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Abstract
Optimization approaches are important to design sustainable structures. In
structural mechanics, different design objectives can be defined, for example,
to minimize the required construction material or to maximize the structural
durability. In this paper, the durability of a reinforced concrete (RC) structure
is assessed by advanced finite element (FE) models to simulate the cracking
behavior and the chloride transport process. The corrosion initiation time is
used as durability measure to be maximized within an optimization approach,
where the concrete cover is defined as design variable. The variability of struc-
tural loads and material parameters and unavoidable construction imprecision
leads to a probabilistic reliability and durability assessment, where aleatory as
well as epistemic uncertainties are quantified by random variables, intervals and
probability-boxes. The FE simulation models cannot directly be applied to struc-
tural analyses and optimizations with polymorphic uncertain parameters and
design variables because of the high computational demand of the multi-loop
algorithm (Monte Carlo simulation, interval analysis, global optimization). In
this paper, a new surrogate modeling strategy is presented, where artificial neu-
ral networks are trained sequentially to speed-up the coupled mechanical and
transport simulation FEmodels. The new approach is applied to the uncertainty
quantification and the structural durability optimization of a RC structure.

1 INTRODUCTION

Reinforced concrete (RC) structures are vulnerable to reinforcement corrosion especially in marine environments due
to high chloride exposure. Chloride ions are transported with the moisture through the concrete. If a critical chloride
ion concentration reaches the reinforcement, the corrosion process is initiated. The chloride ion transport is accelerated
in case of larger cracks. According to the classical design guidelines, the concrete cover has to be selected accord-
ing to the specific exposure class, which means that a thicker concrete cover is required, if moisture or chloride is
expected to attack the concrete. However, a thicker concrete cover will result in larger cracks assuming the same area of
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reinforcement and the same dimensions of the RC structure. Therefore, it is important to optimize the concrete
cover, which is realized in this paper by maximizing the corrosion initiation time considering aleatory and epistemic
uncertainties of structural parameters.
Two independent finite element (FE) models are used to simulate the cracking and the subsequent chloride transport

process. The first FE model is applied to compute the tensile cracking of a RC beam under mechanical loading. The
second FE model calculates the coupled moisture and chloride transport within the most relevant crack to determine the
corrosion initiation time.
The strategy of independent models is also tested for the surrogate modeling, which is realized by artificial neural

networks (ANN) in this paper. Instead of training a global surrogatemodel to solve the optimization problem, also separate
and partially nested surrogate models for the mechanical FE model and for the transport FE model are investigated.

2 POLYMORPHIC UNCERTAINTY QUANTIFICATION

Within the polymorphic uncertainty quantification concept, stochastic and non-stochastic uncertainty models are com-
bined. Here, random variables and intervals are used to quantify uncertain parameters of a structural model. This leads
to probability boxes (p-boxes) of the resulting quantities of interest, which have to be computed by a nested interval and
stochastic analyses of the structural model.
A random variable 𝐴 is defined by a stochastic distribution functions, for example, lognormal distribution or Gaus-

sian distribution, which is represented by a probability density function (PDF) 𝑓(𝑎) and the corresponding cumulative
distribution function (CDF) 𝐹(𝑎).
An interval 𝑑 is defined by a range

𝑑 = [𝑙𝑑, 𝑢𝑑] , (1)

with a lower bound 𝑙𝑑 and an upper bound 𝑢𝑑. In this paper, also the midpoint-radius-representation of an interval is
used, where the midpoint is

𝑚𝑑 =
1

2
⋅ (𝑙𝑑 + 𝑢𝑑) , (2)

and the radius is given by

𝑟𝑑 =
1

2
⋅ (𝑢𝑑 − 𝑙𝑑) . (3)

A p-box 𝑍 is defined as an imprecise random variable with a lower bound CDF 𝑙𝐹(𝑧) and an upper bound CDF
𝑢𝐹(𝑧). Here, free p-boxes according to [1] are used, where the lower and upper bound CDFs are represented by empirical
distributions obtained from Monte Carlo simulations.

3 OPTIMIZATIONWITH POLYMORPHIC UNCERTAIN PARAMETERS

In a strict sense, an optimization problem with uncertain parameters does not lead to a crisp optimum. The inherent
variability and imprecision have to be modeled to enable the numerical treatment. In order to mathematically solve an
optimization problemwith polymorphic uncertain parameters, it has to be transformed into a quantified representation of
the problem using corresponding uncertaintymeasures for random variables and intervals. In this paper, the optimization
problem contains an interval design variable 𝑑 (imprecise position of the reinforcement layer, that is, the concrete cover,
with a fixed interval radius 𝑟𝑑 and an interval midpoint 𝑚𝑑 to be optimized) and two stochastic a priori parameters 𝐴1
(structural load) and𝐴2 (modulus of elasticity) defined as randomvariables. This leads to a p-box of the quantity of interest
(corrosion initiation time) to be maximized. Here, the uncertain optimization problem is represented by maximizing the
lower bound (worst case) of the interval mean value of the quantity of interest max: {𝑙𝜇(𝑡)}.
The described optimization problemwith polymorphic uncertain parameters is solved by a four level algorithm.Adeter-

ministic structural model is computed at the first level. To consider the randomness of structural parameters, a stochastic
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analysis using Monte Carlo simulation is applied at level two of the algorithm. At level three, an interval analysis is per-
formed. Because of the monotonicity of the models used in this paper, the interval analysis is solved just by analyzing the
lower and upper interval bounds of the stochastic quantities of interest, for example, the lower bounds of themean values.
Finally, at level four, a particle swarm optimization algorithm [2] is applied to solve the optimization problem, see [3] for
further details.
Because of the four level algorithm, a high number of deterministic structural simulations is necessary to solve the

optimization problem, which is very time consuming or almost not possible in case of detailed FE simulation models.
This means that the FE models have to be replaced by numerically efficient surrogate models, see for example [4].

4 ARTIFICIAL NEURAL NETWORK SURROGATEMODELS

In this paper, neural networks with feedforward architecture are used as surrogate models. They consist of an input layer,
a number of hidden layers and an output layer. In the fully connected ANNs, the neurons of each layer are connected to
all neurons of the previous layer. Here, several ANNs are generated for different models to be approximated (mechanical
FE model, transport FE model and global surrogate model). The corresponding number of input and output neurons
is defined by the problem to be solved. The number of hidden layers and hidden neurons is selected by trial and error
according to the complexity of the mapping problem.
Within feedforward ANNs, the signals are processed layer by layer through the network. The signal 𝑥(𝑚)

𝑖
of neuron 𝑖 in

layer𝑚 is computed by

𝑥
(𝑚)

𝑖
= 𝜑

(𝑚)

𝑖

(
𝜈
(𝑚)

𝑖

)
= 𝜑

(𝑚)

𝑖

(
𝐻∑
ℎ=1

[
𝑥
(𝑚−1)

ℎ
⋅ 𝑤

(𝑚)

𝑖ℎ

]
+ 𝑏

(𝑚)

𝑖

)
, (4)

where 𝜑(𝑚)
𝑖
(.) is the activation function. The hyperbolic tangent function is used in the hidden neurons and the linear

activation function is applied to the output neurons. The argument 𝜈(𝑚)
𝑖

of the activation function contains the sum of
all ℎ = 1,… ,𝐻 output signals 𝑥(𝑚−1)

ℎ
of the previous layer (𝑚 − 1)multiplied by the corresponding synaptic weights𝑤(𝑚)

𝑖ℎ

and an added bias value 𝑏(𝑚)
𝑖

.
The weights and bias values of the ANN are identified during the network training, which is done by the Levenberg-

Marquardt algorithmhere. It should be noted, that a sufficient number of training, validation, and testing data are required
to get a good approximation performance and to avoid overfitting. To produce these data, a mix of Latin hypercube
sampling (for the concrete cover and the modulus of elasticity) and a regular grid (for the loading, which is increased
incrementally in the FE model for each realization of the concrete cover and the modulus of elasticity) is applied.

5 OPTIMIZATION OF THE CONCRETE COVER OF A RC BEAM

5.1 Structural model and uncertain parameters

As an example for the maximization of the structural durability, a RC beam is investigated. The structure and the cross
section with the reinforcement of a simply supported RC beam is shown in Figure 1.

F IGURE 1 RC beam structure.
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The beam is stressed with two single loads 𝑃, which are acting as fully correlated random variables to the structure. The
a priori uncertain load parameter 𝑃 is assumed as a random variable having a Gaussian distribution with a varying mean
value 𝜇(𝑃𝑖) and a variance of 𝜎(𝑃) = 5 kN. The range of themean value 𝜇(𝑃𝑖) is between 20 and 40kNwith a discretization
of 1kN, that is, 𝑖 = 21 cases of the varyingmean value 𝜇(𝑃𝑖) are investigated. The second a priori uncertain parameter is the
Young’smodulus𝐸, which is quantified as log-normal distributed randomvariablewith amean value of𝜇(𝐸) = 34GPa and
a variance of 𝜎(𝐸) = 1.8GPa. All other concrete material parameters (tensile and compressive strength, fracture energy,
porosity and crack tortuosity) are assumed to be fully correlated with the uncertain Young’s modulus 𝐸.
The concrete cover 𝑐nom is defined as an interval design variable, with interval midpoint 𝑚𝑐nom to be optimized an

a fixed interval radius 𝑟𝑐nom = 5mm. This allows one to consider production imprecision of the RC beam within the
design process.
In order to maximize the structural durability, the corrosion initiation time 𝑡 is used as quantity of interest to be maxi-

mized. Because of the combination of two a priori random variables (𝑃 and 𝐸) and one interval design variable 𝑐nom, the
resulting corrosion initiation time is quantified as a p-box 𝐹̄𝑡. Here, the worst case mean value, that is, the lower bound of
the interval mean value 𝑙𝜇(𝑡), of the corrosion initiation time is used as surrogate objective to be maximized.
To compute the corrosion initiation time, the crack pattern of the structure is required, which is influencing the mois-

ture and chloride transport within the structure. In general, this would need a time consuming coupled FE simulation
(mechanical model to compute the crack pattern and moisture and chloride transport model to compute the corrosion
initiation time). Here, the problem is simplified by first computing the crack pattern of the structure with a 2D mechani-
cal FE model, select the crack widths and the corresponding crack lengths of the maximal crack and finally compute the
corrosion initiation time with a 1D FE transport model.
The crack patterns are computed by a 2D FE simulation model using zero-thickness cohesive interface elements [5, 6],

which are inserted between linear-elastic finite triangular elements. At each Gauss point of the interface elements, the
fracture behavior of plain concrete is modeled by a nonlinear traction-separation law. The reinforcement of the beam is
modeled by discrete independent embedded rebar elements (geometrically linear truss elements), which are connected
to the concrete elements by a bond-slip-law according to the fibModel Code 1990 [7].
The corrosion initiation time is computed by a coupledmoisture and chloride transportmodel assuming anunsaturated,

cracked concrete. The chloride ions are transported by a combination of diffusion and advection according to

𝜕(𝜃 𝑐)

𝜕𝑡
−
𝜕

𝜕𝑥

(
𝜃 𝐷𝑐

𝜕𝑐

𝜕𝑥
⏟⎴⏟⎴⏟
dif fusion

+ 𝑐 𝐷𝜃
𝜕𝜃

𝜕𝑥
⏟⎴⏟⎴⏟
advection

)
= 0. (5)

In Equation (5), 𝜃 is the volume fraction of the water content and 𝑐 is the chloride concentration of the species in solution.
The parameters𝐷𝜃 and𝐷𝑐 are the moisture and chloride diffusion coefficients, respectively, which both are depending on
the crack width, the crack length and the concrete porosity (assumed to be correlated with the Young’s modulus 𝐸), see
for example [8–10]. This means that the results of the mechanical FE model (crack width and crack length) are required
as input of the transport FE model to quantify the diffusion coefficients 𝐷𝜃 and 𝐷𝑐 and finally to compute the corrosion
initiation time, which is defined as the point in time, when the chloride concentration at the reinforcement reaches a
critical value of 𝐶𝑐𝑟𝑖𝑡 = 0.6 % by mass of binder according to [11].
With respect to the optimization problem to be solved, the mechanical FE model has three varying inputs (𝑃, 𝑐nom, and

𝐸) and two output parameters (crack width 𝑤cr and crack length 𝑙cr). The transport FE model has four varying inputs (𝐸,
𝑐nom, 𝑤cr and 𝑙cr) and one output parameter (corrosion initiation time 𝑡).

5.2 ANN surrogate models for crack width and crack length

The FE simulation models are approximated by surrogate ANN models. Here, ANNs with feedforward architecture are
used. In total, 48 000 FE simulation result samples are considered, of which 80% are used for training 15% for validation
and 5% for testing, respectively.
First, the approximation of the mechanical model is investigated. To map the three varying input parameters (𝑃, 𝐸, and

𝑐nom) onto the two output parameters (𝑤cr and 𝑙cr), either one ANN with two outputs or two ANNs with one output can
be created. In Figure 2, the ANN surrogate model architecture with two outputs is shown together with the correlation

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300286 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 8

F IGURE 2 ANN surrogate model with two outputs to approximate the mechanical FE model; ANN architecture (left); correlation plot
for the crack width in [mm] (middle); correlation plot for the crack length in [mm] (right).

F IGURE 3 Two ANN surrogate models with one output to approximate the mechanical FE model; ANN architectures (left); correlation
plot for the crack width in [mm] (middle); correlation plot for the crack length in [mm] (right).

plots (FE result vs. ANN prediction) for both outputs. The other option, that is, two separately trained ANNs with one
output is visualized in Figure 3 together with the correlation plots. Whereas the crack length is approximated in a similar
quality for both options, the crack width is predicted better by the independent ANN.
To further improve the crack length approximation, a third option is investigated, where two nested ANNs are trained

sequentially. Both ANNs have one output, but the crack width predicted by the first ANN is used as an additional input
of the second ANN for the crack length prediction, see Figure 4. As the results of the third option are the best, this ANN
surrogate modeling strategy is used for the coupling with the moisture transport surrogate model.

5.3 ANN surrogate models for corrosion initiation time

For the transport FE model, the crack widths and the crack lengths calculated by the mechanical FE model are required
as input parameters. In order to approximate the coupled FE models, which are used to finally compute the corrosion

F IGURE 4 Two nested ANN surrogate models with one output to approximate the mechanical FE model; ANN architectures (left);
correlation plot for the crack width in [mm] (middle); correlation plot for the crack length in [mm] (right). FE, finite el.
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F IGURE 5 Variant 1: Global ANN surrogate model to approximate the coupled mechanical FE model and the transport FE model; ANN
architecture (left); correlation plot for the corrosion initiation time in [d] (right).

F IGURE 6 Variant 2: Nested ANN surrogate models to sequentially approximate the mechanical FE model and the transport FE model;
ANN architectures (left); correlation plot for the corrosion initiation time in [d] (right).

initiation time, a global surrogate model can be created, where the samples are obtained by running the mechanical FE
model and the transport FE model sequentially, that is, with the same set of input parameters. The resulting global ANN
is shown in Figure 5. Based on the correlation plot, it can be seen, that a good approximation quality is achieved.
As two coupled FE models are used to compute the corrosion initiation time, it is investigated if also two coupled

surrogate models can be created. Also if the advantage of a global ANN surrogate model compared to separate surro-
gate models for the mechanical problem and the transport problem is that no error accumulation can occur, because no
intermediate results (crack width 𝑤cr and crack length 𝑙cr) are required for the global corrosion initiation time approx-
imation, the disadvantage to work with a global surrogate model is that the training data generation needs to run both
FE models sequentially. Here, the transport FE model needs far less computing time compared to the mechanical FE
model. This means, that additional samples for a separate transport surrogate model can easily be produced and the sur-
rogate models for the mechanical problem and the transport problem can be trained independently. In Figure 6, a nested
ANN surrogate modeling strategy is shown together with the correlation plot of the finally predicted corrosion initia-
tion time. It can be seen, that the prediction quality is worse compared to the global ANN surrogate model presented in
Figure 5.
Several ANN architectures have been tested for all investigated options and variants. In Table 1, the best ANN results

are summarized.

5.4 Uncertainty analysis of the corrosion initiation time and optimization results

To investigate the influence of the different ANN surrogate modeling strategies to the uncertainty of the corrosion ini-
tiation time, the p-box is computed within an interval stochastic analysis for both surrogate modeling variants 1 and
2 described in the previous subsection. In Figure 7, the results are shown exemplified for the case 𝜇(𝑃) = 30kN and

TABLE 1 Summary of the best ANN results; ANN architecture 𝐴, regression value 𝑅, and mean squared error𝑀𝑆𝐸.

Mechanical ANN Global ANN
Output 𝒘𝐜𝐫 𝒍𝐜𝐫 𝒕

Option 1 Option 2 Option 1 Option 2 Option 3 Variant 1 Variant 2
𝐴 [15 10] [15 10] [15 10] [15 10] [10 5] [10 5] -
𝑅 0.825 0.993 0.998 0.997 0.999 0.998 0.993
𝑀𝑆𝐸 0.03mm 0.001mm 4.49mm 5.78mm 0.26mm 732d 6690d
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F IGURE 7 Probability box 𝐹̄𝑡 of the corrosion initiation time for both surrogate modeling variants exemplified for the case 𝜇(𝑃) = 30kN
and 𝑚𝑐nom = 50mm.

F IGURE 8 Optimization results within the investigated range of the mean value of the load 𝜇(𝑃); optimal design variable 𝑚𝑐nom (left);
corresponding value of the objective function (right).

𝑚𝑐nom = 50mm. The upper bound cdfs of both p-boxes are almost identical. But the lower bound cdfs show remarkable
different results for probabilities 𝐹(𝑡) > 0.4. As the p-box of variant 2 is an envelope of the p-box of variant 1, it can be
concluded that sequentially trained ANNs (variant 2) lead to an expansion of the p-box of the corrosion initiation time
due to ignoring the physics of the coupled models within the ANN generation.
The final step is to investigated the influence of the different ANN surrogate modeling strategies on the optimization

results, that is, the optimal concrete cover and the corresponding value of the objective function, which is the lower bound
of the intervalmean value 𝑙𝜇(𝑡) of the corrosion initiation time. Based on the results shown in Figure 8, it can be concluded
that both surrogate modeling strategies lead to similar results of the optimization problem.
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