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Providing Quantum Readiness:
The Vision of the ProvideQ Toolbox
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Abstract: Quantum computing has the potential to exponentially accelerate the solution of specific
problems compared to classical computing. However, the accessibility to quantum computing is
currently limited due to the technical challenges posed by quantum devices. Additionally, implementing
quantum algorithms is challenging because of the complex nature of quantum systems. To address these
challenges, we introduce the ProvideQ Toolbox, a framework designed to enhance the accessibility of
quantum computing, especially for optimization problems. Our toolbox includes a range of classical
and quantum state-of-the-art optimization algorithms and employs meta-solver strategies to determine
the best quantum optimization algorithm or quantum subroutine in a classical algorithm for a given
optimization problem. The ProvideQ Toolbox can be used via a web-based frontend and an API and
can be seamlessly integrated with multiple quantum computing backends and classical optimization
frameworks.
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1 Introduction

Quantum computing is a major topic of research since the first ideas for quantum computers
were proposed in the 1980s [Be80; Fe85]. Even though no quantum hardware was available
during that time, researchers were able to show that quantum computing has the potential to
solve certain algorithmic problems exponentially faster than classical computing [DJ92;
Sh99]. Recent advantages in quantum hardware started the so-called noisy intermediate-scale
quantum (NISQ) era, which led to prototypes of noisy quantum computers and raised hope
that practical quantum advantages can be achieved within the following years. However,
quantum computing is still in its early stages. Quantum devices available today provide up
to a few hundred logical qubits [CN23], but due to technical challenges, high maintenance
costs, and high demand, their accessibility is very limited.

Quantum software development is supported by specialized programming languages,
libraries, and frameworks [He20]. However, quantum software engineering generally lacks
tool support and established processes [De22]. Classical software developers are used to
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software engineering that provides many high-level development tools and abstraction layers,
well-established processes, and other state-of-the-art practices that greatly simplify modern
software development. Features like this do not yet exist in the quantum field. Implementing
quantum software demands significant effort. Code optimization for underlying quantum
devices is essential, and incorporating complex error correction techniques becomes
necessary to mitigate the effects of decoherence and noise. Furthermore, quantum computing
and quantum algorithms operate fundamentally differently from their classical counterparts.
Quantum computing has the potential to highly impact aspects of the world by providing
large-scale computational speedups and allowing the calculation of solutions that would not
be possible with classical computers. However, its high entry barrier makes it inaccessible
for most people and companies, which highly reduces the potential impact of this technology.

To alleviate this problem, we aim to improve the accessibility of quantum computing with
the ProvideQ toolbox: a framework that implements a range of classical and quantum
state-of-the-art optimization algorithms and acts intermediate layer that can be used to
speed up combinatorial optimization problems with quantum subroutines. Furthermore, we
employ so-called meta-solver strategies, which determine the best solution approach to an
optimization problem by analyzing problem instances based on pre-defined heuristics.

2 Making Quantum Computing Accessible

There are many recent initiatives to improve quantum software engineering, for instance:
the development of quantum SDKs such as Qiskit [Qi23], CirQ [Ci22], Forest [SCZ16],
or Strawberry Fields [Ki19], the development of specialized libraries and frameworks
such as Pennylane [Be18] for quantum machine learning and chemistry, QuTiP [JNN12]
for quantum simulation, or Qiskit-optimization [Qi23] for solving optimization problems.
There are initiatives like PlanQK3 that focus on the deployment of quantum applications
and providing knowledge exchange platforms, and some companies already work on the
commercialization of hybrid solutions for optimization problems.

In the ProvideQ project we want to build on these existing initiatives and design a framework
that acts as an abstraction layer when using hybrid approaches to solve optimization problems.
We focus on the implementation of so-called meta-solver strategies, which combine classical
and quantum algorithms to provide highly efficient solutions to optimization problems. A
meta-solver strategy predicts the best solution path for a given problem instance by making
assumptions about its characteristics and then selecting optimal solvers based on empirical
data and expert knowledge. The proposed solution paths consist of several classical and
quantum subroutines, which the ProvideQ toolbox will orchestrate and execute on suitable
backends (classical computation clusters or quantum hardware). The main challenge for
the ProvideQ project is identifying potentials for quantum speedups, which is why another

3 https://planqk.de/ Accessed: 29.08.2023
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main effort of the ProvideQ toolbox is the analysis of classical state-of-the-art algorithms
and gathering knowledge about the practical performance of quantum algorithms.

As practical quantum advantages will most likely only be achieved once post-NISQ quantum
hardware is available, the benefits of the ProvideQ toolbox are currently mainly from a
theoretical perspective. Thus, when developing the ProvideQ toolbox, we have to focus on
designing a future-proof framework that can be maintained over a long period. We ensure
this by addressing the following requirements:

1. Easy to Use: The toolbox should be easy to understand. It has to be well-document
and easy to integrate into other tools. Inputs in the form of standardized file formats
have to be supported.

2. Extendable: It should be easy for third-party developers to extend the ProvideQ
toolbox with new input formats and quantum and classical subroutines.

3. Exchangeable Quantum Backends: Quantum backends constantly evolve while new
quantum hardware is built. The backends on which the ProvideQ toolbox can deploy
quantum code should be exchangeable.

4. Relevance: Algorithms and problems implemented by the ProvideQ toolbox should
focus on relevant optimization problems and quantum algorithms.

5. Open Source: We want to establish a development community around the toolbox
and provide all code (including frontend, backend, classical and quantum algorithms,
and meta-solver strategies) open-source on GitHub using the MIT license.

3 The ProvideQ Toolbox

The ProvideQ toolbox is currently under development, and a first prototype is already
released. The code of the project is available on GitHub4, and the prototype can be accessed
via a web interface5 and an API6. The toolbox consists of two main components: the server
and the web client. Figure 1 shows an overview of the architecture.

The toolbox server component is the heart of our framework. It implements problem
definitions, meta-solver strategies, and concrete solvers. Problem definitions are represen-
tations of different optimization problems (such as MaxCut or Knapsack). They define
a standardized input and output format for every algorithmic problem supported by the
ProvideQ toolbox. For every problem definition, we implement one meta-solver strategy
and a set of concrete solvers. Concrete solvers are implementations of classical or quantum
algorithms. They can be either monolithic, standalone algorithms, or polylithic algorithms

4 https://github.com/ProvideQ Accessed: 29.08.2023
5 https://provideq.kit.edu/ Accessed: 29.08.2023
6 https://api.provideq.kit.edu/ Accessed: 29.08.2023
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Fig. 1: Overview of the ProvideQ toolbox software architecture.

with multiple exchangeable subroutines. Meta-solver strategies are implemented as decision
trees that perform multiple analyses on a given problem instance, make assumptions about
its characteristics, and then iterate through the decision tree to decide which solvers should
be used to solve a problem optimally. The toolbox-server component also implements
multiple interfaces that (1) allow external programs to access the problem definitions,
solvers, and meta-solver strategies over an API and (2) implement communication channels
with classical computing networks and quantum hardware to execute the concrete solvers.

The web client component is one example of an external program using the API of the
toolbox server. It is a web-based graphical user interface that visualizes all components
of the server. A user can click on a problem definition to open a site where he can insert
an instance of the associated algorithmic problem. He can then select a specific solver to
calculate a solution or ask the ProvideQ toolbox to select the solver for him based on a
meta-solver strategy. He can also help the ProvideQ toolbox to select an optimal solver by
providing additional assumptions about the given problem instance through extra text fields,
sliders, and checkboxes.

4 Conclusion and Future Work

Quantum computing has a high potential to speed up the solving of optimization problems
drastically, but its true potential can only be realized when it is accessible to a broad audience.
We presented the vision of the ProvideQ toolbox, a framework designed to enhance the
accessibility of quantum computing by providing an abstraction layer between optimization
problems and quantum computing hardware. Implementing effective meta-solver strategies
and quantum subroutines within ProvideQ necessitates extensive research efforts. ProvideQ
is an ongoing project, and our future work will revolve around the constant improvement of
the ProvideQ toolbox. We aim to build a community around our framework and expand
its capabilities by incorporating additional meta-solver strategies, hybrid algorithms, and
interfaces to more quantum backends.
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