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This Master Thesis project is related to a data set of microscope images whose pur-
pose is to analyze senescence. Senescence is a dynamic process whereby cells stop
to duplicate and change their morphology.
The results here described are a őrst attempt to classify cells by their morphology,
in order to őnd a method to detect the cluster of senescent cells.
The microscope images are őrst of all preprocessed and the objects are properly
segmented. Then some features are extracted for each object, namely "area", "cir-
cularity", "eccentricity" and "convexity defects". With these features, an Agglom-
erative Hierarchical Clustering is applied with different methods. It results that, on
the basis of the extracted features, the cells in 24 hours can be classiőed in 4 clusters
with diffent morphological characteristics.
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Introduction

The Master thesis project here presented is a preliminary analysis useful to develop

a tool for the recognition of a cluster of senescent cells among a sample of cells in a

cultured well plate.

Cellular senescence is a dynamic and heterogeneous process whereby cells stop

to duplicate and change their morphology. An univocal method to detect senescent

cells, analyzing just their shape and properties, does not exist yet and also it is not

very clear how they are involved in processes such tumor arrest and aging1. For

this reason, the only not invasive way to distinguish a senescent cell from a living

one, is to follow its trajectory and to check if it duplicates or not; what could be

useful instead is a method that would allow to detect the cluster of senescent cells

collecting appropriate features, of morphological and kinematic type, in order to

study possible collective behaviours and contagion effects.

The data set available is provided by Fondazione Ri.MED2 and it consists of a

time sequence of microscope images with which it is possible to follow the evolution

of the cells over time. The main focus of this thesis work was that of recognizing

cells in the different images and trying a tentative classiőcation of them. Ideally

such classiőcation process would help in distinguishing senescent cells from normal

ones. A őrst attempt of classiőcation of the objects in the images is based on their

morphological features. Classical clustering methods3 therefore are used in order

to őnd and characterize the objects observed in the images and to analyze how

the behaviour of the cells inplanted in the culture changes with different levels of

treatment that stimulates senescence. Other methodologies are in principle better

suited for the classiőcation purposes mentioned above. In fact, a machine learning

approach could be used for cell recognition. However, such an approach would need

the availability of data set much larger than the one considered. Larger datasets

would allow to split it into a training and test dataset, and test the machine learning
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protocol after having correctly classiőed cells in the training set with the help of bi-

ologists. Another approach would be that of using the support of ŕuorescence-based

assays, that would allow to label the objects in the images, and recognize senescent

cells based on their response to special biomarkers4. Due to data availability, such

approaches are left for future studies.

The structure of the thesis can be summarized as follows: in the őrst chapter the

data set is introduced and a description of the steps followed to detect the objects

in the microscope images is given. This őrst section of pre-processing and image

analysis was necessary to recognize, segment cells properly in each image and get

an idea of the presence of systematic errors in the data set (movement of the lenses

during the acquisition, light sources...); in the second chapter the őrst approach of

classiőcation is applied, using Agglomerative Hierarchical Clustering with different

linkages5, collecting the objects in the images all together and the clusters obtained

are then interpreted, analyzing the evolution of the percentages of elements in each

cluster over time; in the third chapter a characterization of the clusters is performed,

looking if there are and which are the over-expressed features6. Using these infor-

mation an alternative approach to őnd the groups of cells is carried out, performing

the clustering algorithm separately image by image so that it’s possible to make a

comparison of the two different approaches.

The thesis work has been conducted during the Double Degree Programme with

Univerisity of Turku and Università degli Studi di Palermo in close collaboration

with the Advanced Data Analysis research group at Fondazione Ri.MED, led by Dr.

Claudia Coronnello and with the High-throughput Screening Laboratory, led by Dr.

Chiara Cipollina, where the experiments were carried out. They helped in giving

the right biological interpretation of the results obtained during the investigations

as well as in calibrating the use of the right method of analysis of the system.
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1 Introduction to the Data Set and Cell Detection

The purpose of this őrst chapter is to describe the data set, which is composed by

microscope images of cells in culture medium. The samples are analyzed in őve

different conditions, depending on the concentration of Hydrogen Peroxide (H2O2),

which is added to induce senescence. A description of the steps used for cell detection

in the images is also given and some ensemble trends are then analyzed.

1.1 Microscope Images Data Set

The work done in this thesis is based on the analysis of a data set of microscope

images of cell culture; cell culture is an artiőcial technology which allows the growth

of the cells in a controlled environment, with speciőc nutrients. The culture has a

total duration of three days and the images have been acquired with a time step of

one hour, whereby it is possible to follow the evolution of the cells for 72 hours.

The cells of the images are of HEK 293T type, this means that they are taken

from the human embryonic kidney. The cells are plated in 96-well plates (15X103

cells/well) and incubated in the Incucyte S37 at 37°C and 5% of CO2. The culture

medium where to seed the cells is prepared with DMEM (Dulbecco’s Modiőed Eagle

Medium), FBS (Fetal Bovine Serum) and penicillin-strepromycin; furthermore H2O2

in the treated cases. The images dimensions are 1040X1408 pixel and they where

acquired by the instrument with an image resolution of 0.62 µm/pixel.

Only 15 wells of the plate have been used for the culture, which are őve columns,

namely 2-3-4-5-6 and three rows B, C, D. A schematic representation can be seen

in Fig.1.

The dataset of the images is divided in non-treated cells, which are the samples in

column 2, and treated-cells, where the environment was serial diluted with different
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Figure 1: Scheme of the well plate used for the cell culture. Only 15 wells have been used,

columns 2-3-4-5-6 and three rows B, C, D. Each column corresponds to a different value of H2O2

concentration.

concentration of H2O2 with these values:

• 250 µM (high level concentration) ś column 3;

• 125 µM (medium level concentration) -column 4;

• 62 µM (medium level concentration) - column 5;

• 31 µM (low level concentration) - column 6.

At the beginning (time 00h00m), after that the cells are seeded in the wells, they

have a spherical shape with a diameter typically between 11 and 15 µm and they

are not attached at the bottom. Fig.2 is the image of a non-treated sample at time

00h00m.
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Figure 2: Image of a sample of cells in a non-treated environment at time 00h00m, it corresponds

to the well plate B2. The cells are singular, well recognizable and have a spherical shape.

When the cells attach at the bottom, they change size and shape, becoming

larger, and if they are in a non-treated environment after 15-20 hours they start to

replicate exponentially, so that the initial number doubles in around 34-36 hours8,

and they keep splitting until they recover the entire space of the well. Fig.3 provides

an example of how the same sample shown before looks like after 72 hours.

Figure 3: Image of a sample of cells in a non-treated environment at the time 72h00m, it

corresponds to the well plate B2. The cells divided exponentially until they cover the whole plate

after 72h00m. It’s possible also to see that they overlap.
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On the contrary, if cells are in an environment treated with H2O2 they do not

replicate anymore, becoming senescent which impairs their ability to split and thus

they are not able to cover all the space anymore. It is possible to see in Fig.4 how

the sample treated with the maximum concentration of H2O2 looks like after 72

hours.

Figure 4: Image of a sample of cells in a treated environment with the maximum concentration

of H2O2 at the time 72h00m, it corresponds to the well plate B3. The cells do not recover the

whole space which indicates that most of them became senescent and thus could not divide.

1.2 Cell Detection

In order to őnd the properties of living and senescent cells, it is necessary őrst of

all to detect the cells in the images. The problem consists in segmenting them9,

because when they start to split they also can overlap and form agglomerations,

and distinguishing them from debris.

For this purpose the protocol of the software ImageJ 10 is automatize with the

Python package scipy.ndimage11. The algorithm works in this way: since the im-

ages are in grayscale, őrst of all a value of gray as threshold is computed, and to do

this the Otsu Thresholding12 method included in OpenCv 13 Python package is used,

where "a value of the threshold is not chosen but is determined automatically. A
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bimodal image (two distinct image values) is considered. The histogram generated

contains two peaks. So, a generic condition would be to choose a threshold value

that lies in the middle of both the histogram peak values"14. Then a gaussian őlter

is applied and the threshold is again computed; at this point a mask which converts

the values over the threshold to black and the values under it to white is applied

and the inverted mask (black and white inverted) is used for the next step. The

following images in Fig.5 illustrate the process.

(a) (b) (c)

Figure 5: Outputs of the algorithm steps for cells detection: (a) original image, (b) thresholded

image with Otsu thresholding method and with gaussian őlter applied, (c) masked image (inverted

mask). The analyzed image is always that of the well plate B2 at time 00h00m.

At this point, it is necessary to separate the cells which in the masked image

appear attached; to do this the watershed transformation method15 is used for image

segmentation from the Python package skimage.segmentation16.
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Selecting properly the parameters, the segmented image is obtained as shown in

Fig.6.

Figure 6: The result of watershed transformation method; most parts of the cells are now properly

segmented.

To detect cells on the images it is also necessary to discard debris, small particles

present on the background.

The area distribution of the objects detected until now is calculated; it results, as

expected, that the areas follow a bimodal distribution where the őrst peak is referred

to the mean size of the debris and the second one to the mean size of the cells. For

this reason the particles whose area is under the threshold value of A = 88.0µm2

are disregarded and only the particles with bigger size are considered as cells. At

the end it is possible to detect the cells and the coordinates of their center of mass

(Fig.8).



9

Figure 7: Fitting of the bimodal distribution of the areas. The areas under A = 88.0µm2, which

are referred to debris, are disregarded.

Figure 8: Final result of the cell detection; in the őgure all the centers of mass detected are

pointed out with a red cross

1.3 Ensemble Trends of the Identified Cell Samples

Some trends of the sets of cells are now analyzed over time. First of all, the trend of

the number of cells over time is studied, for different cases: non-treated cells, cells

treated with low level of H2O2, cells treated with medium level and with high level

of H2O2; contextually also the trend of the median of areas of the whole cell sample

over time is analyzed in order to őnd if there are some correlations. The following

őgures show the results.
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Figure 9: Trends of sample of cells in culture with no treatment (well plate B2).

(a)

(b)

(c)

Figure 10: Trends of cells in well plates (a) B6-treated with 31µM concentration of H2O2, (b)

B5-treated with 62µM concentration of H2O2, (c) B3-treated with 125µM concentration of H2O2.
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Figure 11: Trends of the sample of cells with maximum value of concentration of H2O2.

In Fig.9, i.e. when the sample is not treated at all, the cells around 10-20 hours

enlarge (the median of areas arises indeed) and then they start to divide, as it is

possible to see after 20h the number of cells increases. After 36 hours, as expected,

the number doubles. After 72 hours the őnal number has almost quadrupled in

respect to the beginning. The cells would keep dividing until the whole space is

covered, but since in this case after 72h they still have space, the number simply

increases until the end. In the third őgure (median of areas as a function of number

of cells) it is possible to see that the highest values of area median is recorded when

the number of cells is still small, while when the number increases the medians

become lower since the cells overlap and do not allow to the near ones to enlarge

further.

The situation is different when they are treated; in Fig.10 the samples are treated

with low and medium levels of H2O2 and the number of cells starts to increase later,

after around 30 hours. The cells divide up to a certain point from which onwards

the number is constant. This happens after around 50-60 hours probably induced by

the treatment. An explanation can be that the number of new cells is compensated

by the dying ones. In any case, the total number of cells at the end is lower than in

the non-treated sample.

In Fig.11, when the cells are treated with the maximum level of H2O2, the number
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keeps decreasing since a lot of cells die, their size reduces and they are detected by

the algorithm as debris and discarded from the detection. After 40 hours the still

living ones are able to divide and the number increases.

At this point it is possible to compare the growth rate of the number of cells in

the growing-regime for all the conőgurations. To do this, each set of data is divided

by the number of cells at the őrst hour.

Since the trend should grow as 2n, the data are rescaled in log2-scale and the slopes

of the lines are compared. As it is observed, the highest slope is recorded for the

sample without treatment, since the cells are more vital and they keep splitting very

fast, while the lower the value of the slope, the higher the level of treatment and the

lowest value of slope corresponds to the highest level of treatment.

Figure 12: Comparison of the growing-regime trend for all the conőgurations; as expected, the

highest slope is recorded for the conőguration without treatment (green line) and the lowest for

that one with highest level of treatment (black line).
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Looking again at the Fig.9-11 in all the őve different cases it is possible to observe

how the values of median decrease as the number of cells increases. This probably

means that the cells in culture are smaller when they are a lot because they occupy

more space and cannot enlarge further. When then number of cells is small instead,

the values of median of areas seem to have two different trends; the smaller values

probably refer to the őrst hours, when the cells are just seeded and they are few and

medium-sized, the larger values instead refer to the range of hours 10-20, when the

cells are still few but have a lot of space at disposition so their size becomes larger.

Even if the median trends of areas appear quite smooth, taking a look at the standard

deviations Fig.13, it is possible to notice that all the samples at every hour are very

heterogeneous.

(a) (b)

(c)

Figure 13: Plots of area median over time with the standard deviations, for three different

conőgurations: (a) no treatment, (b) 62 µM-medium level of treatment and (c) 250 µM-medium

level of treatment.
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These high values of standard deviations are probably due to the fact that the

segmentation does not work properly image by image and agglomeration are then

always present and they inŕuence the distribution.

By further analyzing the images hour by hour it would be expected to őnd

different types of cells with different sizes. Cell sizes, indeed, will be used in the

next section as a feature to perform clustering and classify the objects in the images.

It is possible to see that for the sample with no and medium level of treatment, the

standard deviation reduces over time, and this is because the cells recover almost

all the space of the well plate and they all become smaller, while in the case of high

level of treatment, the standard deviation values increase when the őrst phase is

overcome and the still living cells start to split. In any case, the values stay high

and this means that the sample is heterogenous and it would be expected to őnd

objects of different size almost at every hour.
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2 Agglomerative Hierarchical Clustering for Objects

Classification

Different unsupervised approaches of clustering are now performed in order to clas-

sify the objects in each image, according to some morphological features.

In the őrst method, all the objects in all the conőgurations (treatments) from

time 00h00m to time 23h00m on the well plate B are grouped; this means that the

clustering algorithm is performed on the objects present on 120 images, which are

in total 77702. For all the objects some features are extracted, which will be used

to compute the euclidean distances among them and an Agglomerative Hierarchical

Clustering (AHC)5 is applied, with different linkage methods, namely Ward17 and

Average Linkage Cluster Analysis18. The aim is to őnd a classiőcation of the cells

based on the selected set of features.

Three score evaluation criteria are used to őnd the best number of clusters and

then the model which returns the possible classiőcation of the objects is applied. In

this way it is possible to visualize the objects of each cluster image by image and

study how the percentage of elements in each cluster evolves during the period of

time considered.

2.1 Agglomerative Hierarchical Clustering

The objects expected to őnd in the images are of different types: debris, living cells

which are able to split, dead and senescent cells. Since there is no an univocal

method to recognize which type the cell belongs to, just looking at its morphology1,

it is not possible to perform any supervised approach. Furthermore, the number of

objects available in the images is not sufficient to split the data set in a training and

test set for machine learning techniques.
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For these reasons the decision was to apply an unsupervised classiőcation ap-

proach on the unlabeled data and to perform Agglomerative Hierarchical Clustering

(AHC), in order to detect the possible clusters of objects.

The algorithm used from the Scikit-Learn19 python package can be resumed in

these following steps20:

1. at the beginning each point is considered as an independent entity, so the total

number of clusters is equal to N, which is the total number of objects;

2. the two closest data points are merged in one cluster, so the total number of

resulting clusters is N-1;

3. the two closest clusters are merged in an unique cluster, in this way the total

number of clusters is N-2;

4. the steps are repeated until the set of data is divided in the number of clusters

chosen as an input.

The way to deőne two points and clusters as the "closest" depends on the choose of

the metric and the linkage, respectively.

The decision was to implement the algorithm selecting the Euclidean metric, which

works well for low dimension21. The euclidean distances are indeed computed after

that some proper features of the objects are extracted which, as it will be explained

in the next section, are four for each of them; this means that each object is charac-

terized by a vector of four features, that are used to deőne objects as closest. The

AHC with Ward linkage and Average linkage is then performed; the őrst one is also

known as MISSQ (Minimal Increase of Sum-of-Squares), which tries to minimize the

increase of the sum of squares errors at each step, therefore minimizing the error17,

the second one instead is deőned as the average of distances between all pairs of

objects. The distance matrix T is deőned as:
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

thj =
Nhthj+Nktkj

Nh+Nk
, if j ̸= h and j ̸= k

tij = tij, otherwise

where Nh and Nk are the number of elements inside respectively the cluster h

and the cluster k and at each step the clusters h and k, for which T is minimized,

are merged18.

2.2 Features Extraction and Data Preparation Steps

In order to perform the clustering, it is necessary to characterize the objects by

some appropriate features. The watershed procedure was already described, which

segments the objects in the image and at this point it is possible to őnd the contours

of each of them and thus extract information; for this purpose, FindContours com-

mand and the methods of the python package OpenCV 13 are used. The extracted

features then are all of morphological type, in particular the following:

• area;

• perimeter;

• radius, it was computed after őnding the minimum enclosing circle;

• circularity as: C = 4·π·area
perimeter2

;

• eccentricity as E =
√
a2−b2

a
it was computed after performing an elliptical őt,

so that a = axis+
2

and b = axis−
2

;

• number of convexity defects.

The last feature is a measure of how much the contour of a cell is irregular. To

compute such a feature, it is necessary to consider őrst the contour of the masked

object and the convex hull (i.e. a convex curve around the object); any deviation of

the object from this hull can be considered as convexity defect.
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As an example of how the algorithm works, Fig.14 and Fig.15 provide the masked

images of two cells. The őrst one with a jagged contour and the second one with a

circular contour. As it is possible to see, the number of convexity defects is larger

in the őrst case, while only one defect is present in the second case.

(a) Contour (b) Convex hull (c) Convexity Defects

Figure 14: Steps of the algorithm to őnd the contour irregularities of an object. In this case the

cell is jagged and presents a lot of irregularity points.

(a) Contour (b) Convex hull (c) Convexity Defects

Figure 15: In this case the contour of the object is more regular and circular and indeed the

convexity defect point detected is just one.

These objects features are computed for all őve image conőgurations (samples

without and with treatments) in the well plate B from the time 00h00m to time

23h00m - thus the clustering will be performed considering all the objects present

in 120 images, which are in total 77702.

At this stage it is decided to restrict the period of the analysis to 24 hours, since

the extracting features are only morphological; indeed, the őrst 24 hours, as it is
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possible to see in the previous chapter, is a "stationary" state of the samples, i.e.

cells do not split and do not merge yet and the number of objects stays quite the

same; in order to consider a longer period, some kinematic and dynamical features

should also be extracted and taken into account to make the clustering more accu-

rate. This is done as after 24 hours cells can start to duplicate or can disappear

(they can become debris).

Table I shows the őrst rows of the dataframe on which are collected all the in-

formation about the ∼ 80000 objects which are used to perform AHC.

In addition to the morphological features described before, are collected also the

identiőcation number ("cell id"), provided by the watershed algorithm after per-

forming the segmentation in the image, the treatment, the hour and the coordinates

("x position" and "y position", referred to the position of the centers of mass in

pixel in the images).

cell id treatment hour x position y position area (µm2) perimeter (µm) radius (µm) eccentricity circularity convexity defects

1 B2 0 933 11 203.54 58.31 9.92 0.80 0.75 5

2 B2 0 1019 8 111.86 39.86 6.82 0.54 0.88 6

3 B2 0 681 11 26.14 21.17 3.72 0.62 0.73 5

4 B2 0 198 15 328.66 81.17 13.02 0.48 0.63 8

5 B2 0 865 13 2.88 6.35 0.62 0.58 0.90 0

6 B2 0 1263 16 64.58 31.90 5.58 0.74 0.80 5

Table I: First rows of the dataframe which collects the extracted features of the objects. The

clustering is then performed from these results.

After collecting all the data, it is necessary to preprocess them in order to get

the best performance of the model; this includes to check for outliers (i.e. records

that are very different from all others) or missing values and to avoid dependencies

among features, in order to make the data less redundant as possible22. What it

should be obtained is indeed an unbiased and representative data set, i.e. a data set
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that contains all information about the inherent patterns and rules23.

First of all the distribution of the numerical features collected before are shown

as boxplots, which are a compact way to summarize the main characteristics of the

samples and to őnd outliers22. The boxplots are built in this way for each of the

respective feature: (i) the median value of the distribution is computed, (ii) the

25%- and the 75%- quartiles q1 and q3 are computed and a box limited by these two

quartiles is drawn, (iii) the interquartile range (iqr) q3 − q1 is computed and the

inner fence is deőned as the two values f1 = q1 − 1.5 · iqr and f3 = q3 + 1.5 · iqr,

(iv) the smallest data point greater than f1 is found and the largest data point

smaller than f3 and "whiskers" are added to the box extending a line to these data

points23. The data points outside the whiskers will be considered as outliers. The

distributions of the numerical features can be visualized in Fig.16.

As it is possible to see, there are a lot of outliers in the "area" distribution (a lot

of records have an area value greater than 603.5 µm2). A possible explanation could

be that sometimes the segmentation procedure fails, and glued cells are detected

as a single big-size agglomeration. These points are discarded as the values of cell

areas are not plausible and they could affect the clustering afterwards.

It is also necessary to check the correlations among the features, using Pearson

correlation coefficient24,25. The results are provided in Fig.17, showing the highest

coefficients between the features "area", "perimeter" and "radius".

At this point, the preparation of the data set is ready; the outliers are removed

and the features "perimeter" and "radius" are discarded from the analysis, since

they are strongly correlated with the feature "area" and thus are redundant.

The last step of pre processing is to standardize the data, which is important in order
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(a) Area (µm2) (b) Perimeter (µm)

(c) Radius (µm) (d) Convexity Defects

(e) Eccentricity (f) Circularity

Figure 16: Boxplots of the extracted features. The blue box contains all the values among the

quartiles q1 and q3. The red line inside the box refers to the median value of the distribution. The

whiskers are added to the box and they are represented by a segment. The greatest amount of

outliers is recorded for the žareaž. This is probably due to segmentation issues and it is necessary

to discard them for the analysis.

to have all the features at the same scale. The class sklearn.preprocessing.StandardScaler()

is used in order to implement z-score standardization.

Z-score standardization: given a feature X with mean sample µX and standard

deviation σX , the z-score standardization is deőned as:

s : domX → R, x →
x− µX

σX
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Figure 17: Correlation matrix of the features for each treatment. The highest values of the

Pearson correlation coefficients are recorded for pairwise of the features "area", "perimeter" and

"radius".

The preprocessed and standardized distributions of the selected features are

shown in the boxplots in the őgure below Fig.18.

Figure 18: Boxplots of the standardized features. These are the results of the data preparation

steps, which include removal of outliers and redundant features. Standardization is carried out

with z-score method.
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2.3 Number of Clusters Decision Making

The algorithm described in the Agglomerative Hierarchical Clustering Section is

implemented selecting the linkages methods Ward and Average. The Euclidean dis-

tance metric is then selected, which is suitable for low dimension data set.

To choose the best number of clusters (classes of objects), the AHC with the selected

parameters is performed, letting it vary from 2 to 10 and evaluating the results of

three different scores, namely (i) Silhouette score26, (ii) Calinski-Harabasz index27

and (iii) Davies-Bouldin score28. A short deőnition is given for each of these indexes

scores, according to the annotation of the article łAnalysis of Clustering Evaluation

Considering Features of Item Response Data Using Data Mining Technique for Set-

ting Cut-Off Scoresž. Symmetry (2017)29:

Silhouette Score: "the Silhouette Score, represented by the Silhouette index

(SI), calculates a measure for each point k. This measure is based on the membership

of the point in any cluster and is then averaged over all observations:

SIk =
1

n

n
∑︂

i=1

bi − ai
max(ai, bi)

where n is the total number of points, ai is the average distance between point i

and all other points in its own cluster (mean intra-cluster distance), and bi is the

minimum of the average dissimilarities between i and points in other clusters(mean

nearest-cluster distance)".

The optimal cluster partition is the one with the highest SI.

Calinski-Harabasz Index: "the Calinski-Harabasz index (CH index) assesses

cluster partition performance by considering the average between-cluster (or inter-

clusters) sum of squares and within-cluster (or intra-clusters) sum of squares:

CH(k) =
[traceB/K − 1]

[traceW/N −K]
forK ∈ N

where K is the number of cluster, N is the total number of data points, B repre-

sents the error sum of squares between inter-cluster and W indicates the squared
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differences of all objects in a cluster from their respective cluster centers".

Again the higher value corresponds to the better cluster partition.

Davies-Bouldin Index: "the Davies-Bouldin index (DB index) is expressed as

follows:

DBk =
1

k

k
∑︂

i=1

max
j=1,...,k

i ̸=j

{︃

diam(ci) + diam(cj)

d(ci, cj)

}︃

where k denotes the number of clusters, i and j are cluster labels, and d(ci, cj)

denotes the distance between centers of cluster ci and cj. The diameter of a cluster

is deőned as:

diam(ci) =

(︄

1

ni

∑︂

x∈ci

∥x− zi∥
2

)︄1/2

where ni is the number of points and zi is the center of cluster ci".

In this case lower values indicate better separated clusters and the minimum

score is zero.

Fig.19 and Fig.20 show what is obtained for Ward and Average linkage respectively.

In the őrst case, although the highest values of SI (Fig.19a) and CH (Fig.19b) score

are observed for a number of clusters equal to 2, it is also recorded a local maximum

value for 4 clusters in both cases. Two clusters of objects are plausible if just the

őrst hours are considered, when the objects in the images are recognizable as round-

shaped cells just seeded in the well plate and debris. After the őrst few hours, as

it is also possible to see in the previous section, cells start to change their size and

their morphology, so what it should be expected is a more heterogeneous ensemble

of objects which can be classiőed in more than 2 clusters. Since the lowest value of

DB score is also recorded for 4 clusters (Fig.19c), for these reasons, the number of

clusters is set equal to 4 for the AHC implementation with the linkage Ward.

Similar considerations are made for the results referred to Average linkage (Fig.20).

In this case SI score has the maximum value for 2 clusters, but a local maximum is

also recorded at 5 clusters, while CH and DB scores respectively have a maximum
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and a minimum value for 5 clusters; this value is chosen as the optimal to perform

AHC with Average linkage.

(a) SI score (b) CH index (c) DB index

Figure 19: Results of the three different scores described to evaluate the best number of clusters

to perform AHC with linkage Ward. As it is possible to see SI and CH index present the highest

value for 2 clusters, but they also both show a local maximum for 4 clusters. Also DB index

show the lowest value (which is considered the best for the partitioning) at 4 clusters. Since from

preliminary considerations it should be expected to classify objects until 24 hours in more than

two clusters, the number of clusters is set equal to 4 for the AHC with Ward linkage.

(a) SI score (b) CH index (c) DB index

Figure 20: Results for the linkage Average. Also in this case SI presents the highest value for

2 clusters, but it shows a local maximum for 5 clusters. Since both CH and DB scores present

respectively a maximum and a minimum value for 5 clusters, the number of clusters is set equal

to 5 for the AHC with Average linkage.
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2.4 AHC Implementation

2.4.1 Ward Linkage

The results of the Agglomerative Hierarchical Clustering performed with Euclidean

distance, Ward linkage and number of clusters equal to 4 are now shown in Fig.21

as a pairplot of the features. The mean values of the features for each cluster are

provided in Table II.

area (µm2) perimeter (µm) radius (µm) eccentricity circularity convexity defects fraction of elements

CLUSTER

0 314.31 79.14 13.37 0.73 0.61 9.51 0.32

1 88.69 36.93 6.37 0.75 0.71 5.67 0.23

2 176.02 51.58 8.39 0.50 0.80 9.58 0.25

3 28.63 18.72 2.89 0.48 0.85 3.27 0.20

Table II: The table shows the mean values of the features which characterize each cluster, obtained

performing AHC with euclidean metric, ward linkage and 4 clusters. The fraction of objects over

the whole data collected in 24 hours is also included.

As it is possible to observe, looking both at the pairplot and at the table, the

objects in the clusters can be characterized in the following way:

• Cluster 0 is composed of objects with the greatest size, therefore it is possible

since now to classify them as cells (the mean value of the area is widely above

the threshold used to identify debris), with an irregular shape-both eccentricity

and circularity have high values-and jagged contours;

• Cluster 1 is composed of small objects with irregular shape;

• Cluster 2 is composed of objects which can be classiőed as cells and they are

also round shaped, according to the values of circularity and eccentricity;

• Cluster 3 is composed of very small objects with a circular shape and a regular

contour: this is most likely the cluster of the debris.
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Figure 21: Pairplot of the standardized features, obtained with AHC (metric: euclidean, link-

age:ward, number of clusters:4). Coloring indicates the clusters and in the diagonal the pdf s

(probability density function) of the respective features are shown.

To visualize how the clusters of objects found look like, Fig.22 shows as an

example these clusters for the control conőguration (sample without treatment) at

time 12h00m.

Once that the clustering is performed, it is possible to analyze in an image what

object belongs to what cluster and so compute how many objects of a given cluster

there are in that image (i.e. at the corresponding hour). By doing this it is also

possible to study how the percentages of elements in each cluster evolve during 24

hours, in order to make some conclusions about the classiőcation of the objects.

For this purpose barplots are used; a speciőc conőguration (treatment) is set and

the bar at each hour is drawn, where the different colours stand for the percentage

of cell in a cluster. The results can be seen in the őgures Fig.23.
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(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

Figure 22: Clusters of objects obtained performing the AHC with Ward linkage; it is possible to

recognize (a) cluster 0: big and jagged cells, (b) cluster 1: small and irregular objects, (c) cluster

2: medium and circular cells, (d) cluster 3: small and circular objects that can be classiőed as

debris.

In order to understand how the amount of treatment inŕuences the evolution

of the objects in the clusters, also the linear plots of the percentages over time for

each cluster are shown in Fig. 24. To make the results comparable for all the

conőgurations, since the number of cells of the samples is different in the well plates

with different concentration of treatment, the percentages of objects of each cluster

are normalized, dividing the values of all the hours by the value of percentage of

objects in that cluster computed at the őrst hour.

Looking at the results it is now possible to make an interpretation of the classiőed

objects:
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Figure 23: Barplots for the 5 different conőgurations (samples without and with different level

of treatment), each bar represents with different colours the percentages of cells in the clusters.

• Cluster 0 (Fig.24a) is the cluster composed of cells with the biggest mean

size, irregular shape and jagged contours. Because of these characteristics

they could be identiőed either as cells that are going to split or agglomeration

of cells that are merging. The number of cells which belong to this cluster

keeps increasing over time in all the conőgurations, even if the increase during

24 hours is higher for those ones with low and medium level of treatment and

lower for the conőgurations without treatment and high level of treatment.
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(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

Figure 24: Linear plot of the normalized percentages of cells in the clusters over time. The

number of objects in each cluster is normalized with the number of objects at time 00h00m and

the values at all the hours are divided for the same number. In this way it is possible to make a

comparison of how the percentages of elements of each cluster vary according to the treatment of

the sample and to compare how the amount of cells varies respect to different level of treatment.

The possible explanation in this last case is that, because of the high level of

H2O2, cells lose the possibility of duplicate as they are less vital and therefore

their morphology does not change over time more than when they were seeded;

this is also compatible with the preliminary result obtained in the Chapter 1 for

the median of the areas, which does not increase during the őrst 20 hours. In

the case of the conőguration without treatment instead the explanation could

be that, since they are left to split without any poisoning, they quickly keep
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dividing and changing morphology, so that during the 24 hours the sample

is always very heterogeneous and a net increase of one type of cells is not

recorded. Finally, for the conőgurations with 31 µM and 62 µM the maximum

increase of cells is observed in cluster 0. The explanation could be that, since

they are not poisoned as in the cases of higher amount of H2O2, they are able

to enlarge and to split, but they are slower in comparison to the case of no

treatment and so during 24 hours a net increase of these cells is recorded;

• Cluster 1 (Fig.24b) is composed of small and irregular objects, it can be inter-

preted as a class of small cells which are changing from their rounded shaped

and/or debris. The number of elements increases for the conőgurations with-

out and with the lowest level of treatment, where a lot of irregular and jagged

cells would be expected, while it stays constant in the other conőgurations;

• Cluster 2 (Fig.24c) is made of round shaped cells, which is the morphology of

cells just seeded in the well plate with culture. As expected, the number of

cells in this cluster keeps decreasing over time, although with different slope for

different treatments. Indeed, as it can be observed also looking at the barplots

in Fig.23, the decrease is evident in the samples with low level of treatment,

where the most part of cells change their morphology, while it is less rapid

for conőguration with high level (125 µM and 250 µM) of H2O2. This in

agreement with the interpretation given before, that cells in these samples are

poisoned and they are forced to not change and move;

• Cluster 3 (Fig.24d), was already identiőed as the cluster of the debris, because

of the mean characteristics of its elements which are very small, round shaped

and with regular contours. The trend of the relative fraction is noisy, and

a net increase or decrease of debris is not recorded during 24 hours and the

initial amount stays quite constant in each sample.
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2.4.2 Average Linkage

Now the results of AHC with Average linkage and number of clusters equal to 5 are

provided in Fig.25 and Table III.

area (µm2) perimeter (µm) radius (µm) eccentricity circularity convexity defects fraction of elements

CLUSTER

0 365.14 88.30 14.67 0.70 0.58 9.56 0.1800

1 424.11 79.58 12.60 0.34 0.83 15.40 0.0007

2 186.77 54.24 9.09 0.62 0.76 9.07 0.4800

3 31.01 19.44 3.00 0.46 0.84 3.29 0.2000

4 69.31 34.25 6.01 0.82 0.65 4.85 0.1400

Table III: The table shows the mean values of the features which characterize each cluster,

obtained performing AHC with euclidean metric, average linkage and 5 clusters as well as the

fraction of objects over the whole data collected in 24 hours.

Figure 25: Pairplot of the features, obtained with AHC (metric: euclidean, linkage:average,

number of clusters:5). Coloring indicates the clusters and in the diagonal the pdf s (probability

density function) of the respective features are shown.
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Again, looking at the plot and at the mean values it is possible to give a őrst

characterization of the clusters:

• Cluster 0 is composed of cells with high values of area and also of eccentricity

and convexity defects, so they have an irregular contour;

• Cluster 1 is composed of objects with the highest values and convexity defects,

but looking at the percentage of objects classiőed in this cluster, they are very

few (namely just 58 objects over 77702). This means that this is a cluster of

outliers and for this reason they are discarded from the collective analysis of

the evolution of percentage of objects in the clusters for the different treatment;

• Cluster 2 is characterized by objects with mean size and with an higher value

of circularity rather than eccentricity;

• Cluster 3 is composed by the smallest objects with a round shape, so it can

be identiőed as the cluster of debris;

• Cluster 4 is composed of small and irregular objects.

The masked objects that belong to the clusters are shown in Fig.26, considering

as an example the same image of before, referred to the cell sample in the plate B2

without treatment at hour 12h00m.

Fig.27 and Fig.28 show the results of the evolution of the percentages of elements

in each cluster for the different conőgurations and they are used for a comparison

with the results obtained before.Cluster 1, which can be considered a cluster of

outliers, is discarded.

Looking at the barplots and the linear plots, it is possible to recognize similar

trends of the percentages of elements inside the clusters for each treatment as the

ones obtained performing AHC with Ward linkage, namely (i) the percentage of
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(a) Cluster 0

(b) Cluster 2

(c) Cluster 4

(d) Cluster 3

(e) Cluster 1

Figure 26: Clusters of objects obtained performing the AHC with Average linkage; again it is

possible to recognize (a) cluster 0: big and jagged cells, (b) cluster 2: medium-size cells, (c) cluster

3: irregular objects, (d) cluster 4: small and circular objects that can be classiőed as debris;

selecting 5 number of clusters also (c) cluster 1 is obtained, which contains very few objects,

characterized by high values of area.

Cluster 0, which refers to the big and jagged cells, increase over time with an higher

slope for the conőgurations with low level of treatment; (ii) the percentages in

Cluster 2, which is probably the cluster of the medium-size cells, decrease over time;

(iii) the percentages in Cluster 4, i.e. of small and irregular cells, increases over time

also this time; (iv) percentages of Cluster 3, which is the one of debris, ŕuctuate a

lot, but at the end are proportional to the amount of treatment used. This means

conőgurations which are subject to low or no treatment show less debris while larger

amounts of treatment show more debris after 24 hours. The results of the AHC

performed with the two linkage methods described are therefore comparable, thus

this suggests that the objects in the found clusters can be classiőed based on their
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Figure 27: Barplots for the 5 different conőgurations (samples without and with different level

of treatment), each bar represents with different colours the percentages of cells in the clusters.

features.

As a trial, the AHC is also performed with Single and Complete linkage30; in

the őrst case the distance corresponds to the distance of the closest pair of elements

which belong to the two clusters, while in the second case it corresponds to the

distance of the farthest pairwise.

What it is obtained by performing the AHC with Single linkage is not consistent,

since the score evaluation returns 6 as best number of clusters, but the resulting
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(a) Cluster 0 (b) Cluster 4

(c) Cluster 2 (d) Cluster 3

Figure 28: Linear plot of the normalized percentages of cells in the clusters over time. The

number of objects in each cluster is normalized with the number of objects at time 00h00m and

the values at all the hours are divided for the same number. In this way it is possible to make a

comparison of how the percentages of elements of each cluster vary according to the treatment of

the sample and to compare how the amount of cells varies respect to different level of treatment.

clusters are composed such that 5 of them are populated by just 1 element and

the sixth one collects the remaining objects all together. The AHC performed with

Complete linkage returns results similar to the AHC with Ward linkage, meaning 4

clusters having the same characteristics.
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3 Clusters Characterization

Purpose of this section is to őnd the characteristic features of the clusters found

in the previous section performing AHC, in order to deőne them. To this end, the

hypergeometric distribution is employed to evaluate the likelihood that a speciőc

feature is over-expressed within the elements of the cluster6.

In addition, an alternative approach is implemented, performing the clustering

image by image, so not considering anymore the objects of each treatment and

each hour all together, but applying the AHC separately hour by hour. Taking

into account the results obtained in the previous section, 4 clusters of objects are

expected at each hour, which motivates to set the number of clusters equal to 4 every

time the AHC is performed for the objects in an image, and then to understand how

cluster characteristics change during 24 hours or if a continuity exists, analyzing the

characterizing features and comparing the results with the ones obtained previously.

3.1 P-value Test for Over-Expressed Features

The purpose now is to check if some features in the clusters found before are over-

expressed, i.e. if there are some features that are characterizing in each cluster.

To implement the cluster characterization, the values of each feature are split in

three intervals, with the help of their standardized distributions computed in the

second chapter. For example, it is possible to look at the boxplots in Fig.18 and

assign a feature the label "1" if its value is included among the lower whiskers and

the lower quartile, the label "2" if it is included among the lower and the upper

quartile (the box), and the label "3" if it is included among the upper quartile and

the upper whisker. Therefore, features with the label 1 refer to low values of that

feature, with label 2 medium and with label 3 high (e.g. if one object is charac-

terized by the feature "area 1" it means it has a small size and so on). Since each

feature is split each in three intervals, they are now 12 features in total.
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To check if a feature is over-expressed among the elements of a cluster and there-

fore characterizes that cluster the procedure described in the article: "Community

characterization of heterogeneous complex systems, Journal of Statistical Mechanics

Theory and Experiment (2011)"6 is followed. It is brieŕy presented here.

The overall number of objects is denoted as N and the number of objects within

a cluster C is denoted as NC .The total number of features is denoted as NA - in this

case, it is equal to 12. For each feature Q ∈ NA, a test is conducted to determine if

Q is over-expressed in the cluster C. This involves checking if the number NC,Q of

objects in the cluster C with attribute Q is signiőcantly larger than what it would

be obtained by randomly selection of NC objects from all the N objects of the sys-

tem.

The probability that X objects, randomly selected in the cluster C, have the feature

Q under the null hypothesis, is given by the hypergeometric distribution31:

H(X | N,NC , NQ) =

(︁

NC

X

)︁(︁

N−NC

NQ−X

)︁

(︁

N
NQ

)︁

where, as said, N is the total number of objects, NC is the number of objects in

the cluster C and NQ is the number of objects in the system with the attribute Q

(see Fig.29).
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Figure 29: Scheme of the parameters that appear in the hypergeometric distribution used to test

the over expression of the features in a cluster. N is the total number of objects in the system,

NC is the number of objects in the cluster C, NQ is the number of objects in the system that own

the feature Q and X is the number of objects in the cluster C which have the feature Q.

The p-value is then associated to the number NC,Q computed as:

p(NC,Q) = 1−

NC,Q−1
∑︂

X=0

H(X | N,NC , NQ)

if the value of p(NC,Q) is smaller than the threshold equal to pt = 0.01, the

feature Q is recognized as an over-expressed feature which characterizes the cluster

C.

The test is performed for all the features, a data frame for the results is created

where the number of the cluster (labeled from 0 to 3) in which they result charac-

terizing is collected together with the respective value of p(NC,Q) . As an example,

TableIV shows how the data frame looks like for the procedure applied to the clus-

ters found selecting the Ward linkage.

Some features are characterizing in more than one cluster and one cluster can

also be characterized by more than one feature.
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features clusters

area_1 3, 1

area_2 2, 1

area_3 0

circularity_1 0

circularity_2 2, 1

circularity_3 2, 3

convexity_defects_1 1, 3

convexity_defects_2 1, 0, 2

convexity_defects_3 0, 2

eccentricity_1 2, 3

eccentricity_2 1, 0*

eccentricity_3 0, 1

Table IV: Table with the clusters for which the features are characterizing. The p-values are

equal to zero for all the characterizing features except that for eccentricity_2* in cluster 0 where

a p-value of 0.002 is obtained.

It is also possible now to characterize the clusters found in the previous chapter,

performing the AHC with Ward and Average linkage.

The obtained results are listed in the őrst case:

• Cluster 0, whose percentage of elements increases during time and which was

identiőed as the cluster of cells that are going to split, is characterized by the

features:

area 3,circularity 1,convexity defects 2,convexity defects 3,eccentricity 2,eccentricity 3

this means that the objects in this cluster have a big size, jagged contours and

elliptic shape;

• Cluster 1, which, analyzing the mean values, was identiőed as a cluster of small

and irregular objects, is characterized, as expected, by the features:

area 1,area 2,circularity 2,convexity defects 1,convexity defects 2,eccentricity 2,eccentricity

3 ;

• Cluster 2, which was classiőed as the cluster of the cells with a round shape,
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the ones observed at the beginning when they are seeded in the well plate

and whose percentage of elements decreases over time, is characterized by the

features:

area 2,circularity 2,circularity 3,convexity defects 2,convexity defects 3,eccentricity 1

therefore they show a big values of circularity (and low values of eccentricity)

and medium size;

• Cluster 3, which őnally was identiőed as the cluster of debris, is characterized

by the features:

area 1,circularity 3,convexity defects 1,eccentricity 1

namely a cluster of small, circular objects with a regular contour.

The results of the analysis repeated using (Average linkage) are also listed:

• Cluster 0, is characterized by the features:

area 3,circularity 1,eccentricity 3, convexity defects 2,convexity defects3

therefore, except for the value "eccentricity 2", it corresponds to cluster 0

obtained selecting Ward linkage and so this is the cluster of the splitting cells;

• Cluster 1, is the cluster of outliers that was discarded in the previous analysis

and it is characterized by the features:

area 3,circularity 3,eccentricity 1,convexity defects 3 ;

• Cluster 2, is characterized by the features:

area 2,circularity 2,eccentricity 2,convexity defects 2,convexity defects 3

this combination of features is most similar to the one of cluster 2 obtained

before, but they differ in the values: "circularity 3", which is not present in

this case and "eccentricity 1" that in this case is "eccentricity 2". This means

that the method with Ward linkage classiőes objects better which are elements

in the cluster with rounded and medium sized cells;

• Cluster 3, is characterized by the features:
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area 1,circularity 3,eccentricity 1,convexity defects 1

so it perfectly corresponds to cluster 3 obtained with the őrst method and

therefore it is the cluster of debris;

• Cluster 4, is characterized by the features:

area 1,area 2,circularity 1,eccentricity 3,convexity defects 1

it shows the most similar combination with the cluster 1 obtained before, but

they differ in the values "circularity 2", that here is "circularity 1", "eccen-

tricity 2" and "convexity defects 2" that here are not present. This means

that this method rather than the method with Ward linkage, classiőes objects

better which are elements in the cluster of small or medium size objects with

more regular or elliptic shapes.

3.2 Trends of Cluster Attributes over Time

In Chapter 2 the AHC was performed collecting the features of all the objects of

all the treatments of 24 hours, and at the end 4 clusters (classes) were obtained

that can be then analyzed image by image, checking the elements that belong to

the clusters at a certain hour. The data frame in the previous case was of ∼ 80000

rows, which collected the information of the objects of 120 images all together.

Now an alternative approach is built, which performs the AHC separately im-

age by image and characterizes the obtained clusters. Since image by image the

population in the classes can change, and so the features that characterize them,

the purpose is to check if there are some conserved combinations of over-expressed

features during the 24 hours, that in this way would allow to recognize if there are

recurrent characterized clusters in the images and analyze how they evolve during

time.

In order to perform AHC, the same features of the objects selected during the
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preprocessing of the data in Chapter 2, are collected in a data frame image by

image, namely: "area", "eccentricity", "circularity" and "convexity defects". This

way, each object is again deőned by a vector of 4 values of features.

To implement the algorithm for each hour, the "Euclidean" distance and the "Ward"

linkage are set and also the number of clusters is őxed equal to 4. This time, repeat-

ing the procedure image by image for 24 hours for each treatment, the data frames

are now 120 with different length.

Once the test was performed for all the 24 hours, it is possible to check what are

the characterizing features of the 4 clusters detected with the AHC image by image.

It is now built a data frame where the characterizing features are collected (Table

V).

Img 0 Img 1 Img 2 ...

CLUSTER 0 area_2,circularity_2,circularity_3... area_2,circularity_2,circularity_3... area_2,circularity_2,circularity_3...

CLUSTER 1 area_2,circularity_1,eccentricity_3... area_3,circularity_1,eccentricity_3... area_3,circularity_1,eccentricity_3...

CLUSTER 2 area_1,circularity_3,eccentricity_3... area_1,area_2,circularity_2... area_1,circularity_3,eccentricity_1...

CLUSTER 3 area_3,circularity_1,eccentricity_3... area_1,circularity_3,eccentricity_1... area_1,circularity_1,eccentricity_3...

Table V: First three instances in the time series of AHC.

Since the AHC algorithm assigns the labels completely random to the clusters

when it is performed in different images, this means that the combination of features

that characterizes a cluster at time t can characterize a cluster labeled with a differ-

ent number at time t+1. Moreover, a combination of features that characterizes a

cluster in an image at time t can change at time t+1, since the population of objects

can change image by image.

For these reasons, what happens is that the selected number of clusters is equal to

4 every time the AHC is performed in one image, but the total validated combi-

nations of features during the all selected period of 24 hours are much more than
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4, because they change over time. Then it is necessary to check if, among all the

possible validated combinations, there are some recurrent ones or, at least, if there

are similar groups of combinations.

Therefore, the purpose is to analyze if there are recurrent combinations of features

over time, and they will be recognized as characterized clusters. Further, what can

happen over time is that some combinations can differ in a few features, so that

the objects included in those clusters are very similar, although the clusters are not

validated as the same. For this reason what is done is to consider the list of all the

possible validated combinations of features obtained so far, and perform again the

AHC of the elements of the list (which are therefore strings of features) in order

to őnd the most similar combinations of clusters. This procedure is equivalent to

perform a clustering of clusters and allows to order the list of the validated com-

binations according to their similarity and will help to recognize the clusters over

time, as it will be described later more in details.

To this end, the Hamming matrix 32 is computed, whose columns are indexed by the

12 features, while its rows are indexed by the combinations of features. The entries

of the matrix are equal to 1 if the feature is present in the combination and equal to 0

if it is not. This matrix is used as metric distance to perform the AHC. A clustering

of the validated combinations is performed, which groups "similar" combinations,

based on how many features they have in common. When the AHC is performed,

the selected number of clusters is also 4, because is what is expected, based on the

previous analysis.

As an example, Fig.30 shows the result of a list of validated combinations of features

which is obtained for a treatment on a set of 24 images, ordered according to the

dendrogram leaves.
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Figure 30: Dendrogram for the list of validated combinations of features; it is obtained performing

the AHC with the hamming metric distance and a number of clusters equal to 4. In this way

similar validated combinations, i.e. combinations with a certain number of features in common,

are grouped in the same cluster and the list is ordered according to the leaves of the dendrogram.

Once the combinations of features were ordered in this way, it is possible to

show the heatmap of the clusters over time. The heatmap presents vertically hour

by hour 4 clusters as selected. The color of each cluster is referred to the percentage

of elements in that cluster according to the legend in the bar in the left. In the right

there is the corresponding combination of characterizing features of the cluster at

that hour. Since the combinations of features are ordered as in the dendrogram, it

is possible to follow which of them are preserved over time.The obtained results will

be compared for the samples from the conőguration without treatment to the one

with the highest level (250µM).

For the conőguration without treatment (Fig.31), which is the most heteroge-

neous over time, what is obtained is one combination of features that is persistent

over time, with the characterizing features: "area 1", "circularity 3", "eccentricity

1", "convexity defects 1". This is exactly the conőguration of features obtained

performing the AHC with the objects all together and for both Ward and Average
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linkage methods, namely the cluster of debris.

Figure 31: Conőguration without treatment: this is expected to be the most heterogenous

conőguration and indeed over the 24 hours, the obtained clusters are characterized by different

combinations of features; the only one which can be followed over time and that keeps constant

the characterizing attributes is the leave in the green group of the dendrogram, with the features

"area 1", "circularity 3", "eccentricity 1", "convexity defects 1", i.e. small objects with a regular

rounded shape, which can be classiőed as debris.

For the conőguration with the lowest level of treatment, Fig.32, two conserved

over time combinations of features were obtained (green and red leaves of the den-

drogram), the őrst one is again the one referred to the cluster of debris, the second

one instead "area 3", "circularity 1", "eccentricity 3", "convexity defects 3", which

is the most similar to the combination of features of cluster 0, obtained with the

previous method with Ward and Average linkage; it differs only in the features "ec-

centricity 2", "convexity defects 2", but it can be identiőed as the same cluster of

cells with big sizes and irregular, jagged contours.
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Figure 32: Conőguration with 31 µM of treatment: in this case two conserved over time com-

binations of features can be recognized, namely the one equal to the previous case (conőguration

without treatment) which identify the debris cluster, the other composed by "area 3", "circularity

1", "eccentricity 3", "convexity defects 3", i.e. cells with a big sizes and irregular, jagged contours.

These are the cells which can be identiőed as the ones that attach at the bottom of the well plate

and enlarge their size until they split.

Fig.33 and Fig.34 show the results: again is obtained a continuity of the combi-

nation of features that can be identiőed as the cluster of debris and the cluster of

big cells with elliptic shape and irregular, jagged contour that can be classiőed as

the cells glued to the well plate that are going to split.
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Figure 33: Conőguration with 62 µM of treatment: also in this case the cluster of the debris can

be recognized and a certain continuity of the combinations of features which identify the big and

jagged cells.

Figure 34: Conőguration with 125 µM of treatment: again the cluster of the debris can be

recognized and a certain continuity of the combinations of features which identify the big and

jagged cells.



49

Finally the results for the conőguration with the maximum level of treatment

are provided; in this case again the two clusters revealed before can be observed, but

in addition a certain continuity with high percentage of elements exists also for the

combination of features that correspond to the green leaves of the dendrogram in

Fig.35, i.e. "area 2", "circularity 2", "circularity 3", "eccentricity 1", "eccentricity

2", "convexity defects 2". This combination of features is the most similar to the

combination of features of the cluster 2 obtained before with Ward and Average

linkage; they differ respectively in the őrst case for the features " convexity defects

3" and "eccentricity 2", while in the second case for "circularity 3", "eccentricity

1", "convexity defects 3". This group can be therefore identiőed as the cluster of

rounded shape cells that is observed at the beginning (time 00h00m) and decreases

over time . This is compatible with the results obtained in the previous section

where it was observed that for the treatment with the highest level of H2O2 the

percentage of this type of cells decreases over time with the lowest slope and so it

is probable to observe them during the 24 hours..

Figure 35: Conőguration with 250 µM of treatment: in this case, over the two combinations of

features which are conserved for all the other conőgurations, it can be observed a high percentage

of cells in the green group of the dendrogram below with these features: "area 2", "circularity 2",

"circularity 3", "eccentricity 1", "eccentricity 2", "convexity defects 2"; this implies that they are

cells of medium size and a more circular than eccentric shape (cells with original morphology).
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Looking now at the evolution of the percentages of elements for each cluster,

the trends are not clear as in the case of the AHC performed on the data frame of

objects grouped all together because they ŕuctuate a lot and it is no more possible

to recognize patterns as before. A probable explanation of this result could be that

in this case the clustering is performed separately for each image and the objects

contained in a single image are not sufficient to return clusters as precise as before.

As an example, Fig.36 shows the trends obtained for the conőguration with low

level of treatment, after that all the percentages corresponding to the 4 clusters

of the dendrogram are summed and normalized dividing by the őrst value of that

cluster.

(a) (b)

Figure 36: Example of the results of the trend for the conőguration with 31µM of treatment:

(a) sum of the percentages of the elements of the 4 groups of leaves of the dendrogram, (b) linear

plot of the normalized percentages. It is possible to see that there is no net behaviour of the

percentages over time, as it was revealed with the method where the clustering was performed

with the ∼ 80000 objects all together. For this reason probably, the trends ŕuctuate a lot.
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Conclusions

The results obtained in each chapter are now summarized. In Chapter 1 the data

set is pre-processed, segmenting the objects in the images and analyzing the trends

of the number of cells and the median of areas over time. What is obtained is con-

sistent with what is expected, i.e. the slope of growth (Fig.12) of the number of

cells is higher for the conőgurations with none or low level of treatment and it keeps

decreasing for higher levels, while the median of the areas (Fig.9-11) for all the con-

őgurations increases in the őrst range of hours, when the cells attach at the bottom

and are going to duplicate and then decreases when the number of cells reaches the

plateau because the cells have less space to enlarge and duplicate further. This is

therefore an index that the segmentation and detection was made properly.

In Chapter 2 useful features to perform Agglomerative Hierarchical Clustering

are collected, in particular the morphological features that can be extracted directly

from the objects in the masked images. In order to perform the clustering a data

frame (TableI) is built with all the extracted features of all the objects in the images

of all the conőgurations from time 00h00m to 23h00m. Thus there is an unique

data frame of 77702 rows (objects) and the AHC algorithm was applied to it. Per-

forming the clustering with different linkage methods it results that the objects can

be classiőed in 4 clusters and the evolution of the percentages of elements in each

cluster can be analyzed during the selected period of 24 hours; again, the results are

consistent with what is expected, since the percentage of elements in the cluster of

rounded and medium size objects (Fig.24c and Fig.28c), which is the shape that the

cells have at the beginning when they are seeded in the well plate, decreases over

time, because they change their morphology, and the (negative) slopes are higher

for the conőgurations with low level of treatment, where the cells are more vital and

so over time the system is expected to become more heterogeneous, and lower for

the conőgurations with higher level, where instead the cells over time change their
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morphology more slowly due to the fact that they are poisoned with the treatment.

In correspondence it was obtained that the percentage of elements of the cluster

of cells with large values of area, jagged contours and elliptic shape (Fig.24a and

Fig.28a), which are the type of cells observed after few hours when they attach at

the bottom of the well plate and are going to split, increases over time with higher

values of slope for the conőgurations with low level of treatment and lower values

for the conőgurations with high level. The same result was also obtained for the

cluster of small objects with irregular shape, which could be classiőed as the divided

cells and/or debris (Fig.24b and Fig.28b). Finally a constant percentage of elements

is observed during the 24 hours for all the conőgurations for the cluster of debris

which is what is observed in the images where they are always present (Fig.24d and

Fig.28d).

In Chapter 3 the clusters are characterized, analyzing with a p-value test, ac-

cording to if and which are the over-expressed features; the results corresponds to

the mean values of the features that were computed in the previous chapter and

used to identify the clusters. An alternative approach to detect the clusters is also

implemented, performing the AHC separately image by image and then following

which combinations of characterizing features are constant during time. In this way,

for each conőguration, two clusters recognizable over time are detected, which cor-

respond to the cluster of debris and the cluster of splitting cells identiőed with the

previous method. However, looking at the evolution of the percentages of elements

in those clusters (Fig.36), it is no more possible to observe net trends as before,

probably because the performance of the clustering algorithm is not as efficient as

in the case were it was applied on the data frame of about 80000 objects, since this

time it is applied separately image by image, therefore in groups of the order of some

hundreds of elements.

These results can be considered as a őrst stage of the analysis of the data set.
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Many improvements in the analysis can be done. In the Introduction was already

mentioned that artiőcial intelligence methods might be used in order to detect and

classify cells. Furthermore, one could also improve the efficiency of the clustering

algorithms by considering not only the morphological features, but also by working

directly on the original images rather than on the masked ones. The advantage

would be that of extracting directly from the images optical properties of the cells,

or other information such as the presence and the size of nuclei inside them.

In this preliminary investigation , the analysis was focused on the őrst 24 hours

of evolution of the cells, since this is a "stationary" phase of the system. In fact,

this is a phase where division or merging among the objects are very limited. How-

ever, the whole data set is composed of images where the samples are tracked for

72 hours. Therefore the next step could be to follow the trajectory of each cell, and

to do this the objects have to be label image by image, even in the regime where

they start to split. This data could be used in a twofold way. On one hand, the

information collected about the cells trajectory and kinetics could be used in order

to optimize the clustering algorithm and eventually to validate the results obtained

by machine learning approaches33. On the other hand, such information could be

used for detecting possible collective behaviors of cells during their time evolution

through a correlation-based network approach and a subsequent cluster analysis.

Also the stability of clusters over time could be investigated. Moreover, it would

be possible also to detect contagion effects amongst cells34. An approach could

be to characterize whether and how senescent cells affect the neighboring cells and

by means of Granger causality tests35 the possible existence of causal relationships

among senescent cells and normal ones could be revealed.
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