

KIT Validation Activities of the ASTEC code against the QUENCH Bundle Experiments: Results and Outlook

F. Gabrielli, O. Murat, A. Mercan, A. Stakhanova, <u>M. E. Cazado</u>, Z. Jimenez Balbuena, V.H. Sanchez-Espinoza

Institute for Neutron Physics and Reactor Technology

www.kit.edu

Motivation

- ➢ KIT strategy for severe accident (SA) analyses → continuous improvement of the codes to evaluate the progression and the radiological consequences of SAs in current and innovative NPPs
- Validation of codes is a key step in the KIT strategy
- > The ASTEC integral code, developed by IRSN, is extensively employed at KIT
- \succ ASTEC validation against QUENCH experiments is continuously going on since long at KIT \rightarrow almost all the QUENCH bundle tests analyzed
- Current priorities in the research activities:
 - Further widening the range of application of ASTEC, i.e., VVER (Q-12) and BWR (Q-20)
 - Enable the safety assessment of the innovative reactor concepts, i.e., SMRs, expected to employ ATF cladding materials

ASTEC Validation against QUENCH-12

- Framework: assessment of an ASTEC dataset of a generic VVER-1000 NPP
- QUENCH-12: VVER-type fuel assembly arrangement
 - Reflooding of pre-oxidized heated rods bundle

ASTEC model of the QUENCH-12 Test

All the ASTEC models activated

➤ Zr material data employed instead of Zr-1%Nb → work in progress at KIT

A. K. Mercan, F. Gabrielli and V. H. Sanchez-Espinoza, "Validation of ASTEC2.1 using QUENCH-12 for VVER-Reactors," NED 395, 111840, 2022

ASTEC Results vs. QUENCH-12 Experiment

Good agreement on the temperatures of heated and un-heated rods

Hydrogen production

Good agreement up to the beginning of the quenching phase: 34.2 g (ASTEC) vs. 34.7g (Exp.)

➢Underestimation during the quenching phase: 9.9 g (ASTEC) vs.
23.1 g (Exp.) → due to the use of Zr-4 instead of Zr-1%Nb

The code is able to catch the physical phenomena of the experiment

A. K. Mercan, F. Gabrielli and V. H. Sanchez-Espinoza, "Validation of ASTEC2.1 using QUENCH-12 for VVER-Reactors," NED 395, 111840, 2022

ASTEC Validation against QUENCH-20

- Framework: assessment of an ASTEC dataset of a generic model of the Peach Bottom BWR NPP (first-of-its-kind)
- > QUENCH-20: Test Bundle Cross Section (1/4 SVEA 96 OPTIMA-2)

- 1. Pre-oxidation phase: power at 7.5 KW, steam and Ar flows
- 2. Transient phase: Electric power increases up to 18.2 kW
- 3. Quench phase: 50 g/s quench water Injected at the end of the transient phase, steam flow off

ASTEC model of the QUENCH-20 Test

Steam

Wate

Efforts to properly model the power distribution in the bundle

The electrical power is not the same for each rod

- Boundary conditions from the experiment
- All ASTEC models activated

O. Murat, V.H. Sanchez-Espinoza, S. Wang, J. Stuckert, Preliminary validation of ASTEC V2.2.b with the QUENCH-20 BWR bundle experiment, NED 370, 2020

ASTEC Results vs. QUENCH-20 Experiment

Considering the challenges in modelling the geometrical peculiarities of bundle, ASTEC reasonably well reproduces the temperature of the structures during the transient

O. Murat, V.H. Sanchez-Espinoza, S. Wang, J. Stuckert, Preliminary validation of ASTEC V2.2.b with the QUENCH-20 BWR bundle experiment, NED 370, 2020

ASTEC Results vs. QUENCH-20 Experiment

ASTEC results on both the total and B4C contribution to the hydrogen production during the test are in good agreement with the experiment

O. Murat, V.H. Sanchez-Espinoza, S. Wang, J. Stuckert, Preliminary validation of ASTEC V2.2.b with the QUENCH-20 BWR bundle experiment, NED 370, 2020

Uncertainty and Sensitivity Analyses (U&Sa)

- U&Sa of the ASTEC results became part of the calculation route in the KIT strategy for SA analyses
- The application of U&Sa methods to the ASTEC results for the QUENCH tests play a key role in order to:
 - Testing the U&S methodologies
 - Identifying bottlenecks in the code, when developing/employing new models devoted to new materials, i.e. ATF
- The KArlsruhe Tool for Uncertainty and Sensitivity Analyses (KATUSA) has been developed at KIT
- The ASTEC/KATUSA has been used for the QUENCH-08 and QUENCH-06 analyses

Uncertainty and Sensitivity Analyses (U&Sa)

- The U&Sa of the results of integral codes for the QUENCH-06 has been selected as test case (Task 1) in the IAEA CRP I31033 'Advancing the State-Of-Practice in Uncertainty and Sensitivity Methodologies for Severe Accident Analysis in Water Cooled Reactors' (2019-2024)
- Participants to the Task: KIT (coordination), ENEA, IBRAE, LEI
- 5 Figure-of-Merits selected (H₂ production, temperatures, oxide scales)
- 23 uncertainty parameters selected and the corresponding PDFs characterized
- The TECDOC is in the publication process

Simple statistics (ASTEC)

U&Sa and Prediction of H2 Production (QUENCH-08)

- Framework: Development of a tool for fast source term (ST) predictions based on a database of results from the ASTEC code (German WAME project, accomplished)
- Fast Source Term Code (FSTC) developed at KIT
 - U&Sa+Data Assimilation algorithm based on MOCABA (developed by Framatome GmbH)
 - Goal: iteratively use the measurements and previous predictions to construct the new one
- Before moving to NPPs applications, FSTC tested on the QUENCH-08 experiment
- An ASTEC database of 600 simulations assessed
- The ASTEC/FSTC allows predicting the hydrogen mass by using the TC measurements

A. Stakhanova, F. Gabrielli, V.H. Sanchez-Espinoza, A. Hoefer, E.M. Pauli, Application of the MOCABA algorithm and the FSTC tool for source term predictions during severe accident scenarios, Annals of Nuclear Energy, 184, 2023.

ASTEC Modelling of QUENCH ATF-Related tests

- Large efforts on the analysis of the QUENCH ATF-related bundle tests ongoing
- Framework: OECD/NEA QUENCH-ATF and IAEA CRP ATF-TS
- Current approach in the ASTEC modelling: modifying the material database by including the correlations for such materials, i.e. FeCrAI

STRUCTURE MODEL NAME 'BEST-FIT' LAW 'COEFF' VARIABLE 'T' VUNIT 'K' RUNLOW 0. RUNUPP 5000. SRG VALUE AGAIN 9.62D-10 BGAIN 0.0 ATHIC 2.252D-13 BTHIC 0.0 MODEL 0.5 TERM X 1473.K SRG VALUE AGAIN 3.0D+11 BGAIN 5.94354D5 ATHIC 3.371D3 BTHIC 5.94354D5 MODEL 0.5 TERM X 1648.K SRG VALUE AGAIN 2.4D+08 BGAIN 3.52513D5 ATHIC 0.008682D0 BTHIC 3.52513D5 MODEL 0.5 TERM END

Mid-term approach: development and implementation in ASTEC of an oxidation model for new materials (currently efforts devoted to FeCrAl)

ASTEC Model of the QUENCH-ATF1 Test

Oxidation Model

Brachet data

Fitting functions for weight gain and thickness grown of the oxide layer provided by J. Stuckert

$$\delta = 0.00377 \cdot e^{-\frac{123783}{R \cdot T}} \cdot \sqrt{t}$$

$$\Delta m = 6.19 \cdot e^{-\frac{123783}{R \cdot T}} \cdot \sqrt{t}$$

Brachet, J.-C., et al., 2020. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process, Corrosion Science 167 (2020) 108537...

- Ring#1: reasonable agreement
- Ring#2: deviations @850 mm height (~200 degree), reasonable for some TCs @950 mm
- Ring#3: large deviations (up to~200 degree)
- Good agreement on the radial shape

ASTEC Model: Results – H2 production

Large deviation on the maximum H2 production rate

Very good agreement on the starting time of H2 production and on the kinetics behavior

QUENCH-19 Test

> IAEA ATF-TS Project

- ≻Phase 1: heating up to ~600 °C (4 kW)
- ➢Phase 2: power increase up to 11.5 kW (pre-oxidation)
- ➢Phase 3: power increased up to 18.12 kW (5 W/s) (T_{pct}~1500 °C)
- ≻Phase 4: power reduced to 4.1 kW
- Atmosphere of Ar (3.45 g/s) and superheated steam (3.6 g/s).
 Reflooding at ~9100 s
 - Fast initial injection of 4 kg of water
 Slow injection 48 ~ g/s of water

ASTEC Model of the QUENCH-19 Test

Ch. 1, 4 rods, r_{ext}=14.2 cm

> IAEA ATF-TS Project

1.5 Elevation [m] 1.3 Kanthal AP 1.1 FeCrA 0.9 0.7 0.5 0.3 SSTEEL 0.1 -0.1 -0.3 R [m] -0.5k 0.02 0.04 0.06 0.08 0.1

Accidental presence of 4 I water the gap between the shroud and the cooling jacket modelled

ASTEC: FeCrAl Oxidation Model

Fitting functions for weight gain provided by J. Stuckert

$$K = \begin{cases} 9.62 \times 10^{-12} \, [\text{g}^2/\text{cm}^4\text{s}], \ T \le 1473 \text{ K} \\ A_B \exp\left(\frac{-E_B}{RT}\right), \ 1473 < T < 1648 \text{ K} \\ A_{Fe} \exp\left(\frac{-E_{Fe}}{RT}\right), \ T \ge 1648 \text{ K} (melting point of FeO) \end{cases}$$

 $A_B = 3 \cdot 10^9 \text{ g}^2/\text{cm}^4 \text{ s}$ $E_B = 594354 \text{ J/mol}$ $A_{Fe} = 2.4 \cdot 10^6 \text{ g}^2/\text{cm}^4 \text{ s}$ $E_{Fe} = 352513 \text{ J/mol}$

C. KIM, C. TANG, M. GROSSE, M. STEINBRUECK, C. JANG, Y. MAENG, "OXIDATION KINETICS OF NUCLEAR GRADE FeCrAI ALLOYS IN STEAM IN THE TEMPERATURE RANGE 600-1500°C", TopFuel 2021.

ASTEC Results: Clad Temp. @850 and @950 mm Height

- Results exceed the exp. of about 100 degree in the pre-oxidation phase in Ring 1 (@850 mm) and in the Ring 1 and 2 (@950 mm height)
- Better agreement in Ring 2 and 3 (@850 mm) and Ring 3 (@950 mm)
- Maximum temperatures reasonably well reproduced

ASTEC Results: Hydrogen Production

> The final amount of H2 is reasonably well reproduced

- > ASTEC results show a good agreement with exp. up about 8000 s
- Escalation is anticipated in time with about 50% of the mass rate compared with the experiment
- Smooth' kinetics behavior is not reproduced

Conclusion

- The validation activity of the ASTEC code against the QUENCH bundle tests is going on since long at KIT
- The activity is a pillar of the KIT strategy on the analysis of hypothetical SAs in current and innovative NPPs
- SASTEC is able to properly reproduce the key phenomena and/or the experimental results of the QUENCH bundle tests
- Efforts are currently devoted to analyze the QUENCH tests employing ATF materials in the frame of:
 - > The OECD/NEA QUENCH-ATF project
 - > The IAEA T12032 CRP 'ATF-TS'
 - The development and the implementation in ASTEC of a physical model for the oxidation of FeCrAl cladding materials (tight connection with IRSN and the QUENCH team)

Acknowledgement

The authors wish to acknowledge the QUENCH team for the great support to the KIT/INR computation team

Special thank to J. Stuckert, M. Steinbrück, and M. Große for their continuous support, suggestions, and availability