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Introduction

The scientific evidence decisively attributes natural hazards’ increasing intensity and fre-

quency to global warming. The Synthesis Report of the 6th IPCC Assessment Report,

which has just been finalized in March 2023, states:

In the near term, every region in the world is projected to face further increases in climate haz-

ards (medium to high confidence, depending on region and hazard), increasing multiple risks to

ecosystems and humans (very high confidence).

These risks of climate hazards include heat-related human mortality, biodiversity loss,

and the spread of diseases, to name a few. Concerning the hazards themselves, floods,

landslides, and water availability have the potential to lead to severe consequences for

people, infrastructure, and the economy. Their study is highly relevant because climate

hazards constitute a causal channel through which anthropogenic climate change influ-

ences the economy. For instance, estimates of their social and economic costs provide

evidence for setting the social cost of carbon emissions. Given the projections from the

natural sciences, it is striking that the discipline of economics has made little effort to

assess the economic impact of many hazards.

This thesis comprises four papers investigating the economic impacts of floods from

extreme rainfall in Central America and the Caribbean. Chapter One provides empiri-

cal evidence that a non-negligible part of hurricanes’ direct damages can be attributed

to extreme rainfall. Chapter Two then shifts the focus from large-scale hurricanes to

small-scale flash floods. It develops a statistical method to detect potential flash flood

events from satellite rainfall data. In Chapters Three and Four, I then use this method
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to study the economic impacts of flash floods consistently across Central America and

the Caribbean. Specifically, Chapter Three looks at the dynamics in night light activity

following a flood, whereas Chapter Four analyzes the flood’s impact on establishments.

In the first chapter of my thesis, co-authored with Eric Strobl and published in Natural

Hazards, we revisit the common notion of modeling the impacts of hurricanes solely via

their local wind speed. In recent years, some of the most destructive hurricanes, such

as Morakot in Taiwan 2009, Harvey in Texas 2017, and Idai in Mozambique 2019, are

characterized not by particularly strong wind but by a tremendous amount of rainfall.

Relying on a model and a damage function that ignores rainfall and subsequent flooding

is thus bound to yield biased results. Furthermore, there is a consensus that rainfall-

heavy hurricanes will likely become more common with global warming (Grossmann

and Morgan, 2011; Walsh et al., 2016; Knutson et al., 2019). A priori, it is not clear how to

best assess the rainfall flood risk and relate it to damages. For instance, adequate rainfall

measurements at a high spatial resolution during a hurricane are generally unavailable.

To this end, we link remote sensing precipitation data to regional damage data for five

hurricanes in Jamaica from 2001 to 2012. We find that the maximum rainfall intensity dur-

ing a hurricane in a region is a significant determinant of economic damages, explaining

much of the variation. Next, we use extreme value modeling of precipitation and com-

bine the return periods with an estimated damage function and satellite-derived night

light intensity to assess the local risk in monetary terms. This allows us to quantify the

monetary risk for different horizons. For instance, the damage risk for a 20-year rainfall

event in Jamaica is estimated to be at least 238 million USD, i.e., about 1.5% of Jamaica’s

yearly GDP.

In my second chapter, co-authored with Nekeisha Spencer and Eric Strobl, we set out to

study the rainfall conditions that trigger floods, particularly flash floods. These are a type

of highly localized flood that is directly caused by short but intense episodes of rainfall

(Borga et al., 2007). Compared to river floods that require catchment-type hydrological

modeling, they can occur almost anywhere given intense rainfall and are, as such, one of
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the most common natural hazards.1 The Caribbean is especially at risk from flash floods

since urbanization is often unregulated and soil degradation common such that excess

rainfall can not run off quickly (Gencer, 2013; Pinos and Quesada-Román, 2021).

We set out to assess rainfall characteristics of previous flash flood events to create a clas-

sification method above what threshold a rainfall event likely causes a flash flood. For

this, we gather information on all 93 confirmed flash floods in Jamaica from 2001 to 2018.

We link these to remote sensing precipitation data, with which we further construct the

location-specific yearly maximum rainfall events. By employing the copula method to

create intensity-duration-frequency (IDF) curves, we model the intensity and duration

of the annual maximum events separately and flexibly from their respective marginal

distribution. The estimated Normal copula has Weibull and generalized extreme value

(GEV) marginals for duration and intensity, respectively. The parametric IDF curve with

an associated return period of 2 1
6 years is then the optimal threshold for flash flood event

classification. The simple nature of connecting the copula method for IDF curves with

a classification for flash floods potentially opens up many applications in parametric in-

surance programs, regional risk mapping, and hazard warning systems.

I then investigate the local dynamic economic response after a flash flood in the third

chapter. The idea that a natural disaster influences economic performance and organiza-

tion not only on impact but over time has entertained several empirical studies that try to

estimate these. These include the study of tropical storms (Nordhaus, 2010; Strobl, 2012;

Hsiang and Jina, 2014), earthquakes (Barone and Mocetti, 2014; Fabian, Lessmann, and

Sofke, 2019), droughts (Barrios, Bertinelli, and Strobl, 2010; Hornbeck, 2012) and floods

(Loayza et al., 2012; Kocornik-Mina et al., 2020). The studies on floods focus on large-

scale disasters and reports in global databases that neglect localized flash flood events.

Conceptually, a natural hazard causes destruction upon impact that might depress lo-

cal economic activity, cause its re-location or spur innovation and growth in the future.

Given the high frequency of extreme rainfall events in many developing countries, they

1For instance, according to the Centre for Research on the Epidemiology of Disasters (CRED) Emergency
Events Database (EM-DAT), the number of affected people in 2022 by flash floods (0.9 M) is significantly
more than river floods (0.1 M) or forest fires (0.03 M).
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could be a primary mechanism for how climate and environmental degradation impacts

their economic development.

I employ the method from Chapter Two to construct a high-resolution physically based

indicator of flash flood occurrence for Central America and the Caribbean. With that, I

estimate the local economic response to an event via changes in local night light emis-

sions from satellite data. After accounting for tropical cyclone activity, flash floods have

a delayed, short-term negative effect on economic activity. In countries with a low to

medium human development index (HDI), the average effect can be up to −5.7%. Back-

of-the-envelope calculations suggest that, due to their high frequency, flash floods in

these countries cause GDP growth to fall by −0.84 percentage points. Countries with

higher development appear to be only marginally affected. I also find evidence for neg-

ative spatial spillovers from floods in neighboring locations.

In my fourth chapter, I shift my focus from the dynamic perspective to the economic

agents. With a limited capacity to adapt to climate change, it is important to study the

mechanisms through which climate change affects the economy to guide policymakers

(Mendelsohn, 2012). In the case of flash floods, such mechanisms likely include local

establishments as the main economic agents.

I again use the method from Chapter Two and link the indicator of flash flood occur-

rence to the Worldbank Enterprise Surveys for Central America and the Caribbean. They

uniquely provide a large number of consistent, geo-located surveys across the study re-

gion. After controlling for the location-specific extreme rainfall history, I find that a flash

flood significantly decreases sales and the number of employees but increases capital pro-

ductivity. The negative effects are driven by establishments for which financial market

access is an obstacle, whereas the increased capital productivity occurs in establishments

with sufficient financial market access. Flash floods similarly affect different industries,

with the notable exception of the construction sector. The construction sector is not neg-

atively affected in terms of output and employment. My results suggest that flash floods
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negatively impact firms and that their increase due to global warming will likely influ-

ence economic activity. Improving financial market access appears to be an effective

adaptation strategy to increase establishments’ resilience.
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2 Chapter 1. Tropical Storm Rainfall Damages

1.1 Introduction

Tropical cyclones (TCs) are among the most destructive natural disasters, estimated to

have caused over 800 USD billion in damages globally over the last 20 years.1 Damages

attributable to these storms are mainly due to three factors, namely extreme wind, storm

surge, and torrential rainfall (Bakkensen, Park, and Sarkar, 2018; Park, van de Lindt,

and Li, 2013; Lin et al., 2010). The literature modeling the economic impact has, how-

ever, mainly focused on damages as a result of wind and to a lesser extent storm surge

(Emanuel, 2005; Nordhaus, 2006; Hu et al., 2016; Baradaranshoraka et al., 2017; Masoomi

et al., 2019; Hatzikyriakou and Lin, 2018; Do, van de Lindt, and Cox, 2020), due to the

difficulties associated with large scale flood modeling as a result of extreme precipitation

(Murnane and Elsner, 2012; Zhai and Jiang, 2014). This is often justified on the grounds

that wind is strongly correlated with rainfall during a TC and thus that wind exposure

will capture damages due to rainfall as well. However, recent evidence suggests that

rainfall is not absolutely dependent on TC intensity, "...suggesting that stronger TCs do not

have systematically higher maximum rain rates than weaker storms." (Yu et al., 2017). It has

also been shown that the positive correlation between wind speed and rainfall may only

be true over the ocean and not on land (Jiang et al., 2008).

The failure to take account of extreme precipitation in damage estimation arguably ne-

glects an important driver of the economic costs due to TCs (Czajkowski, Simmons, and

Sutter, 2011; Rezapour and Baldock, 2014; Rappaport, 2014; Park et al., 2015; Bakkensen,

Park, and Sarkar, 2018). For instance, available data for the Caribbean suggest that rain-

fall is either the primary or secondary cause of damages in 75% of TC events.2 While

the influence of anthropogenic climate change on TC frequency, general intensity, and

affected areas is still a matter of debate, there is a general consensus that rainfall-heavy

TCs will likely become more frequent in the future (Emanuel, 2013; Knutson et al., 2019;

Van Oldenborgh et al., 2017; Villarini et al., 2014b; Grossmann and Morgan, 2011; Walsh

et al., 2016). Nevertheless, the link between extreme rainfall and economic damages

1Authors’ own calculation using EMDAT database.
2Authors’ own calculations using the EMDAT database on damages due to natural disasters.
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is not well understood yet (Villarini et al., 2014a; Rosenzweig et al., 2018; Rözer et al.,

2019). While non-hazard measures such as risk awareness, building type, and topogra-

phy are important aspects, the most influential determinants for whether a building is

damaged by flooding are local water depth and accumulated rainfall (Spekkers et al.,

2013; Van Ootegem et al., 2015, 2018; Rözer et al., 2019). At the same time, short-duration

and high-intensity rainfall have been shown to be a major factor for the occurrence of

landslides (Dou et al., 2019). Case studies have demonstrated that hazard scales that

include rainfall in addition to wind speed are able to better predict the cost of TCs (Reza-

pour and Baldock, 2014) and that wind-only damage functions systematically underesti-

mate damages by rainfall-heavy typhoons in the Philippines (Eberenz, Lüthi, and Bresch,

2021).

The current study explicitly focuses on estimating the damage and risk associated with

extreme precipitation during TCs, using Jamaica as a case study. Jamaica is arguably a

particularly interesting setting for this purpose since the island is frequently afflicted by

TCs. Excess rainfall is a major cause of destruction by inducing flash floods and land-

slides (Laing, 2004). Moreover, due to the absence of large rivers and the volcanic origin

of many hill-slopes, such floods and landslides are common throughout most of the is-

land (Miller, Brewer, and Harris, 2009). This allows the exploitation of spatial variation

in rainfall intensity during TCs for the estimation of a rainfall-based damage function.

Importantly, the Planning Institute of Jamaica (PIOJ) has compiled consistent and de-

tailed damage reports for most storms since the turn of the century. The lack of con-

sistently reported damages often introduces additional uncertainty (Bakkensen, Shi, and

Zurita, 2018). Here, reports for five major TCs over the period of 2001-2012 are used

to construct parish-level information on economic damages.3 Given that excess rain-

fall damages during TCs are often due to short, high-intensity events (Larsen and Si-

mon, 1993), These damage data are coupled with high resolution, high-frequency remote

sensing precipitation data from the Global Precipitation Measurement Mission (Huff-

man et al., 2015a; Hou et al., 2014). Remote sensing information like the Tropical Rainfall

3Parish is the main administrative regional breakdown of Jamaica.
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Measuring Mission (TRMM) has been used extensively for the monitoring of TCs (Lon-

fat, Marks Jr, and Chen, 2004; Chen, Knaff, and Marks Jr, 2006; Lau, Zhou, and Wu,

2008; Hendricks et al., 2010; Jiang, Liu, and Zipser, 2011; Villarini et al., 2011; Hence and

Houze Jr, 2011; Matyas and Silva, 2013).

Using our data, we estimate a precipitation-dependent damage function via regression

analysis while controlling for the maximum wind speed during the storm. We then em-

ploy the precipitation data to generate return level maps using an extreme value model in

the spirit of Demirdjian, Zhou, and Huffman (2018). Such a statistical approach has been

shown to model extreme rainfall risk well in several case studies (Sugahara, Da Rocha,

and Silveira, 2009; Beguería et al., 2011; Tramblay et al., 2013). In conjunction with the es-

timated damage function and a proxy of the economic activity distribution derived from

remote sensing night light intensity, information on the severity of a rainfall event oc-

curring with a certain probability yields risk maps of economic damages due to extreme

rainfall in Jamaica. The outlined method does not rely on large-scale hydrological models

and should easily extend to other regions where gauge-based precipitation data is scarce.

The remainder of the paper is organized as follows: Section 1.2 presents the study region

and describes the data. Section 1.3 details the methodology. Section 1.4 presents results,

while section 1.5 discusses the findings. Finally, Section 1.6 concludes.

1.2 Study Region & Data

1.2.1 Study Region

Jamaica is an island country situated in the Caribbean and is the third-largest island of

the Greater Antilles after Cuba and Hispaniola. With a population of 2.9 M (World Bank

Group, 2020), Jamaica is one of the larger states in the region and is ranked as a high-

development country by the UN human development index (Conceição, 2019). Jamaica

consists of 14 parishes, which is the highest regional administrative unit for the island.

The country’s economy is mixed but increasingly based on tourism and finance while the

export of agricultural commodities is declining (Johnston and Montecino, 2012). Jamaica



1.2. Study Region & Data 5

has two major cities, the capital Kingston in the southeast and Montego Bay in the north-

west, known for its tourism. The islands’ geography is dominated by its central high

plains and mountains. The Blue Mountains in the east, famous for their coffee planta-

tions, constitute Jamaica’s highest point at 2.256 m. Jamaica is highly exposed to natural

disasters such as TCs, earthquakes, and droughts (Carby, 2018). Between 1988 and 2012,

11 named storms made landfall in Jamaica and caused severe destruction (The World

Bank Group, 2018). The climate in Jamaica is tropical with little seasonality in tempera-

ture. However, due to the northeast trade winds, the period from November to March is

dry, and the rainy season lasts from April to October. The highest rainfall on the island

occurs in the east, the northeastern coast averaging more than 400 mm a year. Near the

peak of the Blue Mountains, the average is more than 625 mm a year (Nkemdirim, 1979).

A summary of the data subsequently presented is given in Table 1.1.

TABLE 1.1: Data Summary

Precipitation Damages Night Light Wind

unit mm/h M USD - km/h
spatial 0.1◦ × 0.1◦ by parish 30′′ × 30′′ 0.1◦ × 0.1◦

temporal 1/2-hourly by storm monthly hourly
source GPM PIOJ DMSP/OLS HURDAT
maximum 120 63.31 63 268.54
minimum 0 0.20 0 5.7
mean 0.04 15.84 9.87 59.3
st. dev. 0.72 13.65 10.69 51.24

Notes: Summary Statistics of data. The night light data does not have
a specific measurement unit but is the average of the visible band
digital values ranging from 0 to 63.

1.2.2 Damages

The Planning Institute of Jamaica (PIOJ) has produced consistent socio-economic dam-

age reports after damaging tropical storms since Hurricane Michelle in October 2001. In

this regard, the PIOJ follows the United Nations Economic Commission for Latin Amer-

ica and the Caribbean (UNECLAC) Damage and Loss Assessment (DaLA) methodology
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(Bradshaw, 2003). Each report contains a precise description of the event, preliminary

rainfall reports, a description of social trauma, emergency actions, and an assessment of

economic damages. The assessment of economic damages considers damages in terms

of three ’sectors’, namely, agriculture (crop and livestock), public infrastructure (roads,

schools, and others), and housing. Since not all reports provide this information at the

parish level, the analysis in this study is restricted to events for which there is such a

regional breakdown, i.e., five storms: Hurricane Michelle 2001, Hurricane Dean 2007,

Hurricane Gustav 2008, Tropical Storm Nicole 2010 and Hurricane Sandy 2012. Addi-

tionally, even when there is regional information, in some reports not all three of the main

sectors are necessarily covered sub-nationally. Table 1.2 shows which sectoral damages

have been reported by the parish. When not all three sectors are covered sub-nationally,

the damage measure was calculated as the proportion of damages with data at the parish

level and scaled to total reported damages (including countrywide aggregates). For in-

stance, during Hurricane Sandy in 2012, 25% ($3.7 M) of the damage to agriculture oc-

curred in the parish of Portland, and 30% (5,190) of all damaged houses were located

there. Thus, it was assumed that Portland accounted for 27.5% or 29.4 M USD of the

estimated total damage of 106.6 M USD across all three sectors. One should note that in

most reports the parish of Kingston is counted together with the parish of St. Andrew

due to its small size and their proximity, leaving 13 distinct regions for the analysis. The

per parish damages originally reported in USD are inflation-adjusted with the Federal

Reserve Economic Data (FRED) consumer price index (U.S. Bureau of Labor Statistics,

2019, CPI), normalized to February 1st 2020 values. The data from the PIOJ reports for 13

Jamaican parishes and 5 TCs provide a total of 65 regional-level damage observations.

1.2.3 Precipitation

The source for precipitation data is version 06B of the Global Precipitation Measurement

(GPM) Integrated Multi-satellitE Retrievals (IMERG), a satellite-based estimate (Huff-

man et al., 2015b). The satellite precipitation algorithm combines various microwave and

infrared precipitation measurements to produce precipitation estimates, adjusted with
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TABLE 1.2: Damage Data Availability

Agricultural Road Network Housing Schools

Hurricane Michelle 2001 ✓ ✓

Hurricane Dean 2007 ✓ ✓ ✓ ✓

Storm Gustav 2008 ✓ ✓ ✓

Storm Nicole 2010 ✓ ✓ ✓

Hurricane Sandy 2012 ✓ ✓

Notes: Overview of parish damage data availability for different tropical storms.

surface gauge data. The resulting product is a half-hourly data set with near-global cov-

erage at a 0.1◦ × 0.1◦ resolution for the sample period 01. June 2000 - 31. May 2019. The

data has been pre-processed according to the accompanying tech report (Huffman et al.,

2020). One should note that the GPM’s predecessor, the Tropical Rainfall Measuring Mis-

sion (Huffman et al., 2007, TRMM), has been regularly used in the context of extreme

value modeling in meteorology (Furrer and Katz, 2008; Demirdjian, Zhou, and Huffman,

2018) and hydrology (Collischonn, Collischonn, and Tucci, 2008; Li, Zhang, and Xu, 2012).

1.2.4 Storm Tracks

Information on the TCs in our analysis comes from the HURDAT Best Track Data (Land-

sea and Franklin, 2013). The data provides six hourly observations on all tropical cy-

clones in the North Atlantic Basin, including the position of the eye and the maximum

wind speed of the storm. Additional information on the spatial extent of the TCs is taken

from the Extended Best Track Dataset (Demuth, DeMaria, and Knaff, 2006).

1.2.5 Night Lights

The economic exposure to extreme precipitation during a TC is unlikely to be evenly dis-

tributed even within a parish. Ideally, this should be taken into account when estimating

a damage function using parish-level damages. Given the lack of localized economic data

from official statistical sources, night light intensity is often instead used as an alternative

proxy (Chen and Nordhaus, 2011; Elliott, Strobl, and Sun, 2015). To this end, gridded
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night light activity data from the Defense Meteorological Satellite Program (DMSP) Op-

erational Linescan System (OLS) is used. The DMSP-OLS is available monthly at a high

resolution of 30′′ × 30′′ (approx. 1 km × 1 km). Since the night light data is at a higher

resolution than the GPM and damage data, the former is employed to aggregate the lat-

ter.4

1.3 Methodology

1.3.1 Framework

The risk of natural disasters consists of a combination of multiple factors (Peduzzi et al.,

2012): the hazard itself (frequency and intensity), exposure (economic value, number of

people), and vulnerability (the degree of loss given a hazard). Few attempts have been

made to incorporate extreme rainfall into the TC damage function. Li, Fang, and Duan

(2019) define a precipitation intensity index analog to the commonly used wind speed

based power dissipation index. However, they do not derive or validate this functional

form. Bakkensen, Park, and Sarkar (2018) utilizes the natural logarithm of maximum TC

lifetime-rainfall of any weather station in a province, analog to their use of the natural

logarithm of maximum wind speed anywhere in the province. While both approaches

highlight the importance of rainfall as a potential source of TC damages, they mimic their

functional form of max. wind speed. Our approach is to first construct parish-level wind

and rainfall measures by TC, taking local exposure into account via the use of night light

intensity measures. These measures are then combined with the parish-level damage

reports to estimate a precipitation-specific damage function. The coefficient estimates,

and an extreme value analysis of precipitation are then combined to create spatial risk

maps for Jamaica.

4For instance, the parish-level damage data requires parish-level rainfall data. The GPM precipitation
measurements do not naturally match the parish borders. Thus, the DMSP-OLS night light acts as an inter-
mediary in aggregating the GPM to the parish data.
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1.3.2 Rainfall Damage Function

Windfield Model

Following Strobl (2011) in calculating the local wind exposure during a storm, the Boose,

Serrano, and Foster (2004) version of the well-known Holland (1980) wind field model is

utilized. The model estimates the location-specific wind speed by taking into account the

maximum sustained wind velocity anywhere in the storm, the forward path of the storm,

the transition speed of the storm, the radius of maximum winds, and the radial distance

to the storm’s eye. The model further adjusts for gust factor, surface friction, asymmetry

due to the forward motion of the storm, and the shape of the wind profile curve. The

source of storm data used is the HURDAT Best Track Data (Landsea and Franklin, 2013).

These 6-hourly track data are linearly interpolated to hourly observations. WINDcst, the

wind experienced at any point c, during storm s at time t is given by:

WINDcst = GD
[

Vmst − S (1− sin(Tcst))
Vhst

2

]
× (1.1)[(

Rmst

Rcst

)Bst

exp

{
1−

[
Rmst

Rcst

]Bst
}]1/2

where Vmst is the maximum sustained wind velocity anywhere in the storm, Tcst is the

clockwise angle between the forward path of the storm and a radial line from the storm

center to the c-th pixel of interest, Vhst is the forward velocity of the TC, Rmst is the radius

of maximum winds, and Rcst is the radial distance from the center of the storm to point

c. The remaining ingredients in Equation (1.1) consist of the gust factor G and the scaling

parameters D for surface friction, S for the asymmetry due to the forward motion of the

storm, and B, for the shape of the wind profile curve. Points c are set equal to the centroid

coordinates of the GPM rainfall data and the storm-wise maximum wind speed for point

c is given by MWINDcs. Appendix A.2 provides additional information on the model

parameters.



10 Chapter 1. Tropical Storm Rainfall Damages

Rainfall

Rainfall measures for the five storms are obtained for every GPM cell whose centroid is

within the storm’s reach at a certain observational time.5 This is judged by comparing the

radius of the outermost closed isobar provided by the Extended Best Track Dataset (De-

muth, DeMaria, and Knaff, 2006) with the distance to the storm’s eye. If the distance of a

GPM cell’s centroid to the storm’s eye is smaller than the radius of the outermost closed

isobar, that cell is currently affected by the storm. The Extended Best Track Dataset pro-

vides 6-hourly observations which we linearly interpolate to match the half-hourly GPM

precipitation measurements. Then, all rainfall observations RAINcst can be summarized

as the total rainfall SRAINcs or maximum rainfall during that storm, MRAINcs. These

two statistics are the extremes for describing the full distribution of RAINcst.

Parish Aggregation

The remote sensing information of rainfall and thus the calculated wind speed does not

match the parish borders.6 The monetary damages are, however, reported on the parish

level. An intuitive way to aggregate rain and wind is to weigh the cells by the share

of night light activity in that cell relative to total parish night lights. The grid of the

night light activity is approx. 100× finer compared to the rainfall and wind speed grid.

This allows one to down-weight cells that lie not entirely within a parish if weighted

only by the within parish night light activity. It further controls for the value at risk of

areas with more night light activity compared to areas that are unlit at night, e.g., large

population centers. Cells are only added to the sum when their centroid lies within the

parish. Specifically, j denotes a 30′′ × 30′′ night light activity cell and wjs the associated

3-month mean night light intensity prior to storm s and c is a 0.1◦ × 0.1◦ rainfall or wind

speed cell.7 The night light weight is the fraction of the sum of night light activity in cell

c that lies in parish i, divided by the total night light activity in parish i,

5Even though many studies focus on landfalling TCs only, it has been shown that non-landfalling TCs
can be equally destructive (López-Marrero and Castro-Rivera, 2019).

6The data of rainfall and wind speed is on a 0.1◦ × 0.1◦ grid.
7Note that many night light cells j are in one rainfall (wind) cell c and many such cells c are in one parish

i.



1.3. Methodology 11

Wcsi =
∑j∈ c|j∈i wjs

∑j∈ i wjs
, Wcsi ∈ (0, 1). (1.2)

With these weights, the gridded data can be aggregated to the parish level:

SRAINis = ∑
c∈ i

(
SRAINcs ×Wcsi

)
, (1.3)

MRAINis = ∑
c∈ i

(
MRAINcs ×Wcsi

)
, (1.4)

MWINDis = ∑
c∈ i

(
MWINDcs ×Wcsi

)
, (1.5)

where SRAINis and MRAINis are the parish i, storm s total and maximum rainfall and

MWINDis the respective maximum wind measure.

Damage Function Regression

The functional form which is assumed for the damage function has to be imposed in

the regression. In this regard, it is well established that the destruction of TCs relates

roughly to the cube of the maximum wind speed (Emanuel, 2005). It is used as a control

for tropical storms’ power dissipation (Bertinelli and Strobl, 2013). A priori, it’s unclear

whether the maximum rainfall during a TC or the total rainfall adequately represents the

effect of heavy rainfall during a TC. It follows that both measures should be included.

Additionally, differences in parish economic endowment and thus potential damage is

accounted for by parish indicators. The linear regression is then given by

DAMAGESis = α + β1MRAINis + β2SRAINis (1.6)

+ β3MWIND3
is + γPARISHi + ε is.

where DAMAGESis are the reported monetary damages, MRAINis the maximum
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hourly rainfall in a parish, SRAINis the sum of total rainfall, MWIND3
is is the cube of

the maximum wind speed and PARISHi are indicator variables for parish i.8 Potentially,

other functional forms like polynomials or non-linear models might provide a better fit

to the data. Given the small sample size (n=65), more evolved models could overfit.9

Estimates obtained with an ordinary least squares regression of Equation 1.6 are likely to

generalize well and are interpretable.

We run several alternative specifications of Equation 1.6. In Equation 1.7 we use parish

population POPi measured by Jamaica’s 2011 census to control for local economic en-

dowment (Statistical Institute of Jamaica, 2011) instead of parish indicators. This has the

advantage of leaving more degrees of freedom for the model estimation. Robustness to

outliers drives our results by omitting extreme observations as determined by Cook’s

distance (Cook, 1977).10 The data without outliers are then used to estimate Equation 1.7.

DAMAGESis = α + β1MRAINis + β3MWIND3
is (1.7)

+ δPOPi + ε is.

1.3.3 Extreme Value Modelling

The objective of statistical extreme value analysis (EVA) is to quantify the tail behav-

ior of a process, for instance, extreme rainfall occurring at a certain location. Such an

EVA can be categorized into either a block maxima or a peaks-over-threshold approach.

Both allow us to fit a distribution to the extreme values of any sequence of i.i.d. random

variables but differ in how they make use of the available information. The half-hourly

8This corresponds to a parish fixed effects model. The inclusion of binary indicator variables results in
group (parish) fixed means. This allows for heterogeneity in the mean damage of a parish for different
storms.

9A model overfits if it captures residual variation (noise) that is not part of the data-generating process.
Such a model would not predict future observations reliably.

10We define observation as an outlier if it is 6×more influential than the average observation.
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time series Xi of rainfall in mm/h of GPM cell i with 333’072 observations from June

2000 to May 2019 are the subject of this EVA. Extreme rainfall in Jamaica often happens

during TCs which occur 10-17 times in the Atlantic basin (NOAA, 2019), not all affect-

ing Jamaica. Due to this irregular pattern, a peak-over-threshold approach appropriately

represents the physical phenomenon while making better use of the available informa-

tion. The peaks-over-threshold approach is based on the Pickands–Balkema–de Haan

theorem stating that threshold excesses y = (X − u|X > u) have a corresponding gener-

alized Pareto distribution (GPD) if the threshold u is sufficiently high (Coles et al., 2001,

p. 75):

GPD(y) =


1−

[
1 + ξ

( y
σ̃

)]− 1
ξ for ξ ̸= 0,

1− exp
(
− y

σ̃

)
for ξ = 0,

(1.8)

where σ̃ =σ + ξ(u− µ). (1.9)

The parameters of the GPD distribution are location µ, scale σ and shape ξ. Here, a

Poisson point-process (PPP) representation of threshold excesses is used, which allows

one to a) directly estimate the likelihood function in terms of location µ, scale σ and

shape ξ parameter, b) model non-stationarity in these parameters, and c) include the

Poisson distributed threshold exceedance rate together with the threshold excesses in the

inference. The EVA is carried out on the cell level by separately estimating GPD(yi) as

in Equation 1.8 where yi = (Xi − ui|Xi > ui) are the threshold excess of GPM cell i.

The vector Xi contains the GPM rainfall measurements of cell i and ui is the cell-specific

threshold derived in subsection 1.3.3. Estimation is carried out via the extRemes library

in R (Gilleland and Katz, 2016).

Threshold Selection

The selection of an appropriate threshold above which an observation is considered ex-

treme is a classical case of the bias-variance trade-off. Too low a threshold violates the
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underlying asymptotic basis and leads to bias, while too high a threshold discharges

valid observations resulting in an unnecessarily high variance. A plethora of competing

threshold selection techniques exist (Scarrott and MacDonald, 2012). The traditional pro-

cedure is graphical via mean residual life plot (Davison and Smith, 1990, MRL) which

is subjective and becomes quickly infeasible for a large number of time series. An alter-

native by Northrop, Attalides, and Jonathan (2017) proposes the use of Bayesian cross-

validation, comparing thresholds based on their predictive ability at extreme levels. This

method scales well while directly addressing the desired property for a threshold - if the

threshold is too low, threshold excesses will not follow a GPD and predictions will be

off. For this study the size of the posterior sample simulated at each threshold is set to

be 50’000 and 100 different thresholds are considered for the estimation of the quality of

predictive inference. The training thresholds correspond to the 0.95 - 0.9995 quantiles at

each GPM cell in increments of 0.0005.

Dependence

Rainfall tends to occur in temporal clusters, violating the independence assumption nec-

essary for extreme value modeling. To overcome the issue of temporal dependence, the

common method of declustering is implemented (Demirdjian, Zhou, and Huffman, 2018;

Gilleland and Katz, 2006). The time series are declustered cell-wise such that the result-

ing series are near-independent if the observations are sufficiently distant in time. Such

a series will have a dependence structure with no effect on the limit laws for extremes.

This “runs” declustering algorithm requires first some threshold u where the values be-

low are not considered extreme (Coles et al., 2001). Second, it starts a cluster at every

first entry v with v > u which runs until r consecutive observations are below u. Third,

only the cluster maxima are retained, and all other observations are rendered to zero. The

same declustering scheme as in Demirdjian, Zhou, and Huffman (2018) is adopted, with

a threshold equal to the 99-th percentile and r = 5.
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Non-Stationarity

The Pickands-Balkema-de Haan theorem requires the extreme values to be i.i.d. ran-

dom variables which implies stationarity. Rainfall observations constitute by their very

nature a non-stationary process. The PPP representation enables one to incorporate non-

stationarity in the GPD parameters. In this regard, a first-order sinusoidal function of the

day of the year in the location µ and scale parameters σ is allowed, analogous to Demird-

jian, Zhou, and Huffman (2018).11 Additionally, a binary variable STORMct for cell c

at time t is included to allow for a different distribution of rainfall observations that are

within the spatial extent of a TC:

µc(t) = µ0c + µ1cSTORMct + µ2c

[
sin

(
2πt

365.25

)]
+ µ3c

[
cos

(
2πt

365.25

)]
(1.10)

log [σc(t)] = σ0c + σ1cSTORMct + σ2c

[
sin

(
2πt

365.25

)]
+ σ3c

[
cos

(
2πt

365.25

)]
. (1.11)

Note that for calculating return levels of a non-stationary EV model, one has to assume

values for the non-stationary parameters. Here, this is done by fixing the day of the year

t and storm dummy STORMct. The day of the year t is assumed to be t = 0 and not to

influence multi-year return levels. Jamaica is on average for around 3% of the year within

the outermost closed isobar of a TC. Thus we assume that the frequency of TCs stays the

same and set the storm dummy STORMct parameter equal to the sample probability

Pr[STORMc = 1] ≈ 0.03 for the calculation of the return levels.

1.3.4 Monetary Return Levels

The estimated return levels can be used in the damage function to obtain the n year

extreme rainfall return level in monetary terms. The location of economic endowment

also plays a role in the monetary risk. Average night light activity Wci serves as the

weight for economic endowment, analogously to Equation 1.3, where it was employed

11We refrain from modeling non-stationarity in the shape parameter, as it is customary in the literature.
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to obtain rainfall by parish per storm.12 Projected parish i damage for a return period of

r is then given by

PDAMAGESir = β×∑
c∈i

(RAINcr ×Wci), (1.12)

where RAINcr is the estimated rainfall return level in cell c and β the coefficient of rainfall

from the damage function estimation. PDAMAGESir is the projected extreme rainfall

damage during TCs in parish i that is expected to occur every r years. These parish-level

estimates can then be aggregated to the country level and compared to Jamaica’s GDP.

1.4 Results

1.4.1 Damage Function

Table 1.3 shows the mean damages, rainfall, and wind speed per storm across parishes,

whereas appendix A.1 shows the damages by storm and parish. Hurricane Dean 2007 is

associated with the strongest winds, while Storm Nicole 2010 brought the heaviest rain-

fall to Jamaica. These two storms were also the most damaging of the five storms. Figure

1.1 displays the co-occurrence of rainfall, wind speed, night light activity and damages

of Hurricane Sandy. Both rainfall and wind are strongest in the northeast. The heaviest

rainfall has been observed slightly more inland compared to wind speed, which peaked

at the coast. While there is a strong relationship between the two, it is evident that these

are two distinct physical phenomena with distinct spatial distributions. The map depict-

ing night lights clearly outlines the capital city of Kingston as the largest convolution of

night lights. A comparison with the map of damages suggests that parishes that undergo

severe economic damages are also those with more night light activity, high winds, and

much rainfall.
12Wci here is the average night light activity for the period 2001 - 2013 as opposed to the storm-specific

night light activity Wcsi in Equation 1.2. Specifically, Wci is calculated as Wci =
∑j∈ c|j∈i wj

∑j∈ i wj
, Wci ∈ (0, 1) with

wj =
1
|T| ∑t∈T wj,t being the average night light activity in night light cell j.
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TABLE 1.3: Statistics per Storm

Damage Max. Rain Total Rain Max. Wind

Michelle 2001 5.17 7.75 23.32 61.96
Dean 2007 31.99 18.33 48.45 195.19
Gustav 2008 19.50 13.99 62.26 72.14
Nicole 2010 21.87 40.49 112.91 18.25
Sandy 2012 10.83 22.96 85.82 83.33

Notes: Per storm mean parish value for variables of interest.

Regression Results

Estimates of the regression specified in section 1.3.2 are displayed in Table 1.4. Baseline

regression (1) (given by Equation 1.6) shows max. wind speed to be a significant pre-

dictor of parish-level damages while both maximum and total rainfall are insignificant.

Since the latter two are highly collinear13 we consider them separately by estimating

Equation 1.6 without either MRAINis or SRAINis in columns (2) and (3), respectively.

Accordingly, total rainfall during a storm is an imprecise predictor of damages. Max-

imum rainfall in regression (3), in contrast, is a statistically significant (10%-level) de-

terminant of damages. Switching from parish fixed effects, which reduce the degrees of

freedom considerably, to alternatively including parish population as in Equation 1.7 for

regression (4) yields virtually the same result. Furthermore, results do not change signif-

icantly in regression (5), based on the same Equation 1.7 but without outliers as defined

by Cook’s Distance. The R2 and adjusted R2 is higher in models (1)-(3) compared to (4)

and (5).14 Since there are twelve parish indicators compared to one variable for popula-

tion, the R2 is expected to fall. The adjusted R2 takes this change in degrees of freedom

into account - one would thus expect that the adjusted R2 in (4) and (5) should not be

lower than in (1)-(3). This is not the case. Likely, the parish indicators contain more infor-

mation than just the population number, and thus a model that contains these indicators

13The linear correlation coefficient is 0.9, and Spearman’s rank correlation is 0.89. Note that the other
variables are nearly independent. Pearson’s correlation coefficient is -0.07 between max. wind speed and
max. rainfall, 0.05 between max. wind speed and population and 0.11 between max. rainfall and population.
Thus, we do not expect to have issues with collinearity besides the one already mentioned.

14The R2 is the proportion of variation in the dependent variable that is explained by the independent
variables. The adjusted R2 further takes into account the reduction in degrees of freedom.



18 Chapter 1. Tropical Storm Rainfall Damages

FIGURE 1.1: Hurricane Sandy
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(C) Night Light

17.6°N

17.8°N

18.0°N

18.2°N

18.4°N

18.6°N

78.5°W 78.0°W 77.5°W 77.0°W 76.5°W 76.0°W
Longitude

La
tit

ud
e

0

20

40

60
radiance

(D) Damages
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Notes: Cell-wise maximum hourly rainfall and maximum wind speed during Hurricane Sandy
2012, average monthly night light intensity 2000-2013 normalized to 0-63, and parish level dam-
ages of Hurricane Sandy 2012.

will have a higher R2. From a model selection perspective, the Bayesian Information

Criterion (BIC) favors models (4) and (5).15

1.4.2 Extreme Value Modelling

Threshold & Parameter Estimates

The average threshold chosen by the Bayesian cross-validation is 3.24 mm/h. However,

the selected thresholds are spatially heterogeneous as depicted in Figure 1.2. This high-

lights the extent to which meteorological conditions vary across the island. Two examples

of the model fitting are given in Figure 1.3. Panel a) shows the diagnostic plot for the cell

that covers the capital city of Kingston close to the Blue Mountains while panel b) shows

the diagnostic plot for the cell with the lowest 40-year return level (which is a candidate

15Note that a smaller BIC means a smaller information loss relative to the true (data generating) model.
Thus, one typically selects the model with the smallest BIC.
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TABLE 1.4: Regression Results

Dependent Variable: Damages in M USD
(1) (2) (3) (4) (5)

MRAINis 0.13 (0.48) 0.24∗ (0.15) 0.22∗ (0.12) 0.23∗∗ (0.12)
SRAINis 0.05 (0.20) 0.09 (0.07)
MWIND3

is/103 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00)
POPi 0.03∗∗∗ (0.01) 0.03∗∗∗ (0.01)
Constant 9.15 (6.87) 8.54 (5.90) 10.03 (6.82) 1.32 (3.95) 1.45 (3.97)
Observations 65 65 65 65 63
R2 0.57 0.57 0.57 0.39 0.41
PARISHi ✓ ✓ ✓

Outlier ✓

Notes: Standard errors in parentheses clustered by storm. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

for potential threshold-misspecification). The plots show estimated measures of predic-

tive performance, normalized to sum to 1, against the training threshold. In panel a), the

highest threshold weight and thus the selected threshold is at 0.56 mm/h while panel b)

peaks at 0.49 mm/h.16 We see that both plots give the most mass of threshold weight to

values in the range of 0.5− 3 mm/h. As such, the specific choice of threshold appears

not to have a large impact on the results as long as the threshold is within a certain range.

FIGURE 1.2: Threshold Map
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Notes: Map of the selected thresholds by Bayesian cross-validation detailed in section 1.3.3 by
rainfall cell.

16The x-axis is scaled on the quantiles, thus the relative distance between the two plots is hard to compare.
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FIGURE 1.3: Threshold Selection Diagnostic
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Notes: Example diagnostic plots of estimated measures of predictive performance. (a) shows the
threshold selection for the cell-centered at (18.05,-76.75) which is a cell that covers the capital of
Kingston close to the Blue Mountains. (b) shows the threshold selection for the cell-centered at
(17.95,-77.25) which exhibits the lowest 40-year return level. For details about the procedure to
produce the plots, see Equations (7) and (14) in Northrop, Attalides, and Jonathan (2017).

Parameter estimates from the extreme value GPD models are shown as boxplots in Figure

1.4. The estimated GPDs are shifted to the right (large µ), smoothly decreasing (σ ≫ 0),

are not degenerate17 and have a mean (ξ ≤ 1). Estimates of the non-stationary parameters

can be found in Appendix A.3.

Return Levels

Return levels are summarized in the maps in Figure 1.5. The spatial pattern over different

return periods stays the same with an increase in the average level as we extrapolate to

less frequent events. The highest return levels can be found in the northeastern parish of

Portland, around the city of Port Antonio.

17If ξ ≪ 0 then the GPDs support is 0 ≤ x ≤ −1/ξ and is, in the case of extreme rainfall, degenerate.
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FIGURE 1.4: GPD Parameter Boxplot
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Notes: Boxplot of the location µ, scale σ and ξ parameter under the non-stationarity assumption as
discussed in section 1.3.3.

We use the coefficient of 0.22 from the fourth column damage function regression in Table

1.4 as the damage function parameter to calculate predicted monetary damages in Figure

1.6. These can be summed up to the country level: projected damages are for 5, 10, 20,

and 40-year return periods 138.3 M USD (0.9% of Jamaica’s 2019 GDP), 183.1 M USD

(1.1%), 238.0 M USD (1.5%) and 306.5 M USD (1.9%), respectively.
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FIGURE 1.5: Return Level Map
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(C) 20 Year
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(D) 40 Year
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Notes: Maps of return levels drawn by disaggregating every cell into 64 sub-cells which are then
bilinearly interpolated.
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FIGURE 1.6: Projected Damages Map
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Notes: Maps of projected damages for different return periods calculated as in Equation 1.12.
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1.5 Discussion

This paper makes three contributions. It adds to the recent literature that acknowledges

the importance of rainfall in a TC damage function, especially with regard to climate

change interactions. Employing the recent, high-resolution GPM rainfall data for an

extreme value analysis in Jamaica identifies the spatial distribution of extreme rainfall.

Lastly, we propose a simple approach to combine the damage function with return levels

and transform them into monetary risk.

The estimated linear coefficient suggests that if maximum rainfall during a TC increases

by 1 mm/h in a parish, the inflicted damage increases by 0.22 M USD. Depending on the

TC, this can constitute a sizeable part of the damages. On average for these five storms,

ex-post projected max. rainfall damages are 25.5% of total damages.18 However, there

can be considerable differences, also depending on the wind exposure during the storm:

the average contribution of max. wind speed is 34% while residual damages are 40.5%.19

For example, during tropical storm Nicole in 2010, the average parish max. rainfall was

40.5 mm/h, which translates into 8.9 M USD, while average parish damages were 21.9

M USD. In contrast, when Hurricane Dean brought strong winds over the island of Ja-

maica in 2007, the average parish max. rainfall was only 18.3 mm/h resulting 4 M USD

damages (compared to the average 32 M USD per parish) while 67% (21.4 M USD) can be

attributed to max. wind speed. This supports the view expressed in Eberenz, Lüthi, and

Bresch (2021) that wind-only damage functions fail to predict the destruction of rainfall-

heavy TCs. When comparing the observed events to the risk estimates, the extreme value

analysis suggests that a rainfall-heavy event like Nicole in 2010 has a lower return period

than 10 years. If extrapolated to less frequent events with a 20 or 40-year return period,

the potential damages due to rainfall quickly dwarf those observed in any of the storms

examined.

It is insightful to compare the return level estimates to those found in the literature.

18That is calculated as the fraction of projected damages against total reported damages.
19Damages not explained in the model come from factors such as storm surge and residual variation in

the data.
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Demirdjian, Zhou, and Huffman (2018), who employ a PPP approach on a global scale

with the TRMM data, estimate 25-year return levels in the range of 150 - 180 mm/h for

southern Florida.20 Burgess et al. (2015) use long rainfall time series of two airports in

Jamaica and estimate the 30 min. 25-year return level to be 110 and 128 mm/h, respec-

tively. In comparison, if we consider the location of these two airports (Montego Bay and

Kingston) the 20-year return level estimated in this analysis is around 80 to 90 mm/h for

both.21 Unsurprisingly we find that the area north of the Blue Mountains is most suscep-

tible to extreme rainfall during a TC. This is likely because TCs often first make landfall

in the northeast of Jamaica. The orographic lift of the Blue Mountains in the northeastern

parishes increases the prevalence of heavy rainfall in that area further (Laing, 2004).

Our risk estimates could arguably be useful for policy. More precisely, from a damage

mitigation perspective, modeling the spatial distribution of risk is necessary for the plan-

ning and execution of ex-ante mitigation interventions (Holcombe and Anderson, 2010;

Anderson et al., 2011). For example, we find that the north-eastern parish of Portland

is most susceptible to extreme rainfall and should therefore be a priority area for pre-

ventive measures such as proper surface water management to decrease landslide risk.

Nevertheless, while our damage estimates serve to give an indication of the loss of assets

from extreme precipitation during a TC, one should note that they only constitute part

of the economic impact. More specifically, the direct damages are likely to result also

in indirect damages through disruption of economic activity (Hallegatte and Przyluski,

2010). Strobl (2012) for example estimates the macroeconomic reduction in output for

the average hurricane strike in the Central American and Caribbean region to be at least

0.83 percentage points, although this estimate was solely based on damages due to wind

exposure. The estimates here suggest that projected direct damages for a 5 and 40-year

return period event are in value 0.9% and 1.9% of Jamaica’s GDP. However, these figures

cannot a priori tell us how the damages will translate into changes in aggregate output as

this will depend on the indirect consequences, disaster relief, and whether the damaged

20Note that the TRMM data is 3-hourly compared to the half-hourly GPM.
21The cities are in more than one grid cell.
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assets are replaced, among others. For instance, Lenzen et al. (2019) show that TC Debby

2017 caused significant disruption through the supply chain to regions and industries in

Australia that were not themselves hit by the storm. These spillover effects could be an

avenue for future research.

There are a number of weaknesses inherent in our methodological approach that future

research could address. Firstly, the magnitude of the projected damages crucially de-

pends on the damage function estimate for extreme rainfall. While the coefficient of in-

terest in Table 1.4 does not change statistically significant across specifications (3) - (5),22

there are still a number of caveats to be made in this approach. First, both the dependent

variable (reported damages) and the independent variables are subject to measurement

error.23 Measurement error in the dependent variable is less problematic (if it is not sys-

tematic) since it "only" increases the unexplainable part of the regression and will simply

result in less precise estimates. Measurement error in the extreme rainfall, our indepen-

dent variable of interest, is more of a concern since a sufficient amount of such will induce

attenuation bias of the estimates towards zero (Frost and Thompson, 2000). A second

caveat is the focus on statistical modeling and the omission of a hydrological perspec-

tive. Extreme rainfall during TCs is itself not a hazard but the cause for hazards such as

floods and landslides (Yumul et al., 2012; Nolasco-Javier, Kumar, and Tengonciang, 2015;

Nolasco-Javier and Kumar, 2018). Hydrological models would be able to decipher this

relationship more precisely. The challenge of employing a hydrological model instead of

a statistical approach is, however, in terms of feasibility and generalizability. Complete

multi-hazard large-scale hydrological models are still an active research area (Lung et al.,

2013; Koks et al., 2019). With the additional complexity of a model that makes use of the

extent of river catchments, local soil type, and hill slopes, any result from the analysis

could only be in terms of these specific conditions. The precision gained by a realistic

22A Wald-test of the preferred model (4)’s coefficient (0.22) against the coefficient from model (3) cannot
reject their equality at any conventional level (p-value = 0.82).

23Damages are constructed and interpolated from incomplete reports, as discussed in section 1.2.2. Wind
and rainfall observations are constructed from a parametric model or remote sensing information, and both
are aggregated to a larger spatial scale. All these steps in the data construction are sources of measurement
error.
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model is thus paid with a narrower transferability of the results. The last restriction con-

cerns the valuation of non-monetary damages. More specifically, the monetary damages

figures used here do not account for other non-monetized impacts like the erosion and

deterioration of soil, which can be linked to extreme rainfall events (Rawlins et al., 1998)

as well as psychological and mental health impacts to the exposed population (Lindell

and Prater, 2003; Bourque et al., 2006).

1.6 Conclusion

While the overall effect of climate change on the frequency and severity of TCs is a matter

of debate and may be ocean basin specific, there is a general consensus that rainfall-heavy

TCs will likely become more common with global warming (Grossmann and Morgan,

2011; Walsh et al., 2016; Knutson et al., 2019). In considering what greater precipitation in

future TCs will mean in terms of economic impact, much of the current literature has fo-

cused on estimating the impact in terms of wind-induced damages. Even if one assumes

that wind is a sufficient proxy for TC damages, a wind-only damage function likely un-

derestimates future damage in climate change scenarios. The analysis presented in this

case study of Jamaica shows that extreme rainfall during TCs is also potentially an impor-

tant driver. Depending on the specification, a conservative estimate suggests that rainfall

during a TC causes direct damage of 1.5% of GDP for a 20-year event. Thus failing to

take into account extreme precipitation in risk assessments may not only underestimate

future damage but substantially bias current risk assessments.
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2.1 Introduction

Over the last twenty years, more people have been affected by floods than by any other

natural disaster.1 Among pluvial floods, flash floods have the highest average mortality

(Jonkman, 2005). The Caribbean is especially at risk from flash floods. The region, in par-

ticular, is prone to hydro-meteorological hazards, urbanization is often unregulated, and

soil degradation is common such that floods are frequently triggered (Gencer, 2013; Pinos

and Quesada-Román, 2021). For instance, heavy rain on March 5th 2022 in Northern His-

paniola caused severe flash floods, leading to 2 deaths and hundreds being displaced.2

Flash floods follow shortly after heavy rainfall and are highly localized phenomena that

occur in basins of no more than a few hundred square kilometers and have a response

time of a few hours (Borga et al., 2007). Steep slopes, impermeable surfaces, and satu-

rated soils are factors that can transform a heavy rainfall event into a flash flood hazard

(Norbiato et al., 2008). The high localization and multidimensionality involved in flash

floods make their study particularly involved.

It has long been a primary objective of weather service providers to create a warning

system that connects rainfall to floods and landslides (Keefer et al., 1987). Warning sys-

tem typically uses some lower bound or threshold above which a warning would be

issued (Caine, 1980). Empirical thresholds for when rainfall events become hazardous

connect the intensity (I) to the duration (D) and are used for the construction of so-

called intensity-duration-frequency (IDF) curves (Koutsoyiannis, Kozonis, and Manetas,

1998). Commonly, estimation of IDF curves requires assumptions on the marginal dis-

tribution of I and D or the two marginals were assumed to be independent.3 Using

copula functions for conditional sampling allows the flexible and separate definition of

marginals and dependence. Multiple studies employ the said method to estimate rainfall

IDF curves for landslides and heavy rainfall events (Singh and Zhang, 2007; Ariff et al.,

1Authors’ calculation using EMDAT database. Since 2000, 1.7 Billion people have been affected by floods,
followed by droughts (1.4 Billion), storms (0.8 Billion), and earthquakes (0.12 Billion).

2https://floodlist.com/ Accessed last on January 11th 2023.
3There are also some instances where a specific dependence has been assumed from theoretical consider-

ations, see Koutsoyiannis, Kozonis, and Manetas (1998)

https://floodlist.com/
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2012; Bezak, Šraj, and Mikoš, 2016; Li et al., 2019). These studies often define the yearly

maximum event of measurement stations by some decision rule and model the resulting

time series. This allows for a good statistical fit and a well-described dependence be-

tween I and D. However, since the data does not necessarily contain hazardous events,

little inference can be made about these.

This study aims to construct IDF curves with information from confirmed flash flood

events in Jamaica. This allows for inference with regard to the hazard by comparing the

odds ratio of flood occurrence given a frequency, where less frequent events are more

severe and vice versa. The calculation of the odds ratio requires a set of extreme but

non-hazardous events as well as a set of hazardous rainfall events. Following the litera-

ture, the local yearly maximum rainfall events are defined. Additionally, a complete and

confirmed list of Jamaican flash floods by the Office of Disaster and Preparedness Man-

agement (ODPEM) is utilized to define hazardous events. These observed flash flood

events are linked with 11 km × 11 km cells of remote sensing rainfall information. These

remotely sensed data have several advantages compared to station data, such as con-

sistency in sensors and resolution. While direct in-situ measurements are factual, they

depend on the location and continuous operation of stations. Currently, the number of

modern automatic weather stations in Jamaica is well below the remote sensing resolu-

tion, with the exception of the area around the capital Kingston.4 Subsequently, the IDF

curve threshold, which separates the confirmed hazard events from the rest via odds ra-

tio, is determined. This threshold can serve as a simple decision rule for the identification

of flash flood triggering rainfall events.

There are a number of reasons why the Caribbean and Jamaica in particular is an in-

teresting case study. Small island states in the Caribbean, such as Jamaica, have long

been identified as especially vulnerable to extreme meteorological events and associated

flooding (IPCC, 2012; Wilson et al., 2014). Moreover, extreme precipitation events show

an increased frequency since 1950 in the Caribbean region (Peterson et al., 2002). At the

same time, there is little information on the local rainfall risk. In this regard, it is common

4http://metservice.gov.jm/aws/ Accessed last on January 3rd 2023.

http://metservice.gov.jm/aws/
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practice to transfer IDF curves for some Caribbean island nations to others, despite their

different rainfall characteristics (Lumbroso et al., 2011). Burgess et al. (2015) therefore

developed IDF curves for Jamaica with long historical data. Linearly projecting the his-

torical parameter estimates to 2100, they find that the intensity of a 100-year return event

increases by 27% to 59% as a result of increasing variability due to climate change.

Quantifying extreme rainfall-induced hazards has important applications, such as for

risk maps, warning systems, or re-insurance schemes, particularly for the Caribbean. For

example, the Climate Risk Early Warning Systems (CREWS) aims to strengthen hydro-

meteorological and early warning services in the Caribbean, focusing on hurricanes and

other hydro-meteorological hazards. Its first assessment in 2015 identified the need for

increased forecasting of secondary hazards such as coastal flooding and flash floods. Cur-

rently, pilot projects to strengthen national multi-hazard early warning systems in the

Caribbean community countries are devised through CREWS. The Caribbean Risk Infor-

mation System (CRIS) platform, created by the Caribbean Disaster Emergency Manage-

ment Agency (CDEMA), aims to support informed decision-making by providing access

to information on hazards and does so via geospatial data for risk and hazard mapping,

disaster preparedness, and response operations. This input data relies on research in the

hazard, exposure, and vulnerability domain.5 Another example is the Caribbean Catas-

trophe Risk Insurance Facility (CCRIF), which since 2013 has provided insurance against

excess rainfall to member countries (Linkin, 2014). More specifically, its CCRIF Excess

Rainfall (XSR) product is a parametric insurance based on specific rainfall thresholds

that determine payouts.

The remainder of the paper is organized as follows: Section 2.2 presents the study region

and describes the data. Section 2.3 details the methodology of conditional copula mod-

eling and how the two samples are used to determine an IDF curve based flash flood

5Most commonly, risk is defined as the combination of the three components hazard, exposure, and
vulnerability. Hazard relates to the physical phenomenon, in this case, flash floods. Exposure could be in
terms of people, buildings, or economic assets at risk of the hazard. Vulnerability then links the hazard to
the exposure and translates it to risk. For instance, given a flash flood hazard, the vulnerability of urban or
agricultural settlements (exposure) is different, and as such, the risk is different as well.
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threshold. Section 2.4 then presents the results. Section 2.5 discusses the findings and

section 2.6 concludes.

2.2 Study Region & Data

2.2.1 Study Region

Jamaica is the third-largest Caribbean island by land area after Cuba and Hispaniola.

The island’s topography is characterized by interior mountain ranges descending to

coastal plains where the eastern Blue Mountains historically experience the most rain-

fall (Nkemdirim, 1979). Jamaica lies in the Atlantic Hurricane Belt and is especially at

risk of climate change (Monioudi et al., 2018). Tropical cyclones and the accompanying

heavy rainfall are frequent and cause severe destruction (Spencer and Polachek, 2015;

Collalti and Strobl, 2022). For instance, between June 2007 and August 2021, the CCRIF

made 54 payouts for a total of USD 245 million, of which USD 135 million are for tropical

cyclones, USD 60 million for excess rainfall and USD 49 million for earthquakes (mainly

the devastating 2021 Haiti earthquake). Thus, local susceptibility to floods has become

vital to planning and development in Jamaica (Nandi et al., 2016).

2.2.2 Flash Floods

The source of flash flood information is the Office of Disaster and Preparedness Man-

agement (ODPEM), whose responsibility includes monitoring extreme weather events in

Jamaica and implementing measures to mitigate their impact. From the ODPEM, shape-

files of all 48 known flood events are obtained from 2001 to 2018. Many of these events

correspond to a specific meteorological event, like a tropical storm that caused flood-

ing in more than one location in Jamaica. We treat each event location separately if it

falls uniquely in a remote-sensing rainfall cell. For example, during heavy rain on May

14th − 15th in 2017, several places around Cave Valley (parish of St. Ann) in central

Jamaica, as well as, to the south, around Morgan’s Pass in the parish of Clarendon, expe-

rienced severe flooding. These locations are approximately 20 km apart, lie on two sides
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of the north/south watershed, and are thus treated as two incidents in their respective

rainfall cell. Some flood events in the OPDEM shapefiles could not be verified by any

report and were therefore dropped, as were a few riverine floods that would require ex-

plicit hydrological modeling, which is beyond the scope of this study. Some events where

the exact day(s) are not included in the data are identified using local newspaper reports.

A total of 93 flash flood events were localized for Jamaica with approximate timing.

2.2.3 Precipitation

The source for precipitation data is Version 06B of the Global Precipitation Measure-

ment (GPM) Integrated Multi-satellitE Retrievals (IMERG, Huffman et al. (2015b)). The

satellite precipitation algorithm combines microwave and infrared precipitation mea-

surements to produce precipitation estimates, adjusted with surface gauge data. The

resulting product is a half-hourly data set with near-global coverage at a 0.1◦ × 0.1◦ res-

olution since June 2000. Compared to other remote sensing or reanalysis products, the

GPM-IMERG has a considerably higher spatial and temporal resolution than its competi-

tors. Also, the number of distinct cells and, thus, spatial resolution is considerably higher

than the number of measurement stations in Jamaica. One major drawback of the GPM-

IMERG, its short timeframe, does not apply to this study because all the OPDEM events

are fully captured in the observational period since June 2000. Note that the quality of

satellite rainfall data has leapfrogged in the last decade: An inter-comparison of rain-

gauge, radar, and GPM-IMERG for rainfall-runoff modeling by Gilewski and Nawalany

(2018) in a mountainous catchment in Poland identified that radar and GPM-IMERG

outperform rain-gauge data. Tang et al. (2020) provides a comprehensive overview of

different satellite precipitation and reanalysis products, reporting good performance for

GPM-IMERG and it is continuously improving in more recent versions.
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2.3 Methodology

2.3.1 Event Definition

The data on confirmed flash flood events provides location and start date information,

but no sub-daily timing of rainfall onset and its ending. We thus need to find and de-

fine rainfall events that start before the flood (potentially lasting longer than the reported

date). We resort to the common inter-event time definition (IETD) method to delimit the

events (Ariff et al., 2012; Bezak, Šraj, and Mikoš, 2016). The IETD refers to the minimum

duration without rain between consecutive rainfall events. An IETD of a few hours is

typically selected for floods, while for landslides the IETD is longer, i.e., up to several

days (Huff, 1967). For confirmed events, the event definition starts with a window of +/-

7 days around the date given by the OPDEM or newspapers. Within that window, the

event with the maximum cumulative rainfall is regarded as the flood-inducing rainfall

event. Figure 2.1 illustrates the procedure. The yearly maximum events are constructed

the same way, though for each cell each year is considered separately. Note that a min-

imum threshold of 0.1 mm/h for a given observation to start an event is imposed to

reduce the number of events.

2.3.2 Conditional Copula Modelling

Informally, copulas can be described as "functions that join or couple multivariate dis-

tribution functions to their one-dimensional marginal distribution functions" (Nelsen,

2007). More formally, given a 2-dimensional (joint) distribution function H with univari-

ate margins F1andF2, there exists, by the first part of Sklar’s Theorem, a 2-dimensional

copula C such that

H(x) = C
(

F1(x1), F2(x2)
)
, x ∈ R2. (2.1)

The copula C is uniquely defined on ∏2
j=j ranFj and there given by

C(u) = H
(

F←1 (u1), F←2 (u2)
)
, u ∈

d

∏
j=1

ran Fj, (2.2)
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FIGURE 2.1: Event Definition
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Notes: Illustration of the event definition in the case of a confirmed event with the reported date
from OPDEM or newspapers in red. In the time frame +/- 7 days around this date, three separate
events are defined given an IETD and a minimum threshold of 0.1 mm/h. Three events result,
where the second event is the maximum event measured by cumulative rainfall and is considered
the flood-inducing rainfall event.

where F← denotes the generalized inverse, which equals the regular inverse F−1 for con-

tinuous and strictly increasing distribution functions (dfs). By the definition of a cumu-

lative distribution function, ran Fj ∈ (0, 1) such that the copulas univariate margins are

standard uniform U(0, 1) (Hofert et al., 2018). Three attributes follow: the copula func-

tion (1) uniquely specifies the dependence for the whole distribution, (2) can be recovered

from data on joint and marginal distribution, and (3) imposes no constraint on the shape

of the dependence.

The conditional copula method has previously been used to estimate IDF curves (Singh

and Zhang, 2007; Ariff et al., 2012; Bezak, Šraj, and Mikoš, 2016). Let C be the 2-

dimensional copula and let U ∼ C, u1 ∈ (0, 1) and u2 ∈ [0, 1], then

C2|1(u2|u1) = P(Uj ≤ uj|U1 = u1). (2.3)

If one fixes for some value of u1 ∈ (0, 1), the conditional copula function C2|1(u2|u1) is a
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distribution function on [0, 1] and can be used for conditional sampling. The evaluation

of C2|1(u2|u1) however involves the evaluation of partial derivatives instead of densities

(Hofert, Mächler, and McNeil, 2012; Hofert et al., 2018).

Consider that CU,V(u, v) is the copula function of interest and let intensity I = i and

duration D = d have marginal distribution functions V = FI(i) and U = FD(d). For a

known value of U = u, CV|U=u gives realizations of marginal V. The corresponding value

of u can be obtained by the marginal distribution function. From u and v, the respective

i and d can be recovered easily since d = F−1
D (u) and i = F−1

I (v). The conditional copula

function can be written as

CV|U=v(v|U = u) =
∂

∂u
CU,V(u, v)

∣∣∣
U=u.

(2.4)

The conditional copula, which is a conditional bivariate distribution, relates to the return

period T as follows

CV|U=v(v|U = u) = 1− 1
T

. (2.5)

For a given value of u and a return period T, solving Equation 2.4 and 2.5 simultaneously

yields the corresponding v. Via the marginal distribution function, the respective values

of i and d are recovered and represent a point on the IDF curve for a return period T. For

every return period T, many values of u are chosen to get an approximately smooth IDF

curve. That process is repeated for other T to construct IDF curves which are increasing

in severity with T.

2.3.3 Two Sample Approach

Rainfall events of interest are those that lead to flash floods. However, a block maxima

approach, partitioning the data into yearly blocks, allows a direct relation with return

periods and is thus often chosen (Ariff et al., 2012). The proposed methodology uses

information from block maxima as well as confirmed flood events. There are m = 93

confirmed flood events and, at these locations, n = 1120 yearly cell-wise maxima. The
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yearly maximum events serve to estimate the copula function and the marginal distribu-

tions of intensity and duration for these extreme rainfall events. Conditional sampling

from the copula enables the construction of IDF curves with T year return periods. One

can then derive the IDF curve associated with a certain return period above which the

likelihood of flash flood occurrence is maximized. For every return period the IDF curve

is recovered and the ratio R of confirmed flash flood events m against the number of

yearly maximum rainfall events n that lies above that curve is calculated,

R =
∑m

i=1 I
(
di ≥ (d̃|U = ui)

)
∑n

j=1 I
(
dj ≥ (d̃|U = uj)

) , (2.6)

where (d̃|U = ui) is the estimated duration via conditional copula sampling and

marginal transformation d̃ = F−1
D (ũ). The IDF curve with a return period associated

with the highest ratio Rr:max is the one that separates the events from non-events best.

This constitutes a so-called critical layer (d, i) ∈ L2 : 1− H((d, i) = P(D > d, I > i) = t

where all combinations of i and d ∈ L2 have the same probability 1− H((d, i) = t (Sal-

vadori et al., 2016). The critical region, which corresponds to a flash flood classification,

is defined as L>
t = {(i, d) ∈ L2 : 1− H(i, d) < t} (De Michele et al., 2013). Subsequently,

the return period T> of an event in the critical region is defined by the inverse probability

of falling into the critical region (Zscheischler, Orth, and Seneviratne, 2017):

T> =
µ

P((D, I) ∈ L>
t )

, (2.7)

where µ denotes the average time unit, which is 1 year in the case of yearly maxima.

2.3.4 Candidate Copulas

The selection of appropriate copula is carried out in two steps. First, a set of candidate

copulas is defined. Second, the candidate copula is compared on the basis of fit, for both

the event and the yearly maxima data. The first restriction on candidate copulas is that

a conditional sampling algorithm exists. This is the case for the families of Archimedean

and elliptical copulas (Hofert et al., 2018). The literature on landslides and flash flood
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IDF curves has further established the negative relation between an event’s duration

and its intensity, which is the second restriction on candidates (Aleotti, 2004; Salvadori

and De Michele, 2004). Table 2.1 shows the copulas for which conditional sampling al-

gorithms exist and some of their properties. The two restrictions leave one with three

potential copula classes, Normal, Frank, and t copula. Note that these copulas are all

radially symmetric and exchangeable. Geometrically, radial symmetry is the symmetry

of the density with respect to the point 1/2 = (1/2, ..., 1/2). Exchangeability is the sym-

metry of the density with respect to the main diagonal. Given a negative dependence, a

copula that is not radial symmetric is one whose lower tail dependence is different from

its upper tail dependence, whereas a copula that is not exchangeable is one whose depen-

dence changes with the order of the marginals. The best candidate copula is selected on

the basis of the Cross-Validation Copula Criterion (CIC) by Grønneberg and Hjort (2014),

which is an Akaike Information Criterion (AIC)-like criterion on a Maximum-Pseudo-

Likelihood Estimate (MPLE) of semi-parametrically (i.e., with non-parametric estimated

margins) estimated copula. The methodology is implemented in the R package "Cop-

ula", with which all the subsequent copula modeling is carried out (Kojadinovic and Yan,

2010).

TABLE 2.1: Candidate Copula Families

Name Attainable Radial- Exchange- Negative
Dependence Symmetry ability Dependence

Gaussian (-1,1) ✓ ✓ ✓

tv (-1,1) ✓ ✓ ✓

AMH [0, 1/3) ✓

C [0, 1) ✓

F (-1, 1) ✓ ✓ ✓

GH [0, 1) ✓ ✓

J [0, 1) ✓ ✓

Notes: Overview of candidate copula families with respect to their at-
tributes.
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2.3.5 Selection of Marginals

The IDF curve construction via conditional copula in section 2.3.2 requires the estima-

tion of marginals for duration D and intensity I. Candidate marginal distributions are

the Weibull, Gamma, Log-normal, and Generalized-Extreme-Value (GEV) distributions,

and are all estimated via maximum-likelihood and assessed by AIC. The empirical prob-

ability density function is also inspected graphically against the marginal distributions’

estimated probability density to assert its fit.

2.4 Results

2.4.1 Event Definition

The event definition in time requires an appropriate IETD. Values of IETD between 4 h

and 24 h are considered. Graphical assessment of mean event intensity and duration re-

vealed that an IETD of 12 hours best delimits the rainfall events. See Appendix section

B.1 for a discussion and graphical examples for various IETD. Figure 2.2 shows the lo-

cations of confirmed flash flood events in Jamaica and the average intensity, duration,

and total rainfall of the yearly maximum events. Average intensity is highest inland and

to the West, but fairly evenly distributed. Average total rainfall is highest at the eastern

shore north of the Blue Mountains, with a second agglomeration of high total rainfall

cells in the West. Duration exhibits a similar pattern to total rainfall, with the longest

events in the West. Since the confirmed flash flood events are evenly distributed across

the island, variation in local conditions is expected to be captured well. Section B.2 in the

Appendix further provides summary statistics for both yearly maximum and confirmed

flash flood events.

2.4.2 Copula Selection

The shape of dependence can be assessed via pseudo-observations. Pseudo-observations

are obtained by first estimating the empirical distribution functions Fn(n, j) for j ∈ (I, D),
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FIGURE 2.2: Maps of Events and Rainfall Characteristics
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Notes: (a) Location of the confirmed flash flood events, (b) cell-wise mean intensity of locations
maximum events, (c) cell-wise mean total rainfall of locations maximum events, and (d) cell-wise
mean duration of locations maximum events.

Fn,j =
1

n + 1

n

∑
i=1

1(Xi,j < x), x ∈ R, (2.8)

where 1(·) is the indicator function. These estimated margins can then be used to form

the sample:

Ui,n =
(

Fn,D(Xi,D), Fn,I(Xi,I)
)
, i ∈ {1, ..., n}. (2.9)

Figure 2.3 displays the pseudo-observations and demonstrates a strong negative depen-

dence in both samples. This limits the set of potential copulas to the Normal, Frank, and

t copula. Note that these copulas are all radially symmetric and exchangeable.

Estimates of the copula information criterion (CIC) are shown in Table 2.2. Selecting the

Frank copula for the yearly maximum events leads to a higher CIC than the Normal or

t copula. For the confirmed events, selecting the Frank copula leads to a lower CIC than
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FIGURE 2.3: Pseudo-Observations
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Notes: (a) Pseudo-observation of the yearly maximum rainfall events (YME) and (b) of the con-
firmed flash flood events (FFE). Ties in the duration variable due to the measurement scale are
randomly split.

the Normal or t copula.

TABLE 2.2: Copula Cross-Validation Criterion

Normal Copula Frank Copula t Copula

Maximum Events 513.3 551.4 521.3
Confirmed Events 15.92 12.02 15.93

Notes: Cross-Validation Copula Criterion (CIC) by Grønneberg and Hjort
(2014) for both data samples. The t copula assumes 10 = v degrees of free-
dom.

Figure 2.4 displays pseudo-observations for both samples as well as a random sample

of pseudo-observation under Frank and Normal copula. The sample of confirmed flash

floods is too small to draw conclusive evidence regarding the optimal copula. There

is also no clear visual indication around the locus of points for the Frank copula over

the Normal copula or vice versa. However, the Normal copula exhibits tail dependence

similar to the data, while the Frank copula is tail quadrant independent (Joe, 2014).
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In summary, the Normal copula is better suited for the data and thus chosen for the

analysis. It is more appropriate for yearly maximum events, which are the data on which

the IDF curves are generated, as outlined in section 2.3.3 concerning the two sample

approach. Additionally, the Normal copula is suitable for the confirmed events, as the

CIC and graphical evidence shows.

FIGURE 2.4: Random Sample of Pseudo-Observations

(A) YME & Frank
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(B) YME & Normal
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(C) YME & Pseudos
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(D) FFE & Frank
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(E) FFE & Normal
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(F) FFE & Pseudos
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Notes: (a) random sample (n = 1120) of pseudo-observation of the yearly maximum rainfall events
(YME) under the assumption of Frank copula, (b) under the assumption of Normal copula, and
(c) the true pseudo-observation. (d) Random sample (n = 93) of pseudo-observation of the con-
firmed flash flood events (FFE) under the assumption of Frank copula, (e) under the assumption
of Normal copula, and (f) the true pseudo-observation.

2.4.3 Estimation of Marginals

Table 2.3 reports the Akaike Information Criterion for both samples, where the para-

metric distributions are fitted via MLE to the marginals. For both samples’ intensity,

the generalized extreme-value (GEV) distribution results in the lowest information loss.
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Similarly, for the duration, the Weibull distribution yields in both instances the lowest

AIC.

TABLE 2.3: Akaike Information Criterion

Yearly Maximum Events
Weibull Gamma Log-Normal GEV

Intensity 7374.2 7327.5 7059.3 7029.1
Duration 7053.8 7061.3 7181.4 7196.5

Flash Flood Events
Weibull Gamma Log-Normal GEV

Intensity 493.7 487.8 447.5 428.8
Duration 632.7 634.6 650.2 648.3

Notes: Akaike Information Criterion (AIC) for both samples. A
parametric distribution was fitted via MLE to the marginals, in-
tensity and duration.

Figure 2.5 compares the estimated distributions and the empirical probability density. In

all cases the two match well. The confirmed flood events are on average slightly longer

(11.4 hours versus 9 hours) and less intense (5.2 mm/h versus 9.9 mm/h) compared to the

yearly maximum events. It is notable that the flood events are, due to the smaller sample

size, not as smoothly distributed. Both samples yield similar distributions and agree

on the shape. Subsequent conditional copula modeling focuses on the more precisely

estimated distributions from the large sample of yearly maximum events.

2.4.4 Conditional Copula IDF Curves

IDF curves corresponding to return periods between 2 and 40 years are shown in Fig-

ure 2.6. The curves are all convex, such that shorter events have a disproportionately

higher intensity. Visually, the choice of marginals has little impact on the IDF curves.

Higher return periods shift the IDF curve outwards to higher intensities for all durations.

Interestingly, convexity decreases with higher return periods.
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FIGURE 2.5: Marginal Probability Estimates
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(C) FFE Intensity
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Notes: Comparison of estimated probability density function for (a) intensity of yearly maximum
events (YME), (b) duration of yearly maximum events, (c) intensity of flash flood events and d)
duration of flash flood events (FFE).

2.4.5 Best IDF Curve

IDF curves generated with the Normal copula, a generalized extreme-value distribution

for intensity and a Weibull distribution for duration reliably quantify the joint severity

of an event by linking a return period to it. The next step is to find the IDF curve above

which the probability of a flood event is maximized. The highest odds ratio (0.66) is
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FIGURE 2.6: IDF Curves

(A) IDF with YME Marginals
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(C) IDF with FFE Marginals
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(D) log(IDF) with FFE Marginals
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Notes: Intensity-Duration curves for frequencies corresponding to a return period of 2, 5, 10, 20
and 40 years. (a) shows these IDF curves for the Normal copula and marginals estimated from the
yearly maximum events (YME), in logs in (b), and (c) shows the Normal copula from YME and
marginals from flash flood events (FFE), in logs in (d).

reached with a return period of 2 years and 2 months. Rainfall events that potentially

trigger flash floods are thus expected to be at least as severe as a 2.17-year return period

event.6

6This threshold is naturally higher than the simple empirical analog of the 93 confirmed events in Jamaica
during the 18-year period because the geographical resolution is higher: looking at smaller scale areas, each
of these areas’ flood probability has to be lower than that of the whole island.
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2.5 Discussion

It is insightful to compare the IDF curves from this study with those that have been oth-

erwise obtained for Jamaica. Burgess et al. (2015) provides the most recent IDF curves

for Jamaica, using long-time series data from two stations in Jamaica, extending existing

annual maximum records back to 1895. With a return period of 5 years and a duration

of 12 h, they estimate intensities of around 7.2 - 11.4 mm/h, depending on the configura-

tion. For a duration of 2 h and again a return period of 5 years, intensities are between 32

- 33 mm/h. For a return period of 5 years, the results from the current study suggest an

intensity of 7.14 mm/h for 10 h and 22.8 mm/h for 3 h. The corresponding IDF curves are

thus in a similar range but are more strongly convex than those in Burgess et al. (2015).

This might be caused by the choice of the Normal copula, which is well suited to depict

convex dependence. It might also be caused by the type of data input in that Burgess

et al. (2015) uses data from stations in the two largest cities in Jamaica, namely Kingston

and Montego Bay, while the remote sensing data employed in the current study covers

the whole island. Arguably doing so can be advantageous for an average representation

of the island.

The quantification of extreme rainfall hazards through the IDF curve classification has

direct applications for policymakers. One may first consider the case of the CCRIF XSR

parametric insurance against excess rainfall that is based on specific rainfall thresholds

for payouts. The most recent version, XSR 2.5, utilizes separate exposure, vulnerability,

and hazard modules for each member. For the Caribbean the module is triggered by rain-

fall events that exceed some country-specific average intensity threshold for a period of

12 h (short events) or 48 h (long events). These country-specific thresholds are optimized

to increase the likelihood of detecting severe events while not capturing false positives.

The results from the current study aims at a similar threshold identification as the XSR

but differs in the methodology. However, feasibly the flash flood identification from con-

ditional copula modeling could be coupled with a module of exposure and a specific

vulnerability functional. The IDF curve can also provide thresholds for shorter than 12 h
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events. For instance, a 6 h long rainfall event with an average intensity above 8.4 mm/h

is potentially flash flood inducing. Such an integrated model based on the IDF curves

would be an alternative verification to the CCRIF XSR and reduce model uncertainty.

The methodology proposed here could also be employed for hazard warning services.

The Climate Risk Early Warning Systems (CREWS) Caribbean project aims at strength-

ening such services. One of the three project components is the institutional strengthen-

ing and capacity building of hydro-meteorological services and early warning systems.

The simple decision rule within the intensity duration space derived in the current study

could be adapted for such purposes. More precisely, given a local weather forecast for the

next day and corresponding uncertainty, the risk of a potential flash flood event can be

deduced. After the initial parameterization, a direct implementation into the forecasting

routine comes at virtually no cost. Again, even if there exist other systems, introducing

another model based on a different methodology can greatly reduce model uncertainty.

It must be pointed out that the proposed methodology suffers from two main shortcom-

ings. The focus on rainfall events as measured at a certain location ignores general mete-

orological conditions as well as conditions on the ground. Additional information such

as antecedent rainfall and soil moisture, soil type, or slope gradients can be employed

to get a more precise decision rule. Likely, these factors play a crucial role in the actual

development of a hazard given a specific rainfall event. The current methodology with

a bivariate copula at its core is not directly suited for additional variables. While trivari-

ate and higher dimensional copulas do exist, they are much less understood. Trivariate

copulas also impose some limits on the attainable negative dependence. Furthermore,

adding another variable to the copula requires a disproportionately larger sample, where

the sample density decreases exponentially with the number of dimensions. One should

note that several of these shortcomings such as the sample density apply to other method-

ologies as well. Another potentially more fruitful route might be to consider separate

copula functions for different classes of topography or meteorological conditions instead

of a unified model that explicitly accounts for these interdependencies.
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The procedure also omits the role of tropical cyclones (TCs). It has long been recognized

that in the Caribbean many instances of extreme rainfall and consequential flooding are

due to TCs (Arenas, 1983; Laing, 2004). Ideally, a classification scheme would take into

account synoptic scale weather events. If the proposed classification scheme for flash

flood incidents will be used to estimate the effect of extreme rainfall on the economy

or for insurance schemes, evidence is necessary to distinguish it from TCs. While the

current study did verify via newspaper articles that the flash flood incidents are largely

non-TC events, additional care is necessary for applications. For instance, Collalti and

Strobl (2022) studies the economic impacts of flooding during tropical storms in Jamaica

and finds that only a minor number of heavy rainfall events occur during tropical storms

of hurricane strength compared to the number of flash flood incidents discussed in this

study.

2.6 Conclusion

This study uses 93 confirmed flash flood events in Jamaica over the period 2001 to 2018

to estimate intensity-duration-frequency (IDF) curves via conditional copula sampling.

Rainfall information of flash flood events is taken from remote sensing and additional

data on location-specific yearly maximum rainfall events was constructed. This consid-

erably larger sample of statistically similar events allows for higher robustness in the

estimation. It further enables one to find an IDF curve threshold above which flash

flood events become likely. This threshold corresponds to a return period of 2 1
6 years.

A comparison with IDF curves for Jamaica in Burgess et al. (2015) yields similar results

in terms of absolute level, but these are less convex with regard to extremely intense or

long events. The simple nature of connecting the copula method for IDF curves with a

classification for flash floods potentially opens up many applications in parametric in-

surance programs and regional risk mapping, as well as hazard warning systems. The

current study abstracts from event-determining conditions other than local rainfall in-

tensity and duration. Future research should therefore aim at including other factors,
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such as soil type and terrain ruggedness in the conditional copula modeling, as well as

incorporate synoptic scale meteorological conditions.
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Chapter 3

The Economic Dynamics after a

Flood: Evidence from Satellite Data

“And, when you want something, all the universe conspires in helping you to achieve it.”

Paulo Coelho, The Alchemist

Acknowledgments: I would like to thank Martina Pons, Eric Strobl, Jeanne Tschopp, and the par-
ticipants of the EAERE 2022 (Rimini), the VI Econometric Models of Climate Change Conference 2022
(Toulouse), the Swiss Climate Summer School 2022 (Grindelwald), WECON 2023 (Kingston), as well as
seminar participants at the University of Bern, for their valuable comments. This research did not receive
any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.



52 Chapter 3. Dynamics in Night Lights due to Flash Floods

3.1 Introduction

Natural disasters can have a profound negative impact on economic assets. The idea that

they also influence economic performance and organization has entertained a number of

empirical studies to estimate these second-order impacts.1 For instance, Deryugina (2017)

finds that US hurricanes lead to a substantial increase in transfers to affected counties, sig-

nificantly exceeding direct disaster transfers. Another example is Hornbeck and Naidu

(2014) who document black out-migration and subsequent development of agricultural

technology in the aftermath of the Great Mississippi Flood of 1927. The common denom-

inator of the literature is the focus on large-scale, rare events. It is unclear whether the

results with regard to transfers, migration or economic output translate to natural haz-

ards that are characterized by a high frequency and local impacts. In particular, common

hazards that are associated with extreme weather might be absorbed by spatial equilib-

rium effects or temporal smoothing of investment choices. I examine the effect of such a

common hazard on economic activity using a novel, physically based indicator of flash

flood incidence.

According to the Emergency Events Database (EM-DAT),2 0.9 Million people were af-

fected by flash floods in 2022. This is the 5th most among all natural hazard subtypes

after droughts (107 Million), tropical cyclones (15 Million), earthquakes (3.6 Million), and

convective storms (1.6 Million) but before river floods (0.1 Million) and forest fires (0.03

Million). It has also been the 6th costliest natural hazard in total damage with 273 Million

USD. These costs are a lower bound since many small-scale events are not included in

the database, and even if they are, much of the damage is uninsured and not recorded

(Panwar and Sen, 2020). Further, total damages in EM-DAT are an accounting figure of

the direct destruction, not taking into account the indirect effects on livelihoods and im-

pediments to economic organization. With respect to climate change, it is important to

1The direct impact can be viewed as the direct destruction or the cost to rebuild. The indirect impact is
characterized by second-order effects, the re-organization of the economy. For instance, when an establish-
ment of a firm is destroyed due to a natural hazard, this causes disruption along the value chain. Similarly,
if the infrastructure is damaged, said infrastructure does not supply its public good until it is reconstructed.

2Centre for Research on the Epidemiology of Disasters (CRED), UCLouvain, Brussels, Belgium –
www.emdat.be
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understand how indirect effects work to prepare for an increase in natural hazards. The

Caribbean and Central America are especially at risk from flash floods by being one of

the world’s most rainfall- and thunderstorm-heavy regions. Further aggravating the risk,

urbanization is often unregulated, and soil degradation is common in many parts of the

region (Pinos and Quesada-Román, 2021).

While the direct physical damage from natural hazards is self-evident, the economic

consequences are not. For many countries, natural disasters are a primary reason for

their lower economic development and a major channel through which climate and en-

vironmental degradation impact the economy (Felbermayr and Gröschl, 2014). A grow-

ing literature has thus started to study the economic impacts of various kinds of nat-

ural disasters: tropical storms (Nordhaus, 2010; Strobl, 2012; Hsiang and Jina, 2014;

Deryugina, 2017), earthquakes (Barone and Mocetti, 2014; Fabian, Lessmann, and Sofke,

2019), droughts (Barrios, Bertinelli, and Strobl, 2010; Hornbeck, 2012) and urban floods

(Kocornik-Mina et al., 2020). The literature that aims at estimating the effect of ex-

treme rainfall and those estimating effects of flood events constitute two groups. Those

concerned with extreme rainfall use aggregated weather data, for instance, the region-

specific deviation in monthly rainfall, to estimate economic impacts of weather anoma-

lies (Dell, Jones, and Olken, 2012; Felbermayr et al., 2022; Kotz, Levermann, and Wenz,

2022). These studies suffer from the fact that a monthly measure cannot directly identify

short, extreme rainfall events that would cause flooding. The other group that is focused

on floods uses flood report data to overcome this issue (Loayza et al., 2012; Fomby, Ikeda,

and Loayza, 2013; Kocornik-Mina et al., 2020). The advantage of flood report data like

EM-DAT or the Dartmouth Flood Observatory (DFO) is that it identifies the natural haz-

ard impact. But it also comes at a cost: relying for instance on media reports to identify

and locate flood events introduces reporting, selection, and endogeneity biases. To give

an example, both insurance penetration and damages are highly correlated with a coun-

try’s development (Felbermayr et al., 2022). The EM-DAT is known to have increased

in coverage quality in recent years, which can be problematic given the potential for a
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spurious correlation.3 The DFO relies on satellite imagery on cloud-free days to quantify

the flooded area. Since floods often occur in combination with heavy rainfalls and thus

cloud coverage, some floods go by without being noticed, while large flood events are

covered. To study the economic impacts of flash floods, it is thus necessary to develop a

physically consistent index of occurrence that reliably identifies extreme events.

Despite the growing interest in the economics of natural disasters, the theoretical consid-

erations have focused on classical growth models with the event as a one-time shock to

the capital stock. However, it has been shown that these standard models cannot cap-

ture the effects of short-term shocks from natural hazards adequately to derive long-term

impacts (Cavallo et al., 2013). In that sense, the question at hand has to be answered em-

pirically for the various natural hazards. Each hazard is unique in the sense that some

destroy a larger share of capital, some damage a larger share of public infrastructure,

and others displace more people. It has also been recognized that with climate change

making natural hazards more common in many parts of the world, jointly considering

events based on their frequency and intensity is crucial when estimating the effects on

growth. For instance, in a Solow-like model that allows for non-equilibrium dynamics,

Hallegatte, Hourcade, and Dumas (2007) show that there is a sharp increase in GDP loss

if natural hazards intensity or frequency increase above a certain threshold. The capacity

of an economy to cope with a natural hazard, determining the threshold, is linked to its

development (Hallegatte and Dumas, 2009). For instance, the more developed economy

can cope better with severe shocks such as hurricanes as it has the necessary means for

quick reconstruction. A similar argument will be made regarding shocks that are defined

by their high frequency, such as flash floods.

To frame the analysis, there are four hypotheses regarding the total effects a natural dis-

aster might have on the economy: a return to the same output level after a decline, a

decline in output level without recovery, or an increase in the level of output either im-

mediately or after some time of initial decline. This is closely linked to the question of

3For instance, there is a positive relation between global warming and the number of reported EM-DAT
hazards that is in part due to the increased coverage quality.
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whether there is an impact on the level or the growth rate of output. The same question

has already been drawn without a conclusion focusing on high-impact natural disasters

(Skidmore and Toya, 2002; Crespo Cuaresma, Hlouskova, and Obersteiner, 2008; Klomp,

2016). A critical part of this exercise is considering localized impacts on a high tempo-

ral resolution to adequately depict the reaction to the shock. Small-scale, high-frequency

natural disasters are likely averaged out when considering country-by-year panel data.

Further, temporal as well as spatial spillovers become more informative with regard to

the mechanism through which the natural hazard has an indirect impact on the economy.

My results thus draw from the dynamic effects estimated with high-resolution satellite

data.

A critical part of the methodology is to detect extreme rainfall events that likely trigger

flash floods. I use the flash flood intensity-duration classification from Collalti, Spencer,

and Strobl (2023) as a physical measure for flood incidence. This classification is based on

intensity-duration-frequency (IDF) curves from conditional copula sampling and infor-

mation on 93 confirmed flash flood events in Jamaica from 2001 to 2018. Jamaica shares

a similar topography, soil composition, and climate with the whole region of Central

America and the Caribbean such that the classification is well-calibrated. I use rainfall

information from the Integrated Multi-satellitE Retrievals for GPM (IMERG), which em-

ploys the Global Precipitation Measurement (GPM) constellation satellite data. In the

period 2000 - 2021, I find that out of the 64 M cell-wise rainfall events in Central America

and the Caribbean, 2.3 M or approximately 1.7% can be classified as a flash flood.

In the empirical exercise, I estimate a flash flood’s effect on aggregate economic ac-

tivity by using satellite images of night lights at a monthly frequency from the VIIRS

Day/Night Band (DNB). Controlling for tropical storms and various types of fixed ef-

fects, I find that night lights decrease significantly by up to 5.7% in the following months

for low and medium-development countries. Afterward, there is a quick recovery within

the first year. A back-of-the-envelope calculation implies that there is a decrease in the
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GDP growth rate by −0.84 percentage points for low- and medium-development coun-

tries in the region attributable to flash floods. For high and very high-development coun-

tries, I do not find a pronounced reaction in night lights after a flood.

These results are important for a number of reasons. First, the findings contribute to the

literature on physically modeled natural disasters in economics (Nordhaus, 2010; Hsiang

and Jina, 2014; Eichenauer et al., 2020). Second, extreme rainfall events and the associated

pluvial floods are, after droughts, the extreme event most likely to increase in probability

and intensity due to climate change. For instance, the 6th IPCC Report states that "Pro-

jected increases in direct flood damages are higher by 1.4 to 2 times at 2°C and 2.5 to 3.9 times at

3°C compared to 1.5°C global warming without adaptation.".4 It is important for economists

to quantify how direct flood damages affect the economy indirectly. Knowledge regard-

ing the propagation of such a natural hazard shock through the economy is necessary to

adequately inform policymakers about climate change risks.

The remainder of the paper is organized as follows: Section 3.2 gives a background

of flood types and presents the conceptual framework. Section 3.3 describes the data

and provides summary statistics. In Section 3.4, the identification strategy is detailed,

whereas Section 3.5 provides results which are discussed in Section 3.6. Finally, Section

3.7 concludes.

3.2 Background

The study region of Central America and the Caribbean is characterized by its proximity

to the sea: no location is further away than 200 km from it (Encyclopedia Britannica,

2022). The climate is generally tropical, though tempered by elevation, latitude, and local

topography. Rainfall occurs in a dry and wet season pattern and is heaviest between

May and November. Topography is diverse: most countries have humid lowlands along

the coast, while there are pronounced hills and mountain ranges. Natural vegetation is

equally varied. Tropical forests occupy lowlands, while evergreen forests clothe hills and

4IPCC 6th Report, Summary for Policymakers.



3.2. Background 57

mountains. However, much of Central America and the Caribbean’s timberland has been

cleared for crop cultivation.

3.2.1 Typology of Floods

Let us consider the phenomenon of floods in detail and how the flood hazard depends on

several factors. Floods come in various forms. Fluvial floods occur when the water level

in a river or lake rises so much that it overflows and floods its surrounding area. Because

river systems are connected to each other and overflow upstream cause overflows further

downstream, these types of floods are analyzed on the catchment level. The severity of

a fluvial flood is determined by the duration and intensity of rainfall in the catchment

area and modulated water run-off. Coastal floods are due to the inland flow of seawater.

Commonly, they are caused by storm surge and high tide. Inundation is particularly

severe if these two factors coincide. The storm surge is created when a storm’s wind

builds up water on the windward side and pushes it in front of itself. The severity of

a coastal flood is determined by the storm’s wind speed and pressure as well as coastal

topography. Lastly, there are pluvial floods, the subject of this study. A pluvial flood is

caused by an extreme rainfall event, which can be further characterized into two types.

Surface water floods are caused when rain falls over a prolonged period of time such that

the drainage systems and general runoff are not able to deal with the amount of water,

resulting in a shallow, standing flood. flash floods on the other side are characterized by

shorter, more intense extreme rainfall events. Torrential rainfalls trigger these especially

dangerous floods due to their quick onset and ravageous, debris-sweeping flow. They

are an especially localized phenomenon that can occur almost everywhere and is hard to

forecast.

3.2.2 Conceptual Framework

It is of particular interest to measure the effect of a natural hazard over time. That

is, taking into account indirect losses - sometimes called higher-order effects - follow-

ing causative after the hazard’s destruction. Closely related to this is the question of
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whether a hazard affects the output level or the growth rate in a neoclassical growth

model (Klomp and Valckx, 2014). In the empirical literature studying the impacts of nat-

ural hazards, there are four hypotheses that describe the long-term evolution of output

following the hazard (see e.g., Hsiang and Jina (2014)). The creative destruction hypoth-

esis states that a disaster may temporarily stimulate economic growth since it acts as a

demand shock due to aid flows and that it stimulates innovation (Skidmore and Toya,

2002). The build-back-better hypothesis suggests that a disaster may, after an initial de-

cline in output, temporarily stimulate the economy to grow at a faster rate because lost

capital gets replaced by better vintage (Crespo Cuaresma, Hlouskova, and Obersteiner,

2008). The recovery to trend hypothesis argues that growth declines in the beginning due

to lost capital but then rebounds when, due to the higher marginal product of capital, the

capital stock accrues until the same trajectory is reached again. Finally, the no recovery

hypothesis states that the destruction of productive capital and durable goods reduces

output. There is no rebound here because the positive effects that can occur in the other

hypothesis are dominated by the direct loss of capital. For instance, destroyed capital to

be replaced is then missing for investments elsewhere such that the economy will always

lag behind.

3.2.3 Growth Theory

It is peculiar that neoclassical growth theory can be consistent with each of these four sce-

narios (Botzen, Deschenes, and Sanders, 2019). In its simplest form, a natural hazard is a

shock to the capital stock. A standard model with a Cobb-Douglas production function

with fixed savings and depreciation rate supports the recovery to trend hypothesis since

exogenous technology determines the production frontier. If one endogenizes technical

change by introducing vintage capital into the model, then one is in the build-back-better

case: vintage capital represents the best technology at the time and, with technology be-

coming better with time, a large update of capital due to a natural disaster will increase

productivity.5 However, if one uses an AK representation instead of vintage capital to

5See the discussion in Botzen, Deschenes, and Sanders (2019) for a thorough treatment and a list of refer-
ences.
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make technology endogenous, then the no recovery hypothesis is supported. In AK mod-

els, the production function is supplemented with a productivity parameter A, which is

linked to the level of accumulated capital K. When a natural disaster lowers the level of

capital, productivity and, thus, output decreases permanently. In essence, growth theory

cannot a priori say which model is appropriate for a specific natural hazard. Therefore,

we should focus our aim on empirical evidence.

3.2.4 Weather vs. Hazard

Flash flood events are a different kind of hazard from those commonly studied in eco-

nomics: they are frequent and highly localized phenomena instead of rare, disastrous

events on, at least, the regional level. There is a duality between extreme rainfall, the

weather event, and the flash flood, the hazard event. The difference in location-specific

climate as a part of characteristics captured by local geography can explain large differ-

ences in economic outcomes (Dell, Jones, and Olken, 2014). An extreme rainfall event,

like all weather events, is drawn from the climate distribution, albeit from its upper tail.

Arguably, flash floods sit right in the middle between weather variation and large-scale

natural hazards. One might therefore question whether the empirical evidence from the

literature focused on weather anomalies or the literature on hurricanes and earthquakes

can be translated to flash floods. I argue that the uniqueness of flash floods in terms of

their high frequency as well as their small spatial scale justifies an analysis of its own.

I find that of the 63 M rainfall events in the data, 98.3% are not hazardous, but there is

often at least one potential flood event per year per location. Even if the effect of a flood

is transitory and disappears after some time, the effect of flash floods as a phenomenon

is akin to permanent. With this, I suggest that economic impact should not be thought

only in terms of a single event but rather in terms of the phenomenon.

3.2.5 Spatial Scale

Flash floods are also defined by their localized impact. On one side, this directly re-

quires a higher spatial resolution in the analysis. Sub-national level 1 and even level 2
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government bodies (such as states and counties in the US) can be inadequate when con-

sidering flash floods. On the other side, there are implications of the localized direct

impact of flash floods for spatial spillovers. If certain mechanisms through which nat-

ural hazards indirectly affect the economy work on a larger scale than the hazard itself,

spatial spillovers allow us to touch on these. For instance, if a relatively small area is

affected by a flash flood and a part of the road network cannot be used such that firms

and households outside the hit area are indirectly affected, there will be a spillover effect

attributable to changes in transportation cost. As shown subsequently, both spatial and

temporal resolution is key in this exercise to adequately focus on the temporal dynamics

as well as spatial spillovers.

3.3 Data

Three categories of variables are employed for this study. The first is concerned with

hazards. This includes a satellite-derived rainfall measure and the subsequent creation

of a flash flood indicator as the variable of interest. Also, I create an index of hurricane

destructiveness. The second category is the economic variable, where I use night light

data to infer changes in economic activity. Third, auxiliary data on topography and land

use serve as sources for potential heterogeneity that I will explore.

3.3.1 Flash Floods

Flash floods are measured via a binary classification that indicates whether, in the course

of a month, an episode of heavy rainfall likely triggered some flash flood at a loca-

tion. The classification is from Collalti, Spencer, and Strobl (2023) who employ a hydro-

statistical methodology and exhaustive data on confirmed flash flood events in Jamaica to

estimate a decision rule for the optimal classification of flood incidence. Specifically, the

procedure starts by first defining appropriate rainfall events that relate to weather con-

ditions via an inter-event time definition, where 12 h without rainfall delimits a rainfall
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FIGURE 3.1: Map of Flash Flood Distribution
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Notes: Map of the average number of flash floods per year from June 2000 to October 2021 and
map of the flash flood incidents in June 2015.

event from another. By using remote sensing data from the Global Precipitation Mea-

surement (GPM) Integrated Multi-satellitE Retrievals (IMERG) on a 0.1◦ × 0.1◦ (approx.

11 km ×11 km at the equator) grid with half-hourly data, coverage is consistent for the

whole study region (Huffman et al., 2015b). Local extreme events are then used to esti-

mate the dependence between the intensity (mm/h) of such an event and its duration (h)

via copula functions. The common method of generating intensity-duration-frequency

(IDF) curves for some frequency corresponding to a return period is used to flexibly char-

acterize the dependence structure. One IDF curve assigns for every duration of an event

an intensity given a certain return period. This relationship is negative and concave. Fi-

nally, the IDF curve which best predicts the data on confirmed flash floods in Jamaica

serves to classify rainfall into potential flood events. As a decision rule, I require that a

rainfall event must have an intensity of at least 2 mm/h above the IDF curve to be classi-

fied as a flash flood in order to reduce the number of false positives. If an event is above

this threshold, then I treat it as a flood-inducing rainfall event.6

I employ this decision rule on the same satellite-based rainfall estimate to recover flood

events. The satellite precipitation algorithm combines various microwave and infrared

6Results do not change qualitatively for a threshold of 5 mm/h and can be found in section 3.5.3 of the
results.
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precipitation measurements to produce precipitation estimates, adjusted with surface

gauge data. The sample period is June 1st 2000 to June 30th 2021. For every month

with one rainfall event above the threshold, the corresponding GPM/IMERG grid cell

area is considered treated by a flash flood.7 In the study region, which is one of the most

rainfall-intense regions in the world, locations experience a flash flood 1.7 times each year

on average, according to the index. There is considerable spatial variation for the average

occurrence probability but also spatial clustering for a given month, as Figure 3.1 shows.

Table 3.1 provides summary statistics of all rainfall events.

TABLE 3.1: Flash Flood Summary Statistics

Statistic Mean St. Dev. Min Median Max

Flash Flood Rainfall Events (N = 1’056’508)

Intensity mm/h 6.61 3.31 3.93 5.50 113.18
Duration h 16.60 11.14 1.00 13.50 214.50
Year 2009.44 5.79 2000 2009 2021
Month 7.02 2.99 1 7 12
Longitude −80.15 8.28 −91.95 −81.55 −58.05
Latitude 16.07 8.07 7.05 14.25 31.95

Non Flash Flood Rainfall Events (N = 63’049’303)

Intensity mm/h 1.21 1.36 0.10 0.77 190.22
Duration h 6.65 10.84 0.50 3.50 3’875.00
Year 2010.49 6.12 2000 2011 2021
Month 6.83 3.05 1 7 12
Longitude −78.00 9.22 −91.95 −79.65 −58.05
Latitude 15.73 7.54 7.05 13.95 31.95

Notes: Characteristics of flash flood and non-flash flood rainfall events.

3.3.2 Night Lights

The source of night light data is NASA’s Black Marble product. Black Marble process-

ing of the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB)

removes cloud-contaminated pixels and corrects for atmospheric and other light effects
7Flash floods that start in one month and end in the next are only assigned to the month when the rainfall

event started.
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such as gas flares, is calibrated across time, and validated against ground measurements

(Román et al., 2018). The VIIRS DNB provides global daily measurements of nocturnal

visible and near-infrared light. The VIIRS DNB is said to be ultra-sensitive in low light

conditions making it suitable for monitoring remote areas as well as highly urbanized

locations.

I use version VNP46A3, which provides monthly composites generated from daily ob-

servations. Monthly composites remove much of the noise in daily observations and also

ensure continuous measurements even when there is cloud coverage for several days in

a row, which is not uncommon in the tropics. Black Marble has been available globally

since January 2012 on a 15 arc-second (approx. 500 m) linear latitude-by-longitude grid.

Figure 3.2 shows lights at night in January 2012, where radiance was top-coded at 800

W/(cm2 − sr) to shrink the color scale and make differences at lowly lit places visible as

well. For the analysis, all cells that are not on land are removed - both ocean and lakes.8

3.3.3 Tropical Storms

In analyzing the effect of floods which are due to extreme rainfall in the Caribbean and

Central America, it is necessary to separate the flood effect from the effect of tropical

storms’ wind destruction. I follow Strobl (2011) in calculating the local wind exposure

during a storm with the Boose, Serrano, and Foster (2004) version of the Holland (1980)

wind field model. The model estimates the location-specific wind speed by taking into

account the maximum sustained wind velocity anywhere in the storm, the forward path

of the storm, the transition speed of the storm, the radius of maximum winds, and the

radial distance to the storm’s eye. The model further adjusts for gust factor, surface fric-

tion, asymmetry due to the storm’s forward motion, and the shape of the wind profile

curve. The source of storm data used is the HURDAT Best Track Data (Landsea and

Franklin, 2013). These 6-hourly track data are linearly interpolated to hourly observa-

tions. WINDcst, the wind experienced at any point i, during storm j at time t is given

by:

8Due to ships, some cells do have night light activity even if not on land.
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FIGURE 3.2: Map of Night Lights
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where Vmst is the maximum sustained wind velocity anywhere in the storm, Tijt is the

clockwise angle between the forward path of the storm and a radial line from the storm

center to the i-th cell of interest, Vhjt is the forward velocity of the TC, Rmjt is the radius

of maximum winds, and Rijt is the radial distance from the center of the storm to point

i. The remaining ingredients in Equation (3.1) consist of the gust factor G and the scaling

parameters D for surface friction, S for the asymmetry due to the forward motion of the

storm, and B, for the shape of the wind profile curve. Appendix C.1 provides additional
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information on the model parameters.

The wind speed is then translated to an index of economic impact via the non-linear

damage function by Emanuel (2011):

wnit =
v3

ijt

1 + v3
ijt
× 100 (3.2)

with

vijt =
max(Vijt −Vthresh, 0)

Vhal f −Vthresh
(3.3)

where Vijt corresponds to the maximum wind speed of hurricane j in location i at time t.

Then, Vthresh = 92 km/h is the lower threshold below which no damages are occurring,

whereas Vhal f = 203 km/h is where 50% destruction is expected. Conveniently, a one-

unit increase can be interpreted as a 1% increase in damages. The maximum vijt in a

given month represents the tropical cyclone impact in subsequent analysis.

3.3.4 Topography

Data on topography are from Amatulli et al. (2018). They provide a suite of global topo-

graphic variables at a resolution of 1 km to 100 km, namely elevation and terrain rugged-

ness. The terrain ruggedness index (TRI) is defined as the mean of the absolute differ-

ences in elevation between a focal cell and its 8 surrounding cells. Elevation and TRI

were gathered on the highest resolution of 1 km × 1 km, and then the average for each

GPM/IMERG rainfall cell was calculated.

3.3.5 Land Cover

Data on the land cover are from the Copernicus Global Land Cover Layers - Collection 2

(Buchhorn et al., 2020). They provide global maps at a resolution of 100 m × 100 m for

23 land cover classes (discrete classification) or alternative 10 base classes for fractional

classification. Classification accuracy is 80% for the discrete case. The base classes include

built-up, permanent water, tree and cropland cover, which is sufficiently detailed for this
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TABLE 3.2: Summary Statistics

Flash Flood Cell ×Month Observations (N = 205’784)
Statistic Mean St. Dev. Min Median Max

Night Light 4.15 32.72 0.001 0.69 5’355.50
Wind Index 0.02 1.20 0.00 0.00 319.76
# Historical Floods 30.47 14.41 0 29 79
Longitude −78.89 8.41 −91.95 −77.65 −60.05
Latitude 12.77 4.90 7.05 10.75 26.75
Year 2015.82 2.80 2012 2016 2021
Month 7.29 2.82 1 7 12

Elevation m 247.52 350.47 −0.52 113.54 4’145.80
Terrain Ruggedness 14.28 16.28 0.00 6.37 98.53

Non Flash Flood Cell ×Month Observations (N = 1’356’244)
Statistic Mean St. Dev. Min Median Max

Night Light 7.08 65.92 0.001 0.66 7’010.11
Wind Index 0.01 0.78 0.00 0.00 327.47
# Historical Floods 21.54 13.18 0 20 79
Longitude −77.08 9.42 −91.95 −76.05 −60.05
Latitude 12.98 4.78 7.05 11.15 26.75
Year 2016.33 2.74 2012 2’016 2’021
Month 6.20 3.51 1 6 12

Elevation m 344.08 510.79 −0.52 132.98 4’196.78
Terrain Ruggedness 16.44 18.97 0.00 6.93 110.82

Notes: Summary statistics grouped by treatment status.

analysis. Consolidated maps are available for the years 2015 - 2018. The map from 2018 is

used for all the analysis as the most recent consolidate.9 I use the fractional classification

on the highest resolution before aggregating the fractions to the panel data cell level. That

way, the fractional interpretation conserves its meaning.

9Arguably, land cover and flash flood severity are simultaneously and dynamically influencing each
other, to some degree. Since there is no data available for the whole study period and definitely not on
a monthly scale, the land cover data is static compared to the rainfall or the night light data. Note that the
land cover data is only used for an exercise concerning heterogeneous effects for which the static picture of
2018 is likely a close enough approximation.
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3.3.6 Summary Statistics

Table 3.2 displays summary statistics. There are 13’702 cells with 114 monthly observa-

tions starting in January 2012 and ending in June 2021 for a panel of 1.56 Million obser-

vations.10 Out of these 1.56 Million observations, 205’784 or 15% are hit by a flash flood.

Observations that are hit emit less light at night on average (4.15 vs. 7.08 W/(cm2 − sr)),

have, on average, been hit more frequently in the period 2000 - 2010 (30.5 vs. 21.5 times),

have a lower average elevation (247.5 m vs. 344.08 m) and have a slightly less rugged ter-

rain (14.28 vs. 16.44 TRI). In summary, the two groups of observation are not equal; local

characteristics and seasonality likely affect whether a flash flood occurs. The subsequent

empirical analysis has to consider these differences.

3.4 Empirical Strategy

An estimation strategy for the effect of a flash flood on subsequent months’ light emis-

sions is developed. First, we need to consider the nature of the phenomenon studied, our

variable of interest, and its relation with the outcome. The variable of interest is a binary

indicator of whether, within a given month and a certain location, a rainfall episode was

so extreme that a flash flood had to be expected within the area. For identification, a

Difference-in-Difference (DiD) setup with a two-way fixed effects model (TWFE) is sug-

gested. The panel structure of the data readily allows for the estimation of such a model

with ordinary least squares (OLS). There are three assumptions that have to be fulfilled

for a causal interpretation of the effects: no anticipation effect, parallel trends, and lin-

ear additive effects. In the case of an extreme weather event, this is feasible. Weather,

especially extreme rainfall, is nigh impossible to forecast for horizons longer than two

weeks. There is seasonality in the likelihood of an extreme event, with seasons that are

heavy in rain and seasons that are dry. Further, not all places bear the same risk: some

areas that are close to mountains or in the path of persistent, high-moisture wind systems

10The rainfall data has been available since 2000. Thus, lags of flood events prior to 2012 have been
supplemented to the panel.
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are more likely than others to experience extreme rainfall. Even then, knowing the un-

derlying probability of extreme events in a location or during a specific time of the year

does not allow us to predict the occurrence of a single event with sufficient confidence in

weather forecasts. Reversing that argument means that, given location and season, there

are no further observable characteristics that would lead to selection bias. Thus, there is

a quasi-randomness in the occurrence of a flood that can be exploited to estimate a causal

effect when controlling for observed differences in flash flood risk. This can be done in a

fixed effects regression with both individual and time fixed effects:

log(ntlit) =
m

∑
j=0

β j fitj + γi + δt + ε it. (3.4)

where log(ntlit) is the natural logarithm of night light at cell i at time t, fitj are lagged flash

flood indicators up to a length of m months afterwards and ∑m
j=0 β j are the correspond-

ing constant coefficients. The γi are unobserved cell fixed effects, δt are the unobserved

time fixed effects, and ε it is the error term. Note that this and all subsequent regressions

are estimated with ordinary least squares (OLS). This specification removes location and

time-specific averages, reducing the remaining variation to estimate the coefficients of

interest and potentially allowing for a causal interpretation. Cell-specific γi control for

time-invariant effects that might be correlated with flood impact and economic activity.

These fixed effects remove variation in night light emission that is correlated with the

likelihood of a flash flood occurrence but is not causally linked to it. For instance, if a

region experiences frequent flood events but enjoys prosperous economic development

due to natural resources, then one should control for such region-specific effects. Simi-

larly, δt controls for time fixed effects that are location invariant and might be correlated

with flood destruction and economic activity. For instance, floods are more common

during the rainy season when fewer tourists arrive.

Likely, several episodes of extreme rainfall are attributable to tropical cyclones (TCs). In

order to separate the effect of TC wind damage from extreme rainfall, I include lags of
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the wind index derived in Section 3.3.3. Also, there might be a spatial spillover of flood

events across cells, for which I also include lags:

log(ntlit) =
m

∑
j=0

β j fitj +
m

∑
j=0

αjwnitj +
m

∑
j=0

νjn f litj + γi + δt + ε it. (3.5)

where αj gives us the effect of a 1% increase in economic damages due to TC winds j

periods ago and νj the local effect for a flood event in a neighboring cell.11

Let us turn our attention to the dependent variable. Monthly emissions at night are the

average of all daily measurements without cloud coverage. For approximately 6.3%

of observations, there is not a single cloud-free night. Therefore, I fill in missing night

light values as the average between the preceding and succeeding non-missing observa-

tions. This might be problematic because cloudy periods are correlated with high rainfall

episodes. In the data, the linear correlation between a flood occurrence and no night

light measurement for that cell is with 0.056 relatively modest but statistically significant

due to the large sample size. Even after this processing, the underlying night light data

remains noisy, especially for lower-level night light cells. I account for this in several

specifications by first calculating a three-monthly moving average of night light.12 Both

the filling of missing observations and the moving average likely induces some bias to-

ward zero for coefficient estimates of the flood impact on night lights. This is due to the

combination of a positive correlation between the occurrence of a flood and missing ob-

servations in night lights and the smoothing from filling missing values and the moving

average. Since the positive correlation is relatively modest, this bias should not be prob-

lematic and behave similarly to some attenuation bias in that the estimated coefficients

are shrunk toward zero.
11Neighbors are defined by queen-type, one field away. Each cell, therefore, has 8 neighboring cells that

are directly adjacent by moving one cell in either direction. Taking into account elevation by only considering
higher elevation neighbors has no impact on results (not reported).

12A similar strategy has been employed by Naguib et al. (2022) to estimate the dynamic impacts after a
Hurricane in India via night lights.
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In addition, there are two other issues. For one, it might be that some countries have

higher growth rates and structural changes in the likelihood of flood events during

the study period, for instance, caused by climatic variation. These potential common

country-specific trends in flash flood exposure and economic activity could bias the re-

sults in both directions. I thus include country-specific linear time trends. Second, it

might be that the rainy season and yearly cycles of economic activity (e.g., due to tourism)

are not aligned the same across all countries. Then, the time-fixed effect does not remove

all confounding variation. I thus include month of the year by province fixed effects. The

province is the level one administrative sub-unit for all countries but small island states,

where the province is taken to be equal to the country.13 This gives the following model

specification:

log(MA3(ntlit)) =
m

∑
j=0

β j fitj +
m

∑
j=0

αjwnitj +
m

∑
j=0

νjn f litj+ (3.6)

γi + δt + πctimet + ωpt(montht × provincei) + ε it.

with πc being the country c specific linear time trend and ωpt the month of the year by

province p fixed effect. The dependent variable log(MA3(ntlit)) is the natural logarithm

of the three-monthly moving average transformed night light.

So far, little attention has been given to the error term. Neighboring cells likely affect the

error term of the focal cell. With the current assumptions, such dependence is ruled out

and potentially biases the estimation. Also, given the panel structure of the data, there

is likely autocorrelation in the error term. To account for both, I use Driscoll and Kraay

(1998) standard errors. The treatment of missing values in night light and the moving

average specification suggest an autocorrelation length of three months.

13This yields a total of 282 provinces. Examples where the country equals the province include Saint Lucia
and Martinique.
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3.5 Results

Regression results estimated with ordinary least squares (OLS), restricted to a maximum

lag length m = 3 for conciseness, are displayed in Table 3.3. Results in column (1) are

from the simplest model in Equation 3.4. It suggests that there is a positive contempora-

neous effect of 4% in the month of the flash flood that then reverses to−3% three months

after. The same can be found in column (2) with the model from Equation 3.5, which

adds controls for tropical storm wind speed and neighboring cells’ flood incidents. An

increase of the tropical storm wind destruction index by one percentage point decreases

light emissions by 0.8% contemporaneously, an effect that weakens but persists over the

course of the following months. Floods in neighboring cells do not appear to have any

impact on the focal cell in this specification. When using the same specification but the

MA3 transformed series of night lights in column (3), the contemporaneous positive ef-

fect of a flash flood disappears. When further including the additional controls as in

Equation 3.6, there is a positive contemporaneous effect for flash floods that turns neg-

ative after some months. While not providing an estimate that should be taken literally

due to the arbitrary cut-off at m = 3, this comparison is still informative and a few points

can be noted. First, introducing both wind speed and neighboring cells flood does not

change the coefficients of the flood indicators. Second, transforming the dependent vari-

able first via moving average affects the result and should be considered further when in-

cluding a longer time horizon. Lastly, controlling for province-specific seasonality, the co-

efficients of flood incidents become less negative, indicating a correlation between flood

incidents with location-specific seasonality.14

3.5.1 Dynamics

Figure 3.3 shows dynamic effects for longer time horizons and added leads. The full

model in use is shown in Equation 3.6. Results are once with moving average smoothing

14The change in coefficients moving from column 3) to column 4) is mainly driven by the month ×
province interaction, not by the country-specific (time) slopes. Coefficients becoming less negative thus
indicates that there is a negative correlation between local seasonality in the probability of heavy rainfall
episodes and economic activity in the following months that is not due to a flood event.
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and once with the unaltered night lights. Leads show that there are no clear pre-trends

before an event, be it a flash flood or a tropical storm. The effect upon impact starkly

differs between the two hazards: for flash floods, we have a contemporaneous increase in

the level of night light emissions, while for a tropical storm, there is a contemporaneous

decrease. In the case of a tropical storm, this decrease in the level is then recovered in

subsequent months. For flash floods, the dynamics are different. After the initial increase

in emissions, the effect on the level becomes −1% to −2% three to six months after the

event. Then, there is a quick recovery, and no effect is discernible eight months after the

flash flood. The main difference in comparing MA3 with direct night light measures is

that the MA3 dynamics are smoother and shrunk towards zero, as expected. No sys-

tematic bias is discernible such that using the direct night light measures is preferred in

subsequent analysis for easier interpretation.

3.5.2 Spillovers

A flood in a neighboring location could have opposing effects on economic activity. For

one, economic activity might be displaced from the flood-affected area over to unaffected

areas in its vicinity. Then, coefficients νj in Equations 3.5 and 3.6 would be positive,

especially for the first months after an event. On the other side, a flood could impede

industry linkages in the affected area and close-by locations by, for instance, impassable

roads, resulting in negative νj. A third option is that there are no spillovers where all

effects are contained with the cells of size 11 km × 11 km. Figure 3.4 sheds some light

on this question. There is a contemporaneous positive effect similar to a flood in the

focal cell but of a smaller size. Then the effect becomes smaller until it becomes clearly

negative up to −1% nine months after the event. Interestingly, this negative effect of a

flood in a neighboring cell takes place later than in the case of a flood in the focal cell. This

raises the question of the spillovers’ nature. Arguably, the contemporaneous effect could

be due to a similar mechanism for both neighboring and focal cells. On the other side,

the following dynamics suggest some sort of hierarchy where negative impacts slowly

spread out from the focal.
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FIGURE 3.3: Dynamic Effects of Flash Floods an Tropical Storms
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Notes: Dynamic effects of flash floods and tropical storms on night lights in percentage points. The
black line plots the log-transformed coefficients with two-sided 90% confidence bands in blue. The
regression model is as in Equation 3.6 with log(ntlit) as the dependent variable in (a) and (c), and
log(MA3(ntlit)) in (b) and (d).

3.5.3 Heterogeneity

The effect a flash flood has likely depends on local characteristics. These can include the

history of previous floods, the share of built-up area, terrain ruggedness, elevation, or

agricultural activity. A steeper, more rugged topography might be associated with more

detrimental impacts in case of a flood. Previous exposure to floods could make house-

holds and firms more resilient or, conversely, scar their ability to recover from further

shocks. Table 3.4 displays results of regressions that include interactions of the binary

flood indicator with these local characteristics. Since we expect from the results so far

that the effect is largest around four months post-flood, I only use the indicator f l4 of a

flood four months ago for the regression with interactions in order to keep the number
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FIGURE 3.4: Dynamic Effects of Neighboring Flash Floods
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Notes: Dynamic effects of neighboring flash floods on night lights in percentage points. The
black line plots the log-transformed coefficients with two-sided 90% confidence bands in blue.
The regression model is as in Equation 3.6 with log(ntlit) as the dependent variable in (a) and
log(MA3(ntlit)) in (b).

of terms tractable for interpretation. The coefficient of f l4 here thus gives the cumulative

effect a flood has four months after the event while the interaction gives the change in

cumulative effect per one unit change in the variable for heterogeneity. The local charac-

teristics have been normalized to a mean of zero, which can be interpreted as a deviation

from the mean. This will not change the direct effect of f l4 mechanically. The coefficient

of f l4 is −2% in all but one specification. The number of floods between June 2000 and

2010 (# Hist. Floods) has no additional effect (model column 1). The same is true for

the terrain ruggedness index (TRI) and elevation above sea level (models columns 2 and

3). The higher the share of built-up area, the weaker the effect of a flood (model column

4). The effect is not only statistically significant: the estimated coefficient of 0.5% lowers

the flash flood effect per 1% of the built-up area, indicating that highly developed loca-

tions do not experience a reduction in night lights (the 75th percentile of the area built

is 0.74%).15 Arguably, the built-up area is a measure of human settlement and economic

activity. A higher development might be associated with higher quality infrastructure

(paved roads vs. dirt roads, adequate drainage systems, more resilient electric grid). An

alternative explanation is that emergency relief efforts for more built-up areas are better

15Data on land cover is from 2018. Thus, the cell fixed effects purge it from any direct impact, as it does so
for elevation and TRI, and we have only the interaction for interpretation.
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endowed by local decision-makers such that flash floods have less of a negative impact

there. In contrast, the percentage of area covered by agricultural crops does not influence

the impact of a flash flood (model column 5). The same holds for land coverage in forests,

grassland, or shrubs (results not reported).

Floods in neighboring cells do not directly affect the night light level four months after-

ward, but its interaction with a flash flood in the focal cell is positive and statistically

significant (model column 6).16 This implies that a flood does not harm economic activ-

ity if there are floods in neighboring areas. Conversely, floods in neighboring areas are

only having a negative impact if the focal area is not hit by a flood itself. There could

be two interpretations of this effect. First, if a larger geographical area is subject to a

hazard, there might be a more pronounced relief effort by a central state, explaining the

positive interaction effect. A second interpretation is motivated by the basic reasoning of

economic geography, namely that pull and push factors are involved in allocating eco-

nomic activity across space. If there is only a negative shock in the focal cell but none in

surrounding areas, an incentive exists for some activity to move to the unaffected area.

Conversely, if all areas are hit by the negative shock in a similar fashion, no adjustment

takes place.

Heterogeneity by Development

Besides heterogeneity concerning the focal cell, we can also consider heterogeneity with

respect to their country’s development. There is evidence that flood events mainly af-

fect low- and medium-developed countries (Loayza et al., 2012). The human develop-

ment index (HDI) is a summary measure of average achievement in key dimensions of

human development and classifies countries into low, medium, high, and very high de-

velopment.17 The HDI is calculated on the country level and available for virtually all

states worldwide. Some Caribbean islands are overseas territories of larger countries,

16Figure 3.4 suggests that a neighboring cell’s flood impacts the focal cell with some longer lag. However,
in this specification with interaction, I do not find any such evidence for lags of six or nine months either
(not reported).

17The HDI itself is often the subject of critique. For instance, it does not consider inequality directly. Still,
it is a measure that, compared to GDP, is more resourceful in comparing development.
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such as the USA (Virgin Islands, Puerto Rico), France (Guadeloupe, Martinique), or the

Netherlands (ABC Islands), for which the HDI predominantly represents mainland de-

velopment. Nevertheless, these Islands boast comparatively high development and are

expected to be similarly impacted to other very high-development states in the region,

such as the Bahamas or Panama. Regressing an interaction between the HDI category as

of 2021 and flash flood incidence onto log night light models potential heterogeneity in

effect by country development. Again, I use the indicator of a flood four months ago f l4

for interaction.
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TABLE 3.3: Regressions: m = 3

log(ntlit) log(MA3(ntlit))
(1) (2) (3) (4)

f l0 0.04∗∗∗ (0.02) 0.04∗∗∗ (0.01) 0.005 (0.01) 0.02∗∗∗ (0.005)
f l1 -0.002 (0.01) -0.002 (0.01) -0.02∗∗ (0.01) 0.004 (0.005)
f l2 -0.01 (0.01) -0.02 (0.01) -0.03∗∗∗ (0.01) -0.005 (0.004)
f l3 -0.03∗∗ (0.01) -0.04∗∗∗ (0.01) -0.04∗∗∗ (0.01) -0.01∗∗ (0.006)
wn0 -0.008∗∗∗ (0.002) -0.005∗∗∗ (0.002) -0.006∗∗∗ (0.002)
wn1 -0.006∗∗ (0.003) -0.004∗ (0.002) -0.006∗∗ (0.003)
wn2 -0.001 (0.002) -0.002∗∗∗ (0.0007) -0.004 (0.003)
wn3 -0.004∗∗∗ (0.0006) -0.003∗∗∗ (0.0006) -0.004 (0.002)
n f l0 0.001 (0.009) 0.007 (0.005) 0.01∗∗∗ (0.004)
n f l1 0.0004 (0.007) 0.006 (0.005) 0.006 (0.004)
n f l2 0.002 (0.006) 0.005 (0.005) 0.0006 (0.003)
n f l3 0.007 (0.007) 0.004 (0.005) -0.003 (0.003)
Observations 1,466,766 1,466,766 1,394,986 1,394,986
R2 0.82 0.82 0.87 0.89
Fixed Effects
Date ✓ ✓ ✓ ✓

Location ✓ ✓ ✓ ✓

Country ✓

Month × province ✓

Varying Slopes
Country ✓

Notes: Table of regression results for a maximum lag length of m = 3 showing coefficients
for flash floods, tropical storm wind speed and neighboring floods. The regression in column
(1) follows Equation 3.4, column (2) follows Equation 3.5, column (3) also follows Equation 3.5
but with a moving average dependent variable and column (4) follows Equation 3.6. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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TABLE 3.4: Regressions: Heterogeneity

log(ntlit)
(1) (2) (3) (4) (5) (6)

f l4 -0.01 (0.009) -0.02∗ (0.009) -0.02∗ (0.010) -0.02∗ (0.009) -0.02∗ (0.009) -0.02∗∗ (0.009)
f l4 × # Hist. Floods -0.0006 (0.0005)
f l4 × TRI -0.0007 (0.0004)
f l4 × Elevation −1.6× 10−5 (1.6× 10−5)
f l4 × Built % 0.005∗∗∗ (0.002)
f l4 × Agriculture % −3× 10−5 (0.0005)
n f l4 -0.008 (0.005)
f l4 ×n f l4 0.01∗∗ (0.005)
Observations 1,466,766 1,466,766 1,466,766 1,466,766 1,466,766 1,466,766
R2 0.84 0.84 0.84 0.84 0.84 0.84
Fixed Effects
Date ✓ ✓ ✓ ✓ ✓ ✓

Location ✓ ✓ ✓ ✓ ✓ ✓

Country ✓ ✓ ✓ ✓ ✓ ✓

Month × province ✓ ✓ ✓ ✓ ✓ ✓

Varying Slopes
Country ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results with only f l4 as the indicator for the interaction with various sources of potential effect hetero-
geneity. Variables for interaction are normalized such that the coefficient for f l4 gives the estimate when the interacted variable is
at its mean. Standard errors are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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TABLE 3.5: Regressions: HDI

log(ntlit)
(1) (2)

f l4 -0.02∗ (0.009)
f l4 × HDI = low -0.07∗ (0.04)
f l4 × HDI = medium -0.04∗∗ (0.02)
f l4 × HDI = high 0.01 (0.01)
f l4 × HDI = very high -0.01 (0.02)
f l4 × HDI = Territory -0.005 (0.04)
Observations 1,466,766 1,466,766
R2 0.84 0.84
Fixed Effects
Date ✓ ✓

Location ✓ ✓

Country ✓ ✓

Month × province ✓ ✓

Varying Slopes
Country ✓ ✓

Notes: Table of regression results with only f l4 as the
indicator for the interaction with the five levels of
HDI. Column (1) shows heterogenous effects from a
regression with the interaction terms and column (2)
the unconditional average effect from a regression
without interaction. Standard errors are in paren-
theses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.5 shows results that point towards the importance of economic development

in absorbing natural hazards. Results in column (1) suggest that cells that lie in low

(medium) developed countries emit 7% (4%) less light at night four months after a flood,

whereas cells in higher developed countries appear to not react locally to a flood. On

average, for the study region, the level of night light decreases by 2% six months after

a flash flood (column 2). This decrease of 2% of the level of night light emissions after

four months is where the effect is most pronounced. Albeit small, this effect can still be

economically significant given the high frequency of such heavy rainfall episodes. As-

sessing the dynamic response heterogeneity with respect to the countries’ development

while controlling for the dynamics due to tropical storms and spillovers would ask for a

fixed effects model with many interactions where the serial correlation of the indicators



80 Chapter 3. Dynamics in Night Lights due to Flash Floods

might become problematic. Instead, I use local projections introduced by Jordà (2005)

and recently employed by Naguib et al. (2022) to study dynamic changes in night light

due to tropical storms in India. Local projections are performed as a set of sequential re-

gressions, where the dependent variable is shifted m steps ahead instead of introducing

m lags of the flood indicator. An additional benefit of the local projection method is that

they directly yield impulse-response-functions with correctly specified confidence bands.

The specification I use is

∆ntlit+m =β1 fit + α1wnit + ν1n f lit+ (3.7)

γi + δt + πctimet + ωpt(montht × provincei) + ε it+m

where I run a series of m regressions with the coefficient β1 associated with regression m

gives the effect of a flash flood on ∆ntlit+m, the cumulative growth between t− 1 and t +

m. I also estimate a variation of 3.7 with an interaction f lit × HDIlow,med. which separates

the effect a flood has on countries with low and medium HDI from those with at least

high HDI:18

∆ntlit+m = β f lit × HDIlow,med. + α1wnit + ν1n f lit+ (3.8)

γi + δt + πctimet + ωpt(montht × provincei) + ε it+m.

Figure 3.5 shows the dynamic effect of a flash flood on night light from local projections.

As hinted by the results four months after a flood in Table 3.5, the aggregate effect is

driven by those cells in low- to medium-developed countries. In both cases, there is an

initial increase in night lights of 1% that quickly reverses and reaches a low of −2.6% on

18The only country with a low HDI is Haiti. Thus, I group it together with countries with a medium HDI:
Guatemala, El Salvador, Honduras, Nicaragua and Venezuela.
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FIGURE 3.5: Dynamic Effects of Flash Floods from Local Projections
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Notes: Dynamic effects of flash floods on night lights in percentage points. The black line plots
the growth rate m months after a flood with two-sided 90% confidence bands in blue. (a) plots
the average effects as in Equation 3.7 and (b) the effects for low and medium HDI countries as in
Equation 3.8.

average and −5.7% in low- and medium-development countries. Note that in compar-

ison to the dynamics in Figure 3.3 or 3.4, where the effect size can not be interpreted as

direct impulse-response-function,19 they can be interpreted that way with local projec-

tions. The IRFs from local projections confirm that there is indeed a 1) positive contem-

poraneous impact, 2) negative growth in the following months reaching its low four to

five months after the event, and 3) recovery in the months following. Not only that, but

the results from local projections suggest stronger and more pronounced reductions in

night light emissions due to a flash flood than the results from the model in 3.6 suggest.

Alternative Event Definition

The main analysis already provides considerable robustness to the results. In this section,

I provide further evidence that the event definition, when rainfall events are causing

floods, is robust. In the main analysis, I require that a rainfall event needs to have an

excess intensity of 2 mm/h above the threshold as determined in Collalti, Spencer, and

Strobl (2023). Out of the total 63 Million rainfall events, where most are minor showers,

19The issue with the FE model with many lags in a dynamic setting is that the flood indicators f l0, f l1,
etc. are serially correlated. To avoid issues with respect to growth, I chose to model night light in levels as
in Brei, Mohan, and Strobl (2019).
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FIGURE 3.6: Dynamic Effects of Flash Floods with Alternative Event Definition
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Notes: Dynamic effects of flash floods on night lights in percentage points with the definition of
5 mm/h above the classification threshold. The black line plots the growth rate m months after a
flood with two-sided 90% confidence bands in blue. (a) plots the average effects as in Equation 3.7
and (b) the effects for low and medium HDI countries as in Equation 3.8.

1.06 Million or 1.7% are above this threshold. When focusing on the time period where

night light data is available and aggregating these to the monthly level, around 15% of

cell-by-month observations are treated by a potential flood. One might be concerned with

the frequency of treatment, especially with regard to back-of-the-envelope calculations

that rely on the estimated effect and the frequency of the natural hazard. Thus, I use

a much more restrictive definition of 5 mm/h above the threshold calibrated with the

universe of flash flood events for Jamaica since 2000. Then, only 2.9% of cell-by-month

observations experience a rainfall event that likely triggers flash floods. The average

return period is almost three years. Results of the local projections as in Equation 3.7

and 3.8 are shown in Figure 3.6. Confidence bands are wider, and the dynamics are the

same as with the 2 mm/h classification. The effect size is, as expected, larger for low- and

medium-development countries; for instance, after six months, the estimate suggests a

reduction in night light activity of −7% instead of −5.7% in the main analysis. This

suggests that the excess threshold of 2 mm/h is appropriate and by choosing a threshold

of 5 mm/h, some hazardous events are ignored. Results are, therefore, driven by local

characteristics that differ by country and not the event definition.
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3.6 Discussion

The analysis has four key implications. First, episodes of extreme rainfall that likely trig-

ger flash flooding have a sizeable negative effect on economic activity as measured by

night light emissions. Second, the dynamics after the flood differs from a tropical storm.

In the case of a flood, there is a brief contemporaneous positive effect that becomes neg-

ative in months four and five after before recovering in month ten. A tropical storm, in

contrast, has a negative effect upon impact from where recovery is comparatively slower.

This result is indicative of the different mechanisms through which either of the haz-

ards influences economic activity. The third key implication is with regard to spatial

spillovers. There is a spatial spillover from floods in neighboring areas onto the local

economy but to a smaller degree. Also, there is a longer lag between event and effect

than if the area had been hit directly. If several neighboring areas are hit simultaneously,

then there is a positive spillover, reducing the negative effect of being hit. The fourth key

implication is that the estimated negative effect of a flash flood is driven by locations in

low- and medium-developed countries.

A natural next point is to assess how detrimental floods are in economic terms. Taking

the estimates from the local projections, the total effect20 in the year after an event is a

−0.9% reduction in night lights for the study region and −2.2% for low and medium

developed countries. In recent years, more attention has been given to the question of

translating changes in night light emissions into economic variables such as GDP.21 In

their seminal paper, Henderson, Storeygard, and Weil (2012) lay foundations on the use

of night light data to augment income growth measures. They find that the elasticity

between the growth of lights and GDP growth is around 0.3. For low- and middle-income

countries, there is an average of 1.27 flash floods in a cell per year, and assuming that

20Here, total effect relates conceptually to the integral of the IRF, which is, in the case of month-wise
growth effects in the LP framework, equal to the mean effect for the first 12 months after an event.

21Chen and Nordhaus (2019) compare DMSP/OLS and VIIRS for predicting cross-sectional and time-
series GDP data for the US. They find that VIIRS performs well at predicting metropolitan area night light
growth. Gibson et al. (2021) compare the ability of the DMSP/OLS and VIIRS to predict local GDP for
Indonesia and finds that the DMSP/OLS is twice as noisy as the VIIRS. They find elasticities around 0.17−
0.19 when using VIIRS night light to predict Indonesia’s second-level sub-national GDP and elasticity of 0.5
for provincial-level GDP.
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they are evenly distributed with respect to economic activity,22 A back-of-the-envelope

calculation implies that there is a decrease in the GDP growth rate by −2.2% × 0.3 ×

1.27 = −0.84%. Note here that while each shock is transitory and can thus be thought of

as a level change, the series of shocks are on such a high frequency that their cumulative

impact is best represented by a change in the growth rate. To put this into perspective,

the average GDP growth rate23 for the countries in the low to medium category in the

10-year period 2012 to 2021 were: Haiti (0.82%), Guatemala (3.46%), El Salvador (2.09%),

Honduras (3.26%), Nicaragua (3.16%), and Venezuela (1.02%). Clearly, pluvial floods

do not explain the differences between these countries’ growth rates and likely do not

account for the current development. However, these countries would especially suffer

if either the severity or frequency of extreme rainfall events increases.

To put the impacts of flash floods into perspective, it is informative to compare them

to other natural hazards such as hurricanes and urban floods. Ishizawa, Miranda, and

Strobl (2019) investigate the impacts of hurricanes on monthly economic activity in a

similar setup as this study via night lights for the Dominican Republic. Their estimated

effect is highly dependent on storm intensity but is said to peak 9 months after impact and

go to zero after 15 months. For the average storm, the effect peaks at about -7.5%, more

than 3× the effect of the average flash flood as estimated in this study. Kocornik-Mina

et al. (2020) studies floods in the context of cities and displacement due to flood risk.

Conceptually, their focus on large-scale urban floods should lead to stronger impacts

compared to the more general notion of flash floods used here.24 They find that large

floods "... reduce a city’s economic activity, as measured by nighttime lights, by between 2 and 8

percent in the year of the flood". The estimated average effect in the year of the flood in this

study is smaller with −0.9%.

22Flood incidents are negatively correlated with the percentage of built area with a correlation coefficient
of -0.02. There is thus more built-up area and economic activity in locations that experience fewer floods.
However, the strength of the correlation is low enough that it can be ignored for this back-of-the-envelope
calculation.

23World Bank annual national accounts data.
24Flash floods constructed via the IDF-curve approach likely generate more small-scale events than the

subset of floods with at least 100’000 people displaced and detailed inundation maps in the DFO data as in
Kocornik-Mina et al. (2020).
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One can not only distinguish the differences in the effect size but also in the dynamic

response after a natural hazard. There is a contemporaneous increase in night light emis-

sions for floods which does not appear for hurricanes. Several factors can lead to this

phenomenon. It is well-known that buildings and structures that have been flooded are

prone to catch fire due to corrosion and damage to electrical circuits. Even a single fire

in a relatively large region would lead to a significant increase in night lights. Gas flares,

for instance, are a major source of night light emission in remote areas, and data on night

lights have been used successfully to estimate their emissions (Elvidge et al., 2009). The

second factor that leads to the phenomenon of a positive contemporaneous effect is dis-

aster aid. While it is hard to quantify, it is easy to see that aid flowing into an area will

increase light emissions for the duration of the endeavor. Still, this cannot explain why it

would be different for different natural hazards. For this, we need to consider the type of

destruction each hazard brings. Strong winds from hurricanes directly destroy buildings

and damage overland power lines.25 This destruction is immediately reflected in a lower

night light emission. This contrasts with flash floods. While also causing destruction to

buildings, flash floods directly destroy roads and other transportation structures that are

only indirectly affected by hurricanes (Diakakis et al., 2020). Since most roads are unlit in

Central America and the Caribbean, their destruction or deterioration does not directly

cause night light emissions to fall. However, they do hamper economic activity by in-

creasing the cost of transporting goods and commuting to work (Hallegatte et al., 2016).

While in the short term of one to two months, this cost might be absorbed by firms and

households, they cannot do so for a longer time. Repair and reconstruction occur but

are only done six to eight months after an event. This story nicely fits the result that 1)

more developed countries with a higher quality infrastructure are less affected, 2) areas

with a higher percentage of built area, including paved roads, are less affected, 3) neg-

ative spillover effects from floods in neighboring areas exist but are smaller than local

effects from floods. While 1) and 2) follow straightforward, points 3) concerning spatial

spillovers requires explanation. In order to substantiate this line of argument, further

25See the Saffir-Simpson Hurricane Wind Scale, which directly describes the damage to houses and the
electricity infrastructure in its classification.
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research is necessary. For one, work has to be done to understand how firms are affected

when there is a flood in their vicinity. A fruitful route might be to separately consider

specific industries, such as the construction sector or manufacturing. Also, a better un-

derstanding of the way how gaps in the transportation network in developing countries

affect economic activity is necessary.

The main strength of the paper, the construction of a flash flood indicator based on phys-

ical characteristics, is also its main weakness. On one side, it allows me to flexibly and

consistently define a hazard across multiple countries. This is the first study in economics

to rigorously define localized flood events from rainfall data directly. Others, such as

Cavallo et al. (2013) and Kocornik-Mina et al. (2020), rely on event databases that are

not necessarily consistent across time or countries. At the same time, by not directly ob-

serving the hazardous event but rather inferring it from a decision rule related to rainfall

characteristics, I can not be certain to cover all events adequately. Strictly speaking, the

results must be understood in terms of a rainfall event that likely causes some flooding

in the cell’s area. Since the classification method has been calibrated on high-quality, ex-

haustive data for all flood events in Jamaica since 2000, it should perform well for the

study region. Extending the methodology here to other regions or doing a global analy-

sis, however, requires appropriate calibration in each subject region (Hirpa et al., 2018).

Through empirical studies that focus on a specific type of natural disaster, we obtain a

clearer picture of how various types can be discerned. The flash floods investigated here

are characterized by their frequency, local occurrence, and the lagged dynamic reaction

with a quick recovery. Other hazards do have different signatures. With hurricanes, it

has been suggested that their imprint on the economy is important even several years

afterward (Hsiang and Jina, 2014), while droughts trigger specific migratory reactions

(Kaczan and Orgill-Meyer, 2020). These findings could be assessed more formally and

more thoroughly in a general equilibrium growth model that takes into account different

natural disasters and their potential trajectories concerning climate change. There is a

great need for such an undertaking: most integrated assessment models assume climate

change impacts to be a single, non-linear scalar of all outputs in all sectors in all locations.
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This omits practically all insights gained in the economic natural disaster literature. In

conjunction with this neglect, it has to be noted that the uncertainty for climate change

projections from economic growth is magnitudes larger than the uncertainty from the

natural sciences. Thus, it is necessary for economists to find precise, causal estimates

for various channels through which climate change will impact the economy, natural

disasters being one of them.

3.7 Conclusion

I study the dynamic effect of extreme rainfall events that lead to flash floods on lo-

cal economic activity as measured by night light emission in Central America and the

Caribbean. I find that such an event decreases local emissions by up to −5.7% in low

and medium-development countries, while there is little effect in higher-development

countries. My results further suggest that floods do cause a different dynamic reaction to

hurricanes and other natural hazards. The impulse-response-function shows that, after

a contemporaneous increase in night lights by 1.3%, the effect of a flood becomes −5%

after three months and stays in that range until reversing back to zero in month seven.

The average effect in the 12 months following a flash flood is −2.2% in low and medium-

development countries. Back-of-the-envelope calculations indicate that for those coun-

tries, the total impact is equal to a reduction in the GDP growth rate of 0.84% due to the

high frequency of flash floods.

I further find that flash floods cause spatial spillovers. The effect on night light emis-

sion when there is an event in a neighboring area is similar to a flood in that area itself

but smaller in size and with a longer delay. This indicates that a flood disrupts produc-

tion processes, for instance by destroying part of the transportation infrastructure, which

affects not only those that are directly impacted. If several neighboring areas are hit si-

multaneously, then there is positive spillover, reducing the negative direct effect. Such

negation of the negative effect of floods is consistent with reasoning from economic ge-

ography that relative differences balance out across space.
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My findings have two main implications for policy. First, there is a distinctly negative

effect of extreme rainfall episodes on economic activity in low and medium-developed

countries. Before, the effect of extreme rainfall has often been masked by spatial or tem-

poral aggregation. Since there appears to be little effect for higher-development coun-

tries, development in key areas could be a way out. Future research has to be conducted

to investigate what those key areas are and how one can induce resilience in lower-

development countries. Second, because flash floods are such a high-frequency natural

hazard with return periods of less than one year in many parts of the study region, they

can have direct effects on a country’s growth rate. In a warming and humid climate,

extreme rainfall events are projected to increase in frequency and severity. I show that

such an increase will likely impact the growth of developing countries in Central Amer-

ica and the Caribbean. Consequentially, the cost of future emissions should take this into

account.
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Chapter 4

Flash Flood Hazard: an Economic

Analysis for Central America and the

Caribbean

“The first thing I learned about having money was that it gives you choices. People don’t want to

be rich. They want to be able to choose. The richer you are, the more choices you have. That is the

freedom of money.”

Trevor Noah, Born a Crime
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4.1 Introduction

Natural hazards such as floods are becoming more prevalent with global warming. The

direct flood damages are projected to increase non-linearly with rising global temper-

atures.1 With a limited capacity to adapt to climate change, it is important to study the

mechanisms through which climate change affects the economy in order to provide guid-

ance for policymakers (Mendelsohn, 2012). The early literature on the economic conse-

quences of natural disasters has studied them via cross-country models, where the results

are somewhat mixed (Albala-Bertrand, 1993; Noy, 2009; Loayza et al., 2012; Cavallo et al.,

2013). A frequent hypothesis is that the direct destruction of a hazard can stimulate eco-

nomic activity through efficient re-organization or even creative destruction. A priori, it

is therefore not clear whether an increase in direct flood damages will decrease economic

activity or not. To the best of my knowledge, there is no study that focuses on the local

economic impact of flash floods, even though they are one of the most common natural

hazards.2

Flash floods are a type of flood that is caused by heavy rainfall in a short period of time,

generally less than 6 hours, and are characterized by heavy torrents that sweep every-

thing before them (NOAA Flood and Flash Flood Definition). Due to climate change, they

are predicted to increase in frequency and severity in many parts of the world (Senevi-

ratne et al., 2021). Since flash floods are triggered by episodes of extreme rainfall, they are

particularly localized and can occur almost anywhere, even if the local climate is compar-

atively dry (Yin et al., 2023). It has been recognized that a large regional unit of analysis

can aggregate out the economic effects of natural hazards (Elliott et al., 2019). It follows

that an understanding of the mechanisms through which flash floods impact economic

activity should be derived from micro-level evidence.

1IPCC 6th Report, Summary for Policymakers.
2For instance, according to the Centre for Research on the Epidemiology of Disasters (CRED) Emergency

Events Database (EM-DAT), the number of affected people in 2022 by flash floods (0.9 M) is closest to convec-
tive storms (1.6 M), more than river floods (0.1 M) or forest fires (0.03 M). Note, however, that the EM-DAT
only catalogs disasters if there is a certain number of people affected or a minimum of monetary damages.
Further, it has been suggested that the EM-DAT suffers from bias since it relies on the reporting of events by
agencies or newspapers.
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Impacts can be divided into direct impacts or damages and indirect economic impacts

Cavallo and Noy (2011). Direct damages refer to the directly caused destruction to assets,

for instance, property, at the time the natural hazard strikes. They commonly include the

destruction of residential housing, establishments, infrastructure, and crops, but can also

include health impacts.3 Indirect impacts are the second-order effects of a natural hazard.

In other words, they are due to changes in the behavior of economic agents, namely firms

and households. Direct impacts are well understood, while there is large uncertainty

in how natural hazards impact economic activity and growth (Botzen, Deschenes, and

Sanders, 2019). Further empirical evidence is necessary to reduce this uncertainty with

regard to indirect effects.

There are two main challenges in credibly analyzing the impacts of flash floods. First,

since there exists no data that adequately captures flash floods, one needs to model their

local occurrence.4 The economic literature on tropical storms’ economic effects has, for

instance, produced physical measures to approximate local impacts in order to ensure

comparability across regions without concerns of endogeneity (Strobl, 2012; Hsiang and

Jina, 2014). The second challenge is with regard to the data on economic agents and iden-

tification. Sufficiently detailed micro-data of either firms or households do usually not

provide exact locations or are unavailable for confidentiality reasons. Consequentially,

identification of the effect is difficult. Ideally, one could observe establishments over a

longer period of time before and after a flash flood event in a panel to estimate dynamic

effects. Even then, the high frequency of flash floods makes the definition of an adequate

control group difficult.

In this paper, I attempt to overcome these challenges by employing remote-sensing rain-

fall data to detect potential flash flood events on a high spatial resolution and linking

3For instances, Kousky (2016) summarizes the health impacts natural hazards have on children. These
include malnutrition, diarrheal illness due to contaminated water, and various mental health problems.

4Recent studies that investigate the indirect effects of flood events use the Dartmouth Flood Observatory
(DFO) data (Kocornik-Mina et al., 2020; Zhou and Botzen, 2021). However, flash floods are likely not cap-
tured by this data. The DFO relies on satellite imagery on cloud-free days to quantify the extent of flooded
areas. Since floods often occur in combination with heavy rainfalls and thus cloud coverage, and because
flash floods do usually not remain for a long time as shallow, standing floods, the DFO will not capture them
adequately.
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these to the Worldbank Enterprise Surveys for Central America and the Caribbean. I es-

timate the effect of flash floods on several measures of establishment performance while

controlling for the history of previous events. The region of Central America and the

Caribbean is arguably ideal to study flash flood impacts. Since the mid 20th century, the

magnitude and frequency of extreme precipitation events have increased significantly in

the region (Seneviratne et al., 2021). Soil degradation is common, and urbanization is

unregulated, acerbating the risk for flash floods (Charvériat, 2000; Pinos and Quesada-

Román, 2021). Many countries in the study region are lower- to middle-income, such

that the efficiency of adaptation and investment into resilience against natural hazards is

crucial for further development.

The contribution to the literature in this paper is two-fold. First, in terms of the method-

ology, I detect potential flash floods via intensity-duration classification from Collalti,

Spencer, and Strobl (2023) as a physical measure of incidence from satellite rainfall data.

This classification is based on a conditional copula model and information on all con-

firmed flash flood events in Jamaica from 2001 to 2018. Jamaica shares a similar topog-

raphy, soil composition, and climate with the whole region such that the method is well-

calibrated. In addition, the confirmed events from the Jamaican Office of Disaster and

Preparedness Management (ODPEM) constitute an exhaustive list for that time period in

Jamaica, which is a rarity for the study region. Second, with the use of Worldbank En-

terprise Survey data, I analyze the establishment impacts of natural hazards consistently

across a large group of countries. After data cleaning, surveys from ten different coun-

tries5 are used to estimate how establishments are affected in terms of sales, employment,

investment choices and productivity of labor and capital.

There are two strands of the literature to which this study directly relates. One body

of work investigates the firm and establishment-level impact of specific natural hazards.

Leiter, Oberhofer, and Raschky (2009) have been pivotal by estimating the effects of floods

on European firms’ capital, labor, and productivity. They examine the impact on firms

5These countries are: Columbia, Venezuela, Panama, Nicaragua, El Salvador, Guatemala, Costa Rica,
Mexico, Dominican Republic, and Haiti.
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that are located in a region6 hit by a major flood. They document higher growth rates of

assets and employment but a decline in productivity. Similarly, Zhou and Botzen (2021)

study the impacts of storms and floods on firm growth in Vietnam and find that flooding

increases labor and capital growth but reduces sales. In contrast to this paper, both stud-

ies use data from large-scale flood events and aggregate these onto the province level,

which likely aggregates out some of the impacts. Elliott et al. (2019) estimates the direct

and indirect impact of typhoons on manufacturing plant performance in China. Plant

sales decrease significantly, but the effects are relatively short-lived. Some studies ana-

lyze the firm-level effect of a single event: Okubo and Strobl (2021) investigate the 1959

Ise Bay Typhoon and find that firms in retail and wholesale are less likely to exit the mar-

ket, whereas those in manufacturing and construction are more likely to upgrade their

capital. Several studies analyze a specific earthquake to investigate the role of creative

destruction: Tanaka (2015) and Cole et al. (2019) study the 1995 Great Kobe Earthquake

and Okazaki, Okubo, and Strobl (2019) the 1923 Great Kanto Earthquake. Evidence is

mixed with Tanaka (2015) finding negative effects while Cole et al. (2019) and Okazaki,

Okubo, and Strobl (2019) are more positive.

This study also relates to the literature that studies the economic impacts of weather

anomalies (Dell, Jones, and Olken, 2012; Felbermayr et al., 2022; Kotz, Levermann, and

Wenz, 2022). Positive temperature anomalies have generally been associated with neg-

ative economic impacts, whereas results have been mixed for rainfall (Dell, Jones, and

Olken, 2012). An exception to this is Barrios, Bertinelli, and Strobl (2010) who find that

the declining rainfall rates in sub-Saharan Africa are a significant determinant of the re-

gions’ lower economic growth rates. These earlier studies focus on the long-run climatic

variation on the country level with panels of country-by-year rainfall data. Arguably,

this cannot be informative with respect to floods, in general. Spatial and temporal aggre-

gation masks out extreme events, such that excess rainfall has an ambiguous interpreta-

tion.7 With the advent of satellite data in recent years, the spatial resolution improved.

6NUTS-II region, of which there are 268 for Europe at that time.
7Excess rainfall in a country in a given year could be evenly distributed rainfall throughout the year or

short, extreme rainfall in a specific region - with likely different effects on the economy.
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Kotz, Levermann, and Wenz (2022) estimate the effects on sub-national region’s economic

growth. They find that growth is reduced by the number of wet days and in extreme daily

rainfall, while the annual total rainfall is positively associated with growth. Felbermayr

et al. (2022) connect monthly weather anomalies with night light data on a 0.5× 0.5 grid

(approx. 55 km × 55 km at the equator). They find that rainfall anomalies reduce night

light growth contemporaneously with a rebound in the next periods and contempora-

neous positive spatial spillover into neighboring areas. This study has been influenced

by the development of increasing resolution to capture the economic impacts of weather

anomalies. In some sense, it ties together the weather anomaly with the natural hazard

literature in the case of extreme rainfall and flash flood events.

To briefly summarize the results, I show that flash floods impact establishment perfor-

mance, resulting in less output, fewer workers employed, a change in investment dy-

namics, and an increase in capital productivity. Financial market access plays a central

role. Establishments for whom financial market access is an obstacle drive the docu-

mented reduction in output. They further have a decreased labor productivity, whereas

firms that are not constrained experience the increase in capital productivity found in

the overall analysis. I further explore heterogeneity by industry. There is comparatively

little variation in the effects of flash floods across sectors, with the notable exception of

the construction sector. The construction sector is not negatively impacted as it does not

see a reduction in output or workers employed but still reacts strongly in investment

dynamics. This might indicate that flash floods affect establishments through more than

one mechanism.8

The remainder of the paper is organized as follows: Section 4.2 provides background and

discusses theoretical considerations. Section 4.3 presents the flash flood classification and

describes the data. In Section 4.4, the empirical strategy is detailed, and results are shown

in Section 4.5. Section 4.6 then discusses the main implications and concludes.

8There is a literature that documents how natural disasters impact across supply chain (Rose and Liao,
2005; Altay and Ramirez, 2010; Henriet, Hallegatte, and Tabourier, 2012). For instance, Altay and Ramirez
(2010) show that the impact of a flood depends on the flood’s position in the supply chain: upstream firms
are positively, and downstream firms are negatively affected.
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4.2 Background

Episodes of heavy rainfall and flash floods are projected to become more prevalent in a

warming climate (Seneviratne et al., 2021). Flash floods are a subtype of pluvial floods,

which are caused by extreme rainfall. These can be categorized into flash and surface

water floods. Surface water floods are shallow, standing floods that occur when rain

falls over a prolonged period of time, and the water cannot run off. Flash floods are

characterized by their quick onset and ravageous, debris-sweeping flow. Meteorological

conditions that cause flash floods are mostly convective and orographic, which are nat-

urally localized. Since most precipitation in the tropics is convective, the potential for

frequent flash floods is given almost anywhere in the study region.

While flash floods are local events, some have disastrous impacts. On July 20th and Au-

gust 12th 2021, two flash floods hit Zhengzhou and Suizhou in Central China, claiming

human lives and destroying infrastructure. The two events were due to heavy rainfall,

peaking at 201.9 mm/h and 117.9 mm/h in intensity, respectively (China Meteorological

Administration). There are many other instances where heavy rainfall led to disastrous

flash floods: 2013 in La Plata, Argentina, 2009 in Messina, Italy, and 2016 in Maryland,

USA, to name a few. However, not every flash flood causes such destruction. The risk

of natural hazards can be decomposed into vulnerability, exposure, and hazard (Field

and Barros, 2014). A higher exposure is given by a larger population and more assets

in the hazard’s location. Depending on the vulnerability, the natural hazard becomes a

disaster. In the case of flash flood hazard, changes in the socio-economic dimension can

strongly affect the risk (Terti et al., 2015). It follows that evaluating the impact of flash

floods has significant economic and social implications, which requires knowledge across

disciplines of social and physical sciences (Ruin et al., 2014).

The vulnerability to flash floods has, so far, only been investigated in non-economic

terms. These include Špitalar et al. (2014) who evaluate fatalities from flash floods in

the United States 2006 - 2012. While most fatalities accrued in rural areas, impacts on

humans are said to be higher in urban areas. Vulnerability to flash floods can also be
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in terms of the built environment where structural parameters are assessed relative to

the hazard intensity (Milanesi et al., 2018). From a socio-economic perspective, there

have been some efforts to evaluate flash flood vulnerability by creating an index for the

United States (Khajehei et al., 2020) and Spain (Aroca-Jiménez et al., 2018). This study

is, however, the first to consider economic consequences on firms on the establishment

level.

4.2.1 Hypotheses

Theoretical considerations can establish a set of hypotheses to be evaluated empirically.

With the data in mind, these are concerned with single establishments. The theoretical

literature on the economic impact of natural disasters mainly focuses on the macroeco-

nomic perspective. However, some recent papers specifically model firm behavior in

response to natural hazards even if the objective is the macroeconomic impact (Halle-

gatte, Hourcade, and Dumas, 2007; Hallegatte and Dumas, 2009; Henriet, Hallegatte,

and Tabourier, 2012; Barrot and Sauvagnat, 2016; Hallegatte and Vogt-Schilb, 2019; Stru-

lik and Trimborn, 2019). I subsequently summarize the main insights into hypotheses for

the empirical analysis in this paper.

Hallegatte and Vogt-Schilb (2019) model impacts of natural hazards with different layers

of capital and assume that part of a firm’s capital is destroyed and thus output and

labor decrease. Because a natural hazard does not discriminate between capital types

in its destruction, total losses relate to the average and not the marginal productivity

of capital. In most instances, capital productivity increases, whereas labor productivity

decreases. Further echoing the insight from Hallegatte, Hourcade, and Dumas (2007),

the reconstruction phase is crucial for economic dynamics. For instance, if investments

in reconstruction are limited due to financial and technical constraints, the economy

recovers more slowly. Strulik and Trimborn (2019) model impacts of natural disasters

and distinguish between a firm’s productive capital and durable goods. They find that

if a natural disaster destroys either predominantly productive capital or durable goods

(which is the assumed mechanism), the initial decline in output can become an increase
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over time. In turn, the investment choices of firms are impacted by natural disasters.

Barrot and Sauvagnat (2016) analyze whether natural disasters propagate in production

networks. They derive hypotheses based on the static network model analysis of

Acemoglu et al. (2012), assuming that when a firm is hit by a natural hazard, some

share of output is destroyed. The model predicts positive horizontal and downstream

pass-through rates that are confirmed empirically. This implies that heterogeneity in

impact across sectors and layers of the value chain is limited.

In summary, five hypotheses emerge on the establishment impact of a natural hazard,

which will guide the empirical analysis and frame the discussion. After a flash flood,

1. Output Y and labor L decrease.

2. The productivity of capital increases, and the productivity of labor decreases.

3. Investments of establishments hit differ from those that have been spared.

4. Establishments with constrained financial access are more impacted.

5. Heterogeneity in impacts across industries is limited.

Note that not all implications are voiced in unison in the literature. While output and

capital decrease by assumption, the impact on labor depends on model specification.

The choice of dynamic versus static and general versus partial equilibrium models can

alter some of the predictions stated. The hypotheses are chosen so as to describe the case

that likely corresponds to frequent and localized natural hazards such as flash floods.

4.3 Data

To study the stated hypotheses empirically, information regarding flash flood occurrence

and establishment-level data is necessary. I derive information on flash flood occurrence

with a physical hazard indicator. Specifically, I use satellite rainfall data and employ a

classification scheme that is based on hydrological modeling of extreme rainfall events.
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Establishment-level data is taken from the Worldbank Enterprise Survey, which provides

a wide array of data on establishment performance. Subsequent sections detail the pro-

cedure and data preparation.

4.3.1 Study Region

The study region of Central America and the Caribbean is characterized by a high

propensity to natural disasters. The region knows various geographical definitions. Cen-

tral America is often defined as all countries from Mexico to Panama9, though some ex-

clude Mexico, and others include Colombia and Venezuela. Similarly, the Caribbean

knows various definitions. There is a well-defined core of islands that are part of the

Caribbean that includes all the islands in the Caribbean Sea. For the remainder of this

paper, Central America and the Caribbean refers to an encompassing definition of the

region that includes all countries mentioned. Specific details and restrictions apply due

to data availability.

4.3.2 Flash Flood

The flash flood classification is based on Collalti, Spencer, and Strobl (2023) who model

extreme rainfall events via copula functions, and use data on confirmed flash flood

events in Jamaica to classify above which threshold in the intensity-duration space an ex-

treme rainfall event likely triggers a flash flood. Information about confirmed Jamaican’

flash floods comes from the Office of Disaster and Preparedness Management (ODPEM),

whose responsibility includes monitoring extreme weather events in Jamaica and im-

plementing measures to mitigate their impact. The procedure is tailored to the Global

Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals (IMERG) data,

which is globally available since June 2000 (Huffman et al., 2015b).10 The data contains

9as defined by the United Nations in their geoscheme for the Americas. This includes Mexico, Guatemala,
Belize, Honduras, El Salvador, Nicaragua, Costa Rica, and Panama.

10The satellite precipitation algorithm combines various microwave and infrared precipitation measure-
ments to produce precipitation estimates, adjusted with surface gauge data.
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half-hourly rainfall measurements on a 0.1◦ × 0.1◦ (approx. 11 km ×11 km at the equa-

tor) grid. From the half-hourly data, meteorological distinct events are defined with a 12

h inter-event time. The most extreme rainfall events are then used to model the depen-

dence between the intensity and duration of an event with copula functions to generate

intensity-duration-frequency (IDF) curves. Such a curve relates points in the intensity-

duration space to a given frequency or return period. In that sense, one can interpret it as

a measure of severity or extremness. With comprehensive data on all flash flood events

since 2000, Collalti, Spencer, and Strobl (2023) define the IDF curve as the threshold for

classification above which the ratio of hazardous events is maximized.

As a decision rule, I require that a rainfall event must have an intensity of at least 2 mm/h

above the IDF curve from Collalti, Spencer, and Strobl (2023) in order to reduce the num-

ber of false positives.11 Every time the GPM/IMERG cell within which an establishment

is located experiences a rainfall event above that threshold, I treat it as being affected by

a flash flood. Note that this does not imply that there has been direct damage to the es-

tablishment, as it could be that the extreme rainfall event did not cause flooding where

the establishment is located exactly. In that case, it is still very likely that it has been af-

fected by the extreme rain, as the inundation of roads and sweeping torrents of water are

expected in close vicinity.

4.3.3 Enterprise Surveys

Data on firms are from the World Bank Enterprise Surveys. They are firm-level surveys

of a representative sample of the economy’s private sector and cover a broad range of

topics, from corruption and crime to competition, infrastructure, and various other mea-

sures. Since 2005, the methodology has been globally standardized, and a total of 177’000

surveys in 153 countries have been carried out in various rounds. Table 4.1 displays the

countries of the study region for which surveys were conducted. It further shows for how

many rounds and in which year those surveys were conducted for a total of 37 surveys

11In robustness Section 4.5.3 I employ a more restrictive threshold of 3 mm/h. This approximately halves
the number of events, but results do not change significantly.
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FIGURE 4.1: Map of Establishments
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Map of all 7’755 geographically located establishments.

with 16’414 establishments. The Worldbank Development Economics Enterprise Anal-

ysis Unit (DECEA) provided me with information about each establishment’s location.

Due to confidentiality reasons, the locations come in the form of masked coordinates that

have been randomly displaced by 500 m to 2’000 m in each axis. This results in a random

displacement of approximately 700 meters to 2400 meters. Unfortunately, establishment

locations were not captured as part of all surveys. In earlier rounds in 2005 and 2006,

the surveyors were not equipped with tablets to record GPS coordinates as they were in

later rounds. A total of 7’755 establishments remain for which detailed surveys and their

approximate location are combined. Figure 4.1 depicts their geographical distribution in

the study region.
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TABLE 4.1: Summary of Surveys

Country/Year 2005 2006 2010 2016 2017 2019 Geo-Coded

Antigua & Barbuda ✓

Bahamas ✓

Barbados ✓

Belize ✓

Colombia ✓ ✓ ✓ 2010, 2017
Costa Rica ✓ ✓ 2010
Dominica ✓

Dominican Republic ✓ ✓ ✓ 2016
El Salvador ✓ ✓ ✓ 2010, 2016
Grenada ✓

Guatemala ✓ ✓ ✓ 2010, 2017
Guyana ✓

Haiti ✓ ✓ 2019
Jamaica ✓ ✓

Mexico ✓ ✓ 2010
Nicaragua ✓ ✓ ✓ 2010, 2016
Panama ✓ ✓ 2010
St. Kitts & Nevis ✓

St. Lucia ✓

St. Vincent & Grenadines ✓

Trinidad & Tobago ✓

Venezuela ✓ ✓ 2010

Notes: List of all countries in the region for which there were any Worldbank
Enterprise Surveys. Columns of the years indicate whether a survey was con-
ducted in a specific year. A majority of surveys were conducted in 2010. Geo-
Coded indicates the countries and surveys for which the establishment’s loca-
tion was surveyed.

4.3.4 Sample Restriction

Not all of these 7’755 surveys can be used for the analysis. For one, many respondents do

report questions with regard to the firm and not the single establishment. When a firm

has several establishments, connecting a single establishment to a flash flood incident

would not be informative. The sample is therefore reduced to those 6’423 surveys where

either the firm is a single establishment or where the financial statements are separately

prepared for each establishment. Further, not all surveys contain all relevant informa-

tion for the analysis. Only 1’925 establishments did report sales, the number of full-time
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employees, investments, labor, and electricity cost.12 Even then, some surveys are im-

plausible. There is, for instance, the establishment from Colombia that produces corn

syrup and allegedly reports revenue of 327 B USD in 2010. I remove all observations

that report sales, investments, or the number of employees 5 times larger than the 0.99

quantile, which reduces the sample by 25 observations. While I cannot verify that these

25 surveys were indeed faulty in the reporting or transcription, the manual inspection of

these surveys reveals that at least some are implausible.13

4.3.5 Two Indices for Floods

Flash floods can occur continuously in time, whereas the establishment surveys consti-

tute a cross-section. In order to relate one with the other, we need to consider that ques-

tions in the surveys are always in relation to the last fiscal year. Therefore, for every es-

tablishment, I construct an index of the number of potential flash floods in the 12 months

of the last fiscal year,

Floodt
j =

12

∑
t=0

Flash Floodjt (4.1)

where j is the establishment identifier, and t denotes the time-shift relative to the estab-

lishment j’s end of the last fiscal year. The variable Flash Floodjt gives the number of flash

floods in the rainfall cell where j is located for the month t. If the end of the fiscal year

was not collected in the survey, I assume that the fiscal ends on 31st of December.

Similarly, I create an index of previous ("historic") flash flood events to control for

location-specific flash flood risk in the analysis,

Floodt
h =

96

∑
t=13

Flash Floodjt. (4.2)

12Electricity cost will be used as a proxy of capital cost.
13As another example, there is an establishment that deals with raw material products with 8 full-time

employees that invested 150 B USD in machines and equipment and 15 B USD in land and buildings while
only selling goods for 0.26 M USD in that year. In the robustness Section 4.5.3, I estimate the main model
without removing the 25 surveys, and the results do not change.
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The variable Floodt
h thus gives the number of flash floods in the rainfall cell where j is

located for 7 years before the start of the last fiscal year. The choice of 7 years is due to

rainfall data availability - ideally, one would provide a longer history of events.

TABLE 4.2: Summary Statistics

Statistic Mean St. Dev. Min Max

Floods Fiscal Year 2.65 2.46 0 10
Prior Floods 18.03 11.02 0 50
Access to Finance 0.54 0.50 0 1
Sales Last Year (M USD) 23.79 105.90 0.003 1’872.31
Full-Time Employees 145.95 325.53 3 6’513
Inv. Land & Buildings (M USD) 0.13 0.75 0.0000 16.03
Inv. Machines & Equipment (M USD) 0.95 10.08 0.0000 374.70
Firm Age 25.31 17.69 1 127
Power Outages 0.60 0.49 0 1
Generator Owned 0.23 0.42 0 1
% of Direct Exports 8.83 21.01 0 100
Female Ownership 0.39 0.49 0 1

Notes: Summary statistics after data cleaning for the remaining 1’900 ob-
servations.

4.3.6 Summary Statistics

Table 4.1 displays summary statistics. There are 1’900 establishments that experienced an

average of 2.65 potential flash flood rainfall events in their last fiscal year and 18.03 in the

7 years before that. For 54% of establishments, access to finance is no major obstacle. In

the last fiscal year, average sales were 23.8 M USD with 146 full-time employees, though

there can be as little as 3 and as many as 6’513 people employed at the single establish-

ment. All monetary values have first been transformed to USD with exchange rates at

the end of the fiscal year and then inflated to December 2021. Investments also exhibit

large variation, with an average of 1.08 M USD in total investments. Of that, the majority

(88%) is in the category of machines, equipment, and vehicles. The oldest establishment

in the sample is 127 years old, five times more than the average of 25.31 years. Many

report issues with regard to electricity, where 60% report at least one power outage in the

last fiscal year and 23% own a generator. Some establishments engage in direct exports
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with an average value of 8.8% of directly exported goods. Lastly, in about 40% of firms,

at least one of the owners is female.

4.4 Empirical Strategy

The data are cross-sectional, which can be a source of endogeneity bias. To estimate a

causal effect, treatment assignment should be independent of potential outcomes after

conditioning on observed covariates. In the case of flash floods, treatment can arguably

be viewed as quasi-random in the case of extreme weather events. The specific timing

of an extreme rainfall event in a location in one year versus another cannot be forecasted

in any way. Therefore, the only way the occurrence of a flash flood in the fiscal year

prior to the survey is correlated with establishment outcomes is through the underlying

probability of treatment in that area. In other words, if one conditions for the location-

specific differences in the likelihood of flood occurrence, then an estimate of the effect

of flash floods on establishment outcomes should not suffer from endogeneity bias. In

this cross-sectional setting, all relevant unit-specific time invariants can be captured with

the unit-specific treatment history. I do that with the number of flood events 7 years

before the last fiscal year. A regression that further controls for the country, industry, and

year-fixed effects can be written as

log
(
Yj
)
= β1Floodt

j + β2Floodh
j + β3Access f

j + δXj + Cj + Vj + Tj + ε j (4.3)

where Yj is a variable of performance for establishment j, Floodt
j the flood index from

Equation 4.1 and β the corresponding constant coefficient. Floodh
j is the number of floods

in the years 1 to 8 after the end of the last fiscal year in the cell of establishment j from

Equation 4.2, and Access f
j is an indicator of financial market access. Xj is a vector of

establishment-specific control variables, Cj are country fixed effects, Vj industry fixed

effects and Tj year fixed effects. The error term ε j is assumed to be two-way clustered at

the country and industry level.
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4.4.1 Hypotheses

With a regression in 4.3 and the appropriate dependent variable Yj, I can study Hypothe-

ses 1, 2 and 3. That is, whether a flash flood causes an establishment’s output and labor

to decrease, whether the productivity of capital increases and that of labor decreases, and

whether investment choices are affected. For output, I use sales in the last fiscal year in

M USD. Labor is proxied by the number of full-time workers, whereas investments are

reported separately for Land & Buildings and Machines, Equipment & Vehicles in M USD.

Productivity can be estimated as the ratio between output and factor input in monetary

terms. For the average productivity of labor, I use sales per labor cost.14 I approximate

capital cost with electricity cost to calculate the average productivity of capital as sales

per electricity cost.15

To explore Hypothesis 4, I modify the model in Equation 4.3 with an interaction between

Floodh
j and financial market access,

log
(
Yj
)
=β1Floodt

j + γ
(

Floodt
j × Access f

j

)
+ β2Floodh

j + β3Access f
j + (4.4)

δXj + Cj + Vj + Tj + ε j

where Access f
j denotes a binary indicator of whether access to financial services is consid-

ered no or a minor obstacle to operations (0) or a medium, severe, or very severe obstacle

to operations (1). Conveniently, 54% fall into the first category such that the indicator can

be approximately interpreted relative to the average outcome.

To review Hypothesis 5, the model should allow for heterogeneity with respect to an es-

tablishment’s industry sector. There are 29 industry codes in the data, with sometimes

only one entry. I group industries into larger sectors: Chemical & Plastic (n=309), Con-

struction (n=41)16, Food (n=329), Metals & Minerals (n=225), Textile & Garments (n=241),

14Labor cost is surveyed as "total annual cost of labor including wages, salaries, bonuses, and social payments".
15This strategy has been used before in the literature, see e.g. Cole et al. (2018).
16The choice of a separate construction sector as an indicator is driven by theoretical considerations albeit

the small number of establishments in that industry. Specifically, the reconstruction after a natural hazard is
often associated with a boom in the construction sector. It is thus of interest to see whether there is a distinct
heterogeneity.
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Other Manufacturing (n=272) and Other (n=483).17. I modify the model in Equation 4.3

with an interaction between Floodh
j and industry,

log
(
Yj
)
=θ

(
Floodt

j × Industryj

)
+ β2Floodh

j + β3Access f
j + (4.5)

δXj + Cj + Vj + Tj + ε j

where Industryj is an indicator of the different industry sector groups. With this speci-

fication, I estimate the effect a flash flood has on each industry and compare for hetero-

geneity.

4.5 Results

Regression results of the model in Equation 4.3, estimated with ordinary least squares

(OLS), are displayed in Table 4.3. Each flash flood in an establishment’s fiscal year re-

duces sales by 3.3% and the number of full-time employees by 2.9%, consistent with

Hypothesis 1. The productivity of capital as measured by sales per electricity cost Ecost

increases by 6% while labor productivity measured with sales per labor cost Lcost is not

affected. This is consistent with Hypothesis 2. Investments in land and buildings InvL&

decrease by 8.3%18 while investments in machines, equipment, and vehicles InvM&E in-

crease by 12.5% (statistically not significant). This is some indication for Hypothesis 3.

Floods before the last fiscal year are associated with 0.7% higher sales but no effect oth-

erwise. Obstacles to financial access are more important, with negative effects across the

board that are significant in the three variables measuring productivity: −13.9% in sales

per worker, −12.4% in labor productivity and −8.3% in capital productivity. Together,

this suggests a story where firms that have difficulties accessing the financial market are

less productive, probably due to outdated capital.

To put the impacts of flash floods into perspective, it is informative to compare them

to other natural hazards. Zhou and Botzen (2021) analyze large floods in Vietnam and

17Other includes diverse sub-sectors such as IT or transportation that could not be grouped otherwise.
18All effects are calculated from the coefficients with (exp(β)− 1)× 100.
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TABLE 4.3: Regressions: Establishment Impacts

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j -0.006 -0.029∗∗ -0.034∗∗ -0.087∗∗ 0.118 -0.015 0.058∗∗∗

(0.012) (0.011) (0.011) (0.037) (0.076) (0.011) (0.014)
Floodsh

j 0.004∗ 0.003 0.007∗∗ 0.010 -0.021 0.001 -0.006

(0.002) (0.002) (0.002) (0.007) (0.025) (0.002) (0.003)

Access f
j -0.150∗ -0.021 -0.170 -0.143 0.032 -0.132∗∗ -0.087∗∗∗

(0.070) (0.045) (0.095) (0.133) (0.304) (0.053) (0.004)
Observations 1,883 1,883 1,883 1,883 1,883 1,880 1,877
R2 0.41 0.82 0.71 0.29 0.08 0.92 0.83
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓

Country ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.3 without coefficients of the control
variables Xj for brevity. The full table with all the coefficient estimates is D.1 in the Appendix.
Standard errors are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

find immediate effects of −1.5% and −2.9% on sales growth if there is a flood in an

establishments province with a measure based on casualties and damages, respectively.19

While methodologically different from this paper, it is striking how comparable these

estimates are. They, however, do find evidence of delayed positive impacts on capital

and labor growth for up to three years, while I cannot directly study the dynamics in

the following years. However, from the coefficient of flood history, we can infer that the

negative impacts in the first year are also reverted after some time. Elliott et al. (2019)

study the effect of typhoons on Chinese manufacturing plants. Their estimates suggest

that the average damaging storm reduces a plant’s turnover by 1% in the year of the strike

for an average reduction of 3.7% due to typhoon activity, comparable to the estimate of

flash floods. They do not find any evidence of an effect beyond the year of impact. Tanaka

(2015) investigates the effect of the Great Kobe Earthquake and finds 11.1% lower value

added of manufacturing plants in the most devastated area of Kobe. Naturally, the effect

19The measure determines which provinces are affected, given a certain threshold. If they use their
physical-based measure with DFO inundation maps, they find an effect of −2.3% on growth in the next
year.
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of a severe earthquake is expected to be magnitudes larger than that of one flash flood.

Because the Worldbank Enterprise Surveys is a representative sample of an economy’s

private sector, we can perform some back-of-the-envelope calculations with regard to the

economic cost caused by flash floods. Taking the average of 2.65 potential flash floods per

fiscal year multiplied by the estimated−3.3% in the baseline specification in Equation 4.3

for Floodst
j on sales, the yearly average reduction in sales is 2.65× −3.3% = −8.745%.

That is under the assumption that the establishment surveys are also representative with

respect to flash flood risk and vulnerability such that external validity is given. If we

further assume that the establishment’s reduction in output is proportional to direct flood

damages, which, according to the 6th IPCC Report, are approximately doubling with a

2°C compared to a 1.5°C warming, it is likely that flash floods in Central America and

the Caribbean will cause substantial overall economic loss in the future.

4.5.1 Financial Access

OLS regression results of the model with the financial access interaction in Equation 4.4

are displayed in Table 4.4. Coefficients of Floodt
j are similar to those in Table 4.3 of the

model without interaction, but smaller in size and no longer statistically significant. Only

capital productivity is significantly increasing by 7.4%. Coefficients of the interaction

term Floodst
j × Access f

j then can be interpreted as the effect of a flash flood for those es-

tablishments for whom financial access poses an obstacle. Sales significantly decrease by

4.8% while the number of workers is unaffected, resulting in a 3.4% lower Sales/Worker

ratio. The productivity of labor decreases by 3.9% as well. In summary, establishments

that are facing obstacles with regard to their financing are more negatively impacted by

flash floods, consistent with Hypothesis 4.

Financial market access has been suggested to facilitate and accelerate recovery after a

natural disaster (Benson and Clay, 2004). For instance, De Janvry, Del Valle, and Sadoulet

(2016) find for Mexico that access to disaster funding boosts local economic activity be-

tween 2% and 4% in the year following a disaster, as measured by night light. Here, I
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can confirm this mechanism for flash floods and establishment-level impacts. Namely,

adequate financing opportunities makes establishments resilient to flash floods and can

be part of the efforts to decrease natural hazard vulnerability for economic development

in Central America and the Caribbean.

TABLE 4.4: Regressions: Financial Access

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j 0.013 -0.020 -0.007 -0.077 0.143 0.008 0.071∗∗∗

(0.015) (0.012) (0.014) (0.046) (0.082) (0.015) (0.010)
Floodst

j × -0.034∗ -0.015 -0.049∗∗∗ -0.017 -0.044 -0.040∗∗∗ -0.022

Access f
j (0.018) (0.016) (0.013) (0.029) (0.072) (0.008) (0.014)

Floodsh
j 0.004∗∗ 0.003 0.007∗ 0.010 -0.021 0.0009 -0.006∗

(0.002) (0.002) (0.003) (0.007) (0.025) (0.004) (0.003)

Access f
j -0.060 0.019 -0.041 -0.097 0.148 -0.024 -0.028

(0.085) (0.063) (0.088) (0.144) (0.361) (0.047) (0.046)
Observations 1,883 1,883 1,883 1,883 1,883 1,880 1,877
R2 0.41 0.82 0.71 0.29 0.08 0.92 0.83
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓

Country ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.4 with the interaction for finan-
cial access, without coefficients of the control variables Xj for brevity. The full table with all
the coefficient estimates is D.2 in the Appendix. Standard errors are in parentheses. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

4.5.2 Sector Heterogeneity

I study heterogeneity across different industries with the model in Equation 4.5. Figure

4.2 displays the results of regressions with OLS.20 The first row shows the results from

regressions without any interaction, as in Equation 4.3, for comparison. Studying the

heterogeneity with respect to the industry by comparing coefficients of a single column,

it is apparent that there is little variation. That is, most industries are affected similarly

by a flash flood. For instance, all industries but construction see a reduction in workers

20The full results are in Table D.3 in the Appendix.
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FIGURE 4.2: Industry-Specific Effects

(A) Coefficients
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Notes: Matrix-plot of coefficients from regressions with industry indicator and matrix-plot of cor-
responding p-values. The columns relate to the various dependent variables Yj: column 1) is
the regression with Sales/Worker, column 2) with Worker, column 3) with Sales, column 4) with
InvL&B, column 5) with InvM&E, column 6) with Sales/Lcost and column 7) with Sales/Ecost. The
first row shows the result from the regressions without interaction as in Equation 4.3 whereas the
other rows are results from Equation 4.5.

by 2% to 5% and a reduction in sales by 1% to 5%. The construction sector is indeed

out of line: instead of a decrease in workers and sales as for all other industries, coef-

ficients are positive, albeit not statistically significant. Investment dynamics also show

more variation across industries: investment into land & buildings decreases by 4% to

29% while investment into machines, equipment, and vehicles increases by 2% to 30%.

Variation in coefficients for investment is comparatively large, which might be due to the

worse model fit compared to the other regressions. The productivity of capital and labor

is similarly affected by flash floods across industries. For labor productivity, the effect is

slightly negative between 0% and −6% and is not statistically significant in most cases.

The effect on capital productivity is positive throughout between 2% to 16%.

From a qualitative point of view, the differences across industries are not substantial for

any measure of firm performance, with the exception of the construction sector. The

construction sector is less negatively affected in terms of workers and sales but stands
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out for reducing land & building investments significantly. Note that the lower statistical

confidence in industry-specific effects in a model with interactions is mechanically driven

by a smaller group size. Also, there might be heterogeneity within the relatively large

industry categories. In summary, there is evidence for Hypothesis 5 that there is little

effect-heterogeneity across industries.

4.5.3 Robustness

While the lack of heterogeneity in the estimates with respect to an establishment’s in-

dustry is already an indicator of the effects’ robustness, I perform a number of further

checks. I start by relaxing the sample restriction and estimate the model in Equation 4.4

without removing either missing values for any of the other Yj or implausible observa-

tions. Table D.4 in Appendix D.2 reports the estimates of the variables of interest. The

main implications remain the same if we compare it to Table 4.4. Establishments that

have no obstacles with regard to financial access are not affected in terms of workers or

sales but see an increase in capital productivity by around 7%, whereas establishments

with obstacles to financial market access are negatively affected in terms of workers and

sales and also see a decrease of labor productivity by 4%.

I next check whether the results are driven by the flood definition of being 2 mm/h in

intensity above the respective IDF curve. More precisely, one might be cautious that the

average of 2.65 events over all establishments in the last fiscal year is producing some

false positives. Thus, I use a much more restrictive 3 mm/h above the threshold, such

that there is only an average of 1.38 events in the last fiscal year. I estimate the model in

Equation 4.4 and report the coefficient estimates for Floodt
j and Floodt

j × Access f
j in Table

4.5. Results remain similar though the coefficients of Floodt
j × Access f

j are more strongly

negative. This can be expected since the 3 mm/h minimum excess selects more extreme

and potentially hazardous events, compared to the 2 mm/h definition.

I next run a series of permutation tests for each dependent variable Yj. That is, I randomly

permute the order of the Yj relative to the rest of the data. Then, I estimate Equation 4.3
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TABLE 4.5: Regressions: Alternative Event Definition

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

2 mm/h Definition
Floodst

j 0.013 -0.020 -0.007 -0.077 0.143 0.008 0.071∗∗∗

(0.015) (0.012) (0.014) (0.046) (0.082) (0.015) (0.010)
Floodst

j × -0.034∗ -0.015 -0.049∗∗∗ -0.017 -0.044 -0.040∗∗∗ -0.022

Access f
j (0.018) (0.016) (0.013) (0.029) (0.072) (0.008) (0.014)

3 mm/h Definition
Floodst

j 0.030 -0.011 0.018 -0.101 0.155 0.018 0.043∗

(0.021) (0.018) (0.024) (0.056) (0.094) (0.019) (0.021)
Floodst

j × -0.057∗∗ -0.029 -0.087∗∗∗ -0.055 -0.076 -0.058∗∗∗ -0.013

Access f
j (0.025) (0.025) (0.009) (0.033) (0.130) (0.009) (0.016)

Notes: Table of regression results of the model in Equation 4.4 for event definition with 2
mm/h and 3 mm/h minimum excess intensity. Standard errors are in parentheses. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

TABLE 4.6: Regressions: P-Values from Permutation

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)
Floodst

j -0.006 -0.029 -0.034 -0.087 0.118 -0.015 0.058

p-value Reg. 0.657 0.037 0.015 0.042 0.156 0.195 0.003
p-value Perm. 0.390 0.127 0.171 0.033 0.073 0.378 0.140

Notes: Table of regression results of the model in Equation 4.3 with p-values from regression
estimation and permutation.

and obtain the coefficient β1 of Floodh
j .21 I repeat this process 10’000 times and calculate

the quantile of the coefficient estimate with un-permuted data relative to the 10’000 per-

mutations’ estimates as p-value. I repeat that process for all dependent variables Yj. Table

4.6 shows coefficients and p-values from the regression as in Table 4.3 together with the

p-values from permutation. The p-values from the permutation are, in most cases, larger

than their counterpart. This is due to the more conservative nature of permutation tests,

which make no assumptions about the distributional properties of the data. This is es-

pecially the case for the variables Worker, Sales, and Sales/Ecost, which have a p-value

21I choose the model in Equation 4.3 over the one in Equation 4.4 because the evaluation of the interac-
tion in a permutation setting to calculate p-values is not straightforward and requires treatment of joint-
significance.
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that is around 0.1 larger when calculated by permutation compared to the OLS regres-

sion. Thus, these estimates that do not differentiate between an establishment’s financial

access should be understood with some caution. In the case of investments, however, the

p-values by permutation are smaller. Histograms of the 10’000 permutation coefficient

estimates are shown in Figure D.1 in Appendix D.2.

4.6 Conclusion

I study the effect of extreme rainfall events that lead to flash floods on local economic ac-

tivity as measured by establishment performance in Central America and the Caribbean.

A major contribution is the physical definition of flash flood occurrence in a large region

across many countries in a consistent manner with satellite rainfall data. I find that one

such flash flood in a fiscal year decreases sales and the number of employees by around

3%, the investments into land and buildings by 8.3%, and increases capital productivity

by 6%. This indicates that a flash flood is a negative shock to an establishment, while the

increase in capital productivity could be due to mechanisms such as build-back-better or

creative destruction.

My results further suggest that obstacles to financial access are a major determinant of

impact. Establishments that report no obstacles to financial access do not see a reduction

in sales or workers but experience an increase in capital productivity, whereas establish-

ments that report obstacles to financial access see a decrease in sales of 4.8% and even a

decrease in labor productivity. Back-of-the-envelope calculations indicate that the yearly

flash flood impact on establishments is equal to a reduction in output of 8.745% due to

their high frequency. I find no evidence of heterogeneous effects across industries, with

the exception of the construction sector. Estimates on sales and employees are consis-

tently negative for all other sectors, with the exception of the construction sector that

sees a zero effect on these two measures.

The paper is the first that studies the establishment-level economic impacts of flash

floods. It does so with a physically derived index of the hazard for a region that is
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especially at risk (Pinos and Quesada-Román, 2021). There is both the contribution to

the literature in terms of the hazard methodology and the implication with regard to cli-

mate change adaptation. In that sense, the focus on countries in Central America and

the Caribbean is a double-edged sword. Since countries in that region would be affected

gravely by an increase in flash floods (Seneviratne et al., 2021), knowledge of adaptation

is crucial. Consistent data across several countries that provide geo-located information

on establishment performance is, however, scarce. The attempt to identify the effects of

flash floods with cross-sectional data from the Establishment Surveys is a difficult en-

deavor. Since the effects are likely dynamic in nature, these dynamics cannot be ade-

quately modeled with the data, which is the main weakness of this analysis. However,

by exploiting the timing of flash floods in the period prior to the last fiscal year, con-

cerns for endogeneity can be relaxed. In other words, since the occurrence of a flood in a

given year against the underlying risk of floods in that area is quasi-random, the identi-

fied effects serve as a credible baseline for policy recommendations. Nonetheless, future

studies should aim at obtaining panel data on establishment performance to identify the

dynamic effects.

My findings have two main implications for policy. First, flash floods negatively impact

establishment performance within the fiscal year of the flood. Evidence in the literature

for other hazards is somewhat mixed (Leiter, Oberhofer, and Raschky, 2009; Tanaka, 2015;

Elliott et al., 2019; Cole et al., 2019; Okazaki, Okubo, and Strobl, 2019; Zhou and Botzen,

2021). Spatial as well as temporal aggregation of the research design as well as the sever-

ity of the hazard and institutional context, play an important role in the outcome. A

warming and more humid climate will likely further increase the frequency and sever-

ity of flash floods in countries with an already high risk. Second, financial access is an

effective modulator of impact in the case of flash floods. Adequate financing opportuni-

ties appear to make establishments resilient to flash floods and can be part of the efforts

to decrease natural hazard vulnerability for economic development in Central America

and the Caribbean. This finding echoes Hallegatte et al. (2016) who advocate for better

financial inclusion to increase resilience and reduce the impacts of natural hazards in the
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light of climate change. Hence, the possibility of quickly refunding destroyed productive

capacity is a way to manage what cannot be avoided.
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Appendix A

Economic Damages due to Extreme

Precipitation during Tropical Storms:

Evidence from Jamaica

A.1 Panel Summary Statistics

TABLE A.1: Hurricane Michelle Parish Statistics

Damage Max. Rain Total Rain Max. Wind Population
M USD mm/h mm km/h 1’000

Clarendon 2.38 3.39 9.49 61.02 245.10
Hanover 1.51 4.98 17.93 69.56 69.53
Manchester 1.36 3.47 10.73 61.59 189.80
Portland 9.41 26.24 70.16 52.10 81.74
St. Andrew & Kingston 20.49 7.90 22.79 58.99 662.43
St. Ann 3.20 8.82 26.04 63.35 172.36
St. Catherine 3.91 3.39 8.95 59.95 516.22
St. Elizabeth 4.86 5.38 13.95 64.62 150.21
St. James 2.48 2.80 12.55 68.24 93.90
St. Mary 11.79 17.06 51.19 60.61 113.61
St. Thomas 2.47 6.85 27.72 50.05 93.90
Trelawny 1.62 5.28 14.56 66.79 75.16
Westmoreland 1.77 5.24 17.14 68.67 144.10

Notes: Parish level data for Hurricane Michelle.
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TABLE A.2: Hurricane Dean Parish Statistics

Damage Max. Rain Total Rain Max. Wind Population
M USD mm/h mm km/h 1’000

Clarendon 63.31 20.65 63.11 212.31 245.10
Hanover 10.61 12.15 37.07 184.64 69.53
Manchester 59.98 22.29 64.19 213.99 189.80
Portland 6.69 18.88 46.15 173.90 81.74
St. Andrew & Kingston 49.05 18.45 52.94 196.53 662.43
St. Ann 18.91 16.24 43.06 187.85 172.36
St. Catherine 33.34 20.93 58.62 200.10 516.22
St. Elizabeth 36.22 12.16 35.64 218.23 150.21
St. James 18.89 10.84 29.67 196.60 93.90
St. Mary 22.87 21.94 47.19 179.63 113.61
St. Thomas 51.80 26.71 59.31 184.71 93.90
Trelawny 13.05 20.49 49.72 192.85 75.16
Westmoreland 31.19 16.61 43.22 196.08 144.10

Notes: Parish level data for Hurricane Dean.
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TABLE A.3: Storm Gustav Parish Statistics

Damage Max. Rain Total Rain Max. Wind Population
M USD mm/h mm km/h 1’000

Clarendon 19.22 13.16 66.25 71.24 245.10
Hanover 6.43 9.13 50.90 71.23 69.53
Manchester 3.43 11.88 57.70 74.06 189.80
Portland 3.55 24.13 79.69 71.88 81.74
St. Andrew & Kingston 57.04 13.67 80.60 70.99 662.43
St. Ann 2.41 14.32 58.53 71.10 172.36
St. Catherine 34.39 17.18 67.66 71.08 516.22
St. Elizabeth 5.06 7.29 45.06 75.84 150.21
St. James 8.39 9.56 41.65 72.37 93.90
St. Mary 47.06 14.33 88.08 71.63 113.61
St. Thomas 24.80 31.49 82.28 70.88 93.90
Trelawny 1.66 7.88 45.39 74.45 75.16
Westmoreland 40.07 7.77 45.54 71.05 144.10

Notes: Parish level data for Tropical Storm Gustav.

TABLE A.4: Storm Nicole Parish Statistics

Damage Max. Rain Total Rain Max. Wind Population
M USD mm/h mm km/h 1’000

Clarendon 23.60 44.62 120.05 18.71 245.10
Hanover 9.03 22.11 82.52 21.26 69.53
Manchester 14.39 33.98 110.84 19.11 189.80
Portland 35.85 23.24 71.27 13.16 81.74
St. Andrew & Kingston 38.91 48.35 100.30 17.24 662.43
St. Ann 16.41 51.84 117.43 18.97 172.36
St. Catherine 24.57 56.75 123.19 17.83 516.22
St. Elizabeth 28.48 51.61 156.35 19.60 150.21
St. James 16.48 34.86 120.90 20.17 93.90
St. Mary 26.81 24.06 64.41 18.71 113.61
St. Thomas 16.27 21.86 72.53 11.30 93.90
Trelawny 8.21 77.84 197.15 20.15 75.16
Westmoreland 25.33 35.25 130.96 21.08 144.10

Notes: Parish level data for Tropical Storm Nicole.
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TABLE A.5: Hurricane Sandy Parish Statistics

Damage Max. Rain Total Rain Max. Wind Population
M USD mm/h mm km/h 1’000

Clarendon 3.25 12.95 85.69 87.72 245.10
Hanover 0.57 4.50 12.23 63.74 69.53
Manchester 0.68 18.21 96.09 78.98 189.80
Portland 0.20 52.07 169.02 96.25 81.74
St. Andrew & Kingston 10.74 38.78 133.27 95.92 662.43
St. Ann 4.47 30.89 102.31 90.88 172.36
St. Catherine 26.85 27.99 107.04 92.45 516.22
St. Elizabeth 0.23 13.51 59.39 72.04 150.21
St. James 1.82 8.38 26.90 71.28 93.90
St. Mary 30.84 51.34 130.15 101.62 113.61
St. Thomas 26.85 17.54 120.78 93.75 93.90
Trelawny 1.41 17.21 59.93 75.13 75.16
Westmoreland 32.90 5.06 12.92 63.57 144.10

Notes: Parish level data for Hurricane Sandy.
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A.2 Wind Field Model

In terms of implementing Equation (1.1), one should note that the maximum sustained

wind velocity anywhere in the storm Vmst is given by the storm track data, the forward

velocity of the storm Vhst can be directly calculated by following the storm’s movements

between successive locations along its track, and the radial distance Rcst and the clock-

wise angle Tcst are calculated relative to the point of interest c. All other parameters have

to be estimated or values assumed. For instance, we have no information on the gust

wind factor G, but several studies (see e.g. Paulsen and Schroeder, 2005) have measured

G to be around 1.5, and we also use this value. For S we follow Boose, Serrano, and

Foster (2004) and assume it to be 1. While we also do not know the surface friction to de-

termine D directly, Vickery, Masters, Powell, and Wadhera (2009) note that in open water,

the reduction factor is about 0.7 and reduces by 14% on the coast and 28% further 50 km

inland. We thus adopt a reduction factor that decreases linearly within this range as we

consider points c further inland from the coast. Finally, to determine the shape of the

wind profile curve B, we employ the approximation method of Holland (1980) where B

is assumed to be in the range of 1.5− 2.5 and negatively correlated with central pressure.

We use the parametric model estimated by Xiao, Xiao, and Duan (2009) to estimate the

radius of maximum winds Rmst.
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A.3 PPP Parameter Estimates

FIGURE A.1: Location Parameters
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Notes: Boxplot of the location parameters as outlined in Equations 1.10 and 1.11.
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FIGURE A.2: Location Parameters
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Notes: Boxplot of the scale parameters as outlined in Equations 1.10 and 1.11.
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Appendix B

Flash Flood Detection via

Copula-based IDF Curves: Evidence

from Jamaica

B.1 Event Definition

Depending on the IETD, the statistical properties of the events change. Values of IETD

between 4h and 24h are considered. Figure B.1 shows how the average intensity and

duration changes for the flash flood event data with different values of the IETD. There

is a relatively sudden drop in mean intensity for IETDs above 21 hours. Also, the mean

duration increases one to one up until an IETD of 12 hours after which the slope be-

comes flatter. Both indicate that the IETD above 12 and 21 hours results in imprecisely

delimited events with regard to duration and intensity, respectively. Figure B.2 shows the

probability density function of duration and intensity for the confirmed flash flood event

data (green) and maximum rainfall events (blue). In order to apply the two-sample ap-

proach, they should follow the same marginal distribution. The maximum rainfall events

are more intense but shorter compared to the confirmed flash flood events. The resem-

blance between duration increases with higher IETD while there is no clear pattern for

intensity. In conclusion, an IETD of 12 hours is best suitable for the data at hand. Note
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that in section 2.4.3, where marginals are estimated for the conditional copula model-

ing, Kolmogorov-Smirnov tests indicate that the marginal distributions of the maximum

rainfall event data are suitable for the smaller confirmed events data as well.

FIGURE B.1: Intensity and Duration for Different IETD
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Notes: Mean event intensity and duration for different values of IETD.
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FIGURE B.2: Marginal Distribution for Different IETD
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(C) Duration IETD = 12 h
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(D) Intensity IETD = 12 h
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(E) Duration IETD = 24 h
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Notes: Probability density plots for duration and intensity for an IETD of 6 h, 12h, and 24 h.
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B.2 Summary Statistics

The event data’s summary statistics are given in Table B.1.

TABLE B.1: Summary Statistics

Maximum Yearly Events
N Mean St. Dev. Min Max

Total Rainfall 1,120 47.542 24.522 6.705 148.485
Event Duration 1,120 9.031 6.811 0.500 36.000
Rainfall Intensity 1,120 9.927 12.089 0.905 120.000

Confirmed flash flood Events
N Mean St. Dev. Min Max

Total Rainfall 93 73.677 53.283 12.120 240.100
Event Duration 93 11.419 8.325 17.000 32.000
Rainfall Intensity 93 5.169 7.271 0.962 54.760

Notes: Summary table of events with IETD of 12 hours for all locations with
a confirmed flash flood event.
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Appendix C

The Economic Dynamics after a

Flood: Evidence from Satellite Data

C.1 Wind Field Model

In terms of implementing Equation 3.1 one should note that the maximum sustained

wind velocity anywhere in the storm Vmst is given by the storm track data, the forward

velocity of the storm Vhst can be directly calculated by following the storm’s movements

between successive locations along its track, the radial distance Rcst and the clockwise

angle Tcst which are calculated relative to the point of interest c. All other parameters

have to be estimated or values assumed. For instance, we have no information on the

gust wind factor G, but a number of studies (see e.g. Paulsen and Schroeder, 2005) have

measured G to be around 1.5, and I also use this value. For S, I follow Boose, Serrano,

and Foster (2004) and assume it to be 1. While we also do not know the surface friction

to determine D directly, Vickery, Masters, Powell, and Wadhera (2009) note that in open

water, the reduction factor is about 0.7 and reduces by 14% on the coast and 28% further

50 km inland. I thus adopt a reduction factor that decreases linearly within this range as

we consider points c further inland from the coast. Finally, to determine the shape of the

wind profile curve B, I employ the approximation method of Holland (1980) where B is

negatively correlated with central pressure and falls in the range of 1.5− 2.5 (Xiao et al.,
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2011). I use the parametric non-basin-specific model estimated by Vickery and Wadhera

(2008) to calculate the radius of maximum winds Rmst.
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Appendix D

Flash Flood Hazard: an Economic

Analysis for Central America and the

Caribbean
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D.1 Regression Tables

TABLE D.1: Regressions: Establishment Impacts

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j -0.006 -0.029∗∗ -0.034∗∗ -0.087∗∗ 0.118 -0.015 0.058∗∗∗

(0.012) (0.011) (0.011) (0.037) (0.076) (0.011) (0.014)
Floodsh

j 0.004∗ 0.003 0.007∗∗ 0.010 -0.021 0.001 -0.006

(0.002) (0.002) (0.002) (0.007) (0.025) (0.002) (0.003)
Access f

j -0.150∗ -0.021 -0.170 -0.143 0.032 -0.132∗∗ -0.087∗∗∗

(0.070) (0.045) (0.095) (0.133) (0.304) (0.053) (0.004)
Firm: Small 0.429 0.641∗∗∗ 1.07∗ -0.093 1.16∗∗∗ -0.043 0.709

(0.436) (0.131) (0.532) (0.148) (0.175) (0.294) (0.425)
Firm: Medium 0.651 1.90∗∗∗ 2.55∗∗∗ 0.987∗∗∗ 1.39∗∗∗ 0.121 0.769

(0.430) (0.208) (0.567) (0.281) (0.189) (0.286) (0.432)
Firm: Large 1.08∗∗ 3.45∗∗∗ 4.53∗∗∗ 2.32∗∗∗ 2.91∗∗∗ 0.272 0.834∗

(0.442) (0.324) (0.656) (0.427) (0.638) (0.275) (0.419)
Firm: V. Large 1.29∗∗ 4.49∗∗∗ 5.78∗∗∗ 3.35∗∗∗ 3.04∗∗∗ 0.396 0.845

(0.442) (0.259) (0.622) (0.443) (0.375) (0.287) (0.475)
% Public 0.003 0.007 0.010 0.023 0.034 -0.0002 -0.019∗∗∗

(0.004) (0.004) (0.007) (0.019) (0.043) (0.007) (0.004)
Firm Age 0.005∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.009 -0.006 0.0008 -0.0009

(0.002) (0.001) (0.003) (0.007) (0.010) (0.0006) (0.003)
% Direct Exports 0.005∗∗ 0.005∗∗∗ 0.010∗∗∗ 0.008 0.006 0.003∗∗ 0.0008

(0.002) (0.001) (0.002) (0.006) (0.008) (0.001) (0.002)
Size of City 0.057∗ 0.013 0.070∗∗ 0.063 -0.078 -0.003 -0.0005

(0.026) (0.012) (0.025) (0.073) (0.104) (0.025) (0.016)
Observations 1,725 1,725 1,725 1,725 1,725 1,722 1,719
R2 0.40 0.83 0.71 0.28 0.08 0.93 0.83
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.3. Standard errors are in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



D.1. Regression Tables 133

TABLE D.2: Regressions: Financial Access

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j 0.013 -0.020 -0.007 -0.077 0.143 0.008 0.071∗∗∗

(0.015) (0.012) (0.014) (0.046) (0.082) (0.015) (0.010)
Floodst

j × -0.034∗ -0.015 -0.049∗∗∗ -0.017 -0.044 -0.040∗∗∗ -0.022

Access f
j (0.018) (0.016) (0.013) (0.029) (0.072) (0.008) (0.014)

Access f
j -0.060 0.019 -0.041 -0.097 0.148 -0.024 -0.028

(0.085) (0.063) (0.088) (0.144) (0.361) (0.047) (0.046)
Floodsh

j 0.004∗∗ 0.003 0.007∗ 0.010 -0.021 0.0009 -0.006∗

(0.002) (0.002) (0.003) (0.007) (0.025) (0.004) (0.003)
Firm: Small 0.428 0.641∗∗∗ 1.07∗ -0.094 1.16∗∗∗ -0.045 0.707

(0.450) (0.133) (0.551) (0.152) (0.177) (0.308) (0.435)
Firm: Medium 0.647 1.89∗∗∗ 2.54∗∗∗ 0.985∗∗∗ 1.39∗∗∗ 0.116 0.766

(0.446) (0.210) (0.589) (0.286) (0.174) (0.303) (0.444)
Firm: Large 1.07∗∗ 3.45∗∗∗ 4.52∗∗∗ 2.32∗∗∗ 2.90∗∗∗ 0.263 0.830∗

(0.456) (0.325) (0.674) (0.428) (0.631) (0.292) (0.430)
Firm: V. Large 1.28∗∗ 4.49∗∗∗ 5.77∗∗∗ 3.34∗∗∗ 3.03∗∗∗ 0.390 0.842

(0.458) (0.260) (0.641) (0.447) (0.356) (0.305) (0.485)
% Public 0.002 0.007 0.009 0.023 0.033 -0.0008 -0.019∗∗∗

(0.004) (0.004) (0.007) (0.023) (0.043) (0.009) (0.005)
Firm Age 0.005∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.009 -0.006 0.0008 -0.0009

(0.002) (0.002) (0.003) (0.006) (0.010) (0.003) (0.003)
% Direct Exports 0.005∗∗ 0.005∗∗ 0.010∗∗∗ 0.008 0.006 0.003 0.0008

(0.002) (0.001) (0.002) (0.007) (0.011) (0.003) (0.002)
Size of City 0.058∗ 0.013 0.072∗∗ 0.063 -0.077 -0.002 0.0002

(0.026) (0.012) (0.025) (0.077) (0.106) (0.028) (0.018)
Observations 1,883 1,883 1,883 1,883 1,883 1,880 1,877
R2 0.41 0.82 0.71 0.29 0.08 0.92 0.83
Within R2 0.13 0.80 0.66 0.20 0.03 0.04 0.009
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.4 with the interaction for
financial access. Standard errors are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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TABLE D.3: Regressions: Industry Heterogeneity

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j × -0.010 -0.029∗ -0.040∗∗∗ -0.035 0.259 0.0007 0.021

Chemicals/Plastic (0.016) (0.014) (0.009) (0.028) (0.165) (0.017) (0.017)
Floodst

j × -0.042 0.056 0.014 -0.341∗∗∗ 0.121 -0.022 0.062∗∗

Construction (0.028) (0.037) (0.041) (0.062) (0.168) (0.032) (0.019)
Floodst

j ×Food 0.005 -0.024∗∗ -0.018 -0.119∗∗ 0.139∗∗ 0.011 0.077∗∗

(0.022) (0.010) (0.026) (0.039) (0.043) (0.024) (0.026)
Floodst

j ×Metals 0.004 -0.048∗∗ -0.044 -0.102 0.014 -0.033∗∗ 0.046

& Minerals (0.026) (0.020) (0.027) (0.099) (0.063) (0.013) (0.039)
Floodst

j × Textile -0.018 -0.032∗ -0.050∗∗ -0.058 0.067 -0.015 0.039∗

&Garments (0.014) (0.014) (0.019) (0.044) (0.104) (0.016) (0.018)
Floodst

j × Other 0.024 -0.036∗ -0.012 -0.149∗∗∗ 0.209∗∗∗ 0.015 0.146∗∗∗

Manufacturing (0.018) (0.016) (0.017) (0.044) (0.058) (0.026) (0.022)
Floodst

j × Other -0.027 -0.016 -0.043 -0.061 0.024 -0.063∗ 0.038

(0.026) (0.010) (0.025) (0.042) (0.090) (0.031) (0.045)
Floodsh

j 0.005∗∗ 0.003 0.007∗∗∗ 0.010 -0.019 0.002 -0.006

(0.002) (0.002) (0.002) (0.010) (0.021) (0.003) (0.005)
Access f

j -0.150∗ -0.019 -0.170 -0.148 0.031 -0.132∗∗ -0.087∗∗

(0.072) (0.042) (0.098) (0.137) (0.300) (0.055) (0.035)
Firm: Small 0.428 0.643∗∗∗ 1.07∗ -0.082 1.18∗∗∗ -0.030 0.694

(0.427) (0.131) (0.525) (0.156) (0.170) (0.271) (0.417)
Firm: Medium 0.645 1.90∗∗∗ 2.55∗∗∗ 0.994∗∗∗ 1.42∗∗∗ 0.132 0.744

(0.420) (0.207) (0.561) (0.276) (0.200) (0.256) (0.420)
Firm: Large 1.08∗∗ 3.45∗∗∗ 4.53∗∗∗ 2.34∗∗∗ 2.93∗∗∗ 0.283 0.813∗

(0.434) (0.324) (0.652) (0.420) (0.590) (0.247) (0.411)
Firm: V. Large 1.29∗∗ 4.49∗∗∗ 5.78∗∗∗ 3.34∗∗∗ 3.09∗∗∗ 0.416 0.841

(0.435) (0.258) (0.620) (0.431) (0.360) (0.259) (0.467)
% Public 0.003 0.007 0.010 0.022 0.030 -0.0005 -0.018

(0.004) (0.005) (0.006) (0.022) (0.040) (0.010) (0.010)
Firm Age 0.005∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.009 -0.006 0.0007 -0.0010

(0.002) (0.002) (0.003) (0.008) (0.012) (0.003) (0.005)
% Direct Exports 0.005∗ 0.005∗∗∗ 0.010∗∗∗ 0.009 0.006 0.003 0.0007

(0.002) (0.001) (0.002) (0.006) (0.010) (0.003) (0.004)
Size of City 0.058∗∗ 0.014 0.071∗∗ 0.059 -0.079 -0.004 0.003

(0.025) (0.012) (0.026) (0.078) (0.116) (0.028) (0.024)
Observations 1,883 1,883 1,883 1,883 1,883 1,880 1,877
R2 0.41 0.82 0.71 0.30 0.08 0.92 0.83
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.5 with the interactions for in-
dustry. Standard errors are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.2 Robustness

TABLE D.4: Regressions: All Observations

In log(·) Sales/Worker Worker Sales InvL&B InvM&E Sales/Lcost Sales/Ecost

(1) (2) (3) (4) (5) (6) (7)

Floodst
j 0.030 -0.004 0.028 -0.098∗∗ 0.205 0.011 0.073∗∗∗

(0.022) (0.010) (0.029) (0.034) (0.133) (0.012) (0.016)
Floodst

j × Access f
j -0.018 -0.017∗ -0.034∗ 0.027 -0.060 -0.040∗∗∗ -0.021

(0.019) (0.007) (0.017) (0.027) (0.060) (0.008) (0.014)
Floodsh

j 5.21× 10−5 -0.0001 -0.0001 0.004 -0.023 0.003∗ -0.005

(0.002) (0.001) (0.002) (0.007) (0.023) (0.002) (0.008)
Access f

j -0.034 0.014 -0.012 -0.281∗ -0.025 -0.009 -0.013

(0.055) (0.033) (0.036) (0.146) (0.310) (0.049) (0.027)
Observations 5,313 6,230 5,323 2,654 2,725 4,904 4,291
R2 0.40 0.82 0.66 0.28 0.15 0.90 0.79
Fixed Effects:
Industry ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table of regression results of the model in Equation 4.4 with all observations. The
table is without coefficients of the control variables Xj for brevity. Standard errors are in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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FIGURE D.1: Histograms of Coefficients from Permutation
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Notes: Histograms of the coefficient estimates with random permutation in Yj. The red line indi-
cates the estimate with unpermuted data. The regression model estimated is in Equation 4.3.
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