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Abstract—Black box models such as deep neural networks
are increasingly being deployed in high-stakes fields, includ-
ing justice, health, and finance. Furthermore, they require a
huge amount of data, and such data often contains personal
information. However, the principle of data minimization in the
European Union’s General Data Protection Regulation requires
collecting only the data that is essential to fulfilling a particular
purpose. Implementing data minimization for black box models
can be difficult because it involves identifying the minimum
set of variables that are relevant to the model’s prediction,
which may not be apparent without access to the model’s inner
workings. In addition, users are often reluctant to share all
their personal information. We propose an interactive system
to reduce the amount of personal data by determining the
minimal set of features required for a correct prediction us-
ing explainable artificial intelligence techniques. Our proposed
method can inform the user whether the provided variables
contain enough information for the model to make accurate
predictions or if additional variables are necessary. This human-
centered approach can enable providers to minimize the amount
of personal data collected for analysis and may increase the user’s
trust and acceptance of the system.

Index Terms—XAI, Data Minimization, Counterfactual Expla-
nations

I. INTRODUCTION

Complex machine learning algorithms are used more and
more because of the complexity of the problems that need to
be solved [1]. These models act as black boxes and providing
a clear explanation of the models’ decisions and reasoning
behind them is difficult [1]. Due to their high accuracy,
black box models are increasingly being deployed in high-
stakes fields, ranging from determining bail amounts [2] to the
diagnosis and treatment of patients [3]. They are also prevalent
in business activities, as prediction algorithms are considered
valuable business assets, and companies want to keep them
secret from users [4].

A significant limitation of complex machine learning mod-
els is their reliance on large amounts of data to make accurate
predictions [5]. Therefore, a huge amount of data needs to
be collected, processed, and stored. Because such data often
involves personal and private information, concerns about data
privacy and security have become increasingly important. To
address these concerns, the use of personal data is strictly
regulated by data protection laws, such as the European
Union’s General Data Protection Regulation (GDPR). One

of the key data protection principles of the GDPR is data
minimization, which allows the collection and processing of
only as much data as absolutely necessary for a specified
purpose [6].

The UK Information Commissioner’s Office [7] distin-
guishes between data minimization methods used in the train-
ing phase, meaning the period during which the model is
trained, and the inference phase, meaning the period during
which the model is used to make a prediction. In this work,
we will focus on reducing the amount of input data in a
black box setting during the inference phase while preserving
the accuracy as closely as possible to the accuracy of the
original model. However, implementing data minimization
without access to the model’s internals can be challenging,
as it requires precisely determining the effect of each input
feature on each prediction or classification.

This is where Explainable Artificial Intelligence (XAI),
particularly counterfactual explanations, can play a crucial
role. In our approach, we use counterfactual explanations
to identify the minimum set of features required for each
individual accurate prediction while minimizing the collection
and processing of input data.

Users may not want to share all their data. Therefore,
we propose an interactive system, which forms an important
component of many modern applications in industry and
production. Based on the input data provided, our proposed
method can explain to the user whether the provided data is
sufficient for the model or which additional variables should
be provided to make an accurate prediction. Besides technical
and legal aspects of data minimization, such as storage and
cost reduction, low liability [8], fairness, and privacy, this
may also increase the trust and acceptance of the system,
because the lack of transparency in machine learning models
can undermine users’ trust, especially in situations where the
consequences of predictions are serious and may result in the
rejection of the system [9].

As a result, we suggest a human-computer interaction sys-
tem for data minimization that can reduce the amount of input
data used to make predictions by machine learning models.
Our proposed method focuses on minimizing the new data
collected for analysis, and it does not require training data
or model internals. Notably, the black box model does not
need to be retrained, making it an efficient approach for data



minimization in existing systems.
To sum up, we make the following contributions:

• A new interactive system that utilizes counterfactual
explanations to gather only the required user data, in
accordance with the GDPR’s data minimization principle,
while maintaining accuracy.

• An investigation into the relationship between SHAP
values and the frequency of occurrence of features in the
minimal set of required features for the model to make
accurate predictions.

The remainder of this work is structured as follows: Section
II goes over important fundamentals in XAI and the legal
concept of data minimization. Section III covers related work
in data minimization, sections IV and V explain our proposed
method for interpretable data minimization and the experi-
ments conducted to evaluate our approach. Lastly, section VI
gives a conclusion and an outlook on possible future work.

II. FUNDAMENTALS

With the advances in AI, increasingly more complicated
models are developed to solve complex problems. However,
the inherent nature of their architecture makes it harder to
fully understand them [10]. Nevertheless, complex models
often perform better than traditional AI techniques, such as
linear models or trees, because of inherent problems of high
bias or high variance [11]. The performance of a model is
not always the most important aspect but explainability also
plays a very important role in some domains [1]. The need for
explainability is demanding if there is an “incompleteness” in
the formalization of a problem [12]. Incompleteness refers to
certain aspects of problems that cannot be adequately encoded
into the system. It can stem from various sources, including
ethics, safety, gaining new knowledge, and mismatched objec-
tives [12].

In recent years, several XAI (Explainable Artificial In-
telligence) methods have been proposed to facilitate users’
understanding of machine learning and algorithms’ decision-
making processes. One well-known family of XAI methods is
attribution-based explanations, such as SHAP [13] and LIME
[14], which assign an importance score to each attribute.
Another widely recognized family of methods is counterfactual
explanations. Counterfactual explanations, such as the method
by Wachter et al. [15], serve as an interpretation method that
demonstrates the required changes to flip the model prediction
to the desired output (a ”what-if” explanation) by making the
smallest perturbation to a data instance.

However, counterfactual explanations often do not comply
with feature importance scores [16]. Mothilal et al. [16] show
the relationship between them and find that attribution-based
explanations emphasize the sufficiency of feature values for a
given model, whereas counterfactual explanations highlight the
necessity of feature values. However, according to the study,
a good explanation should satisfy both of them.

Fig. 1: Finding sufficiency and necessity of features

A. Sufficiency and Necessity of Features

Sufficiency may be rewritten as ¬y → ¬x and necessity
as ¬x → ¬y [17]. According to Mothilal [16] sufficiency
and necessity are two concepts that describe how important
a set of features is for the decision of a model. Suppose we
have an instance X = {x1, x2, x3, . . . , xn} and f(X) = y∗ is
the output of the model f . {x2, x3} represents the subset of
features from X we want to investigate as shown in Figure
1. The sufficiency and necessity of a set of features can be
determined by searching for counterfactuals. In our case, a
counterfactual simply refers to changes to some features of
an instance that lead to a changed prediction of the model f
for that instance. It is also possible to constrain the criteria
further by specifying the value ranges of each feature. For our
work we determine the sufficiency and necessity of features
as follows:

Sufficiency: By keeping the values of {x2, x3} fixed and
altering only other features, we can determine sufficiency. If
no counterfactuals can be generated, then the set {x2, x3} is
sufficient for the model’s output y∗.

Necessity: If counterfactuals can be generated by changing
only the feature set {x2, x3}, then the set is necessary for the
model’s output y∗.

As a result, sufficiency refers to the ability of a feature sub-
set to consistently generate a specific model output, regardless
of the values of other features. On the other hand, the subset
of features is necessary if changing the values of the subset
leads to a change in the model’s output [16].

B. A Legal Perspective

Data minimization is one of the key data protection princi-
ples of the European Union’s GDPR [18]. In Article 5(1)(c),
the GDPR [18] states that “personal data shall be adequate,
relevant, and limited to what is necessary in relation to the
purposes for which they are processed”. Firstly, only relevant
personal data should be processed, and it does not allow
for the processing of irrelevant details. The purpose of this
principle is to prevent the collection of excessive data for
constantly redefined and undisclosed purposes [19]. Secondly,
it requires that personal data be adequate. The adequacy
requirement may demand more data to be processed in some



cases, particularly where available data are insufficient to make
inferences about underrepresented groups in the dataset, such
as people with disabilities [8]. This principle is closely related
to the fairness, transparency, and accuracy principles of the
GDPR [19]. Finally, personal data should be limited, requiring
only the minimum amount of personal information necessary
to achieve the purpose [7]. Indeed, Article 25(2) of the GDPR
[18] requires controllers to implement “appropriate technical
and organizational measures” to ensure that only personal data
necessary for each specific purpose of processing is processed.

Data minimization does not only cover the minimization of
processed data but also the pseudonymization of personal data.
The use of pseudonymization enhances the protection of data
subjects’ identity [20].

As a result, data minimization in either way promotes the
development of machine learning by protecting data subjects
and maintaining overall trust in models [20].

III. RELATED WORK

There are many algorithmic techniques for data minimiza-
tion. The Norwegian Data Protection Authority [20] distin-
guishes between breadth-based data minimization and depth-
based data minimization. The former aims to minimize the
number of features by excluding redundant and irrelevant
features, while the latter tries to minimize the overall amount
of data collected for the specific purpose.

Several algorithmic techniques have been developed to
improve the quality of models and reduce the costs associated
with data gathering. These techniques indirectly minimize data
by utilizing outlier detection to identify and eliminate rare
anomalies and noise, feature selection to remove redundant
and irrelevant features, and active learning to gradually select
data to be labeled or added to a model [21]. Additionally,
feature abstraction can be used to reduce the dimensionality
of input data by extracting the most important features while
discarding irrelevant or redundant ones [22]. However, this
technique is also employed with the goal of improving the
model’s performance, rather than solely for data minimization.

Various papers aim to minimize the number of features.
Heuer and Breiter [23] explore the trade-off between big data
and data minimization and demonstrate that it is possible to
construct a successful prediction model for predicting student
success without including private attributes such as gender,
disability status, or the highest educational level. In addition,
they also binarized the daily activity of clicks by encoding only
whether a student was active or not and argued that the model
with this simplification has better predictive performance than
actual counts of clicks. Biega et al. [19] conduct an empirical
study to check whether the original recommender performance
can be preserved while limiting the number of known user
ratings. The UK information commissioner’s office’s guidance
on the AI auditing framework [7] suggests privacy-preserving
methods such as perturbing or adding “noise” to the data in
such a way that preserves structures of those features for data
minimization in the training stage. Adding noise is a way
of designing differential privacy. For example, consider an

algorithm that examines a dataset and generates statistics such
as mean, mode, median, etc. Such an algorithm is referred to
as differentially private if the output does not reveal whether
a specific individual’s data was used in the original dataset or
not [24].

Some papers focus on limiting overall data collection during
model training. Hestness et al. [25] divide the learning curve,
which shows the relationship between training data size and
loss, into three phases. The phases are: (1) The small data
region, where the data size is not representative enough and the
performance is poor. (2) The power-law region, where a new
training data set increases the performance of the model. (3)
The irreducible error region, where a new data set is not able
to improve the performance. Tae and Whang [26] adopt the
power law relationship assumption during the data acquisition
process and suggest a selective data acquisition framework
that uses the learning curve to determine the optimal amount
of data to acquire for each class in order to achieve similar
error rates across all classes by optimizing model accuracy
and fairness for each class. Similarly, Shanmugam et al. [8]
also propose a framework to limit data collection. On the other
hand, the framework offers a data collection stopping point by
continuously updating an estimate of the learning curve during
the data acquisition process. They also suggest random feature
acquisition techniques instead of active feature acquisition
techniques for data minimization because of the smoother
learning curve, the success of data collection depending on
initial conditions, and the potential excessive burden of data
collection on certain users.

Our approach is closely related to papers that deal with
limiting data collection at the inference stage. Since predic-
tion algorithms are often valuable assets for businesses, they
operate in a black box setting [4], which means that it is
not known how the prediction model works, or one does
not have access to the model’s internals. Moreover, similar
to our approach, they are only concerned with minimizing
newly collected data for analysis or testing whether a black
box model complies with the principle of data minimization
as in our approach. Rastegarpanah et al. [4] proposed an
audit method that uses feature imputation across all prediction
instances to determine whether each of the input features
employed in a particular model is essential for maintaining the
desired level of predictive performance. The main difference
to our work is that their approach evaluates the importance of
features on a global level while we evaluate the importance
of features for each instance given by a user. Goldsteen et al.
[27] use a data generalization technique based on knowledge
distillation, where a surrogate model such as a decision tree
is trained to determine decision boundaries of the model, to
suppress or generalize input features in classification while
keeping the performance of the model at the desired level. As
a result, it reduces the number and/or granularity of features
collected for analysis and increases privacy protection [27].
This approach is functionally the most similar to ours but uses
knowledge distillation rather than XAI techniques. However
the user still has to provide all data and only some of the data



is generalized into equivalence classes.

IV. INTERPRETABLE DATA MINIMIZATION

What if the user could choose to only provide the data that
is necessary and sufficient for the model? Can we validate
if the given information is enough for the model’s intended
purpose? For instance, can we ascertain if the data provided
by the user is adequate to predict a disease? In case some
data is missing, can we determine which features among the
missing values are important to make an accurate prediction?

We propose a method that can reduce the amount of input
data required for individual predictions made by machine
learning models. Our key idea is to identify the input fea-
tures that are necessary and sufficient for the prediction of
a black box model. To achieve this, we use counterfactual
explanations, as discussed in section II-A. Our focus is on
minimizing the amount of newly collected data required during
the inference stage, and we assume a black box setting where
we cannot access the model’s internals and have no access
to the original training data. Therefore, our method can be
applied to any machine learning algorithm without requiring
any changes to the original model.

Fig. 2: Procedure of user interaction

The process we envision has 6 steps and is depicted in
Figure 2:

1) The black box model requests the features it requires for
its prediction from the user.

2) The user provides the features they are most comfortable
with sharing.

3) Our system calculates the smallest set of sufficient and
necessary features based on the users input and asks for
additional features if needed.

4) The user fills in the missing features in the set of
sufficient and necessary features.

5) Our system imputes the missing features.
6) The black box model makes its prediction using the

features provided by the user and those imputed by our
system.

The concepts of sufficiency and necessity were introduced
in section II-A. Determining the sufficiency and necessity of
features is done through the DiCE (Diverse Counterfactual
Explanations) algorithm, which is proposed by Mothilal et al.
[28] to generate counterfactual explanations for any machine
learning model. For each subset of the feature set, if the
model’s output for an instance can be changed by changing
only the values in that subset, it means that the features in that
subset are necessary for the prediction of that instance. On the
other hand, if the model’s output for an instance cannot be
changed by changing only values outside that subset, it shows
that the features in the subset are sufficient for the prediction
of that instance.

However, it may take a very long time if the number
of features is high because this process is performed for
all possible combinations of features for each instance. To
decrease the cost of the processing, the process is optimized
based on the idea that if one subset of features can change
the output of the model, then every superset of the subset can
also change the output of the model which means they don’t
have to be tested anymore.

After finding both sufficient and necessary features for
each instance from the test dataset, the minimal subsets for
sufficient and necessary features are extracted. For example,
if A and B are two subsets for sufficient and necessary features
for the same instance, and A is a subset of B, then only A is
selected for the sufficient and necessary features.

Assuming we have received data from a user, but some
values are missing, we can employ an imputation technique
to fill in these missing values. For example, we can assign
random values to impute the missing values. Imputation is nec-
essary because most machine learning models are incapable of
handling data with missing values.

If the provided features are sufficient and necessary, mean-
ing that the missing values cannot change the prediction, the
system confirms this to the user; however, if they are not, it
informs the user about the additional features required. It’s as
if it dynamically specifies fields that need to be filled by users
based on the provided data. Additionally, we can store only
those adequate values provided by the user.



V. EVALUATION

As illustrated in Figure 3, we evaluate our approach by
following the following steps for different datasets:

1) We compare the performance of different models and
select the best one that can generalize well.

2) We identify sufficient and necessary features using DiCE
[28].

3) For the input features that are not sufficient and neces-
sary, we remove values to simulate missing user data.

4) We impute the removed values using the MiceForest1

imputation technique.
5) We evaluate our method by comparing the output of the

model for the imputed test dataset with the output for
the original test dataset.

Fig. 3: Procedure of the experiment

We use three common datasets to evaluate our proposed
method: German Credit 2, Adult 3, and Stroke 4. These datasets
are popular benchmarks and contain data from different fields.

German Credit: This dataset, from the UC Irvine Machine
Learning repository [29], consists of 1000 observations (rows)
with 21 features (columns), regarding people who took loans
from a bank. Each person is classified as a good or bad credit
risk according to the set of features.

Adult: This dataset from the UC Irvine Machine Learning
repository [29] is based on the 1994 Census database and con-
tains 48842 observations (rows) with 15 features (columns).
The task is to predict whether an individual’s annual income
exceeds $50.000 using the variables in this data set.

Stroke: This dataset from Kaggle contains 5110 observa-
tions (rows) with 12 features (columns). Each observation
corresponds to one patient and the attributes are variables
related to the health status of each patient. These features are
used to predict whether a patient is likely to have a stroke.
However, out of the 916 participants who are 18 years old
or younger, only two have experienced a stroke, resulting
in highly imbalanced data. For our analysis, we will focus

1https://github.com/AnotherSamWilson/miceforest
2https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3https://archive.ics.uci.edu/ml/datasets/adult
4https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

on participants who are over 18 years old, following the
approach taken in prior work [30]. Consequently, the dataset
with participants over 18 years old contains 4193 observations.

A. Data preprocessing and Training

We split each dataset into a training set of 70% and a
test set of 30% using the stratified sampling method. Then
we apply several types of classifiers to each dataset. The top
three performing models for each dataset are shown in Table I.
Additionally, more information about data preprocessing and
model training can be found in the Appendix A.

B. Finding Sufficiency and Necessity of Features

As introduced before, in this step, the sufficiency and
necessity of the feature values for each dataset are determined
through the DiCE algorithm [28]. DiCE was configured to
search for only one counterfactual example. For each subset,
the necessary and sufficient features for each instance from
the test dataset are determined.

C. Simulating by removing values

It is assumed that a user provides features that satisfy the
sufficiency and necessity criteria, otherwise, the user would
be asked to provide the missing values. To simulate this
situation values other than those that provide sufficient and
necessary features for each sample are replaced with NaN
to indicate missing values. The majority of the instances have
more than one subset of features that satisfies the sufficiency
and necessity properties.

In Figures 4a, 4b, and 4c, the blue bar represents how
often a feature was in the sets of sufficient and necessary
features across all instances in the training dataset, while the
yellow bar indicates how often the feature was absent in these
sets. For instance, in Figure 4b the feature “ever married”
appears for 2050 out of the total 4079 instances in the sets of
necessary and sufficient variables. This feature is considered
important for the model’s output in half of the cases, while
it is considered insignificant in the other half. The variables
“checking status” in Figure 4a and “age” in Figure 4b are
present in nearly all sets of necessary and sufficient variables.

D. Imputation

For the evaluation we utilized the MiceForest imputation
technique 5 to fill in these missing values. MiceForest is an
extension of the Multivariate Imputation by Chained Equations
(MICE) algorithm. It employs an iterative process that models
each variable as a function of the other variables to impute
missing values in the dataset. The imputation is performed
by training random forests, with each model trained on a
different subset of the data, using the LightGBM model as the
chaining function [31]. This technique is capable of handling
both continuous and categorical features [31]. It was selected
after comparing different imputation techniques because it
performed the best.

5https://github.com/AnotherSamWilson/miceforest



German Credit Stroke Adult
XGB* SVM RF RF Stacking* MLP SVC MLP Gradient*

Accuracy 0.893 0.843 0.870 0.919 0.922 0.803 0.822 0.828 0.830
Precision WA 0.90 0.84 0.87 0.92 0.92 0.80 0.83 0.83 0.83
Recall WA 0.89 0.84 0.87 0.92 0.92 0.80 0.82 0.83 0.83
F1-score WA 0.89 0.84 0.86 0.92 0.92 0.80 0.83 0.83 0.83

TABLE I: Accuracy of Models on Datasets
Note: Several classifiers were tested on all datasets but only the 3 best-performing are shown in the table. The classifiers selected for evaluation are

indicated by an asterisk (*), Random Forest (RF), Weighted Average (WA)

(a) German Credit

(b) Stroke

(c) Adult

Fig. 4: The number of sufficient and necessary features in the
datasets

E. Evaluating the Performance

We evaluate the performance of the model on each imputed
dataset by comparing it to the model’s performance on the
original dataset. This was done by comparing the model’s
output on the original and imputed dataset. Moreover, our
approach does not involve retraining the model to predict the
imputed dataset. In all three datasets, the relative performance
is 100%, which means that the model predicts exactly the
same outputs on the imputed and original dataset. As a result,
we can predict a dataset with missing values for all variables
except the necessary and sufficient variables, with the same
performance as if all variables were available. In cases where
only sufficient and necessary features for the test datasets are
provided, the model exhibits identical performance as shown
in Table I. This implies that if we have the necessary and
sufficient features, we can predict the dataset as if all variables
are available.

German Credit Stroke Adult
Relative performance 1.0 1.0 1.0
Number of instances 9973 4061 52687

TABLE II: Performance and number of instances for three
datasets

F. Relation between SHAP Values and Frequency of Suffi-
ciency and Necessity

SHAP is a variety of attribution explanations that answer the
question: what are the most important features that contributed
to a prediction [32]? SHAP was proposed by Lundberg and
Lee [13] to explain the local predictions of any machine
learning model by computing the contribution of each feature
to the model’s output.

German Credit Stroke Adult
Pearson correlation 0.8153 0.8673 0.9061
p-value 0.0002 0.0568 0.0019

TABLE III: Pearson correlation values and p-values

We calculate the frequency of each feature occurring in the
sets of sufficient and necessary features and then compute
the Pearson correlation between the SHAP feature importance
values and the frequency of each feature’s occurrence. To
calculate the SHAP feature importance values, we take the
average of the absolute SHAP values for each feature across
the entire dataset [33]. We use the training datasets as the
background dataset for SHAP values, except for the Adult
dataset, where we randomly selected 3000 training samples



due to the extremely slow run times that would be caused by
using all training data samples. In table III, we describe the
approximate correlation values and p-values, which indicate
a strong positive correlation between these two values being
measured for the German Credit and Adult datasets, but not
for the Stroke dataset.

VI. CONCLUSION

XAI methods are generally used to increase transparency
and fairness, which are key principles of the GDPR. However,
in this work, we propose a new method that uses XAI to
address another key principle of the GDPR, which is data
minimization for machine learning models. We assume that
the machine learning model is a black box, and we do not
require any training data. Furthermore, the machine learning
model does not need to be retrained. Therefore, our approach
can be applied to any dataset and any machine learning model.
As a result, the method described in this paper does not affect
the training data or the trained model; rather, it only affects
new data collected for analysis.

Our method utilizes counterfactual explanations to identify
the sufficient and necessary features required for making an
accurate prediction for each instance. With the three test
datasets, we demonstrated that accurate predictions can be
made even if only the sufficient and necessary features are
provided, as if all variables were available. Although we
achieved good results in terms of data minimization without
compromising accuracy, the impact of our method on model
accuracy may be minimal, depending on the counterfactual
models and hyperparameters used.

Moreover, users may not want to share all of their data
when providing it to a system. Our new approach proposes a
human-computer interaction during the data input process. By
using sufficient and necessary features, the system can explain
to the user how their decision to share certain data or not
influences the system’s behavior. For instance, the user can
be notified that the data they have entered is sufficient for
predicting a cancer diagnosis, or what other data is required
for an accurate prediction. This approach could increase the
trust and acceptance of interactive systems, as users will have
a better understanding of how their data is being used.

The main limitation of this work is that the time required
to find the sufficient and necessary features can grow expo-
nentially as the difference between the number of features
provided by the user and the number of features in the set that
contains sufficient and necessary features increases, especially
if the number of given features is less than the number of
features in this set.

SHAP is one of the most popular frameworks that explain
individual predictions by computing the contribution of each
feature to the prediction. We examined the relationship be-
tween the SHAP feature importance and the frequency of
occurrence among sufficient and necessary features and found
that there is a strong positive correlation between them for
German Credit and Adult datasets, but not for the Stroke
dataset.

A. Future Work

Our method can be applied to any machine learning model,
as we assume that the model is a black box and we do not have
access to the training data. However, the experiments presented
in this thesis only focus on classification models. Therefore,
other types of models, such as regression or generalization
models, could be utilized to evaluate the performance of the
model with only the sufficient and necessary features available.

Our approach does not affect training data; rather, it con-
siders data minimization only for the new data collected
for analysis. A promising area for future research could be
exploring data minimization techniques for training machine
learning models, using a similar approach to our model.

As mentioned previously the time needed to find the suf-
ficient and necessary features is the main limitation of this
approach. In section V-F we showed that there is a strong
correlation between sufficient and necessary features and their
SHAP values. This correlation could be used to accelerate our
approach by prioritizing features based on their SHAP values.

Our method utilizes sufficient and necessary features to
provide feedback to the user on how their decision to share
certain data or not influences the system’s behavior. However,
we do not know how this feedback will affect the user’s
behavior in sharing data. A future study that investigates the
impact of our proposed model on human behavior would also
be valuable.
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APPENDIX

A. Data Preprocessing and Training

We processed the datasets and trained the models using the
following techniques:

1) German Credit:
• Preprocessing

– Features used from the dataset: checking status, his-
tory, purpose,
savings status, employment status, properties, other
guarantors,
other payment plans, housing, and foreign worker

– Features that were encoded through ordinal encod-
ing: foreign worker and employment

– Features that were encoded through one-hot en-
coding: checking status, history, purpose, sav-
ings status, status, properties, other guarantors,
other payment plans, and housing

– Data normalization was applied to the continuous
features.

– The SMOTEENN6 method was applied to the train-
ing dataset.

6https://imbalanced-learn.org/stable/references/generated/imblearn.
combine.SMOTEENN.html



• Training
– We trained three types of classifiers: eXtreme Gra-

dient Boosting (XGB), Support Vector Machine
(SVM), and Random Forest (RF). The settings for
these classifiers were as follows:
∗ XGB: The maximum tree depth was set to 10,

the learning rate was set to 0.01, the number of
estimators was set to 200 and the evaluation metric
was set to logistic loss.

∗ SVM: The penalty parameter of the error term
was set to 2 and the probability parameter was
set to true.

∗ RF: The maximum depth of the tree was set to
10.

2) Stroke:
• Preprocessing

– Features used in the dataset: age, aver-
age glucose level, ever married, work type,
and smoking status

– A sample whose gender is listed as other was deleted
– Features that were encoded through ordinal encod-

ing: ever married
– Features that were encoded through one-hot encod-

ing: work type and smoking status
– Data standardization was applied to the continuous

features.
– The SMOTEENN method was applied to the dataset

like in [34].
• Training

– We trained three types of classifiers: RF, Stacking,
and Multi-layer Perceptron classifier (MLP). These
classifiers were configured as in the previous work
[34].

3) Adult:
• Preprocessing

– We process the dataset using techniques proposed by
Zhu [30]. As a result, we obtained eight features:
age, education num, hours per week, sex, work-
class, marital status, occupation, and race

– Features that were encoded through ordinal encod-
ing: sex

– Features that were encoded through one-hot encod-
ing: workclass, marital status, occupation, and race

– Data standardization was applied to the continuous
features.

– The SMOTEENN method was applied to the training
dataset.

• Training
– We trained three types of classifiers: SVC, MLP, and

Gradient Boosting Classifier (Gradient). The settings
for these classifiers were as follows:
∗ SVC: The probability parameter was set to true.
∗ MLP: The hidden layer size was set to 10, the

maximum number of iterations was set to 500,

the solver for weight optimization was set to
stochastic gradient descent and the initial learning
rate was set to 0.3.

∗ Gradient: The default parameters of scikit-learn7

were used.
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