborates on the main threats to the va-
lidity of the study. Section 10 discusses related work, while Section 11
closes the paper and discusses future work.

2. Background

2.1. Microservice-based systems

The terms microservice and microservice architecture (MSA) have
no single widely accepted definition (Di Francesco et al., 2019). We
rely on the popular definition of Fowler and Lewis, which defines a
MSA as ‘‘approach to developing a single application as a suite of small
services, each running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API ’’ (Lewis and Fowler, 2014).
They further point out some typical characteristics of MSA, which
are ‘‘organization around business capability, automated deployment, in-
telligence in the endpoints, and decentralized control of languages and
data’’ (Lewis and Fowler, 2014).

Many companies like Amazon, Netflix, LinkedIn, Spotify and Sound-
Cloud have shifted the underlying architectural style of their applica-
tions to MSA. This enables them to design, develop, test and deploy
their software in an agile manner. Continuous delivery of their applica-
tions is made possible by automated infrastructure for building, testing
and deploying. Decentralizing governance and data management to-
gether with the lightweight communication mechanism allows technol-
ogy independence of the different microservices. They also counter the
challenges caused by the distribution of both the software functionality
into the microservices and the microservices in cloud infrastructure.
These challenges include network latency, possible transmission faults,
service orchestration and load balancing (Di Francesco et al., 2019).

By emphasizing the loose coupling and lightweight communication,
microservice-based systems foster a high modularity, making the ap-
plication easier to understand, develop and test, and facilitating the

deployment, execution, and maintenance.

https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

l
m
7
p

t

2.2. DevOps

Due to the above-mentioned desired characteristics, the develop-
ment and deployment level is often managed by DevOps-like practices.
Similar to microservices, the term DevOps has no single definition.
Jabbari et al. identified central components of DevOps definitions in
their systematic mapping study (Jabbari et al., 2016). The term is a
combination of Development and Operations. DevOps enables com-
munication and collaboration and bridges the gap between these two
groups resulting in efficient team work. Additionally it unifies methods
and tools of software development to respond to the interdependencies
between development and operations. Software delivery is achieved
through ‘‘continuous feedback, quick response to changes and using auto-
mated delivery pipelines resulting in reduced cycle time’’ (Jabbari et al.,
2016). The deployment process uses source code in version control
and automatically deploys to the production environment. DevOps
enables continuous integration and the combination of concerns of
quality assurance with development and operations. The whole process
is supported by cloud technologies (e.g., containers for deployment
and cloud platforms at infrastructural level), which greatly alleviate
several manual tasks — saving technical stakeholders time to deliver
greater value. Ebert et al. (2016) additionally mention that DevOps is
an organizational shift to cross-functional teams. In regards to technolo-
gies they also name logging and monitoring as important technologies
to ensure reliable operation by constantly surveilling the health of
software and hardware. They point out that DevOps is suited for cloud
and web development and was adopted early on, but less for domains
like safety-critical or embedded systems.

Even though Microservices and DevOps originate independently,
they share the same set of principles and cultural background, stressing
concepts like agility, flexibility, scalability, automation, user-oriented
development and cloud-based provisioning. The production paradigm
based on microservices and DevOps-like practices is the foundation of
many enterprise applications today (Waseem et al., 2021; Di Francesco
et al., 2017).

2.3. Monitoring process

For the definition of monitoring tool, we rely on the definition
provided by Schroeder: A monitoring tool is ‘‘a process or set of possibly
distributed processes whose function is the dynamic gathering, interpreting,
and acting on information concerning an application as that application
executes.’’ (Schroeder, 1995) In the context of DevOps as example,
monitoring tools collect information at different levels, analyze them,
and provide reports with insights into the monitored system or alert
DevOps teams (Ebert et al., 2016; Hernantes et al., 2015).

Waseem et al. categorize monitoring tools into libraries and plat-
forms: ‘‘Monitoring libraries are used during the development of microser-
vices and permit collecting the application data. In contrast, monitoring
platforms allow gathering and analyzing data from different sources, such as
the hosts, infrastructure, and microservices.’’ (Waseem et al., 2021) From
grey literature, they identified challenges when monitoring microser-
vices and the following practices employed by monitoring tools: log
management, exception tracking, health check API, deployment log-
ging, audit logging, and distributed tracking (Waseem et al., 2021). In
addition, Richardson describes patterns which can be implemented to
monitor microservices (Richardson, 2018). These patterns include the
health check API pattern (an endpoint reports the status of a microser-
vice so that it can be called to check the microservice’s health), dis-
tributed tracing pattern (information of requests between microservices
is recorded), application metrics pattern, audit logging pattern (user
activity is logged), exception tracking pattern, and log aggregation
pattern. These categorizations are considered in our study too.
3

3. Study design

3.1. Research questions

The goal of the review is to characterize the existing monitor-
ing tools for DevOps and microservices. We formulate the following
high-level research questions:

• RQ1. What are the main characteristics of monitoring tools for
microservice-based systems? With this RQ, we will investigate the
main functional and technological features of the tools, and ana-
lyze if and how the tools address the list of relevant monitoring
challenges as identified by Waseem et al. (2021).

• RQ2. What information is gathered to characterize the behavior of
the monitored system? With this RQ, we focus on which metrics,
traces and logs the tools is able to extract.

• RQ3. How does the tool implement the monitoring process? This RQ
aims at categorizing the patterns and practices used to gather data
as well as its integration with testing.

Each of these questions will be explored with reference to a list of
dimensions to characterize the functional and technological features,
the gathered metrics, and the way these metrics are gathered, e.g., in
terms of monitoring patterns, practices and granularity.

3.2. Tools selection process

To address the above questions, the research is conducted according
to the protocol shown in Fig. 1.

The search and selection process considered GitHub as primary
source to find relevant monitoring tools 1⃝. However, although GitHub
accounts for over 100 million developers and 372 million repositories
as of January 2023, we complemented the search via the Google
search 2⃝ engine to also cover grey literature from which tools and
prototype can be made available on the web (e.g., personal, companies
or institutions’ web pages). In particular, we have:

• searched for awesome monitoring devops on GitHub and manually
checked all ‘‘awesome repositories’’;

• searched for all repositories on Github having both monitoring and
DevOps as topics of their description;

• searched for all repositories on Github having both monitoring and
microservices as topics of their description;

• searched for monitoring AND devops on Google and manually
analyzing the first 100 results;

• searched for monitoring AND microservices on Google and manu-
ally analyzing the first 100 results.

The search process was performed in August, 2022.
By merging the results of these searches 3⃝3, we obtained an initial

ist of 94 sources (e.g., repositories, web pages), where each source
ay contain more than one tool. These are 7 awesome repositories,
2 sources from searching on GitHub with the topics and 15 Google
ages.

We then applied the following inclusion and exclusion criteria to
he initial sources:

• Inclusion criteria (sources)

– IC1: Sources describing at least one monitoring tool that
gathers data about the execution of a running system;

– IC2: Sources discussing either DevOps practices or
microservices-based systems;

– IC3: Sources written in English.

• Exclusion criteria (sources)

– EC1: Sources whose contents strongly overlap with those of
an already-considered source;

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

e
I

r

Fig. 1. Search and classification protocol.
– EC2: Entries that are not available, and hence not analyz-
able (e.g., the link to a web page is broken);

– EC3: Sources that refer exclusively to tools whose primary
aim is not monitoring, such as development frameworks,
visualization platforms, traces manipulators, etc;

– EC4: Sources that are in the form of scientific publication;
– EC5: Sources reporting exclusively the basic principles of

DevOps and microservices, without mentioning any moni-
toring tool;

– EC6: Videos, podcasts, and webinars since they are too
time-consuming to be considered for this phase of the study.

This allowed us to exclude 13 sources resulting in 81 sources (that are:
3 awesome repositories, 6 google pages, and all the 72 repositories
coming from the topics search).5 On this resulting list of sources, we
xtracted an initial list of 181 tools. Then, we applied the following
nclusion/Exclusion criteria to the list of tools:

• Inclusion criteria (tools)

– IC1: The tool gathers data about the execution of a running
system;

– IC2: The tool allows monitoring of microservice-based sys-
tems and/or DevOps-based processes;

– IC3: The tool is self-contained, meaning that it does not rely
exclusively on being integrated with a 3rd party;

5 Most repositories and Google pages contained lists of tools, while the
epositories coming from the topic search single tools.
4

– IC4: The tool is publicly available (either as an open-source
or commercial product);

– IC5: The documentation of the tool is publicly available and
it contains enough information for assessing the use cases,
monitoring strategy and to install the system;

– IC6: The documentation of the tool is in English;

• Exclusion criteria (tools)

– EC1: Tools whose primary aim is not monitoring, such
as development frameworks (e.g., Mortar), visualization
platforms (e.g., Graphite), data processing pipelines (e.g.,
Logstash) etc;

– EC2: The tool is not accessible, either available for down-
load as a binary that can be run on current operating sys-
tems from an official website or an affiliated platform sup-
porting it (e.g., a GitHub repository), or as a SaaS product,
centrally hosted;

– EC3: The tool is explicitly declared as either discontinued,
unmaintained, or not yet released.

The process produced a final list of 71 monitoring tools 4⃝ to
analyze, reported in Table 1. Table 2 details, for the two primary
sources (i.e., GitHub and Google), the respective resulting tools. No-
tably, GitHub gave a significantly higher number of tools. Two research
teams were involved in applying the criteria independently to the
entire set of tools, with the support of one senior researcher as arbiter.
The results were then compared and conflicts were solved. We used
Cohen’s kappa to assess the level of agreement between the raters.
This statistic is a good fit in this case, since we only have two raters,
both evaluating identical items (the monitoring tools). According to

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

a
e
o
t
5
t

t
d
F
t
a
a
f
t
D
t

3

p
t
t
c
t
q
s
i

4

s
t
I
1

t
r

s
y
a

i
(
a
c
t

Table 1
Analyzed monitoring tools.

ID Name ID Name

T1 Prometheus T37 ServerDensity
T2 Zipkin T38 InsightOps
T3 Apache skywalking T39 AppSignal
T4 Jaeger T40 netdata
T5 Nagios enterprise T41 pyroscope
T6 Zabbix enterprise T42 gatus
T7 Ganglia T43 cloudprober
T8 Zenoss enterprise T44 dd-agent (DataDog)
T9 Opserver T45 swagger-stats
T10 Icinga T46 kardia
T11 Naemon T47 Health
T12 Shinken T48 WebApiMonitoring
T13 Centreon T49 terminator
T14 Opsview T50 MetroFunnel
T15 Check_mk T51 scope
T16 NSCP T52 MyPerf4J
T17 collectd T53 vigil
T18 falcon-plus github T54 Chronos
T19 fluent-bit T55 easeagent
T20 influxdata T56 syros
T21 OpenTSDB T57 OpenSignals
T22 kairosDB T58 haystack-client-java
T23 elasticsearch T59 Monit
T24 javamelody github T60 Splunk
T25 kamon github T61 ChaosSearch
T26 Bosun T62 Sematext
T27 OpenTelemetry T63 AppDynamics
T28 pinpoint github T64 Reimann
T29 AWS CloudWatch T65 Glowroot
T30 StackDriver T66 GrayLog
T31 Sensu T67 DataDog
T32 Sentry T68 Librato (now AppOptics)
T33 CopperEgg T69 Akamai mPulse
T34 loggly T70 Sumo Logic
T35 NewRelic T71 Dynatrace
T36 Papertrail

the common interpretation in literature (Fleiss et al., 2003), the results
(k = 0.714) show a substantial level of agreement. This confirms the
reliability of the selection phase. Most of the tools were excluded due to
EC1. In particular, the primary reason for applying EC1 to the tools was
that they provided only visualization support, without gathering data
about the execution of a running system (i.e., IC1). Such tools require
supplementation by others that provide them with data. Other tools
were excluded by EC3, primarily because they were unmaintained.
Only a few tools were discarded due to EC2.

The selected tools have then been compared with a reference test set,
s suggested by well-known guidelines on secondary studies (Petersen
t al., 2015; Kitchenham and Brereton, 2013). To confirm that the list
f selected tools is representative enough, it should in fact include
he tools in the reference test set. The test set includes the following

monitoring tools selected according to the GitHub’s stars, denoting
heir popularity: Prometheus, Netdata, Jaeger, Zipkin, and
ELK Stack. All these tools were included in the list of 71 tools.

3.3. Data extraction

With data extraction, we gather key information about each moni-
toring tool useful for analysis and classification 5⃝. Starting from the
research questions (initial RQs scheme in Fig. 1), we have defined a
scheme with 26 dimensions. The initial scheme was defined in plenary
meetings based on authors’ previous experience and on the literature
on microservices monitoring, e.g., Waseem et al. (2021). To refine and
agree on the scheme, we used the initial test set approach (Petersen
et al., 2015): we initially assigned a same set of 4 tools (Prometheus,
Jaeger, Zipkin, and Apache skywalking) to each of the 4 in-
volved teams, who independently classified them according to the
initial scheme. This preliminary phase ensured that the meaning of
5

t

Table 2
Source-Tool mapping.

Source Query Tools

GitHub

Monitoring
DevOps

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20,
T21, T22, T23, T24,T25, T26, T27, T28, T29,
T30, T31, T32, T33, T34, T35,T36, T37, T38,
T39, T40, T41, T42, T43, T44, T45, T62

Monitoring
Microservices

T32, T46, T47, T48, T49, T50, T51, T52, T53,
T54, T55, T56, T57, T58

Google

Monitoring
DevOps

T1, T5, T6, T31, T32, T35, T59, T60, T61, T62,
T63, T67, T68, T69, T70, T71

Monitoring
Microservices

T1, T29, T44, T59, T60, T61, T62, T63, T64,
T65, T66

dimensions was the same for all the 4 teams. The scheme was iteratively
refined in a number of 4 plenary meetings, where we discussed the
classifications’ findings and finalized the dimensions definition (6⃝, 7⃝).

We then performed a horizontal classification on the whole set of
ools 8⃝, namely by assigning 18 tools to each team, who indepen-
ently classified the tools according to all dimensions of the scheme.
inally, in order to ensure a homogeneous classification between the
eams, the tools were re-classified vertically : each team was assigned
subset of sub-dimensions and classified all the 71 tools for only the

ssigned dimensions. This allowed refining the scheme further, since it
avored the detection of inconsistent classifications performed by the
eams on a given dimension during the horizontal classification phase.
edicated online meetings solved such disagreements. Table 3 reports

he identified dimensions and sub-dimensions.

.4. Analysis

9⃝ Data collection and summarization are part of the data analysis
rocess, which aims to comprehend, evaluate, and categorize state-of-
he-art monitoring tools. The information for each item extracted are
abulated and visually illustrated. In particular, we analyzed the tools
onsidering the groups of dimensions defined in Table 3. We examine
he data that has been extracted to perform both a quantitative and
ualitative analysis (Sections 4 and 7). Then, a cross-cutting analy-
is relating sub-dimensions was also performed in order to highlight
nteresting patterns in the characteristics of the tools (Section 8).

. Results – overview

Fig. 2 shows the number of selected (included/excluded) tools by
ource type.6 GitHub provided the majority of the tools, but with also
he biggest number of exclusions (mainly for lack of documentation -
C5). Out of the analyzed tools, 53/71 (73%) are open source, while
8/71 (25%) are commercial tools.

We looked at the first release date of the tools and we noticed
hat around 2014–2015 there has been a boost in the number of tools
eleased and that further 24 tools were released since then.

For each tool, we retrieved information about all the release dates,
o as to check if the tool is still actively maintained. Specifically, the
ear of the first and last release available can provide information to
nalyze longevity and current maintenance activity.

Looking at the tools with last release date on 2022 (data gathered
n November, 2022), we notice that 47/71 tools have a release in 2022
66%), while the last release date of the remaining 25/71 (34%) tools
re older (in some cases, such as NewRelic last-released in 2014, this
an indicate that the tool is no longer maintained). In particular, more
han 75% of the tools have a last release in 2021 or 2022.

6 Note that the summed counts in the image can exceed the numbers in the
ext since tools can belong to more than one category.

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Table 3
The data extraction form of this study.

Category RQ Dimensions Definition Type/Domain

O
ve

rv
ie

w

Id The internally used ID of the tool ‘‘T’’+[numeric]
Name The name of the tool Free text

Metadata Website/Link Link to the tool Url
Provider Organization/authors that developed the tool Free text
Release The release version the analysis was carried out on Free text
First release Date of the first available release Date
Last release Date of the latest available release Date
Open source Whether the tool’s sources are available openly [Yes, No]

RQ
1

Target The target system to monitor [Microservices, web services,
distributed systems in general]

Features/motivation Which high-level features are claimed Free text
Available format(s) to export data List of formats to export monitored data

(e.g., JSON, CSV)
Free text

Visualization The visualization features offered by the tool Free text
Programming language(s) The language(s) the tool is programmed with Free text

General characteristics Integration/Dependency tools Required and integrable tools Free text
Assumptions Properties that the monitored system should have Free text

Addressed challenges, identified by
Waseem et al.

MC1 Collection of monitoring metrics data
and logs from containers
MC2 Distributed tracing
MC3 Many components to monitor (complexity)
MC4 Performance monitoring
MC5 Analyzing the collected data,
MC6 Failure zone detection
MC7 Availability of the monitoring tools
MC8 Monitoring of application running in containers
MC9 Maintaining monitoring infrastructures

[MC1, MC2, MC3, MC4, MC5,
MC6, MC7, MC8, MC9]

RQ
2

Monitoring metrics (user-oriented) High level, user-oriented metrics (e.g., failure, health) Free text
Monitoring metrics (system-oriented) Low level, system-oriented metrics (e.g., cpu, memory) Free text

What is monitored Requests tracing Whether the tool support requests tracing [Yes, No]
Events/Failures logging Whether the tool support event/failures logging [Yes, No]
Targeted quality attribute(s) The quality attribute(s) targeted by the tools [Performance, Energy, Availability,

Reliability, Security]

RQ
3

Monitoring patterns Monitoring patterns implemented by the tool

[Health Check API Pattern, Distributed
Tracing Pattern, Application Metrics Pattern,
Audit Logging Pattern, Exception Tracking
Pattern, Log Aggregation Pattern, Other]

How is monitored Monitoring granularity The granularity of the monitored system [MSA, microservice,
VM/container, infrastructure]

Monitoring practices Monitoring practices adopted by the tool
[Log management, exception tracking,
health check API, deployment logging,
audit logging, distributed tracking]

Instrumentation Information about what instrumentation is required Free text
Integration with testing Whether the tool support testing [Yes, No]
Fig. 2. Tools selection count.
6

We further analyzed this aspect by combining data about longevity
and Open Source, and we noticed that proprietary tools are generally
more stable, with a couple of exceptions such as Zabbix and Na-
gios, which are Open Source and live since more than 20 years. The
longest-living commercial tool is Splunk.

5. Results – functional and technological features. Addressed chal-
lenges

5.1. Targets, features, motivation

We have analyzed the scope of application of the tools, i.e., the
granularity they focus on. Although all the included tools allow mon-
itoring of microservices, we distinguish between tools conceived for
monitoring distributed systems in general, tools primarily focused on
Web services (as technology to offer services) and tools specifically
focused on microservices (as software architecture).

As shown in Fig. 3, more than a half of the tools target distributed
systems in general (42 tools, 59%), while web services (14 tools, 21%)
and microservices (15, tools, 20%) were found in relatively few case,
i.e., in almost a quarter of the tools, each. This is partly explained by
the more recent spread of microservices.

Looking at the main features/motivation in Fig. 4, the tools clearly
all have collection and monitoring services (in form of traces, logs and

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 3. Tools target.

Fig. 4. Tools’ features/motivation.

metrics); most of them (66.2%) provide visualization and reporting
areas (with visual elements such as panels, graphs or diagrams — more
details will follow). Less than 40% have alerting features (e.g., if some
thresholds are triggered, alerts are sent to users, in the form of push
notifications, emails or web-hooks) and automated analysis (based on
collected data, the tools are able to produce and automated, and in
some case intelligent, analysis in order to produce data insights). A total
of 16 tools (22%) offered the possibility to search under the raw data
with custom query languages. 10 tools (14%) can offer their features to
external modules (or even to 3rd-party apps) as API endpoints. Finally,
4 tools (≈6%) offer optimization features in order to provide code
enhancements to make request processing faster.

The target and features/motivation is the first characteristics to look
at when selecting a tool: for instance, while most tools offer some visu-
alization/reporting facility, only few have some form of optimization,
and only few expose data as API. These are features that, if needed, will
significantly restrict the space of possible choices.

5.2. Reporting

In terms of reporting, the tools have been inspected to determine
how the information gathered through monitoring is reported (either
for other interacting applications that has to consume that information
and/or for the final user). We focus on two main aspects of reporting:
data export format and visualization.

Table 4 reports the tools by data export format category. JSON is the
most used format; it is both human-readable and suitable to be easily
read from other applications. The second one is CSV, which is one of
the most used storage formats. The third category is DB. This includes a
batch of possible databases (MySQL, Apache Cassandra, Elasticsearch,
RRD, InfluxDB among others). Specifically, the top-DB are: MySQL and
Elasticsearch, followed by RRD tool and InfluxDB.

The last format among the top-4 ones is PDF. Clearly, this is im-
7

portant for the interoperability, useful when gathered data need to be (
Table 4
Data export formats.

Export format #Tools (Percentage) Tools

JSON 49 (69.0%) T1, T2, T3, T4, T5, T6, T7, T8, T10,
T11, T12, T15, T17, T19, T20, T21, T22,
T23, T24, T25, T26, T27, T28, T29, T30,
T31, T32, T34, T36, T38, T39, T40, T41,
T42, T43, T45, T46, T51, T54, T55, T56,
T58, T61, T62, T67, T68, T69, T70, T71

CSV 25 (35.2%) T1, T2, T7, T8, T10, T12, T13, T14,
T15, T17, T19, T20, T28, T40, T43,
T45, T54, T55, T56, T58, T59, T63,
T65, T66, T70

DB 12 (16.9%) T2, T8, T11, T13, T17, T18, T28, T33,
T34, T40, T52, T67

PDF 6 (8.5%) T10, T12, T13, T14, T15, T60
XML 5 (7.0%) T6, T12, T15, T24, T63
TXT 5 (7.0%) T26, T50, T51, T57, T59
not reported 5 (7.0%) T9, T16, T33, T37, T53
user-defined 4 (5.6%) T47, T64, T66, T67
log 4 (5.6%) T34, T38, T48, T55
Excel 3 (4.2%) T8, T13, T14
Raw 3 (4.2%) T12, T44, T49
protobuf 3 (4.2%) T2, T3, T54
S3 2 (2.8%) T12, T61
Word 2 (2.8%) T13, T14
HTML 2 (2.8%) T8, T40
mq 2 (2.8%) T2, T28
YAML 1 (1.3%) T6
HTTP 1 (1.3%) T2
RTF 1 (1.3%) T14
streams 1 (1.3%) T8
YML 1 (1.3%) T20
ODT 1 (1.3%) T14
H5 1 (1.3%) T57
TSV 1 (1.3%) T36
BIN 1 (1.3%) T27
DF 1 (1.3%) T57
Powerpoint 1 (1.3%) T13
Markdown 1 (1.3%) T40

exploited by other applications (e.g., data analytics or decision support
systems).

Regarding visualization, 45/71 tools provide dashboards as report-
ing means to show the monitoring outcomes. Dashboards are defined by
Tableau7 as ‘‘a collection of several views, letting you compare a variety
of data simultaneously’’. In particular, diagrams, charts, and tables are
usual visualization means to construct a dashboard.

The most common one is charts. The usage of tables is also very
popular, as they allow easily reporting summary results. Tables are
very useful when placed into a dashboard and coupled with graphs
to provide additional details. Examples of tools using dashboards,
which are very effective for visual analysis and decisions support, are
Zabbik, Icinga, Zenoss; others also exploit external tools, like
Prometheus that can exploit the Graphana visualization platform.
The detailed breakdown is in Table 5.

5.3. Technologies

5.3.1. Implementation/supported languages
Languages should be considered when choosing a tool, since they

impact the possible integration of the monitoring tool with tools of the
organization adopting it (e.g., visualization, analytics, recommender
systems) and are related to the extensibility, evolvability and main-
tainability of the tool. Also, they can indirectly impact the monitoring
tool performance (e.g., resource consumption, overhead). From our

7 Tableau is a leading company of data visualization software production
https://www.tableau.com).

https://www.tableau.com

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

o
r

t
e
b
m
t
s
o
i

Table 5
Data visualization means.

Viz means #Tools (Percentage) Tools

Charts 56 (78.8%) T1, T2, T3, T4, T5, T6, T7, T8, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19,
T20, T21, T22, T23, T24, T25, T26, T27,
T29, T30, T32, T33, T34, T35, T37, T38,
T39, T40, T41, T43, T45, T51, T52, T54,
T55, T58, T60, T61, T62, T63, T64, T65,
T66, T67, T68, T69, T70, T71

Tables 52 (73.2%) T1, T3, T5, T6, T7, T8, T10, T11, T12, T13,
T15, T16, T19, T20, T21, T22, T23, T24,
T25, T26, T29, T30, T32, T33, T34, T35,
T37, T38, T40, T41, T42, T43, T45, T46,
T47, T52, T53, T55, T58, T59, T60, T61,
T62, T63, T64, T65, T66, T67, T68, T69,
T70, T71

Dashboard 46 (64.7%) T1, T5, T6, T7, T8, T10, T11, T12, T13,
T15, T16, T18, T19, T20, T21, T22, T23,
T25, T26, T29, T30, T31, T32, T33, T34,
T35, T37, T38, T40, T41, T43, T45, T52,
T55, T58, T60, T61, T62, T63, T64, T66,
T67, T68, T69, T70, T71

N/A 9 (12.7%) T9, T17, T27, T44, T48, T49, T50, T56, T57

Fig. 5. Tools required technologies.

analysis, 27/71 tools report multiple languages in their documen-
tation. In particular, 23/71 are implemented with more than one
language, while 4/71 (T22, T28, T30, T36) are implemented mostly in
one language, but they support multiple languages. The main reason
for the usage/support for multiple languages is the need for agents,
sidecars, and/or proxies in different native languages to allow us-
ing the monitoring tools in projects developed in various languages
(e.g. Apache Skywalking, T3). Moreover, the greatest part of the
monitoring tools provides user interfaces developed with dedicated lan-
guages (e.g. HTML, JavaScript, and so on) (e.g. Jaeger, T4). The most
used languages are Go and Java, followed by Python and JavaScript.
Table 6 reports the detailed results.

5.3.2. Required technologies
Fig. 5 reports the main required technologies for the selected mon-

itoring tools. The integration with visualization tools (like Grafana,
adopted by T1 and T6, or Graphite, adopted by T7 and T10 among
thers) is fundamental for 35% of the tools (25/71), in line with the
esults in Table 5.
Collecting is the second type of technology, since the monitoring

ools need integration with other tools for data collection during the
xecution of the system under monitoring. DB technologies are required
y approximately 30% of tools for persistence. In addition, many
onitoring tools exploit alerting/event management technologies, as

hey need to capture data in real-time from event sources (like other
ervices or devices), e.g., T4 with Kafka. Clearly, the number and type
f required technologies can also affect the easiness of adopting and
ntegrating a tool in the organization.
8

Table 6
Tools implementation/supported languages.

Language #Tools (Percentage) Tools

Go 27 (38.0%) T1, T3, T4, T6, T8, T18, T20, T23, T26,
T27, T28, T29, T30, T31, T32, T35,
T41, T42, T43, T44, T49, T51, T56,
T67, T68, T70, T71

Java 25 (35.2%) T2, T3, T8, T21, T22, T23, T24, T27,
T28, T30, T32, T35, T38, T50, T52, T55,
T57, T58, T62, T63, T65, T66, T70, T71

Python 22 (31.0%) T3, T5, T7, T8, T12, T14, T15, T16,
T18, T22, T23, T27, T28, T30, T32,
T34, T37, T38, T60, T63, T70, T71

JavaScript 20 (28.2%) T3, T4, T6, T13, T15, T22, T23, T27,
T34, T36, T37, T38, T45, T46, T51,
T56, T62, T66, T68, T69

PHP 14 (19.7%) T3, T5, T6, T7, T13, T22, T23, T27,
T28, T32, T35, T63, T68, T71

C 12 (16.9%) T5, T6, T7, T11, T16, T17, T19, T28,
T35, T40, T59, T63

Ruby 11 (15.5%) T23, T27, T32, T33, T35, T36, T38,
T39, T68, T70, T71

Node.js 10 (14.1%) T3, T14, T30, T32, T35, T38, T39, T63,
T68, T71

C++ 9 (12.7%) T3, T5, T10, T15, T16, T27, T28, T60,
T63

.NET 6 (8.5%) T3, T23, T27, T35, T63, T71
Perl 5 (7.0%) T5, T7, T14, T17, T23
Rust 4 (5.6%) T3, T27, T30, T53
Swift 3 (4.2%) T27, T32, T47
TypeScript 3 (4.2%) T54, T66, T70
React 3 (4.2%) T4, T32, T66
XML 2 (2.8%) T7, T60
C# 2 (2.8%) T9, T48
Elixir 1 (1.3%) T39
Escala 1 (1.3%) T25
Rails 1 (1.3%) T32
Django 1 (1.3%) T32
Flashk 1 (1.3%) T32
Laravel 1 (1.3%) T32
Scala 1 (1.3%) T61
Clojure 1 (1.3%) T64
Erlang 1 (1.3%) T27

5.3.3. Assumptions
Table 7 reports the assumptions stated for the selected tools, which

often come in the form of requirements. For instance, the most common
assumption is about the operating system and libraries needed to install
and make the tool work. A bunch of tools (7/71) have less stringent
assumptions and support several systems. Other assumptions regard the
way in which tools are executed. For instance, they regard the need for
agents and instrumentation. Clearly, more assumptions required restrict
the freedom of selection, as they could be not easily satisfiable. For in-
stance, tracing by Monit (T62) supports only Java-based applications,
or Centreon that officially supports only MariaDB; these can both be
quite limiting for microservice-based systems. The full list is in Table 7.

5.4. Addressed challenges

We analyze if and how the tools address the list of challenges as
identified by Waseem et al. (2021). The challenges are summarized in
Table 8.

The most important challenges addressed by the tools, as shown
in Fig. 6, are related to the ability of effectively monitor performance
(MC4), to the collection of monitoring metrics and logs from containers
(MC1), to deal with complexity (MC3) and to analyze data (MC5). Some
of the reasons for the presence of the above challenges are explained
by some interviewees in the work by Waseem et al. (2021), and are
related to (i) the communication between hundreds of microservices
(hence referring to complexity of MSA), (ii) absence of a standardized
infrastructure for run-time monitoring (hindering collection of data),

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Table 7
Assumptions made by tools.

Assumption #Tools
(Percentage)

Tools

Require agent 13 (18.3%) T5, T8, T12, T21, T28, T31, T62,
T63, T65, T67, T68, T70, T71

Require specific OS 11 (15.5%) T16, T17, T19, T23, T30, T31,
T35, T38, T47, T56, T59

Most of the systems are
supported

7 (9.9%) T3, T22, T26, T29, T32, T34, T36

Require instrumentation 6 (8.5%) T2, T4, T27, T65, T70, T71
Require connection to backend 5 (7.0%) T67, T68, T69, T70, T71
Run as SaaS 5 (7.0%) T33, T34, T37, T62, T63
Require Docker 4 (5.6%) T51, T55, T56, T58
Require JVM 3 (4.2%) T25, T52, T65
Require NodeJS 2 (2.8%) T45, T54
Require OpenTracing version
compatibility

1 (1.4%) T58

Tracing only supports
Java-based applications

1 (1.4%) T62

Require external data storage 1 (1.4%) T61
Haystack client java needs
OpenTracing version

1 (1.4%) T58

Cross-platform 1 (1.4%) T1
Require code rebuilding 1 (1.4%) T54
Maintained in your own
system

1 (1.4%) T53

Require Swift binaries v4.1.2 1 (1.4%) T47
Require plugin 1 (1.4%) T24
Require specific DB 1 (1.4%) T13
Require visualizer 1 (1.4%) T11
Require script not blocked by
browser

1 (1.4%) T69

Table 8
Challenges addressed, identified in Waseem et al. (2021).

Acronym Description

MC1 Collection of monitoring metrics data
and logs from containers

MC2 Distributed tracing
MC3 Many components to monitor (complexity)
MC4 Performance monitoring
MC5 Analyzing the collected data
MC6 Failure zone detection
MC7 Availability of the monitoring tools
MC8 Monitoring of application

running in containers
MC9 Maintaining monitoring infrastructures

Fig. 6. Challenges addressed.

(iii) different languages, databases, and frameworks for developing
microservices, and (iv) logs and dataflows in different format.

Indeed, we found that several of the analyzed tools focus on so-
lutions to (i) efficiently extracting information (useful for service ad-
ministrators, managers and stakeholders), (ii) dealing with several
9

metrics (e.g., request duration, errors, availability time, database met-
rics, among others), with performance monitoring (MC4, 57 tools),
and with logs (i.e., traces of events and errors), overcoming the issue
heterogeneous log formats (MC1, 50 tools). Moreover, the solution that
many tools offer is thought to scale, as many of them (MC3, more than
44 tools) are able to work with complex (i.e., with many service and
microservice components) architectures.

Other challenges, such as monitoring of application running inside
containers are only partially addressed, by half of the tools (MC8, 34
tools), or still mostly neglected (e.g., maintenance of the monitoring
infrastructure, MC9, 17 tools); thus suggesting future directions for
researchers and tool vendors – a deeper discussion will follow in
Section 8.

6. Results – What is monitored

In this section, we report information about what is monitored by
the analyzed tools. The monitoring tools collect and monitor a wide
range of metrics, both at the system-level and user-level. Therefore,
we focus on two types of monitoring metrics: user-oriented metrics and
system-oriented metrics. We also extract information regarding the target
quality attribute, support for distributed tracing, and failure/events
logging for each tool.

6.1. User-oriented metrics

In the context of this study, a user-oriented metric is a high-level
metric whose values might influence how users of the system experi-
ence or perceive the value of the system. Examples of user-oriented
metrics include: response time, latency, number of failures/errors, SLA
violations, number of network requests, etc.

In terms of user metrics, several tools, 26 of 71 (36.62%) sup-
port User-defined (e.g., custom events, custom application metrics, etc.)
and Failure metrics (e.g., error rates, SLA metrics — number of er-
rors/exceptions/failures, etc.). Timing (e.g., response time, latency, etc.)
and Networking (e.g., request rate/error/duration, average in/outbound
packets, average packet loss, etc.) related metrics are also popular user-
oriented metrics among the tools, which we found in 24 of 71 (33.80%)
and 23 of 71 (32.39%) tools, respectively (see Table 9).

For instance, during the data extraction phase, we observed that
Sumo Logic (T70) collects Timing, Networking, Failure, UX, and User-
defined metrics. Similar to Sumo Logic, Elastic search (T23)
collects Failure and Networking metrics. Besides, Elastic Search also
covers Health and User-sessions metrics.

6.2. System-oriented metrics

In the context of this study, a system-oriented metric is a low-level
metric whose values are of interest to DevOps engineers. Those metrics
are generally defined at a lower level of granularity (e.g., container, OS,
physical node) than user-oriented metrics. Examples of system-oriented
metrics include: CPU usage, memory usage, available resources at the
OS level, number of database connections, etc.

In terms of system metrics, Networking, Memory, and CPU are the
most dominant metrics in more than 70% of the tools. As shown in
Table 10, 55 out of 71 tools (77.46%) collect Networking metrics (e.g.,
RX/TX network traffic, average in/outbound packets, average packet
loss, etc.), followed by Memory (e.g., memory usage, system load,
swap, etc.) – 53 of 71 tools (74.65%) – and CPU (e.g., CPU usage,
host/process/user CPU, thread count, etc.) – 50 of 71 tools (70.42%).

For instance, we observed that Sumo Logic (T70) collects CPU,
Memory, Networking, IO, DB, Failure, Timing system-oriented metrics.
Similarly, Elastic search (T23) also focuses on CPU, Memory,
Networking, IO, DB, and Timing metrics. Besides, Elastic search
collects metrics related to Health and Failure (e.g., number of er-
rors/exceptions/failures, etc.).

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

s
l
w
a
s

6

d

d
d

Table 9
The user-oriented metrics supported by the monitoring tools.

Metric #Tools (Percentage) Tools

User-defined 26 (36.62%) T1, T7, T11, T12, T13, T15,
T20, T21, T26, T27, T31, T39,
T40, T44, T45, T47, T60, T61,
T62, T63, T64, T66, T67, T68,
T69, T71

Failure 26 (36.62%) T1, T6, T8, T10, T14, T15, T17,
T19, T23, T24, T26, T29, T30,
T32, T33, T35, T40, T44, T45,
T59, T60, T63, T67, T68, T70,
T71

Timing 24 (33.80%) T1, T10, T14, T15, T19, T22,
T24, T29, T30, T32, T33, T39,
T40, T43, T44, T45, T60, T62,
T63, T64, T67, T68, T70, T71

Networking 23 (32.39%) T1, T4, T10, T13, T17, T19,
T22, T23, T24, T30, T32, T33,
T40, T43, T44, T45, T62, T63,
T67, T68, T69, T70, T71

Health 10 (14.08%) T5, T10, T14, T23, T26, T30,
T32, T35, T36, T63

UX 8 (11.27%) T32, T35, T60, T62, T63, T69,
T70, T71

User-sessions 8 (11.27%) T15, T17, T23, T24, T29, T30,
T62, T63

DB 4 (5.63%) T13, T22, T24, T33
Memory 4 (5.63%) T29, T33, T44, T62
Application-level metrics 3 (4.23%) T63, T69, T71
Power 2 (2.82%) T13, T63
CPU 2 (2.82%) T33, T44
IO 1 (1.41%) T10
Success 1 (1.41%) T43
Profiling 1 (1.41%) T62
Container-lifecycle 1 (1.41%) T62
N/A 20 (28.17%) T16, T18, T28, T34, T37, T38,

T41, T42, T46, T48, T49, T50,
T51, T52, T53, T54, T55, T56,
T57, T58

It is worth noting that system-oriented metrics are much better
upported than user-oriented metrics, indirectly denoting that a system-
evel perspective (in terms, for instance, of resource consumption),
hich can be useful for capacity and deployment planning is deemed
more important goal than application-level and user-oriented metrics

uch as response time or latency.

.3. Distributed tracing

In this section, we report our insights regarding the support for
istributed tracing of the tools.

As shown in Table 11, the majority of the tools, 41 of 71 (57.75%),
o not support distributed tracing, while 30 tools (42.25%) provide
edicated support for distributed tracing.

These 41 tools include Splunk (T60) which does not have any sup-
port for distributed tracing. Whereas, there are tools, such as Jaeger
(T4) or Dynatrace (T71) which provide support for distributed trac-
ing requests.

6.4. Failures/events logging

This parameter investigates whether the tools support failures/
events logging or not. As shown in Table 12, the majority of the
tools, 54 of 71 (76.06%), support failures/events logging, while the
remaining 17 tools (23.94%) do not support it.

Among these 54 tools, for instance, Sumo Logic (T70) or Elas-
tic search (T23), provide support for events/failures logging. How-
ever, there are some tools that do not provide support for collecting
such logs. OpenTelemetry (T27) is one of the 17 tools (23.94%) that
10

does not have support for failures/events logging.
Table 10
System-oriented metrics supported by the tools.

Metric #Tools (Percentage) Tools

Networking 55 (77.46%) T1, T2, T3, T5, T6, T7, T8,
T10, T11, T12, T13, T14, T15,
T17, T18, T19, T20, T21, T22,
T23, T24, T25, T26, T28, T29,
T30, T32, T33, T34, T35, T36,
T37, T38, T39, T40, T44, T45,
T51, T52, T53, T54, T55, T56,
T58, T59, T60, T62, T63, T64,
T65, T67, T68, T69, T70, T71

Memory 53 (74.65%) T1, T3, T5, T6, T7, T8, T9,
T10, T11, T12, T13, T14, T15,
T16, T17, T18, T19, T20, T21,
T22, T23, T24, T25, T26, T28,
T29, T30, T31, T33, T35, T37,
T38, T39, T40, T41, T44, T45,
T46, T51, T52, T53, T54, T55,
T56, T59, T60, T62, T63, T64,
T65, T67, T68, T70

CPU 50 (70.42%) T1, T3, T5, T6, T7, T8, T9, T10,
T12, T13, T14, T15, T16, T17,
T18, T19, T20, T21, T23, T24,
T25, T26, T28, T29, T30, T31,
T33, T35, T37, T38, T39, T40,
T41, T42, T44, T45, T46, T51,
T52, T53, T59, T60, T62, T63,
T64, T65, T67, T68, T70, T71

IO 44 (61.97%) T1, T3, T5, T6, T7, T8, T9, T10,
T11, T12, T13, T14, T15, T16,
T17, T18, T19, T20, T21, T22,
T23, T25, T26, T28, T29, T30,
T31, T33, T35, T37, T38, T39,
T40, T44, T45, T52, T59, T60,
T62, T63, T64, T67, T70, T71

Timing 39 (54.93%) T1, T2, T3, T5, T7, T10, T12,
T14, T17, T19, T20, T22, T23,
T24, T25, T26, T31, T32, T33,
T34, T35, T36, T39, T40, T41,
T42, T45, T46, T51, T52, T54,
T55, T60, T62, T64, T65, T67,
T69, T70

DB 21 (29.58%) T1, T3, T5, T12, T14, T17, T22,
T23, T24, T33, T39, T40, T54,
T55, T56, T63, T65, T67, T68,
T70, T71

User-defined 17 (23.94%) T3, T27, T29, T33, T34, T40,
T44, T46, T47, T60, T61, T62,
T63, T64, T66, T67, T68

Health 16 (22.54%) T1, T3, T5, T6, T10, T14, T22,
T23, T31, T33, T35, T40, T46,
T53, T58, T71

Failure 16 (22.54%) T2, T9, T25, T33, T34, T35,
T36, T39, T42, T55, T58, T60,
T63, T65, T69, T70

Temperature 6 (8.45%) T13, T17, T19, T20, T21, T54
Container-lifecycle 5 (7.04%) T35, T51, T54, T56, T58
Service 4 (5.63%) T3, T31, T54, T68
Power 4 (5.63%) T1, T6, T10, T59
Application-level metrics 4 (5.63%) T24, T41, T52, T55
Load 1 (1.41%) T26
Process 1 (1.41%) T71
N/A 6 (8.45%) T4, T43, T48, T49, T50, T57

6.5. Targeted quality attribute

This parameter is about the quality attributes explicitly targeted by
the monitoring tools. As shown in Table 13, the vast majority of the
tools – 63/71 (88.73%) – focus on Performance as their targeted quality
attribute, followed by Reliability (53/71, 74.65%). This means that the
studied tools tend to focus more on the Performance and Reliability qual-
ity aspects compared to other quality attributes. This result is expected
since the performance and reliability of microservice-based systems
directly impact the user experience, potentially impacting the most

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

t
E

Table 11
Support for distributed tracing.

Request tracing #Tools (Percentage) Tools

Yes 30 (42.25%) T1, T2, T3, T4, T5, T8, T22, T23, T25,
T27, T28, T29, T30, T32, T34, T35,
T41, T44, T45, T48, T54, T55, T58,
T62, T63, T65, T67, T68, T70, T71

No 41 (57.75%) T6, T7, T9, T10, T11, T12, T13, T14,
T15, T16, T17, T18, T19, T20, T21,
T24, T26, T31, T33, T36, T37, T38,
T39, T40, T42, T43, T46, T47, T49,
T50, T51, T52, T53, T56, T57, T59,
T60, T61, T64, T66, T69

Table 12
Support for failure/events logging.

Failure/event
logging

#Tools (Percentage) Tools

Yes 54 (76.06%) T1, T2, T3, T4, T5, T6, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19,
T20, T21, T23, T24, T25, T26, T28, T29,
T30, T31, T32, T33, T34, T35, T36, T38,
T39, T40, T41, T44, T45, T51, T53, T58,
T59, T60, T62, T63, T64, T65, T66, T67,
T68, T69, T70, T71

No 17 (23.94%) T7, T22, T27, T37, T42, T43, T46, T47,
T48, T49, T50, T52, T54, T55, T56, T57,
T61

Table 13
The quality attributes targeted by the monitoring tools.

Quality attribute #Tools (Percentage) Tools

Performance 63 (88.73%) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,
T11, T12, T13, T14, T15, T16, T17, T18,
T19, T20, T21, T22, T23, T24, T25, T26,
T28, T29, T30, T31, T32, T33, T34, T35,
T36, T37, T39, T40, T41, T43, T44,
T45, T46, T48, T51, T52, T54, T55,
T56, T58, T59, T60, T61, T62, T63,
T64, T65, T66, T67, T68, T69, T70, T71

Reliability 53 (74.65%) T1, T3, T4, T5, T6, T7, T8, T9, T10,
T11, T12, T13, T14, T15, T17, T18, T19,
T22, T23, T24, T25, T26, T28, T29,
T30, T31, T33, T34, T36, T37, T38,
T39, T40, T41, T42, T43, T46, T48,
T51, T52, T53, T56, T57, T58, T59,
T60, T61, T62, T63, T67, T68, T70, T71

Security 15 (21.13%) T5, T6, T14, T19, T35, T38, T40, T51,
T60, T61, T66, T67, T69, T70, T71

Usability 7 (9.86%) T5, T60, T62, T63, T67, T69, T70
User-defined 4 (5.63%) T27, T47, T64, T66
Energy 3 (4.23%) T1, T13, T30
None 2 (2.81%) T49, T50
Maintainability 1 (1.41%) T1
Compatibility 1 (1.41%) T5

user acceptance (and the success of the system as a whole). We also
observed that Energy (3/71, 4.23%), Maintainability (1/71, 1.41%), and
Compatibility (1/71, 1.41%) are the least frequently targeted quality
attributes. Four monitoring tools (5.63%) are targeting User-defined
metrics, i.e., they allow system maintainers to define their our quality-
related metrics and provide means to instrument the application in
order to suitably log and aggregate such custom metrics; interestingly,
two of those monitoring tools (i.e., T27 and T47) support exclusively
User-defined metrics, meaning that they do not come with predefined
quality metrics that system maintainers can use out of the box. Finally,
two monitoring tools (2/71, 2.81%) do not explicitly target any quality
attribute (not even those defined by system maintainers); in both cases
the monitoring tool provides features for collecting and filtering system
logs, while delegating to other third-party tools the aggregation of the
11

collected logs into suitable quality metrics.
Table 14
Co-occurring quality attributes targeted by the monitoring tools.

Combination #Tools (Percentage) Tools

Performance - Reliability 49 (69.01%) T1, T3, T4, T5, T6, T7, T8,
T9, T10, T11, T12, T13, T14,
T15, T17, T18, T19, T22, T23,
T24, T25, T26, T28, T29, T30,
T31, T33, T34, T36, T37, T39,
T40, T41, T43, T46, T48, T51,
T52, T56, T58, T59, T60, T61,
T62, T63, T67, T68, T70, T71

Performance - Security 14 (19.72%) T5, T6, T14, T19, T35, T40,
T51, T60, T61, T66, T67, T69,
T70, T71

Security - Reliability 12 (16.90%) T5, T6, T14, T19, T38, T40,
T51, T60, T61, T67, T70, T71

Performance - Reliability -
Security

11 (15.49%) T5, T6, T14, T19, T40, T51,
T60, T61, T67, T70, T71

For instance, the targeted quality attributes for the Sumo Logic
ool (T70) are Performance, Reliability, Security, and Usability, whereas,
lastic search (T23) focuses on Performance and Reliability.

For the targeted quality attributes, it would be interesting also to
note down further insights on their co-existence with other quality
attributes. From the collected data, we noticed in 11 cases, 11 of
71 tools, cover Performance, Reliability, and Security together. 49, 14,
and 12 tools cover the combination of Performance-Reliability, Perfor-
mance-Security, and Security-Reliability, respectively, as their targeted
quality attributes with/without other less frequent quality attributes.
This information related to the combination of the quality attributes is
presented in Table 14. It is finally interesting to note that monitoring
Energy is scarcely supported (3/71), although power consumption is
one of the few attributes directly related to cost. We expect an increased
support in the near future. Security will also likely see an increasing
support, considering the pressing need for cyber-security in todays’
systems.

7. Results – How is monitoring done

In this section, we discuss how the monitoring is done by the tools.
This includes the instrumentation usable with the tools, the monitoring
patterns and practices we observed, the granularity on which data is
gathered and whether there is an integration with testing.

7.1. Instrumentation

We report our insights regarding the instrumentation used by the
monitoring tools in this section. The possible forms of instrumentation
are platform, library or no instrumentation. A platform runs besides
the monitored application and forwards monitoring data to a back-end
for storage and analysis. This data can be either gathered by the plat-
form itself, through automatic instrumentation or by instrumentation
libraries. These libraries are programming language specific and enable
the manual instrumentation of applications. Platforms and libraries can
either be vendor-provided or third-party. No instrumentation means
that there is neither a platform nor a library. Instead monitoring data
is gathered through manual instrumentation and manual forwarding to
the back-end via communication protocols, e.g. a REST-API.

Table 16 shows that the majority of tools, 59 (83.1%), provide a
vendor-specific platform. About half of the tools, 37 (52.11%), provide
a vendor-specific library and 32 tools provide a vendor-specific plat-
form and library. Third-party platforms are usable with 36 (50.7%) and
third-party libraries with 36 (50.7%) of the tools. Only 3 (4.23%) tools
provide no instrumentation platform or library or can be used with
third-party platforms or libraries. For instance, OpenTelemtry (T27)
provides platforms and libraries, supports forwarding data to third-
party platforms and back-ends and can ingest data from third-party
platforms or libraries.

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

m
s
f
a

7

i
s
t
t

Table 15
Monitoring Patterns. P1: Health Check API, P2: Distributed Tracing, P3: Application
Metrics, P4: Audit Logging, P5: Exception Tracking, P6: Log Aggregation.

Monitoring pattern #Tools (Percentage) Tools

P1 22 (30.98%) T42, T43, T46, T53, T55, T56, T5,
T6, T33, T10, T11, T19, T29, T35,
T58, T31, T62, T39, T45, T51, T52,
T54

P2 17 (23.94%) T2, T4, T50, T5, T8, T23, T25, T32,
T27, T44, T31, T62, T39, T45, T51,
T54, T65

P3 33 (46.47%) T1, T7, T24, T47, T57, T59, T5, T6,
T33, T8, T10, T13, T15, T36, T22,
T23, T25, T32, T26, T38, T64, T27,
T44, T29, T35, T58, T31, T62, T39,
T45, T51, T52, T65

P4 14 (19.71%) T23, T5, T6, T33, T8, T13, T15, T36,
T26, T38, T64, T31, T62, T37

P5 12 (16.90%) T5, T23, T26, T38, T64, T37, T39,
T45, T51, T52, T65, T66

P6 28 (39.43%) T14, T18, T20 ,T21, T41, T48, T49,
T61, T5, T6, T33, T8, T10, T11, T19,
T13, T15, T36, T22, T23, T26, T38,
T64, T27, T44, T31, T62, T66

All 11 (15.49%) T3, T28, T30, T34, T40, T60, T63,
T67, T68, T70, T71

N/A 5 (7.04%) T9, T12, T16 ,T17, T69

Table 16
Instrumentation mechanisms provided by the tools.

Instrumentation #Tools (Percentage) Tools

Vendor-provided
platform

59 (83.1%) T1-T18, T21, T23-T41,
T43-T44, T46, T50-T56,
T58-T60, T62-T63, T65-T68,
T70-T71

Vendor-provided
library 37 (52.11%) T1-T3, T6, T15, T17, T22-T29,

T32-T35, T37, T39-T41,
T44-T48, T53-T54, T60, T63,
T65, T67-T71

Third-party
platform 36 (50.7%) T1-T5, T11-T12, T14-T16,

T19-T23, T26-T27, T29,
T31-T32, T34-T35, T37, T39,
T41, T44, T58, T60-T64,
T66-T67, T70-T71

Third-party library 36 (50.7%) T1-T5, T8, T11-T12, T14-T16,
T19-T23, T26-T27, T29,
T31-T32, T34-T35, T37, T39,
T41, T44, T58, T60-T64, T67,
T70-T71

No instrumentation 3 (4.23%) T42, T49, T57

7.2. Monitoring patterns and practices

Table 15 reports the tools as per different monitoring patterns.
The monitoring patterns of the tools are classified into 6 categories.
P1: Health Check API Pattern, P2: Distributed Tracing Pattern, P3:
Application Metrics Pattern, P4: Audit Logging Pattern, P5: Exception
Tracking Pattern, P6: Log Aggregation Pattern. For each monitoring
pattern, there are specific monitoring practices. For example, if a tool
has only monitoring pattern P1, then it only supports health check API
and sometimes event logger. In case of P3, there are tools like T47
that supports event logger and T57 that supports signaling theory, stig-
mergy, systems thinking, semiotics, and social cognition practices. Out
of 71, only 11 tools follow all the six monitoring patterns. The overview
of the classification is in Table 15. We can see that the analyzed tools
support most of the available patterns such as: Application metrics (P3),
health check API (P1), log aggregation (P6), distributed tracking (P2).

Most of the tools provide ‘‘log management’’ as monitoring patterns.
12

However, there exists no tools which only supports P4, P5. They v
Table 17
Monitoring granularity mapping tools to every granularity level.

Monitoring granularity #Tools (Percentage) Tools

Application 37 (52.11%) T1, T3, T5, T6, T8, T13, T14,
T15, T20, T21, T23, T24, T27,
T28, T29, T30, T31, T32, T33,
T34, T35, T36, T37, T38, T40,
T60, T61, T62, T63, T64, T65,
T66, T67, T68, T69, T70, T71

Microservice 62 (87.32%) T1, T2, T3, T4, T5, T6, T7, T8,
T10, T13, T14, T15, T20, T21,
T22, T23, T24, T25, T26, T27,
T28, T29, T30, T31, T32, T33,
T34, T35, T36, T37, T38, T40,
T41, T42, T43, T44, T45, T46,
T47, T48, T49, T50, T51, T52,
T53, T54, T55, T56, T57, T58,
T59, T60, T61, T62, T63, T64,
T65, T66, T67, T68, T70, T71

VM/Container 42 (59.15%) T1, T3, T5, T6, T8, T10, T13,
T14, T15, T17, T18, T19, T20,
T21, T22, T23, T24, T25, T28,
T29, T30, T31, T33, T34, T35,
T36, T37, T38, T39, T40, T44,
T60, T61, T62, T63, T64, T65,
T66, T67, T68, T70, T71

Infrastructure 40 (56.33%) T1, T3, T5, T6, T7, T8, T10, T13,
T14, T15, T16, T17, T18, T19,
T20, T21, T23, T25, T26, T28,
T29, T30, T31, T33, T34, T35,
T36, T37, T38, T40, T44, T60,
T61, T62, T63, T64, T67, T68,
T70, T71

N/A 3 (4.23%) T9, T11, T12

are always combined with other monitoring patterns. For 6 tools, no
information is available, or it is hard to gather the information.

7.3. Monitoring granularity

Within the monitoring granularity dimension, we investigated on
which levels the tools operate. These levels consist of the complete
Microservice-based application, individual Microservices, a VM or con-
tainer, and the infrastructure. The mapping of tools to the levels
is displayed in Table 17. While the application, VM/container, and
infrastructure levels are supported by over half of the tools, 62 tools
(87.32%) target the Microservice level. In addition, Table 18 contains
all level combinations which are supported by at least one tool, and
the corresponding tools. Here, tools that work at only one among
the application, infrastructure level or VM/Container levels are 1 per
each level (T69, Akamai mPulse, T16, NSCP, and T39, AppSig-
nal, respectively) while there are 20 tools (28.17%) supporting only
Microservices. The most frequent combination with 31 tools (42.66%)
covers all four levels (application, Microservice, VM/container, and
infrastructure level).

As an example, these 31 tools include Zenoss which collects
etrics and events of the infrastructure, VM/container, and individual

ervice level. By combining these information and providing overviews
or complete applications, Zenoss is one of the tools that operate on
ll levels.

.4. Integration with testing

Regarding testing, we looked if the monitoring tools support testing
n some way. As shown in Table 19, only 11 tools (15.5%) provide
uch support. As a consequence, a majority of the tools do not support
ests. When collecting data about integration with testing, we observed
hat most of them do not inherently support testing in their standard
ersion but rely on plugins for this purpose. Additionally, we noted

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

p
i
o
f

8

a
e
s
e

8

b
i

t
w
m
f
p
e
i
v
p
l

t
h
l
D
p
t
o
a
o
t
p
e

Table 18
Monitoring granularity showing which tools support which level combination.

Combinations of
monitoring granularity

#Tools (Percentage) Tools

Application 1 (1.40%) T69

Application, Microservice 2 (2.81%) T27, T32

Application, Microservice,
VM/Container

3 (4.23%) T24, T65, T66

Application, Microservice,
VM/Container,
Infrastructure

31 (43.66%) T1, T3, T5, T6, T8, T13, T14,
T15, T20, T21, T23, T28, T29,
T30, T31, T33, T34, T35, T36,
T37, T38, T40, T60, T61, T62,
T63, T64, T67, T68, T70, T71

Microservice 20 (28.17%) T2, T4, T41, T42, T43, T45,
T46, T47, T48, T49, T50, T51,
T52, T53, T54, T55, T56, T57,
T58, T59

Microservice, Infrastructure 2 (2.82%) T7, T26

Microservice,
VM/Container

1 (1.40%) T22

Microser-
vice,VM/Container,
Infrastructure

3 (4.23%) T10, T25, T44

Infrastructure 1 (1.40%) T16

VM/Container 1 (1.40%) T39

VM/Container,
Infrastructure

3 (4.23%) T17, T18, T19

N/A 3 (4.23%) T9, T11, T12

Table 19
Integration with testing.

Integration with
testing?

#Tools
(Percentage)

Tools

Yes 11 (15.5%) T24, T29, T56, T58, T59, T60, T62, T63, T64,
T67, T69

No 60 (84.5%) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20,
T21, T22, T23, T25, T26, T27, T28, T30, T31,
T32, T33, T34, T35, T36, T37, T38, T39, T40,
T41, T42, T43, T44, T45, T46, T47, T48, T49,
T50, T51, T52, T53, T54, T55, T57, T61, T65,
T66, T68, T70, T71

that they primarily focus on non-functional testing (e.g., T29, T59, T62,
T63, and T69), such as performance testing. On the other hand, other
tools offer support for functional testing (e.g., T24, T44, and T60),
including regression testing. However, they usually require to manually
write test cases. For instance, DataDog and Sematext, provide the
ossibility to define synthetic tests. When these tests are executed, user
nteractions are simulated by performing synthetic requests and actions
n the applications’ endpoints. Integration with testing is a possible
uture challenge, a deeper discussion follows in the next section.

. Discussion

In this section, we put in context the results emerging from our
nalysis by presenting (i) the main findings and guidance for DevOps
ngineers (Section 8.1), (ii) open challenges to be addressed by both re-
earchers and tool vendors (Section 8.2), and (iii) cross-cutting findings
merging from our orthogonal analysis (Section 8.3).

.1. Main findings and guidance for DevOps engineers

Table 20 summarizes the main findings of our study, grouped
y research question, together with high-level observations for help-
13

ng DevOps engineers in selecting a monitoring tool for their own
microservice-based system. The details of the specific features of each
tool are provided in the referred sections in this article and in the
replication package.

8.1.1. The ecosystem
The main takeaway message of this study is that the ecosystem

of monitoring tools for microservice-based systems in the context of
DevOps is extremely active, as there has been an important effort
o develop and maintain tools in the last ten years. In this effort,
eb services and Microservices contributed to raising the market of
onitoring tools initially devoted to distributed systems in general,

avoring an increase in the number of tools (since around 2009 with a
eak in 2014) tailored for service-based software. Nevertheless, such an
cosystem is also extremely fragmented: each of the analyzed monitor-
ng tools has its own characteristics and can fit DevOps engineers with
ery different needs, e.g., in terms of targeted quality attributes (e.g.,
erformance, security), monitored metrics (e.g., CPU usage, network
atency, energy consumption), applied monitoring patterns (e.g., health

check API, log aggregation), etc. So, it is more important than ever for
DevOps engineers to make informed decisions when choosing the right
tool for monitoring their own system.

We suggest DevOps engineers to use our data extraction form (see
Table 3) as a checklist for guiding their decision process about the
monitoring tool to use in their own system. Such a checklist can act as a
compass when reasoning on the monitoring tool to use (and the implied
trade-offs among the various dimensions of our data extraction form).
To date, there is a vast choice for practitioners, with tools offering
several features besides the basic data-collection facilities. While most
tools offer some visualization and metrics reporting facility, only a few
have advanced features, such as exposure of APIs for integration with
other systems, customizable data searches, and analysis or optimization
features. These are features that, if needed, will significantly restrict the
space of possible choices, and they should be weighed against other
characteristics, such as collected metrics, required technologies, and
performance overhead. In this context, we suggest DevOps engineers
use our data extraction form incrementally, i.e., to consider the parame-
ers based on the importance of the tool’s features for the project at
and. Specifically, we identified three levels of parameters: the top
evel contains first-class features representing tier-1 parameters for the
evOps team, the second level is about tier-2 parameters, i.e., those
arameters whose values are still required by the DevOps team, but
hey are not blocking, and finally we have the third level containing
ptional parameters, which represent those parameters whose values
re desiderata for the DevOps team. Based on the collected data and
ur experience in both industrial and academic projects, we propose
he following concrete levels for choosing a monitoring tool (for each
arameter we also provide concrete examples of questions DevOps
ngineers can ask themselves during the decision process):

• Tier-1 parameters:

– Target – What needs to be monitored, individual microservices,
the system as a whole, etc.?

– Features/motivation – Why does the DevOps team need to
monitor the system (e.g., for visualization, reporting, optimiza-
tion, etc..)?

– Assumptions – Does the system/project satisfy all assumptions
of the tool (a specific OS, Docker, specific DB technology)?

– Integration/Dependency tools – Does the team have the ca-
pacity to bring up the technologies on which the tool depends
(e.g., Apache Kafka)?

– Monitoring metrics (user-oriented) – Which high-level metrics
does the DevOps team need to collect from the running system
(e.g., health, UX, user sessions)?

– Monitoring metrics (system-oriented) – Which system-level
metrics does the DevOps team need to collect from the running
system (e.g., network requests, IO operations, CPU usage)?

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Table 20
Main findings of this study.

Main characteristics of the monitoring tools (RQ1) Section

About half of the tools (34/71) have been released after 2014, in parallel with the boost of microservices and DevOps. Most of tools are actively maintained
(77% of the tools have a last release in 2021 or 2022). Proprietary tools tend to have a longer lifetime.

4

MostL of the tools (58%) target high-level distributed systems, while the rest, especially newer ones, are specifically focused on web service technologies (21%)
and for microservice-based systems (21%).

Most of the tools (48/71) offer their own visualization and reporting facilities besides monitoring; a significant share of the tools offer alerting (29/71) and data
analysis (26/71) capabilities. More advanced features are available in a few tools, such as: custom data search/analysis (16/71), dedicated APIs for third-party
components (10/71), and optimization features (4/71).

5.1

The most widely supported data export formats are JSON (49/71) and CSV (25/71). Most of the tools (54/71) offer their own visualization features, such as
charts, tables, and dashboards.

5.2

The most used programming languages for developing monitoring tools are: Go (27/71), Java (25/71), Python (22/71), and JavaScript (20/71); a non-negligible
number of tools (27/71) use multiple languages.

The most used technologies are related to visualization (39%), data collection tools (35%), and databases (30%).

Specific OS, technologies (e.g., Docker containers, JVM, Node.js, a SaaS), or libraries are explicitly stated as requirements in no more than 20% of the tools.
5.3

The challenges (Waseem et al., 2021) addressed by more than 50% of the tools are those related to performance (MC4), metrics and logs (MC1), complexity
(MC3), and data analysis (MC5).

5.4

Type of information collected by the tools (RQ2)

The user-oriented metrics that are collected the most are custom/user-defined (26/71) or related to system failures (26/71), timing (24/71), and networking
(23/71).

The system-oriented metrics that are collected the most are related to networking (55/71), memory usage (53/71), and CPU load (50/71).

The majority of the tools (41/71) do not support distributed tracing, while 30/71 tools provide dedicated support for distributed tracing.

The majority of the tools (54/71) support failures/events logging, while the remaining 17 tools do not support it.

The most targeted quality attributes are performance (63/71), reliability (53/71), and security (15/71). Only 5 tools target user-defined quality attributes and
only 3 tools target energy consumption.

6

Realization of the monitoring infrastructure (RQ3)

Almost all monitoring tools require an instrumentation step (68/71). Among them, the majority of the tools provide a vendor-specific platform (59/68), followed
by a vendor-provided library (37/68) and either a third-party platform (36/71) or third-party library (36/71).

The most frequently-used monitoring patterns are: Application Metrics (44/71), Log Aggregation (39/71), and Health Check API (33/71). Out of the 71
monitoring tools, 11 tools use all 6 monitoring patterns we consider in this study.

The vast majority of the considered tools have a monitoring granularity defined at the microservice level (62/71), followed by the VM/container level (42/71),
infrastructure level (40/71), and finally application level (37/71).

The majority of the analyzed tools do not have any integration with testing activities (60/71). The remaining 11 tools deal with testing in some way, e.g., by
supporting canary releases, synthesis of test cases, or by providing dedicated testing environments for end-to-end testing of the system.

7

– Targeted quality attribute(s) – Is the DevOps team interested
on security-related aspects of the system? What about energy
efficiency? What about performance?

• Tier-2 parameters:

– Open Source – Does the DevOps team need to customize/modify
the monitoring tool?

– Visualization – How are the monitored metrics visualized? Is a
graphical visualization needed? If yes, which one?

– Requests tracing – Is it needed to collect information about all
(internal) API calls made when executing a usage scenario?

– Events/Failures logging – Does the DevOps team need precise
information about specific events and failures within the system?

– Instrumentation – Are there resources, skills, and time avail-
able for instrumenting the monitored services?

• Optional parameters:

– Provider – Does the DevOps team already have a business
relationship with the tool provider? Does the DevOps team need
support from the tool provider?

– Available format(s) to export data – Is it required to analyze
the monitoring data externally? If yes, are JSON or CSV (or
other) file formats acceptable?

– Addressed Challenges – Are there any orthogonal relevant
aspects about the tool and the system that should be taken into
consideration

– Monitoring granularity – Does the DevOps team need to mon-
itor the application-level metrics, individual microservices, the
infrastructure, etc.?
14
– Monitoring patterns – Which monitoring patterns is the De-
vOps team familiar with (e.g., health check API, audit logging,
exception tracking)?

– Monitoring practices – Which monitoring practices is the De-
vOps team familiar with (e.g., deployment logging, log aggrega-
tion, etc.)?

– Programming language(s) – Does the DevOps team need to
customize the monitoring tool? If yes, which technologies/
programming languages are they familiar with?

– Integration with testing – Does the DevOps team have an
already-in-place testing infrastructure that needs to be integrated
with monitoring data?

The above-mentioned levels can be used as follows. Tier-1 parame-
ters are defined a priori by DevOps engineers and guide the first round
of filtering of available monitoring tools; the line of reasoning is that
tools passing this first filtering step provide a satisfactory coverage
of all tier-1 parameters. This phase also helps DevOps engineers in
prioritizing what is really important for their monitoring policies. Then,
those monitoring tools that have not been filtered out will undergo a
second filtering phase based on tier-2 parameters. In this phase, the
selection is less stringent, a tool passing this phase might not provide
some features for the selected tier-2 parameters (as a rule of thumb,
we might expect that a selected tool might provide at least 80% of
the required values for tier-2 parameters). Finally, the remaining tools
undergo a third selection phase, where the tool providing the majority
of the optional features is finally selected and used in the project.
The selection based on tier-2 and optional parameters is iterative and
incremental, meaning that also the requirements for the monitoring
tool can be refined and re-prioritized during the selection itself. It is

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

v
d
a
u
r
c
b
w
g
d

8

t
f
s
(
t
m
o
a

8

T
m
i
e
t
i
p
s
g
w
e
s
o
o
s

8

s
b
s
c
(
t
o
t

g
O
A
T
b
e

8

8

t
t
m
o
b
r
t

important to note that the levels proposed above are our attempt to
extract the dimensions that can possibly fit most software projects.
We invite practitioners to carefully assess if our proposed levels fit
their project and, in case they do not, to adapt them according to the
project’s requirements and technological/organizational context.

8.1.2. First of all, why monitoring
More in general, we advise DevOps engineers to reason in a top-

down fashion when deciding which monitoring tool to use, starting
with the why monitoring is done from an organizational point of
iew. Examples of questions to be asked here include: is monitoring
one for receiving real-time alerts about system malfunctions (i.e., reli-
bility engineering)? Is monitoring done mostly for collecting logs to be
sed in an external audit (this scenario is specifically useful for highly-
egulated domains like finance)? Is a real-time dashboard showing the
ollected metrics needed/used? If yes, who is using it (e.g., DevOps engineers,
usiness analysts, customers)? The main dimensions to be considered
hen taking these decisions include: tools’ features/motivation, tar-
eted quality attributes, user-oriented and system-oriented metrics, and
ata visualization means.

.1.3. Required technologies and assumptions
The choice of a tool is also heavily related to the required technolo-

gies for the tool to run or work properly. These latter ones are most
often related to visualization (39%), data collection tools (35%), and
DB (30%). But other categories might also be relevant; for instance,
some tools require virtualization to work or have requirements on
configuration management. This needs to be read together with the
list of assumptions, as these two dimensions can significantly restrict
he possible choices, depending on the user’s needs. In this regard, we
ound that the documentation of the tools reports the specific operating
ystem required, the libraries needed, or the required technologies
e.g., containers, JVM, Node.js), or reports about requirements for
he system under monitoring (e.g., only Java-based applications are
onitored). This is however explicitly reported in no more than 20%

f the tools, which does not mean that the rest of the tools is free from
ssumptions — we advise the reader to check this aspect case-by-case.

.1.4. Distributed tracing
In our dataset, 30 monitoring tools support distributed tracing.

his is not a surprise per se since using distributed tracing tools of
icroservice-based systems is becoming the state of the art, specially

n the context of anomaly detection and performance analysis (Bento
t al., 2021; Huye et al., 2023). However, distributed tracing tends
o be more complex and resource-demanding than the collection of
ndividual metrics for each service (Shkuro, 2019); this means that
otentially distributed tracing might lead to a higher overhead for the
ystem being monitored (Bento et al., 2021). We suggest DevOps en-
ineers to critically reflect on whether the usage of distributed tracing
ill pay off for them in terms of, e.g., higher system observability and
arly diagnosis in case of failures or performance regressions. We also
uggest DevOps engineers to experiment with different configurations
f the tracing tool (e.g., about the sampling frequency of the traces) in
rder to ensure that the added overhead due to distributed tracing is
till bearable for the system as a whole.

.1.5. Instrumentation
As shown in Table 20, almost all monitoring tools require in-

trumentation. This means that the source code of the microservices
eing monitored must be extended or annotated with probes that
uitably collect the metrics, logs, and traces of interest. Instrumentation
ode might be relatively simple (e.g., a basic probe) or more complex
e.g., for creating a span in a distributed tracing tool and assigning it
o the correct trace id); in any case, it is additional code that is devel-
ped, maintained, and operated by (potentially different) development
eams. We advise DevOps engineers to (i) choose the monitoring tool
15
whose instrumentation fits well with the development pace of the
system (some of them, like Jaeger, Prometheus, Zipkin, and
elasticsearch support some level of automatic instrumentation
via OpenTelemetry libraries.8) and (ii) allocate proper time and
resources towards the co-evolution of the microservices source code
and their instrumentation code

8.1.6. Community support
Finally, also the state of the community around the chosen mon-

itoring tool plays a strong role. Some of the analyzed tools have a
lively open-source community (e.g., Prometheus, with its 49+ thousand
stars on GitHub and well-defined contribution strategy), making them
good candidates in terms of long-term support. Some of the open-source
tools are also backed by nonprofit foundations such as the Apache
Software Foundation (Apache skywalking – T3) or the Cloud Native
Computing Foundation (Prometheus – T1 and Jaeger – T4), thus
uaranteeing a certain level of transparency and support over the years.
ther open-source tools are instead maintained by companies such as
mazon (AWS CloudWatch – T29) or Elastic (elasticsearch –
23). Differently, other tools are either closed-source or maintained
y a single contributor, resulting in a riskier investment for DevOps
ngineers.

.2. Open challenges for researchers and tool vendors

.2.1. Open challenges for researchers
Researchers can use our classification of the 71 monitoring tools

o get a detailed overview of the characteristics of existing monitoring
echniques and use it to either (i) steer their own research towards
ethods and techniques that are still not covered by existing tools

r (ii) identify monitoring tools which can be reused as building
locks in their own research on DevOps and microservices. Below we
eport about the promising research gaps we noticed while analyzing
he collected monitoring tools:

• Assessment of runtime overhead of monitoring microservice-
based systems: the documentation of several monitoring tools
claims that the tool is highly efficient and with low overhead in
terms of usage of resources (e.g., CPU, memory, networking, en-
ergy). However, to the best of our knowledge there is no scientific
study providing empirical evidence about such overhead. Also, an
independent assessment carried out by researchers (not affiliated
with any organization behind the tools) will provide objective,
trustable, and replicable insights about this particular aspect of
monitoring tools for microservices.

• Instrumentation bugs: as mentioned in the previous section, the
instrumentation code in a microservice is still code developed
by the team responsible for the microservice. As such, the risk
of introducing bugs in the instrumentation code is there and (to
the best of our knowledge) it has not been studied yet. In this
context it might be interesting to (i) characterize instrumentation
bugs (e.g., via a study mining software repositories), (ii) assess the
possible consequences of those bugs in terms of the correctness of
the produced metrics and traces, and their potential impact on the
decision process of DevOps engineers, and (iii) propose (semi-)
automated approaches for detecting and solving instrumentation
bugs.

• Impact of misconfiguration of monitoring tools: this research
line is somehow in between the previous two (if we consider a
misconfiguration as a form of bug), but it is different. Monitoring
tools can be configured in several ways, As an example, the
majority of the tools supported distributed tracing can sample the
collected traces at different frequencies, in an adaptive manner,

8 https://opentelemetry.io/ecosystem/integrations

https://opentelemetry.io/ecosystem/integrations

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 7. Co-occurrences between open§/closed source and programming language.
based on rules, etc. All of those configurations might potentially
lead to issues with respect to the correctness of the produced
metrics or unexpected runtime overhead. It might be interesting
to characterize, assess, and measure how monitoring tools behave
under different configurations and on their impact on the overall
quality of the system being monitored.

8.2.2. Open challenges for tool vendors
Tool maintainers can use our map of 71 monitoring tools to identify

competing tools and avoiding to reinvent the wheel. We also identified
potentially-interesting gaps within the monitoring tools landscape that
tool vendors can use to anticipate the features of their next generation
monitoring tools. Below we report about those identified gaps:

• Integration with testing activities: testing and online experi-
mentation via A/B testing procedures and canary releases are the
norm today when dealing with Cloud-based applications, so it
strikes the eye that the majority of the analyzed tools do not have
any integration with testing activities. Some tools have it, but they
are a minority with respect to the main trend. Tool vendors are
invited to explore further how testing how can be integrated in
their monitoring tools.

• Target unaddressed challenges of microservice practitioners:
the Failure zone detection (MC6), the Monitoring of applications
running inside containers (MC8), and Maintaining monitoring
infrastructures (MC9) are the least-addressed challenges in our ex-
tracted data. Features addressing those challenges are intrinsically
promising for future releases of monitoring tools since they will be
addressing concrete issues and concerns voiced by microservice
practitioners, as emerged in Waseem et al. (2021).

• Monitor power consumption: only four tools monitor the power
consumption of the nodes where the microservices are running
(T1, T6, T10, and T59). This is a missed opportunity since the en-
ergy demand of microservice-based systems is exploding (Verdec-
chia et al., 2021) and society and policy makers are starting to
build a sensibility on the energy consumption of Cloud-based
software services in general. Interestingly, none of them are pro-
viding the power consumption at the single-microservice level.
This might be an opportunity for tool vendors since in their tools
they might unlock further features, such as (i) the identification of
energy hotspots in the monitored system (i.e., those services that
are particularly energy-hungry), (ii) the support for root cause
analysis in terms of power consumption, and (iii) the support
for microservices redeployment based on their current power
consumption and/or temperature of the processor where they are
running.

• Better integration with maintainability: Only one tool (i.e., T1)
targets the maintainability of the system. This is also a missed
opportunity since it might be informative for DevOps engineers
to have an integrated view of the development activities and the
runtime metrics of each monitored microservice. For example,
we might think about having a dashboard showing information
about pushes on the GitHub repository containing the source
code of a microservice, its CD/CI actions (e.g., automated builds
and deploys), and variations of its runtime metrics like CPU and
16
memory usage; with such an instrument DevOps engineers might
easily spot performance regressions in their managed microser-
vices, without needing to move from one tool to another risking
to lose precious contextual information.

8.3. Cross-cutting findings

This section describes the results of our orthogonal analysis. The
goal of the orthogonal analysis is to investigate possible co-occurrences
between related dimensions of the classification scheme (see Sec-
tion 3.3). Specifically, firstly we collaboratively identified 21 pairs of
dimensions whose co-occurrences can lead to potentially-interesting
cross-cutting findings, then we built contingency tables for the iden-
tified pairs of dimensions, we analyzed each one of them, and finally
synthesized the most interesting cross-cutting findings emerging from
our analysis. In the remainder of this section, we present the cross-
cutting findings emerging from 7 of the initial 21 pairs, one pair in
each subsection . We do not report the results of the other 14 pairs
since they either did not exhibit observable trends or did not lead to
additional insights with respect to those of the vertical analysis.9

8.3.1. Open source and programming languages
Fig. 7 reports the co-occurrences between open/closed source and

programming language. In line with the results of our vertical analysis,
C (29 open-source vs 11 closed-source), Java (26 open-source vs
11 closed-source), and Go (20 open-source vs 6 closed-source)
are the most used programming languages in open-source projects.
We suggest to junior practitioners who want to enter the open-source
monitoring tools ecosystem to specialize in at least one of the three
above-mentioned programming languages. There is slightly more bal-
ance when considering Python-based projects (12 open-source vs 9
closed-source) and even an opposite trend when considering Node
projects (3 open-source vs 7 closed-source). The latter result is in-
teresting, especially due to the popularity of the Python and Javascript
languages today (TIOBE, 2022). The most recently-created monitoring
tools in our dataset are both open-source and developed in Java. Those
tools are easeagent (T55) and OpenSignals (T57) and both of
them are dedicated to monitor Java-based microservice-based systems.

8.3.2. Open source and addressed challenges
We crosschecked the challenges addressed by each monitoring tool

and whether it is an open-source project or not. Fig. 8 reports the co-
occurrences. In this way, we can assess the open-source community
and evaluate how open-source tools are able to help practitioners in
addressing their challenges. In line with the results of the vertical
analysis, the majority of identified challenges are targeted more by
open-source tools (which are 65% of all analyzed tools in total) rather
than closed-source ones (which are only 35% of all analyzed tools in
total). Nevertheless, we identified an opposite trend when looking at
the maintenance of the monitoring infrastructure challenge (MC9). Indeed,

9 For transparency, all contingency tables and our extracted findings are
available in the replication package, allowing for further analysis by the
interested reader.

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 8. Co-occurrences between open§/closed source and addressed challenges.
only 6 open-source tools target MC9, as opposed to 11 closed-
source tools targeting it. The 6 open-source tools targeting MC9 are:
elasticsearch (T23), AWS CloudWatch (T29), Sensu (T31),
netdata (T40), vigil (T53), Reimann (T64). We invite the open-
source community to fill this gap by providing more support for the
maintenance of the monitoring infrastructures operated via their open-
source monitoring tools. Possible action points to address this issue
include (but are not limited to): (i) providing better support in terms of
co-evolution of the monitored services and the sidecar services/agents mon-
itoring them, (ii) supporting standard formats for representing monitored
data, such as OpenTelemetry, and (iii) better support the migration
towards newer releases of the monitoring tool, without requiring a reboot
of either the monitoring tool or the monitored services, etc.

8.3.3. User-oriented metrics and system-oriented metrics
Fig. 9 reports the co-occurrences between user- and system-oriented

metrics. It does not come as a surprise that the most frequently-used
user-level metrics (e.g., those about timing, networking, and failure)
co-occur with the most frequently-used system-level metrics (e.g., those
about CPU load, IO operations, memory usage, network traffic, DB
usage). In this case we did not observe any significant gap to be
filled by researchers and tool vendors. However, we noticed interesting
results when analyzing the co-occurrences of user-oriented metrics (see
Section 8.3.4) and system-oriented metrics (see Section 8.3.5).

8.3.4. Co-occurrences of user-oriented metrics
Fig. 10 reports the co-occurrences between different user-oriented

metrics. The user-level metrics that co-occur more frequently in our
collected data are the following: Timing and Failure metrics (19 co-
occurrences), Timing and Networking metrics (18 co-occurrences),
and Failure and Networking metrics (17 co-occurrences). Those co-
occurrences are expected since Timing metrics (e.g., system overall
latency, average response time) can strongly depend on possible sys-
tem failures, and availability, and its communication infrastructure.
Custom metrics defined by DevOps engineers also tend to co-occur
with timing metrics (13 co-occurrences); we speculate that the latter
is an indication of the fact that raw timing metrics might not always
be enough to observe the overall system health and monitoring tools
provide means for allowing DevOps engineers to add their own custom
metrics, such as the well-known ‘‘Time to First Tweet’’, defined as: ‘‘the
amount of time it takes from navigation (clicking the link) to viewing
the first Tweet on each page’s timeline’’ (Firtman, 2018). In a recent
industrial case study we empirically observed that product-specific
metrics like the ‘‘Time to First Tweet’’ exhibit a perfect correlation
with the user-perceived load time, thus proving higher value with
respect to generic/raw performance metric (Riet et al., 2023). We also
observed two interesting gaps: current monitoring tools never support at
the same time user-oriented metrics covering (i) Security and DBs metrics
and (ii) Container lifecycle and Failure metrics. Those two gaps might
be opportunities for tool vendors willing to expand the features of
their tools in terms of observability capabilities at a higher level of
abstraction than that of system level.
17
8.3.5. Co-occurrences of system-oriented metrics
Fig. 11 reports the co-occurrences of different system-oriented met-

rics. As expected, the most frequent co-occurrences are about system
metrics that are frequently used when monitoring Cloud-based systems,
such as: network traffic and memory usage (49 co-occurrences),
network traffic and CPU load (44 co-occurrences), network traf-
fic and I/O operations (41 co-occurrences), I/O operations and
memory usage (44 co-occurrences), I/O operations and CPU load
(42 co-occurrences). We observed potentially-interesting gaps related
to the power consumption of the system. Indeed, even though energy
and power consumption are being monitored by multiple Cloud ven-
dors (Verdecchia et al., 2021), the monitoring tools providing power
consumption metrics (i.e., T1, T6, T10, T59) do not provide other
metrics that are conceptually strongly linked to power consumption.
Specifically, according to our analysis, there is no monitoring tool that
supports at the same time metrics about power consumption and (i) the
temperature of the processors, (ii) system load, (iii) container lifecycle, and
(iv) system failures. We invite vendors of monitoring tools to support
the four previously-mentioned metrics since they can help DevOps
engineers in (i) better understanding the reasons they might observe
peaks of power consumption in their system and (ii) finding solu-
tions for reducing the overall power consumption of their systems.
As an example of such solutions that can be achieved when using
power metrics combined with other ones, we mention Kube Green.10

Kube Green is a Kubernetes addon that automatically shuts down
pods in Kubernetes-based systems when they are not strictly needed
(i.e., dev/testing pods outside office hours); in this case, the status the
lifecycle of each container might be monitored in combination with the
power consumption of the system in order to semi-automatically trigger
Kube Green and turn off selected containers based on their lifecycle
status.

8.3.6. Requests tracing and targeted quality attributes
Fig. 12 reports the co-occurrences of the Tracing parameter (i.e., the

tool supports request tracing) with quality attributes. Being perfor-
mance and reliability the most targeted quality attributes in our dataset,
they are also the ones with higher co-occurrences with the Tracing
parameter. Here we can see a certain balance for performance, where
29 monitoring tools provide support for distributed tracing, as op-
posed to 34 monitoring tools not supporting it. An example of tools
supporting distributed tracing and targeting performance is Zipkin
(T2), which allows DevOps engineers to diagnose latency problems by
collecting traces of service calls annotated with timing information. The
data about reliability is relatively similar, but less balanced, with 21
tools supporting distributed tracing versus 32 tools not supporting
it. An example of tools supporting distributed tracing and targeting
reliability is Jaeger (T4), which includes in its produced traces also
error codes of the requests made within each trace, in addition to timing
information (thus covering also performance). We speculate that for

10 https://github.com/kube-green/kube-green

https://github.com/kube-green/kube-green

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 9. Co-occurrences between user-oriented and system-oriented metrics.
DevOps engineers the choice of having a monitoring tool supporting
distributed tracing boils down to organizational constraints related
to the required level of observability of the system; this decision is
important since distributed tracing does not come for free, tracing can
add significant overhead to the system (thus impact performance), sev-
eral tools supporting tracing require instrumenting the services being
monitored, analyzing traces might be non trivial, specially with systems
with failover mechanisms (thus leading to different paths under the
same scenarios), etc. When taking this decision, examples of questions
that DevOps engineers might ask themselves include: do they need to
understand the behavior of the system as a whole? Will chains of service
calls be audited either internally or by an external body in the future? Etc.

8.3.7. Testing and targeted quality attributes
Fig. 13 reports the co-occurrences of the parameter Testing (hence

the tool is integrated with testing) and quality attributes. All monitor-
ing tools targeting the performance of the system also provide some
integration with testing; similarly, 9 out of the 11 tools supporting
testing target reliability. This result is not surprising due to the fact
that performance and reliability are by far the most targeted quality
attributes in our dataset. Amazon CloudWatch (T29) is an example
of monitoring tool supporting testing and targeting both performance
and reliability. Amazon CloudWatch provides the concept of canary,
which is a script written either in Node.js or Python implementing an
end-to-end test case. While executing canaries Amazon CloudWatch
18
can collect timing metrics (e.g., loading time of a web page), the
number and type of successful and failing HTTP(S) requests together
with their response codes, and screenshots of the UI. The execution
of canaries can be triggered either manually by DevOps engineers
or on a schedule. However, security aspects are targeted by only 3
monitoring tools, i.e., Splunk (T60), DataDog (T67), and Akamai
mPulse (T69), and none of them is open-source. As an example,
Splunk allows DevOps engineers to (i) setup a small-scale testing
environment mirroring the topology of the system in production, (ii)
define realistic test data, and (iii) generate test cases for specific aspects
of their Splunk extensions. Interestingly, we did not observe any
monitoring tool integrated with testing that targets either compatibil-
ity or energy. These might be two promising research directions for
the software engineering community. Recently, some steps are being
done on green testing of Cloud applications (Verdecchia et al., 2021),
i.e., the practice of assessing the energy consumed by running test
cases. This problem is attracting the attention of researchers since it
has been observed that many teams produce, maintain, and run test
cases without any strong underlying test strategy, wasting resources
(and producing carbon emissions).

9. Threats to validity

The study is subject to the following threats to validity.
Data collection and analysis. There are factors that can affect the

initial phases of data collection and the subsequent analysis:

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 10. Co-occurrences between different user-oriented metrics.
• Tools selection. The study is conducted on a set of 71 moni-
toring tools (from 181 in the initial list), which could be a
non-representative set, as some relevant tools might have be
missed. To reduce this risk, the protocol we have adopted fore-
sees (i) a selection from the most known source for software
repositories (with 372 million repositories) complemented via
Google search, and with a search string kept very general to
be conservative; (ii) a two-step procedure including selection of
sources (e.g., repositories, web pages, which may contain multiple
tools) followed by selection of tools; (iii) the reference test set
strategy (Petersen et al., 2015; Kitchenham and Brereton, 2013),
to double-checked the quality of the selection with respect to
widely-known tools; (iv) we double-checked the list with the
industrial partners of the uDEVOPS project funding this work, to
confirm that industry-relevant tools they know were in the list;
(v) a set of documented inclusion and exclusion criteria was used
to refine the search unambiguously.
Despite the adopted protocol, some relevant tools might have
been missed, e.g., excluded because not accessible, or because not
focused on monitoring as primary task (but that can include some
monitoring facilities), or because not present either in the top 100
results by Google or in the GitHub repository. Overall, we think
the set of actions taken and the protocol followed reduce this
possibility; in particular, searching from two top sources (GitHub
and Google), and double checking both against a test set and
with industrial partners, go beyond the best practices suggested
19
for literature reviews (Petersen et al., 2015; Kitchenham and
Brereton, 2013). With these actions, the absence of some relevant
tool is not expected to significantly alter the discussed findings
and provided suggestions, stemming from a set of 71 tools.

• Data extraction and classification. Data extraction and classification
could also be biased by a subjective interpretation. The analy-
sis was carried out by four research teams on a scheme of 26
dimensions aimed to cover a wide range of aspects. To reduce
the effect of subjective interpretation by the teams, we have (i)
devoted the initial effort to agree on the meaning of dimensions
and terms used, by classifying a same subset of tools and dis-
cussing the results in plenary meeting; (ii) adopted an iterative
approach, where we get to the final classification scheme by suc-
cessive refinements coming from the analyzed tools, to guarantee
that the data extraction process was aligned with the research
questions; (iii) we involved the industrial partners to be sure
that the identified dimensions (e.g., quality attributes monitored,
monitoring techniques, challenges) were relevant from a practi-
tioners perspective; (iv) we actually have used some of these tools
(Prometheus, Zipkin, ELK Stack, NetData, Jaeger)
in the development process of one the industrial partners to
analyze their pros and cons, which allowed us to infer features of
interest and refine our scheme. One of the dimensions referring
to ‘‘challenges’’ are taken from previous works (Waseem et al.,
2021), which drawn them from surveys with practitioners; in-
deed, there might be other interesting challenges for practitioners
that we missed.

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 11. Co-occurrences between different system-oriented metrics.
Fig. 12. Co-occurrences between the support for tracing and quality attributes.
• Quality. Besides the relevance of selected tools discussed above,
which clearly is also related to the quality of the provided
artifacts, we have worked to define unambiguous inclusion and
exclusion criteria to distinguish mature tools from just temporary
code (such as a repository containing proof-of-concept or very
rough prototypes not meant to become a tool). The accuracy of
our analysis is also tied to the quality and accuracy of the tools
documentation. This threat is slightly mitigated by the selection
and analysis process, which involves independent classifications
by the teams and plenary meetings to discuss ambiguities. To
further reduce it, we published the final categorization on the
20
online repository,11 and as Zenodo resource (uDEVOPS2020,
2023), as supplemental material of this manuscript, thus making
our analysis easy to be replicated by other researchers.

• The final findings are derived with reference to microservices
and DevOps, although several tools are for distributed systems
in general. Some considerations could change if applied to other
distributed system domains (e.g., the challenges in other cases

11 https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-
Microservices-a-Systematic-Study

https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Fig. 13. Co-occurrences between the integration with testing and quality attributes.

could be different); therefore care must be taken in transferring
the findings to domains outside microservices and DevOps.

In general, we tailored the best practices for mapping studies (Petersen
et al., 2015) and literature reviews (Kitchenham and Brereton, 2013)
for defining our protocol for tools analysis. This helped us to reduce am-
biguities and improve the generalization and usefulness of our findings
and suggestions.

10. Related work

In this Section, we report about surveys and secondary studies
conducted on microservices, and their relation with our study.

10.1. Survey studies

In recent years, researchers have conducted survey studies con-
cerning several aspects of microservice-based systems. Waseem et al.
conducted a comprehensive survey with 106 participants and 6 inter-
views with practitioners (Waseem et al., 2021), investigating aspects
ranging from design to monitoring and testing of microservices. They
identified a list of 9 challenges that we have exploited in this study to
check to what extent the existing tools tackle them. The survey includes
a list of 13 monitoring tools the authors used in their survey.
21
Knoche et al. conducted a survey with 71 participants, exploring
the challenges faced upon the need of modernizing legacy systems.
Their analysis includes the impact of using microservices on runtime
performance (Knoche and Hasselbring, 2019), which is clearly affected
by monitoring too.

Viggiato et al. surveyed the practices adopted in industry for de-
velopment and use of microservices, such as the adopted program-
ming languages and technologies, as well as the advantages and chal-
lenges brought by microservices (Viggiato et al., 2018). The survey
involved 122 participants. Among the challenges, they point out the
microservices testing, faults diagnosing and distributed transactions.

Challenges related to the distributed nature of microservice archi-
tectures, among others, are also inferred by Ghofrani et al. in a survey
study with 25 practitioners (Ghofrani and Lübke, 2018). These are
clearly related to the challenges of monitoring we considered in this
paper (identified in Waseem et al. (2021)).

Another survey with 21 participants was conducted by Wang et al.
(2021), about development of microservices, at architectural, infras-
tructural and code management level. They identified the investment
in robust logging and monitoring infrastructure, among others, as a best
practices for successfully developing microservices.

There are some other surveys with similar analyses, but with less
than 20 participants, hence with a more limited external validity, such
as Haselböck et al. (2018), Zhou et al. (2021), Zhang et al. (2019).

These works focus on conducting surveys with practitioners, and
their outputs are valuable for identifying main needs and challenges.
Our study can complement these results by investigating whether and
how existing tools in the grey literature fulfill these needs and address
specific challenges.

10.2. Systematic literature reviews

Besides the surveys, researchers have conducted mapping studies
and systematic literature reviews on microservices and DevOps. Di
Francesco et al. looked at the state of the art on architecting activities
with microservices (Di Francesco et al., 2017), defining a classification
framework for categorizing the research on architecting microservices
including architectural solutions, methods, and techniques (e.g., tactics,
patterns, styles, views, models, reference architectures, or architectural
languages). This was applied a set of 71 selected studies.

The same team later extended the work, by including further pri-
mary studies (from 71 to 103), and elaborating more on extracted
data looking at the interactions between various parameters of the
classification framework (Di Francesco et al., 2019).

Soldani et al. reviews the grey literature to depict an overview about
the academic research and industry practices starting from 51 selected
industrial studies, focusing on the technical/operational ‘‘pains’’ and
‘‘gains’’ of micro services (Soldani et al., 2018). They taxonomically
classify, and systematically compare the pains and gains of micro
services from existing grey literature, from design and development
point of view. The challenges they identified (i.e., the ‘‘pains’’) pertain
(at development time) to the management of distributed storage and
application testing, and (at operational time) to large consumption
of network and computing resources compared to other architectural
styles. Part of this consumption is indeed due to the features of the
monitoring tools and their configuration, that we discussed in this
paper.

Another work by Waseem (Waseem et al., 2020), that precedes
the above-discussed survey, focus on identifying and classifying the
literature on micro services in DevOps, starting from a set of 47 primary
studies. This interestingly includes DevOps explicitly in the study. Their
extensive analysis outlines the state of the art (at 2018) about all
the phases of development and operation (requirements, design, im-
plementation, testing, deployment, monitoring, organization, resource
management), including the analysis of MSA description methods,
patterns, qualities attributes, support tools, application domains, and

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.

o
d
m
s
m
a
c
a

1

m
c
t
a
d
a
r
q
t
i
o
t
w
t
w
i

a
a
t

c
b
t
r
b
t
t
a
s
t
m
p

C

w
r
F

o

research opportunities. The work identified a set of 11 monitoring
tools, which are however not analyzed as it was only one of the many
aspects covered by the paper and was not the focus of their paper.
Our study, in contrast, is entirely focused on monitoring tools; we have
extensively identified and analyzed available tools in the grey literature
and provided recommendations on their selection and usage.

Although relevant and very interesting, none of these studies con-
duct a systematic review and comparison of monitoring tools. Several
f them identified challenges related to monitoring, whose impact is
eemed of extreme importance by practitioners. Indeed, having a stable
onitoring infrastructure is a strong requirement for operating micro

ervice-based systems where relevant incidents (e.g. faults, perfor-
ance issues, security breaches) are promptly detected and diagnosed,

nd our aim was to provide a comprehensive view about the pros and
ons of the existing tools. Our findings are therefore complementary,
nd to some extent orthogonal, to all the previous papers.

1. Conclusion

Monitoring is a key phase of DevOps and a key enabler for
icroservice-based systems. Because of the frequent releases, the highly

hanging nature of these systems and of their runtime context, moni-
oring is of paramount importance to continuously drive development
nd testing, starting from the feedback collected from the field. Key
ecisions about effort allocation for design and testing, architectural
lternatives, deployment decisions, fault tolerance, diagnosis and fault
emoval, fault forecasting actions are enabled by monitoring. Conse-
uently, the careful selection of a tool suited for specific needs can mark
he difference in service-based software development and operation. It
s noteworthy that monitoring tools frequently incorporate components
r operate in conjunction with other tools to carry out more complex
asks. An example is AIOps (Artificial Intelligence for IT Operations),
here tools leverage advanced analytics, machine learning, and au-

omation to enhance and optimize IT operations. As part of our future
ork, we intend to expand this study with a detailed analysis of tool

ntegrations and their interactions.
With this study, our aim was to give a systematic overview of the

vailable choices for monitoring tools for microservices and DevOps,
s well as to analyze the ongoing efforts, the challenges and directions
hat are being pursued to offer better tools.

With a study on a list of 71 tools, we have drawn a map of the main
haracteristics of existing tools, their pros and cons, the assumptions to
e matched to use them, the information they gather, the techniques
hey use to efficiently collect data, the way in which they present the
esults, and several others features. The result is meant to be useful for
oth researchers and practitioners (e.g., DevOps engineers, as well as
ool vendors) working in this area. This audience can get feedback to
ackle new research challenges, e.g., pertaining to overhead reduction
nd quality improvement, to use the map and given suggestions to
elect or customize the tools for the system being developed/operated,
o integrate the tool with other facilities (such as for testing and issue
anagement). The full list of classified tools is on the replication
ackage11 and on Zenodo (uDEVOPS2020, 2023).

RediT authorship contribution statement

L. Giamattei: Conceptualization, Methodology, Investigation, Soft-
are, Formal analysis, Validation, Writing, Visualization, Data cu-

ation. A. Guerriero: Conceptualization, Methodology, Investigation,
ormal analysis, Validation, Writing, Visualization, Data curation. R.

Pietrantuono: Conceptualization, Methodology, Supervision, Funding
acquisition, Project administration, Writing, Visualization. S. Russo:
Methodology, Supervision, Writing, Visualization. I. Malavolta: Con-
ceptualization, Methodology, Investigation, Supervision, Software, For-
mal analysis, Validation, Writing, Visualization, Data curation. T. Is-
22

lam: Formal analysis, Data curation, Validation, Writing, Visualization.
M. Dînga: Formal analysis, Data curation, Visualization. A. Kozi-
lek: Methodology, Supervision, Validation. S. Singh: Methodology,

Investigation, Formal analysis, Validation, Writing, Data curation. M.
Armbruster: Methodology, Investigation, Formal analysis, Validation,
Writing, Data curation. J.M. Gutierrez-Martinez: Methodology, In-
vestigation, Formal analysis, Validation, Writing, Data curation. S.
Caro-Alvaro: Methodology, Investigation, Formal analysis, Validation,
Writing, Data curation. D. Rodriguez: Methodology, Investigation,
Formal analysis, Validation, Writing, Data curation. S. Weber: Method-
ology, Investigation, Formal analysis, Validation, Writing, Data cura-
tion. J. Henss: Methodology, Supervision, Validation. E. Fernandez
Vogelin: Formal analysis, Data curation. F. Simon Panojo: Formal
analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to data/code, on GitHub (https://github.
com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-
a-Systematic-Study) and on zenodo: https://doi.org/10.5281/zenodo.
8212052.

Acknowledgments

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 871342 ‘‘uDEVOPS’’.

References

Bento, A., Correia, J., Filipe, R., Araujo, F., Cardoso, J., 2021. Automated analysis of
distributed tracing: Challenges and research directions. J. Grid Comput. 19, 1–15.

Di Francesco, P., Lago, P., Malavolta, I., 2019. Architecting with microservices: A
systematic mapping study. J. Syst. Softw. 150, 77–97.

Di Francesco, P., Malavolta, I., Lago, P., 2017. Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture. ICSA, pp. 21–30.

Ebert, C., Gallardo, G., Hernantes, J., Serrano, N., 2016. DevOps. IEEE Softw. 33 (3),
94–100.

Firtman, M., 2018. Hacking Web Performance. O’Reilly Media, Inc., Sebastopol, CA,
USA.

Fleiss, J.L., Levin, B., Paik, M.C., 2003. The measurement of interrater agreement. In:
Statistical Methods for Rates and Proportions. John Wiley & Sons, Ltd, pp. 598–626.
http://dx.doi.org/10.1002/0471445428.ch18.

Garousi, V., Felderer, M., Mäntylä, M.V., 2019. Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Inf. Softw.
Technol. 106, 101–121.

Ghofrani, J., Lübke, D., 2018. Challenges of microservices architecture: A survey on
the state of the practice. In: CEUR Workshop Proceedings. Vol. 2072, pp. 1–8.

Haselböck, S., Weinreich, R., Buchgeher, G., 2018. An expert interview study on areas
of microservice design. In: 2018 IEEE 11th Conference on Service-Oriented Comput-
ing and Applications. SOCA, pp. 137–144. http://dx.doi.org/10.1109/SOCA.2018.
00028.

Hernantes, J., Gallardo, G., Serrano, N., 2015. IT infrastructure-monitoring tools. IEEE
Softw. 32 (4), 88–93.

Huye, D., Shkuro, Y., Sambasivan, R.R., 2023. Lifting the veil on {Meta’s} microservice
architecture: Analyses of topology and request workflows. In: 2023 USENIX Annual
Technical Conference. USENIX ATC 23, USENIX Association, pp. 419–432.

Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B., 2016. What is DevOps? A systematic
mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP2016. In: XP ’16 Workshops, Association for Computing
Machinery, New York, NY, USA.

Kitchenham, B., Brereton, P., 2013. A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55 (12), 2049–2075.

Knoche, H., Hasselbring, W., 2019. Drivers and barriers for microservice adoption – A
survey among professionals in Germany. Enterpr. Model. Inf. Syst. Archit. - Int. J.

Concept. Model. 1–35.

https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://github.com/uDEVOPS2020/Monitoring-Tools-for-DevOps-and-Microservices-a-Systematic-Study
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
https://doi.org/10.5281/zenodo.8212052
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb1
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb1
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb1
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb5
http://dx.doi.org/10.1002/0471445428.ch18
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb8
http://dx.doi.org/10.1109/SOCA.2018.00028
http://dx.doi.org/10.1109/SOCA.2018.00028
http://dx.doi.org/10.1109/SOCA.2018.00028
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb14

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Lewis, J., Fowler, M., 2014. Microservices - a definition of this new architectural term.
Available at: http://martinfowler.com/articles/microservices.html.

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic
mapping studies in software engineering: An update. Inf. Softw. Technol. 64, 1–18.

Richardson, C., 2018. Microservices Patterns: With Examples in Java. Manning.
Riet, J.V., Malavolta, I., Ghaleb, T.A., 2023. Optimise along the way: An industrial case

study on web performance. J. Syst. Softw. 198, 111593.
Rothstein, H.R., Hopewell, S., 2009. Grey literature. In: The Handbook of Research

Synthesis and Meta-Analysis. Vol. 2, pp. 103–125.
Schroeder, B.A., 1995. On-line monitoring: A tutorial. Computer 28 (06), 72–78.
Shkuro, Y., 2019. Mastering Distributed Tracing: Analyzing Performance in

Microservices and Complex Systems. Packt Publishing Ltd.
Soldani, J., Tamburri, D.A., Van Den Heuvel, W.-J., 2018. The pains and gains of

microservices: A systematic grey literature review. J. Syst. Softw. 146, 215–232.
TIOBE, 2022. TIOBE Index. [Online]. (Accessed 17 July 2023). URL: https://www.

tiobe.com/tiobe-index.
uDEVOPS2020, 2023. uDEVOPS2020/Monitoring-Tools-for-DevOps-and- Microservices-

a-Systematic-Study: Release 1. http://dx.doi.org/10.5281/zenodo.8212052.
Verdecchia, R., Lago, P., Ebert, C., De Vries, C., 2021. Green IT and green software.

IEEE Softw. 38 (6), 7–15.
Viggiato, M., Terra, R., Rocha, H., Valente, M.T., Figueiredo, E., 2018. Microservices

in practice: A survey study. ArXiv abs/1808.04836.
Wang, Y., Kadiyala, H., Rubin, J., 2021. Promises and challenges of microservices: an

exploratory study. Empir. Softw. Eng. 26 (4), 63.
Waseem, M., Liang, P., Shahin, M., 2020. A systematic mapping study on microservices

architecture in DevOps. J. Syst. Softw. 170, 110798.
Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G., 2021. Design, monitoring,

and testing of microservices systems: The practitioners perspective. J. Syst. Softw.
182, 111061.

Zhang, H., Li, S., Jia, Z., Zhong, C., Zhang, C., 2019. Microservice architecture in
reality: An industrial inquiry. In: 2019 IEEE International Conference on Software
Architecture. ICSA, IEEE, pp. 51–60.

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D., 2021. Fault analysis
and debugging of microservice systems: Industrial survey, benchmark system, and
empirical study. IEEE Trans. Softw. Eng. 47 (2), 243–260.

Luca Giamattei (Ph.D. student) received the M.S. degree in computer engineering in
2021 from the Federico II University of Naples, Italy. He is currently a Ph.D. student
in Information Technology and Electrical Engineering from the same university. His
main research interests are in testing of DNN-enabled systems and distributed software
systems. In this context, he collaborated in international projects. He published in
international conferences and journals in the field of software engineering and software
testing.

Antonio Guerriero (Ph.D.) is Assistant Professor at Federico II University of Naples,
Italy. He received the Ph.D. degree in Information Technology and Electrical Engineer-
ing from the same university in 2022. His main research interests are in testing of
ML-based systems and distributed software systems. In this context, he collaborated in
both national and international projects. He published in international conferences and
journals in the field of software reliability, software engineering, and software testing.

Roberto Pietrantuono (Member of ACM, Senior Member of IEEE) is an Associate
Professor with the University of Naples Federico II. Since 2007, he has been with the
Dependable Systems and Software Engineering Research Team. His research interests
are in the area of software engineering, particularly software testing and dependability
of software (and AI-based) systems. He regularly serves on program committees of
international conferences and journals and Associate Editor of IEEE Transactions on
Services Computing and of Software Quality Journal. He is involved in several projects
and currently coordinates an MSCA RISE European Project (μDevOps).

Stefano Russo (Ph.D.) is Professor of Computer Engineering at Federico II University
of Naples, Italy, where he teaches Software Engineering and Distributed Systems, and
leads the DESSERT research group (www.dessert.unina.it). He (co-)authored over 200
papers in the areas of software testing, software aging, middleware technologies, mobile
computing. He is Associate Editor of IEEE Transactions on Services Computing, and
Senior Member of the IEEE.

Ivano Malavolta is an Associate Professor in the Software and Sustainability research
group and Director of the Network Institute at the Vrije Universiteit Amsterdam, The
Netherlands His research interests include empirical software engineering, with a special
emphasis on software architecture, robotics software, and energy-efficient software. He
authored more than 150 scientific articles in peer-reviewed international journals and
international conference proceedings. He is program committee member and reviewer
of international conferences and journals and Associate Editor of IEEE Software, the
International Journal of Robotics Research, and the Frontiers in Robotics and AI journal.
He received a Ph.D. in computer science from the University of L’Aquila, Italy. He is
23
a Member of IEEE, ACM, VERSEN, and Amsterdam Data Science. More information
about Ivano is available on his official website: https://www.ivanomalavolta.com.

Tanjina Islam received her BSc. in Computer Science and Engineering from BRAC
University, Dhaka, Bangladesh, in 2014. In 2019, she obtained her MSc. in Computer
Science, specializing in Software Engineering and Green IT, through a joint degree
program offered by Vrije University Amsterdam (VU) and the University of Amsterdam
(UvA). Following her studies, Tanjina worked as a Junior Docent with the Software and
Sustainability (S2) research group at Vrije University Amsterdam. Before embarking on
her academic pursuits, she gained three years of valuable experience as a Software
Engineer across various IT industries in Bangladesh. Currently, Tanjina is a Ph.D.
candidate within the Complex Cyber Infrastructure (CCI) research group at the
University of Amsterdam’s Informatics Institute. Her research focuses on investigating
the energy consumption and security aspects of machine learning applications in the
cloud-to-edge continuum.

Madalina Dînga is a software engineer interested in cloud native development and
software sustainability. She received a MSc in Computer Science from Vrije Universiteit
Amsterdam in 2022, specialising in Software Engineering and Green IT. Her MSc
Thesis delved into an empirical assessment of the energy and performance overhead of
monitoring tools on microservices.

Anne Koziolek is a full professor at the Karlsruhe Institute of Technology (KIT), Ger-
many. Her research interests are software architecture, model-based quality prediction,
architecture recovery, and recently the use of LLMs in supporting all tasks related to
software architecture. In all these efforts, she is interested in reconciling agile, code-
centric software development with model-based software engineering. Anne received
her Diplom degree in informatics from the University of Oldenburg in 2007 and her
Ph.D. from KIT in 2011. Following her doctorate, she was a postdoc researcher at the
University of Zurich until 2013. She is a member of the ACM, IEEE, and GI. More
information about Anne is available at https://mcse.kastel.kit.edu/staff_Koziolek_Anne.
php.

Snigdha Singh, is a doctoral researcher at Karlsruhe Institute of Technology, Germany,
in the chair of Modelling for Continuous Software Engineering. She is a Masters in
Computer Science from IIIT Delhi, India. Her research interests are reverse engineering
for architecture extraction with a focus in asynchronous communication between
Microservices and architecture recovery of message based systems. More information
about her is available at https://mcse.kastel.kit.edu/staff_Snigdha_Singh.php

Martin Armbruster is a doctoral researcher at the Modelling for Continuous Software
Engineering (MCSE) group at the Karlsruhe Institute of Technology (KIT), Germany.
His research and research interests focus on model-driven software development, in
particular, code modeling, the model-driven and continuous extraction of architectural
performance models from code, and consistency management of models. Martin
received his master’s degree in Informatics from KIT in 2021. More information can
be found at https://mcse.kastel.kit.edu/staff_martin_armbruster.php.

José-María Gutierrez-Martinez, Ph.D. in Computer Science, is an associate professor
at the University of Alcalá, head of the Computer Science Department for 5 years and
coordinator of a Master Program in Agile Web Development. He has extensive works
on mobile devices and their integration with traditional information systems and has
been working also with for e-learning and m-learning technological enhancements. He
has participate in research projects for e-health and lead some of them about the use
of mobile devices to help with psychiatric treatments, medicine doses, wheelchair use
and tablet adaptations to highly dependent users. Some of these projects include de use
of sensors and microcontrollers and their integration with mobile phones applications.
He has worked in 7 European funded projects and many local public funded research
projects. He also encourages the relation with companies, been the head of a research
chair that uses mobility and IA to help industrial installations management.

Sergio Caro-Alvaro is an Assistant Professor in the Computer Science Department at
University of Alcala (Spain). He received his Ph.D. degree in the Computer Science
Department of the University of Alcala (Spain). His research interests include usability,
user experience and gamification.

Daniel Rodriguez is currently an associate professor at the Computer Science De-
partment of the University of Alcala, Madrid, Spain. He is also a regular visiting
researcher at Oxford Brookes University, UK. Also, he was a lecturer at the University
of Reading, UK. Daniel earned his degree in Computer Science at the University of the
Basque Country (EHU) and Ph.D. degree at the University of Reading, UK. His research
interest include the application of data mining and optimization techniques to Software
Engineering problems in particular.

http://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb22
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
http://dx.doi.org/10.5281/zenodo.8212052
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb28
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb28
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb28
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb29
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb29
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb29
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb29
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb29
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00301-1/sb31
https://www.dessert.unina.it
https://www.ivanomalavolta.com
https://mcse.kastel.kit.edu/staff_Koziolek_Anne.php
https://mcse.kastel.kit.edu/staff_Koziolek_Anne.php
https://mcse.kastel.kit.edu/staff_Snigdha_Singh.php
https://mcse.kastel.kit.edu/staff_martin_armbruster.php

The Journal of Systems & Software 208 (2024) 111906L. Giamattei et al.
Sebastian Weber studied computer science at the Karlsruhe Institute of Technology
(KIT) and received his degree in 2022. He joined the software engineering and quality
department at the FZI Research Center for Information Technology afterwards and is
a doctoral student of Professor Reussner at the Software Design and Quality (SDQ)
group at KIT. His research interests focus on the analysis and modeling of complex
and heterogeneous systems through analysis composition and multi-level simulation.

Jörg Henss studied computer science at the University of Karlsruhe. After completing
his degree in 2008, he joined the Software Design and Quality (SDQ) group at Karlsruhe
Institute of Technology in 2009. Since 2015 he is head of the software engineering and
quality department at the FZI Research Center for Information Technology. His research
interests include interoperability of simulations, model-driven software development
(MDSD), and modern software development in the context of operational and mobile
application systems.
24
Estrella Fernández Vogelin is a computer scientist and electronic systems engineer,
with master degree in cyber security and privacy. Her background goes from hardware
design and testing to software quality, having worked for avionics hardware and
working in the present for Panel Sistemas Informáticos as a software engineer in test
for client Iberia and collaborating with Vrije University in microservices research.

Fernando Simön Panojo, graduate in Physical Sciences from the Complutense Uni-
versity of Madrid, specializing in physical devices and control. He worked in several
consulting on development and quality projects until finally starting to work in 2007
at ‘‘Panel Sistemas Informáticos’’, a company where he is currently working for the
client Iberia, developing QA (Quality Assurance) tasks in both manual and automated
tests. and system monitoring. In 20222 he began to collaborate (from ‘‘Panel Sistemas
Informáticos’’) with the Vrije University of Amsterdam in the study of systems and
application monitoring tools.

	Monitoring tools for DevOps and microservices: A systematic grey literature review
	Introduction
	Background
	Microservice-based systems
	DevOps
	Monitoring process

	Study Design
	Research questions
	Tools selection process
	Data extraction
	Analysis

	Results – Overview
	Results – Functional and Technological Features. Addressed Challenges
	Targets, Features, Motivation
	Reporting
	Technologies
	Implementation/supported languages
	Required technologies
	Assumptions

	Addressed challenges

	Results – What is monitored
	User-oriented metrics
	System-oriented metrics
	Distributed tracing
	Failures/events logging
	Targeted quality attribute

	Results – How is monitoring done
	Instrumentation
	Monitoring patterns and practices
	Monitoring Granularity
	Integration with Testing

	Discussion
	Main findings and guidance for DevOps engineers
	The ecosystem
	First of all, why monitoring
	Required technologies and assumptions
	Distributed tracing
	Instrumentation
	Community support

	Open challenges for researchers and tool vendors
	Open challenges for researchers
	Open challenges for tool vendors

	Cross-cutting findings
	Open source and programming languages
	Open source and addressed challenges
	User-oriented metrics and system-oriented metrics
	Co-occurrences of user-oriented metrics
	Co-occurrences of system-oriented metrics
	Requests tracing and targeted quality attributes
	Testing and targeted quality attributes

	Threats to validity
	Related Work
	Survey studies
	Systematic literature reviews

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

