
AI-assisted anomaly detection from log
data

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Software Engineering
2023
Teemu Pusa

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Teemu Pusa: AI-assisted anomaly detection from log data

Master of Science in Technology Thesis, 99 p.
Software Engineering
October 2023

As the production of software continues to increase, the volume of log data be-
ing generated is also on the rise. This surge in data has made it impractical for
human operators to manually review each log line produced by software systems.
This necessity has led to the development of automatic anomaly detection methods.
Automatic anomaly detection methods would allow system operators to respond to
incidents more quickly and improve the quality of the software.
In the past, anomaly detection from log data relied heavily on predefined rules.
However, with the complexity of modern software systems, finding experts for every
system component to write these rules has become difficult. Additionally, it is very
labor-intensive to implement these rules. This has spurred interest in unsupervised
anomaly detection methods.
The purpose of this thesis is to research which kind of methods can be used for
automatic anomaly detection, what is required to use them in a production system,
and how well deep learning-based methods would work with log data produced by
hundreds of embedded devices. The thesis begins with a literature review to explore
the various methods used for anomaly detection from log data. It then outlines the
required infrastructure for efficient anomaly detection and concludes by testing the
DeepLog Deep Learning method on real log data from a production system.
The key findings suggest that the DeepLog model performs effectively for anomaly
detection when trained in an unsupervised fashion. However, it is essential to ensure
that anomalous samples do not dominate the training data. This can be achieved
either by completely excluding them from the training set or by ensuring that no
single anomalous sample overwhelms the entire dataset, which could lead to over-
fitting. Moreover, the training dataset can be continuously refined by eliminating
recognized anomalous sequences and subsequently retraining the model.

Keywords: Anomaly detection, Deep learning, DeepLog, BERT, NLP, PCA

Contents

1 Introduction 1

2 Log Anomaly Detection 4

2.1 Types of Anomaly Detection Systems 5

2.1.1 Rule-Based Systems . 5

2.1.2 Data Analysis and Clustering 5

2.1.3 Deep Learning . 5

2.2 Concepts . 6

2.2.1 Parsing . 6

2.2.2 F-score . 7

3 Analysis of Detection Methods 9

3.1 Swatch . 9

3.2 Logsurfer . 10

3.2.1 Rules . 11

3.2.2 Actions . 12

3.2.3 Contexts . 13

3.3 Pattern Mining from Event Logs . 13

3.4 Source Code Analysis . 15

3.4.1 Structure of logs . 15

3.4.2 Problems . 16

i

3.4.3 Solution . 16

3.4.4 PCA Anomaly Detection . 16

3.5 Unsupervised Streaming Parser . 18

3.5.1 Spell . 19

3.5.2 Drain . 22

3.6 DeepLog . 25

3.6.1 Log Key Model . 27

3.6.2 Parameter Value Prediction Model 29

3.6.3 Updating parameters . 30

3.7 Robust Log Anomaly Detection . 30

3.7.1 Architecture . 31

3.7.2 Semantic Vectorization . 32

3.7.3 Anomaly Detection . 34

3.8 HitAnomaly . 35

3.8.1 Architecture . 36

3.8.2 Encoding . 37

3.9 LanoBERT . 42

3.9.1 Architecture . 44

3.9.2 Training . 45

3.9.3 Anomaly Detection . 45

3.10 Summary . 47

4 Case Study 50

4.1 Plan . 51

4.1.1 Tooling . 51

4.1.2 Testing . 51

5 Designing the Data Processing Pipeline 52

ii

5.1 Feedback Loop . 52

5.2 Dataflow . 54

5.3 Alerts . 55

5.4 Test Suites . 56

5.5 User Interface . 56

5.5.1 Visualisations . 57

6 Implementation 61

6.1 Data Collection and Enhancement . 61

6.1.1 Challenges of the Current Data Collection Strategy 61

6.1.2 Implementing an Agent Program 62

6.1.3 Improving Logline Storage . 62

6.2 Preprocessing . 63

6.2.1 Log Data Structure . 63

6.2.2 Tokenization . 64

6.2.3 Dataset . 68

6.3 Model Training and Evaluation . 70

6.3.1 Training Objective and Procedure 70

6.3.2 Performance Evaluation . 71

6.4 Results . 76

7 Analysis 81

7.1 Results Breakdown . 81

7.1.1 Parsing and Preprocessing Analysis 81

7.1.2 Anomaly Detection Analysis 82

7.1.3 Performance Comparisons . 82

7.1.4 Interpretation of Results . 83

7.1.5 Key Takeaways from Results 86

iii

7.2 Performance . 88

7.2.1 Performance of the Drain Parser 88

7.2.2 Performance of DeepLog . 88

7.2.3 Potential Performance Improvements 89

7.2.4 Performance Insights . 89

7.3 Cost . 90

7.3.1 Computational Cost of State-of-the-Art Methods 90

7.3.2 Cost of Implementation . 92

8 Conclusions 94

8.1 Answers to Research Questions . 94

8.2 Key Findings . 99

References 100

iv

List of Figures

3.1 Intuition with PCA anomaly detection. 18

3.2 Finding subsequence of σ using Prefix Tree. 22

3.3 Structure of Parse Tree in Drain. 23

3.4 Example of how tokens can be marked as parameters. 24

3.5 Example of Drain parse tree update. 25

3.6 Parsing process in DeepLog. 26

3.7 Architecture of DeepLog. 27

3.8 DeepLog log sequence prediction. 28

3.9 DeepLog log sequence top-g prediction. 28

3.10 DeepLog Parameter Model Input and Outputs. 29

3.11 LogRobust architecture. 32

3.12 LogRobust semantic vectorization. 33

3.13 LogRobust classification model. 35

3.14 HitAnomaly architecture . 37

3.15 Visualization of the conversion process from a log line to a word vector

list. 38

3.16 LanoBERT architecture . 44

3.17 LanoBERT normal vs abnormal logs. 46

3.18 Testing Phase of LanoBERT Model. 47

5.1 Diagram of anomaly detection feedback cycle. 54

v

5.2 Dataflow graph how the data flows through the system 55

5.3 Error count with the alert threshold indicated by the red line. A

higher value indicates more errors in the system. 58

5.4 Scatterplot of normal and anomalous loglines. 59

5.5 Model confidence for loglines with alert threshold indicated by the

red line. A lower value means the model is less confident about its

predictions. 60

6.1 Parsing speed of the log parser without preprocessing as the number

of parsed loglines increases. 67

6.2 Parsing speed of the log parser after preprocessing as the number of

parsed loglines increases. 68

6.3 Threshold-based F-score calculation. 78

6.4 Position-based F-score calculation. 78

6.5 Scatterplot of prediction probabilities for normal and anomalous log-

lines. 79

6.6 Scatterplot of relative positions for normal and anomalous loglines. . 80

vi

List of Tables

6.1 Metadata parsed from raw log data. 64

6.2 Dataset structure for encoded loglines 69

6.3 Results of the experiments . 77

vii

1 Introduction

Nowadays almost all software systems produce somekind of logdata which can be

used to determine what kind of actions the software system was doing while it was

running. Exceptions for this could be some lowlevel embedded devices which do not

have resources and hardware capabilities to produce logdata. This logdata can be

used to diagnoze system errors.

Tradionally logdata analysis has been human labour intensive work but with the

increased amount of software systems and logdata they produce it is not possible

for humans to examine all of the logdata to find errors. There has been incresing

amount of efforts to use automated methods to detect anomalies from the logdata.

First loganomaly detection methods used data mining and data analysis methods

to used datamining and analysis methods to find anomalies in the logs but more

recently the focus has shifted to more machine learning and with the rise of deep

learning success in other fields there has been many efforts of using deep learning

for automatic loganomaly detection.

Even though deep learning methods produce superior results compared to more

tradional data analysis based methods they also tend to have a higher computational

requirements. Depending on size of the organisation it may make deep learning

inpractical to be used in those organisations. Deep learning methods also generally

require some separate training step with labelled data. Supervised Deep Learning

methods may require a lot of human labour for labeling the training dataset which

CHAPTER 1. INTRODUCTION 2

can be constly but if the training objective can be transformed to self supervised style

of learning it can greatly decrease the required human effort for training. Generally

exchanging human worktime to machine worktime is profitable for the business.

In order for the company to do automatic log anomaly detection effectively it

requires them to have some kind of pipeline which considers different aspects of

loganomaly detection like how to collect the logdata, how to do required prepros-

essing, how to train the models and how to visualise the results so that human

operators can underestand.

This thesis seeks to answer following research questions:

• RQ1: What kind of methods are currectly being used for log anomaly detec-

tion.

• RQ2: What kind of infrastructure does machine learning methods need to be

used for anomaly detection.

• RQ3: What kind of methods are economically viable to use in a small com-

pany.

• RQ4: How to visualise anomalies found from the system so that the human

maintainer can investigate the anomaly efficiently.

• RQ5: Does automatic log anomaly detection decrease the overall worktime

required for system maintenance.

The main objective of this thesis is to evaluate whether the logdata produced by

the company’s software system can be used to increase system reliability by finding

anomalies anomalies earlier and whether these methods will reduce the human effort

required for anomaly detection and anomaly investigation.

The rest of the thesis is structured as follows:

CHAPTER 1. INTRODUCTION 3

Chapter 2 provides reader basic idea on what is log anomaly detection and

what concepts and terms are used when discussing about automatic loganomaly

detection.

Chapter 3 provides more detailed explanation for some concepts choosen from

literature.

Chapter 4 describes more what kind of system the logdata is collected from

and gives brief plan on how the practical side of this thesis is executed.

Chapter 5 provides description what kind of pipeline should be build in order

to do loganomaly detection effectively.

Chapter 6 provides description of the dataset structure and how testing was

concluded with some realworld logdata and anomalies.

Chapter 7 analyses the results of the experiments and how well the methods

would work in realworld usecases.

Chapter 8 provides the final conclusions and discussions about the results of

the practical sections. The research questions are answered in this chapter.

In this thesis, AI tools such as GPT-4 were employed solely for the purpose of

enhancing the flow of the text, and each suggestion was rigorously examined by the

author.

2 Log Anomaly Detection

Anomalies within software systems often manifest as irregularities in log data. By

investigating logs, one can discover the root causes of many issues. For instance, soft-

ware running as a backend service may log every HTTP request and its correspond-

ing payload. Such logs offer invaluable insights during post-issue investigations.

However, this reactive approach means that users might already have experienced

the problem by the time it’s diagnosed. In the worst scenarios, users, discouraged

by anomalies, might abandon the service entirely. Without efficient log analysis,

such problems could frequently recur, diminishing user trust.

To alleviate this, there’s an increasing interest in automated anomaly detection

techniques. These tools aim to identify irregularities without necessitating man-

ual log examination. A correctly identified anomaly is termed a ’true positive’.

Conversely, if the system flags a non-existent issue, it’s deemed a ’false positive’.

Instances where actual anomalies are missed by the system are known as ’false neg-

atives’. An ideal system should adapt over time, minimizing erroneous predictions.

Different applications might prioritize different aspects of detection. While some

might tolerate false negatives to reduce false positive disturbances, critical systems,

such as those in healthcare, demand high accuracy due to the stakes involved.

2.1 TYPES OF ANOMALY DETECTION SYSTEMS 5

2.1 Types of Anomaly Detection Systems

2.1.1 Rule-Based Systems

The most rudimentary anomaly detectors employ Regex filters or intricate rule sys-

tems. Although potentially effective, they demand consistent maintenance and do-

main expertise for rule formulation. Such systems excel at identifying known anoma-

lies but fail when faced with unforeseen disturbances.

2.1.2 Data Analysis and Clustering

Focusing on deciphering log patterns, these techniques aim for anomaly detection

even without explicit domain-specific knowledge. They first necessitate the trans-

formation of raw log data into a comprehensible format. Subsequently, data science

methods analyze the processed logs. While these approaches can discern simple

patterns, they may struggle with intricate log sequences, especially those exhibiting

parallel activities.

2.1.3 Deep Learning

Deep learning, a relatively recent entrant in the field, captures more complex log

patterns, improving anomaly detection efficacy. Depending on the data preparation,

deep learning techniques can be categorized into:

Supervised Learning

For this approach, human annotators label data segments, designating them as ei-

ther ’normal’ or ’anomalous’. While these methods can deliver impressive results,

labeling vast datasets for deep learning training is labor-intensive and costly. Con-

sequently, techniques like data augmentation, commonly used in domains like image

recognition, are explored to circumvent the data scarcity challenge.

2.2 CONCEPTS 6

Unsupervised Learning

Removing the need for human-annotated data, unsupervised learning solely relies on

the inherent data patterns. This eliminates the labor and cost associated with man-

ual annotation. However, defining suitable learning objectives can be challenging.

For log anomaly detection, it’s often assumed that a majority of system-generated

logs are ’normal’. Leveraging this presumption, deep learning models can be trained

to predict how normal log sequences look like. Upon training, the model is trained

to predict normal log structure and even if the training data includes anomalies it

should not affect models normal prediction accuracy too much. During detection

phase model can be used to predict normal log structure and then by comparing it

with the ground truth determine whether it is anomalous or not.

2.2 Concepts

2.2.1 Parsing

Within the realm of log data anomaly detection, "parsing" typically refers to the

processing of raw log data to make it suitable for use in an anomaly detection system.

Rule-based systems may not necessitate any preprocessing, as they operate directly

on the raw log data. However, if the log data possesses any inherent structure, such

as log line timestamps, preprocessing can be beneficial.

Methods leveraging machine learning demand that the data is presented in a

numerical format. How the raw log data is numerically represented hinges on the

specific method employed. The most straightforward approach would involve treat-

ing each log line as a unique number. However, this could yield an excessive number

of distinct numbers for every possible log line permutation. For instance, given a

log line like "sleep for 30 seconds," this method would generate a new number for

each distinct sleep duration. Even more problematic, these numbers lack seman-

2.2 CONCEPTS 7

tic meaning. Consequently, two nearly identical log lines might differ only in their

parameter values, but the parser fails to indicate any similarity between them.

To address this issue, parsers like Spell [1] and Drain [2] attempt to identify

the longest common subsequences to determine which segments of the log line rep-

resent the log template and which denote parameters. Ideally, for the previously

mentioned example, the parser would produce: "sleep for * seconds," with the as-

terisk symbolizing a variable parameter value. Nonetheless, such an approach does

have a downside: semantically similar log lines could yield different log templates.

Potential solutions include employing semantic word vectors, as suggested by Hi-

tAnomaly [3], or relying on tokenization while allowing the model to discern the log

data’s structure, as proposed by LanoBERT [4].

Prior to parsing, some methods implement preprocessing to eliminate elements

like IP addresses, which might otherwise result in too many of log templates.

2.2.2 F-score

The F-score is a prevalent metric for evaluating the efficacy of binary classification

models. It represents the harmonic mean of precision and recall. The optimal F-

score is 1.0, signifying flawless model predictions, while the lowest attainable score is

0, indicative of either zero precision or recall. Precision and recall are derived from

the counts of true positives (TP), false positives (FP), and false negatives (FN). The

F-score is defined as:

F1 =
2× precision× recall

precision + recall

Where:

precision =
TP

TP + FP

and

recall =
TP

TP + FN

2.2 CONCEPTS 8

One inherent limitation of the F-score is that it affords equal weighting to both

FP and FN. This can be problematic, as different systems might have varying tol-

erances or requirements regarding these metrics.

3 Analysis of Detection Methods

This chapter will provide an overview of technologies that have been presented in

the literature for anomaly detection, giving the reader an idea of the methods that

have been used in the past and the current state-of-the-art methods. The chapter is

organized in chronological order, with a focus on the development of new technologies

over time. By examining the evolution of anomaly detection technologies, a deeper

understanding of the current state of the field can be gained, and areas for further

research and development can be identified.

3.1 Swatch

Introduced by Hansen et al. [5], Swatch represents one of the earliest methods

employing console logs for automated anomaly detection. Developed as a command-

line tool, Swatch is designed for finding issues manifested in console logs. Real-time

log scanning can be achieved through the "swatch -t /var/log/authlog" command,

while analysis of an entire log file is facilitated by "swatch -f /var/log/syslog.0".

Implementation of Swatch was performed using the Perl programming language.

Swatch’s operation is guided by a configuration file containing instructions for

both matching log lines and specifying subsequent actions. Regular expressions are

employed to match each log line against the patterns found in the configuration

file. Upon a successful match, actions configured in the configuration file are exe-

cuted. A time interval instruction is also included in the configuration file, aimed

3.2 LOGSURFER 10

at minimizing redundant notifications. For instance, a five-minute interval can be

set to significantly reduce repetitive alerts when log lines are generated at a high

frequency.

Several actions are recognized by Swatch upon matching a log line, which include:

• The echo action, used for relaying the line to Swatch’s controlling terminal.

• The bell action, responsible for sending a bell signal (Ĝ) to the controlling

terminal.

• The ignore action, directing Swatch to bypass the current input line.

• The write and mail actions, which enable the transmission of the line to a

designated user list via write and mail commands, respectively.

• The pipe and exec actions, offering additional flexibility. The pipe action

permits the utilization of matched lines as command input, whereas the exec

action facilitates the execution of system commands, optionally using selected

fields from the matched line as arguments.

It is noted in the paper that Swatch has proved beneficial in detecting system

probing by intruders, which could have otherwise gone unnoticed in the absence

of centralized logging and Swatch. Experiences of averting system failures during

off-hours due to air conditioning malfunctions are also reported. As experience with

Swatch’s configuration file has grown, its utility has correspondingly increased.

3.2 Logsurfer

Logsurfer, as presented in [6], is designed for the examination of messages in a log

file in relation to other messages. Phenomena in the log file that can be uniquely

attributed to specific issues are termed as "signatures." The capability to make use

3.2 LOGSURFER 11

of contextual information enables log analysis programs to identify and act upon a

greater number of signatures. With its dynamic rule set and the ability to compile

related messages into structures called "contexts," Logsurfer effectively identifies

these signatures.

Logsurfer comprises four main components: messages, rules, actions, and con-

texts.

• Messages are defined as units of incoming data from a single data source.

• Rules serve to identify messages and initiate actions based on those identifi-

cations.

• Actions are initiated either when a rule identifies a message or when a context

is terminated.

• Contexts are structures that accumulate and store messages in memory.

3.2.1 Rules

In Logsurfer, a rule is composed of six or seven fields. The first field is defined by a

regular expression that identifies the messages to be matched by the rule. The second

field also uses a regular expression to specify exceptions to the first field, meaning

that messages are excluded from matching if they align with this expression.

The third field contains a regular expression that indicates the conditions under

which the rule should be removed. Similarly, the fourth field uses a regular expression

to state exceptions to the third field, specifying situations where the rule should not

be deleted.

The duration for which the rule remains active is indicated by the fifth field,

expressed in seconds. A value of 0 signifies that the rule should remain active

indefinitely.

3.2 LOGSURFER 12

An optional sixth field may include the keyword "continue." This implies that

when a message matches the rule, the following rules in the sequence should also be

evaluated against the message. In the absence of this field, messages matching the

rule are not subject to further rule checks.

The action to be executed when the rule matches a message is dictated by the

seventh field.

3.2.2 Actions

In Logsurfer, actions are defined to specify what should be executed when a partic-

ular message or a context of messages is encountered. An action is triggered either

when a rule matches a message or when a context surpasses one of its defined limits.

Typically, the action results in the execution of an external program, taking the

specific message or context of messages as its input.

The actions supported by Logsurfer are listed as follows:

• Ignore: The message is disregarded. This action is commonly employed to

filter out messages that do not require any action.

• Exec: An external program is executed.

• Pipe: An external program is executed, with the existing message or context

serving as its standard input.

• Open: A new context is opened. No action is taken if the context already

exists.

• Delete: A context is deleted. The specific context for deletion is identified by

the match regular expression of the context.

• Rule: A new rule is created. The first argument indicates the position within

the ruleset where the new rule should be inserted and must be one of: before,

3.3 PATTERN MINING FROM EVENT LOGS 13

top, or bottom.

3.2.3 Contexts

Contextual information is crucial when analyzing a log file. A single symptom may

not provide enough information to determine whether there is a problem. Messages

in a log file may be related if they come from the same process on the same host, or

they may have more complex relationships.

Contexts collect all the relevant data for diagnosing a particular problem into

one location, which is a structure stored in memory for reporting later if necessary.

By grouping related messages together, contexts provide a better understanding of

the problem and help in identifying the root cause of the issue. They can also help

in tracking the progress of a problem and provide a history of events leading up to

it. Therefore, contexts are essential for effective log analysis.

3.3 Pattern Mining from Event Logs

A critical role in system management is played by event logging and log files, which

serve as key sources of information regarding the health of the system. Tools like

Swatch [5] and Logsurfer [6] have been developed for log file monitoring.

Monitoring techniques are generally divided into two categories: fault detection

and anomaly detection. In fault detection, a database of fault message patterns is

created by a domain expert. A limitation of this approach is its inability to detect

faults unknown to the expert. Thus, messages corresponding to new fault condi-

tions in the log file may be overlooked. Moreover, finding a person with sufficient

knowledge of the system can be difficult.

In contrast, anomaly detection involves the creation of a system profile that

outlines normal system activity. Alarms are triggered by messages that deviate

3.3 PATTERN MINING FROM EVENT LOGS 14

from this profile. Although this method can identify new fault conditions, manual

profile creation is laborious and susceptible to errors.

A common format is often missing in log files, complicating their use for mon-

itoring. Although certain elements like timestamps or device numbers are usually

present, the plain text part of the message may not adhere to strict requirements.

Event types are also frequently missing from log lines. However, event types can

be deduced from the log files since similar events typically follow a particular line

pattern. For instance, the following lines:

Router myrouter1 interface 192.168.13.1 down

Router myrouter2 interface 10.10.10.12 down

Router myrouter5 interface 192.168.22.5 down

are indicative of the "interface down" event type and correspond to the line

pattern "Router * interface * down". Manual identification of these patterns is

feasible only for small log files [7].

Clustering algorithms offer a solution to these challenges by grouping similar

entries while separating dissimilar ones. Outliers, or those entries that don’t fit

into any cluster, are considered for further investigation. Upon identifying clusters,

association rule algorithms can be employed to find temporal relationships between

event types. Clustering also helps in recognizing line patterns typical of normal

system activity, which can be added to the system profile. Outliers formed by the

algorithm may indicate unknown fault conditions or unexpected behavior, warrant-

ing further examination to ascertain their root causes and ensure system reliability

[7].

3.4 SOURCE CODE ANALYSIS 15

3.4 Source Code Analysis

In the preceding section, the conversion of unstructured log data into a structured

format through clustering algorithms was discussed. However, an alternative method

was proposed in [8], where logging statements in the source code were used for

determining the types of log messages. The authors argued that, although logs

may seem to be in free-text format, they are actually generated by a limited set

of log printing statements embedded in the system. One benefit observed from

using the source code as a schema for parsing is the ability to interpret all possible

log messages, including those that are rarely encountered. Although this method

necessitates the availability of source code for parsing logs, it was asserted that the

prevalent use of open-source software in various systems makes this requirement

more of a practical solution than a limitation.

3.4.1 Structure of logs

In the work presented in [8], it was observed that logs often exhibit a common struc-

ture, comprising a constant part (for instance, "xact") and multiple variable parts

(such as "325/326" and "COMMITTING/ABORTING"). The constant part is re-

ferred to as the message type, and the variable parts are termed message variables by

the authors. Through the analysis of logs from diverse systems and interviews with

developers, two significant types of message variables were identified: identifiers and

state variables.

Identifiers are variables that are utilized to distinguish the object being manip-

ulated by the program. On the other hand, state variables are labels that list the

potential states in which the object might exist (for instance, COMMITTING and

ABORTING). With the identification of these types of variables, an algorithm was

developed to automatically extract the schema of log messages. This schema can be

employed for parsing and analyzing log data.

3.4 SOURCE CODE ANALYSIS 16

3.4.2 Problems

If the software was written with language like C it is likely that the template can

be directly infered from the printf statements which generate the log messages.

Example of an logline produced by a program made with C langauge could be

fprintf(LOG, "starting: xact %d is %s") fprintf(LOG, "starting: xact %d is %s").

However when software system is developed with object-oriented langages such as

Java it is more difficult. In Java it is common to use logging objects for logging so

it can be difficult to figure out what object is producing the final log message. It is

common to have some kind of interface like "toString" which is used for converting

the object internal state to string which can be printed to the console. This means

that it is not trivial to find out what kind of string is printed to console.

3.4.3 Solution

In the study presented in [8], a solution to the problems previously mentioned is pro-

posed. The code is parsed into an Abstract Syntax Tree (AST) format and static

analysis is performed to identify all method calls on objects of specific classes. Each

identified call provides only a partial message template because the template might

include interpolations of non-primitive types. To resolve this issue, all toString()

calls in all classes are enumerated by the authors. The string formatting statements

in these calls are then examined to deduce the types of variables in message tem-

plates. This type information is substituted back into the partial templates, and the

process is recursively repeated until only primitive types are interpolated in all the

templates.

3.4.4 PCA Anomaly Detection

In the paper [8] authors use PCA to find anomalies from logs. Their method has

three parts. The first part is log parsing like was mentioned in previous section. The

3.4 SOURCE CODE ANALYSIS 17

second part is feature creation and the final is the anomaly detection with PCA.

Feature creation

Two key features are utilized by the system: the state ratio vector and the message

count vector, which are based on state variables and identifiers, respectively. The

state ratio vector is formulated to encapsulate the system’s behavior over a specified

time frame, whereas the message count vector is designed to identify issues at the

level of individual operations.

For the construction of a state ratio vector, state variables are grouped within a

time window, and a vector is generated based on these variables. Each dimension

in the vector corresponds to a unique state variable value, and the value within

that dimension reflects the frequency of the state value within the time window.

Inclusion in the vector is restricted to state variables that are reported a minimum

of 0.2N times, where N represents the total number of messages. The size of the

time window is automatically set such that each variable occurs a minimum of 10D

times in 80% of all time windows, with D standing for the number of distinct values.

It was found that varying the parameters for the state ratio vector’s construction

did not substantially impact detection outcomes.

A message count vector is created by categorizing messages based on the same

identifier values and generating a vector for each group. Each dimension within

the vector corresponds to a distinct message type, and the value in that dimension

indicates the number of occurrences of that specific message type within the message

group.

Anomaly detection

PCA (Principal Component Analysis) is employed to discern anomalous feature

vectors that stray from the anticipated normal patterns. As depicted in Figure

3.5 UNSUPERVISED STREAMING PARSER 18

3.1, the normative behavior is situated along the reference normal line. Elevation

above this line indicates heightened system activity, while descent reflects reduced

activity. Conversely, the red data points that diverge from this line signify instances

of anomaly.

Figure 3.1: Intuition with PCA anomaly detection.

3.5 Unsupervised Streaming Parser

Untill this point the chapter has been going though methods which are being used

for anomaly detection and usually they require separate parsing step. This parsing

is done in offline fashion meaning it will happen after the logs has been collected.

Many methods required either some kind of domain knowledge and regular expres-

sions. Swatch [5] used simple regular expression based which simply match loglines

and do actions defined in configuration file. Logsurfer [6] used more complicated

3.5 UNSUPERVISED STREAMING PARSER 19

configuration rules which could remove or add more rules and there was concept

of context which means it can capture more complicated behaviour. Both of these

methods required lot of effort for creating and maintaining the rules. Clustering

method introduced in [7] used clustering approach to convert unstructured logdata

to structured form. Method in [8] used source code as a schema for logs to parse

them to structured format. Even though this method may require good accuracy it

can also be inpractical in usecases where there is a lot of external dependecies which

may even use different logging practices.

This section introduces unsupervised streaming parser which means it can parse

logdata realtime even without any domain knowledge. However in some cases the

performance of algorithm is better if some simple preprosessing is done like IP

addresses or dates which usually have common format is easily detected using simple

regular expressions without special domain knowledge.

3.5.1 Spell

Spell [1] is a structured Streaming Parser for Event Logs using an LCS (longest

common subsequence) based approach. It parses unstructured log messages into

structured format in streaming fashion. The goal with Spell parser is to find different

message types produced by logging statements and separate them from parameters

used in logging statements.

For instance, the log printing statement "printf(’HTTP request took %d millisec-

onds’, time)" can generate various kinds of log entries, such as "HTTP request took

500 milliseconds" or "HTTP request took 10,000 milliseconds." Here, the numbers

500 and 10,000 are considered parameters of the logging statement. Consequently,

the message type would be "HTTP request took * milliseconds." This distinction is

useful because a limited number of message types exist, and they can be employed

to identify anomalies in the execution path. Additionally, parameter values such as

3.5 UNSUPERVISED STREAMING PARSER 20

500 and 10,000 can be utilized to detect abnormal parameter values. Specifically, a

10,000-millisecond request time could be identified as an anomalously long request

time.

Algorithm

The Spell algorithm consists of three parts. The first part is the LCSMap which

contains all the LCSObjects. An LCSObject is comprised of two parts - LCSseq,

which is the tokenized version of the logline, and lineIds, which have produced

the LCSObject. Tokenization is done by splitting the log text using a delimiter

such as a space or a colon. When a new logline arrives, it is first tokenized, and

then the longest common sequence (LCS) is calculated between it and the existing

LCSObjects in the LCSMap. The maximum value for LCS and its index position

is saved to a variable. If the largest LCS value is greater than the threshold value,

it means that the new logline and the existing LCSObject have the same message

type. The algorithm then uses backtracking to set a mark "*" for every token that

is different between the chosen LCSObject. If there are two consecutive adjacent

"*", then they are merged into one "*". For example, if there are two loglines

"Command Failed on: node-127" and "Command Failed on: node-235 node-236",

then the LCSseq of the two would be: "Command Failed on: *". If none of the LCS

values with other LCSObjects is higher than the threshold, then a new LCSObject

is created with LCSseq as itself.

Performance

When a new logline arrives, the algorithm’s primary task is to compute the length

of its largest common sequence with each existing logline. However, based on their

observations, over 99% of the new log entries are already present among the currently

parsed message types. Consequently, instead of calculating the Longest Common

3.5 UNSUPERVISED STREAMING PARSER 21

Subsequence (LCS) between the new logline and every existing message type, they

implement a pre-filtering step to determine if the message type already exists. The

new logline is denoted as σ, and the current loglines are represented as a set of

strings: strs = {str1, str2, ..., strm}. The goal is to identify the longest stri for

which |LCS(σ, stri)| ≥ 1
2
|σ| holds. The authors propose two approaches to achieve

this:

1. Simple Loop Approach

This straightforward method involves iterating through the strings in strs. For

each stri, two pointers are maintained: pi, which tracks the current position in

stri, and pt, which tracks the current position in σ. If the characters pointed

to by pi and pt match, both pointers are advanced. Otherwise, only the pt

pointer is advanced. Once the pt pointer reaches the end of σ, the algorithm

checks whether the pi pointer has also reached the end of stri. Strings in strs

that have a length less than 1
2
|σ| are pruned.

2. Prefix Tree Approach

In the prefix tree approach, a prefix tree (also known as a trie) is utilized to

minimize the number of candidates that need to be examined. For instance,

given strs = {ABC,ACD,AD,EF} and σ = ABPC, the algorithm starts by

comparing each character in σ with the characters in the tree. This process

leads to the pruning of various branches from the tree. Characters that don’t

match those in the tree are marked as parameters. In the example depicted in

Figure 3.2, ABC is identified as the message type for σ, and P is recognized

as its parameter.

3.5 UNSUPERVISED STREAMING PARSER 22

Figure 3.2: Finding subsequence of σ using Prefix Tree.

However, it’s important to note that the prefix tree approach might not always

return the longest common subsequence. For instance, if σ = DAPBC and

strs = {DA,ABC}, the prefix tree will identify DA as the message type

instead of ABC. Nevertheless, in practical scenarios, the authors find that

although this approach doesn’t guarantee finding the longest message type,

the returned message type is quite similar to the result obtained using the

simple loop method. This phenomenon can be attributed to the fact that

parameters within each log record typically appear towards the end.

3.5.2 Drain

The Drain parser, introduced by He et al. in their work [2], is a fixed-depth tree

online parser designed for a similar purpose as the Spell parser discussed in the

previous section. The motivation behind the development of the Drain parser stems

from the challenges posed by modern large-scale service systems, which generate

massive amounts of logs, often reaching 50GB per hour (equivalent to 120 200 million

lines). Given that these systems are comprised of numerous components authored by

hundreds of global developers, crafting parsing rules becomes a formidable task, as

no single developer possesses a comprehensive understanding of the entire system’s

3.5 UNSUPERVISED STREAMING PARSER 23

functioning. Moreover, the dynamic nature of internet systems demands parsing

algorithms that can adapt to evolving log formats.

The Drain parser employs a fixed-depth parse tree structure, as depicted in

Figure 3.3. In this example, the tree’s depth is set to 3. The first layer encompasses

nodes for log lines of varying lengths. Log line length is determined by the number

of tokens produced through tokenization. The subsequent layer selects nodes based

on the first token in the sequence. For instance, if the log line is "Receive from node

4," the corresponding node is "Receive." If the initial token is numeric, a special

"*" node is designated to prevent excessive branching. The final layer of the tree

contains log groups associated with the branch. A log group embodies patterns like

"Receive from node *," where "*" serves as a variable. These log groups include log

IDs that reference the line numbers producing the respective events.

Figure 3.3: Structure of Parse Tree in Drain.

The Drain algorithm employs the simSeq algorithm to determine similarity be-

tween a given log line and others within the group. It subsequently identifies the

most suitable matching log line, provided its simSeq value surpasses a predefined

3.5 UNSUPERVISED STREAMING PARSER 24

threshold. The simSeq metric is defined as follows:

simSeq =

∑︁n
i=1 equ(seq1(i), seq2(i))

n

Here, seq1 and seq2 represent log messages, seq(i) denotes the i-th token in the

sequence, and n signifies the sequence’s log message length. The function equ is

defined as:

equ(t1, t2) =

⎧⎪⎪⎨⎪⎪⎩
1 if t1 = t2

0 otherwise

Where t1 and t2 denote two tokens. The Drain algorithm identifies the log group

with the highest simSeq value and compares it to a predefined similarity threshold,

denoted as st. If simSeq ≥ st, Drain designates the group as the most appropriate

log group. Otherwise, a new log group is created. In cases where an existing log

group is found, it is updated by comparing each token in the sequence. Tokens that

do not match are replaced with "*" tokens like illustrated in Figure 3.4.

Figure 3.4: Example of how tokens can be marked as parameters.

In the cases where first token of logline does not match with with any in the

parse tree new branch is created as illustrated in Figure 3.5.

3.6 DEEPLOG 25

Figure 3.5: Example of Drain parse tree update.

3.6 DeepLog

DeepLog [9] marked a significant departure from previous approaches by treating

log anomaly detection as more akin to a natural language task than a binary classi-

fication problem. The authors argued that log data exhibits similarities to natural

language, suggesting that it could be approached with techniques used in natural

language processing. Unlike earlier methods that heavily relied on manual feature

extraction, DeepLog introduced a novel paradigm.

One of the most remarkable features of the DeepLog model is its capacity to be

trained solely on normal log data. This means that extensive manual labeling of log

lines as normal or anomalous is unnecessary. The underlying rationale here is that

during regular system operation, the majority of log lines are expected to be normal,

overshadowing the anomalous ones. Consequently, training on a comprehensive set

of log lines allows the model to learn from the prevailing normal patterns, mitigating

the impact of anomalous instances on prediction accuracy.

The initial step of the DeepLog workflow involves parsing raw log lines into log

templates and associated parameters. This parsed information subsequently serves

3.6 DEEPLOG 26

as the foundation for generating log key sequences and parameter value vectors.

Each log line is parsed into a numerical representation corresponding to its log

type, while the log’s parameters are extracted to construct parameter value vectors.

Figure 3.6 provides an illustration of this parsing process.

Figure 3.6: Parsing process in DeepLog.

Upon completing the parsing phase, DeepLog produces two distinct models:

the log key anomaly detection model and the parameter value anomaly detection

model. These models collectively contribute to the identification of anomalies in log

data. Additionally, DeepLog includes a workflow model that empowers operators to

diagnose anomalies and refine the models in cases of false positives. The architecture

of DeepLog is depicted in Figure 3.7.

3.6 DEEPLOG 27

Figure 3.7: Architecture of DeepLog.

3.6.1 Log Key Model

The primary objective of the Log Key Model is to predict the subsequent log key in

a sequence of log keys. The prediction task can be illustrated as follows: Let’s take a

sequence of log keys, k22, k5, k11, k9, k11, k26. With a window size of h = 3, the input-

output pairs for training the Log Key Model are constructed as: k22, k5, k11 → k9,

k5, k11, k9 → k11, and k11, k9, k11 → k26. This concept is depicted in Figure 3.8.

3.6 DEEPLOG 28

Figure 3.8: DeepLog log sequence prediction.

To assess whether a log key mt is normal or abnormal, the model takes a window

w = {mt−h, ...,mt−1} as input. The output comprises a probability distribution

denoted as Pr[mt|w] = {k1 : p1, k2 : p2, ..., kn : pn}. This distribution indicates the

likelihood of each log key from the set K appearing as the next log key value, given

the historical context. In practical terms, multiple log keys might correctly follow

as the next in sequence. Consequently, the Log Key Model arranges potential log

keys from set K based on their probabilities Pr[mt|w]. A key is considered normal

if it ranks among the top g candidates. This procedure is outlined in Figure 3.9.

Figure 3.9: DeepLog log sequence top-g prediction.

3.6 DEEPLOG 29

3.6.2 Parameter Value Prediction Model

For each distinct log key, an individual Parameter Value LSTM (Long Short-Term

Memory) network model can be tailored. This model is designed to anticipate

forthcoming parameter values based on historical patterns. Constructing the input

vector involves a two-step process. Let’s illustrate this with examples: consider log

lines such as "Took 0.61 seconds to deallocate network" and "Took 1 second to

deallocate network." The input for the model is a parameter value vector (e.g., time

duration) extracted from the corresponding timestamp. The output, as depicted in

Figure 3.10, is a prediction for the subsequent parameter value vector.

To ensure uniformity and comparability, each value within the vector is normal-

ized using the mean and standard deviation calculated from all values belonging to

the same parameter position within the training data.

Figure 3.10: DeepLog Parameter Model Input and Outputs.

This model generates an output that is a vector of real values, forecasting the

next parameter value vector based on a sequence of parameter value vectors from

recent historical data.

For anomaly detection, the Mean Squared Error (MSE) between the predicted

and observed value vectors is calculated. However, rather than arbitrarily setting

an error threshold for anomaly detection, a more robust approach is taken. The

training data is divided into two distinct subsets: the model training set and the

validation set. Following the model’s training phase, the validation set is employed

to make predictions for each time step. The MSE between the predictions and the

actual observations is then modeled as a Gaussian distribution.

3.7 ROBUST LOG ANOMALY DETECTION 30

During production usage, if the error between the predicted and observed vectors

falls significantly above the Gaussian distribution’s confidence interval, the incoming

log entry’s parameter value vector is considered normal otherwiese it is considered

abnormal.

3.6.3 Updating parameters

As system behavior evolves over time, training data might not cover all potential

normal patterns. To accommodate this, the ability to modify model weights for

adapting to new log patterns is essential.

When users report model false positives, DeepLog improves accuracy without

complete retraining. It updates weights using new input-output pairs from reported

anomalies. This doesn’t demand retraining from scratch, saving time and resources.

DeepLog efficiently uses reported false positives to update. New training data

adjusts weights to minimize error between model output and actual observations in

these instances. DeepLog learns and integrates new patterns while retaining existing

knowledge.

Updating parameters and weights lets DeepLog adapt to emerging log patterns

while retaining responsiveness and accuracy. This intelligent process ensures con-

tinual improvement without exhaustive retraining.

3.7 Robust Log Anomaly Detection

While DeepLog has proven effective for log-based anomaly detection, it has a sig-

nificant limitation: it requires prior knowledge of all existing log keys during model

construction. This drawback means that the model will not function with previ-

ously unseen log keys. In the paper by Zhang et al. [10], the authors conducted

an empirical study and found that real-world log data exhibits instability, with new

3.7 ROBUST LOG ANOMALY DETECTION 31

but similar log keys frequently emerging. One major factor contributing to this

phenomenon is the evolution of logging statements. A study by Kabinna et al. [11]

observed that approximately 20% ∼ 45% of logging statements changed over their

lifetime. As a result, log-based anomaly detection methods must accommodate the

evolution of log data.

To address the issue of log instability, Zhang et al. proposed LogRobust in [10],

a novel log-based anomaly detection approach that achieves accurate and robust

anomaly detection on dynamic and noisy real-world log data. Instead of directly

using log keys, LogRobust transforms each log key into a fixed-dimensional seman-

tic vector. This enables the model to comprehend new but similar log keys that

emerge due to evolving logging statements and parsing errors. The authors utilized

a Bidirectional Long Short-Term Memory Neural Network (Bi-LSTM) classification

model to detect anomalies. They evaluated LogRobust using public log data from

Hadoop, introducing varying levels of changes, and demonstrated its effectiveness.

The experiments showed that LogRobust remained robust, with the F1-score de-

creasing only slightly from 0.96 to 0.89 as the injection rate increased from 5% to

20%.

3.7.1 Architecture

The LogRobust architecture, outlined in Figure 3.11, consists of three layers. The

first layer involves log parsing, which converts raw log data into a structured format

using the Drain parser. The second layer transforms each log-event sentence into

a semantic vector, where semantically equivalent words yield similar vectors. The

final layer is an attention-based Bi-LSTM classifier that outputs the probability of

a log line being anomalous.

3.7 ROBUST LOG ANOMALY DETECTION 32

Figure 3.11: LogRobust architecture.

3.7.2 Semantic Vectorization

Parsed log lines undergo semantic word vector transformation, as depicted in Figure

3.12.

3.7 ROBUST LOG ANOMALY DETECTION 33

Figure 3.12: LogRobust semantic vectorization.

Preprocessing

LogRobust treats a log line as a natural language sentence, with most tokens be-

ing valid English words carrying distinct meanings. However, non-character tokens

and variable names are also present in logs. To preprocess each log-event sentence,

LogRobust first removes non-character tokens such as delimiters, operators, punc-

tuation marks, and number digits. Subsequently, stop words like "a" and "the" are

removed. Additionally, some variable names in log events are composed of concate-

nated words, such as "TypeDeclaration" containing "type" and "declaration," or

"isCommitable" consisting of "is" and "commitable." To handle this, LogRobust

splits these composite tokens into individual tokens using Camel Case.

Word Vectorization

Following preprocessing, LogRobust transforms each log-event sentence into a se-

mantic vector. To satisfy two requirements—discrimination and compatibility—LogRobust

utilizes off-the-shelf word vectors pretrained on the Common Crawl Corpus dataset

3.7 ROBUST LOG ANOMALY DETECTION 34

using the FastText algorithm [12]. After replacing words with corresponding vectors,

a log-event sentence S is transformed into a list of word vectors L = [v1,v2, . . . ,vN],

where vi ∈ Rd, i ∈ [1, N], denotes the word vector, and N is the number of tokens

in the log-event sentence.

TF-IDF Aggregation

To obtain a fixed-sized semantic vector representing a log event, LogRobust ag-

gregates the N word vectors in L, accommodating varying word counts across log

events. Achieving this goal involves using TF-IDF, which measures word impor-

tance in sentences. LogRobust calculates the Term Frequency (TF) of a word as

TF (word) = count(word)
total events , where count(word) is the number of occurrences of the

word and total events is the total number of log events. However, if a word, such

as "Block," appears in all log events, it becomes less discriminative, warranting a

weight reduction. Inverse Document Frequency (IDF) is employed to address this,

defined as IDF (word) = log
(︁ total events

events with word

)︁
, where events with word is the number

of log events containing the target word. For each word, its TF-IDF weight w is

computed as w = TF × IDF . Ultimately, the semantic vector V ∈ Rd representing

a specific log event is obtained by summing the word vectors in L weighted by their

TF-IDF values, following the equation: V = 1
N

∑︁N
i=1 wivi.

3.7.3 Anomaly Detection

LogRobust employs an attention-based Bi-LSTM neural network for anomaly de-

tection, illustrated in Figure 3.13.

3.8 HITANOMALY 35

Figure 3.13: LogRobust classification model.

3.8 HitAnomaly

The Transformer architecture, introduced in the seminal paper by Vaswani et al.

[13], has outperformed the traditional LSTM models in various natural language

processing (NLP) tasks, making it the go-to architecture for state-of-the-art NLP

models. For instance, BERT [14], one of the most successful pre-trained language

models, is built on top of Transformer.

However, despite the success of the Transformer models, they have not been

extensively used for anomaly detection. In the context of anomaly detection, the

previous approaches primarily relied on the log key sequences, with the exception

of DeepLog [9]. However, DeepLog’s approach of using separate parameter value

models for each distinct log key may not be sufficient for detecting anomalies that

arise from abnormal parameter values.

Consider the following two log lines: "Took 10 seconds to build instance" and

3.8 HITANOMALY 36

"Took 600 seconds to build instance". These log lines have the same log key, which

is "Took * seconds to build instance", but the parameter values are significantly

different. If building an instance takes too long, it could be considered an anomaly.

While DeepLog’s parameter value vector could work in this case, it may not be

effective in scenarios where anomaly detection requires knowledge of the execution

path and parameter values.

To address these limitations, Huang et al. [3] proposed HitAnomaly, which uses

hierarchical Transformer models instead of hierarchical LSTM models for anomaly

detection. By leveraging the strengths of Transformers, HitAnomaly can capture

complex relationships between log keys and parameter values, leading to better

anomaly detection performance.

3.8.1 Architecture

The HitAnomaly architecture, as outlined in 3.14, consists of three primary steps:

pre-processing, encoding, and anomaly detection. The pre-processing step resembles

those employed in prior approaches, with the main objective being the conversion of

raw log text into parameters and log keys. HitAnomaly utilizes the Drain algorithm

[2] due to its speed and accuracy, outperforming many alternative log parsing meth-

ods. However, it is worth noting that Drain [2] may occasionally introduce noise,

as it can produce inaccurate results. According to [15], log parsing errors can lead

to a significant performance degradation in log mining, sometimes by an order of

magnitude.

Following pre-processing, the next phase in HitAnomaly is encoding. This stage

employs two distinct encoders: Log Sequence Encoding and Parameter Value En-

coding. Both encoders utilize a hierarchical transformer to convert log key sequences

and parameter values into fixed-size vectors. These vectors enable the model to ef-

fectively capture semantic information and manage contextual knowledge within the

3.8 HITANOMALY 37

logs.

Figure 3.14: HitAnomaly architecture

3.8.2 Encoding

Logging Key Sequences

The log encoder involves four essential steps: 1) Word2Vector; 2) Self-Attention; 3)

Feed Forward Neural Network (FFN); 4) Pooling Layer.

1. Word2Vector: The initial phase of the encoding process revolves around

converting each word in the log template into a corresponding vector, denoted

as x. By utilizing one-hot encoded vectors for each word, a lookup operation

is performed within an embedding matrix to retrieve the corresponding word

vector. In this context, HitAnomaly utilizes word vectors derived from BERT

and adopts the WordPiece [16] tokenization strategy. WordPiece functions as

a text segmentation technique that dissects words into subword units, allow-

ing for a more nuanced representation. For instance, an IP address such as

3.8 HITANOMALY 38

Figure 3.15: Visualization of the conversion process from a log line to a word vector

list.

"10.251.122.79:50010" is tokenized into segments like ["10", ".", "251", ".",

"122", ".", "79", ":", "500", "10"]. Substituting words with their respective

vectors results in the transformation of the log line S into a vector list denoted

as X = [x1,x2, ...,xn], as visually depicted in Figure 3.15.

2. Self-Attention: The vector list X flows through the self-attention layer. This

layer calculates self-attention using three vectors for each vector x: the query

vector Q, the key vector K, and the value vector V. These vectors are com-

puted using the following formulas:

Qi = xiWQ

Ki = xiWK

Vi = xiWV

Here, WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv are parameter matrices,

3.8 HITANOMALY 39

and dq, dk, and dv represent the dimensions of the query, key, and value vectors

respectively. The output of the self-attention layer, denoted as zi, is computed

using the formula:

zi = softmax
(︃
QiK

T

√
dk

)︃
V

In practice, these calculations are performed in parallel, and the results are

organized into matrices Q, K, and V. In the context of HitAnomaly, a multi-

headed attention mechanism is employed. This means that instead of using a

single set of query/key/value weight matrices, there are multiple sets. In their

transformer model, twelve attention heads are used. The final computation

can be expressed as:

headh = softmax
(︃
Qi,hK

T
h√

dk

)︃
Vh

zi = concat(head1, ..., headh)WO

Here, Qi,h = xiWQ,h, where WQ,h is the parameter matrix for attention head

h. Kh and Vh are the key matrix and value matrix respectively for attention

head h. WO ∈ Rhdv×d is a trainable parameter used for the concatenation op-

eration. The multi-headed attention mechanism enhances the model’s ability

to focus on different positions and learn diverse representations.

3. Feed-Forward Network: Subsequently, the outputs from the self-attention

layer are propagated through the feed-forward network. The feed-forward

network is defined by the following equation:

ri = max(0, ziW1 + b1)W2 + b2

3.8 HITANOMALY 40

Here, W1 ∈ Rd×dff , W2 ∈ Rdff×d, and b2 ∈ Rd are the trainable parameters in

the feed-forward network layer. The dimension of the feed-forward network is

denoted as dff.

4. Pooling Layer: In the architecture, the concluding layer is the pooling layer,

which plays a pivotal role in weight reduction and the conversion of a template

into a standardized vector of fixed dimensions. This process offers a consoli-

dated representation while maintaining the essence of the original data. The

computation is as follows:

Rl =
1

n

n∑︂
i=1

ri

Here, ri ∈ Rd signifies the output vector produced by the second transformer

block at the position i within the sequence. After the sequence of log encoding,

a list of log representations RL = [RL1, Rl2, ..., RLN] is generated, where RLN

corresponds to the log representation at the N-th position.

Upon applying a subsequent transformer layer to the sequence of log template

representations RL, we obtain refined and context-sensitive log template repre-

sentations denoted as ZL = [zL1, zL2, ..., zLN]. These enriched representations

capture intricate relationships and dependencies among the log templates.

Finally, to culminate the process, an average pooling layer is employed to

seamlessly transform the log template representations ZL into a comprehen-

sive and cohesive log sequence representation, aptly named Rs. This final

representation encapsulates the essential features of the entire log sequence,

facilitating effective analysis and anomaly detection with improved accuracy.

Parameter value vector

The sequence of log templates plays a crucial role in identifying anomalies in pro-

gram execution paths. However, certain anomalies manifest not as deviations from a

3.8 HITANOMALY 41

typical template sequence, but rather as unusual parameter values. DeepLog intro-

duced a parameter value detection model that treats individual log key parameters

as distinct time series. However, this model exclusively handles numerical values

and generates a parameter value vector using the mean and standard deviation of

all values. This approach encounters issues in scenarios like distinguishing between

"Took 600 seconds to build instance" (possibly anomalous) and "Took 600 ms to

build instance" (normal event).

In contrast, the HitAnomaly approach employs a hierarchical transformer struc-

ture to better model parameter values. Initially, parameter values sharing the same

log template are grouped together, resulting in log template parameter groups. Each

group shares a common template and encompasses a series of associated parame-

ters. Similar to the methodology applied to log sequence encoding, parameters

undergo encoding. This process yields a list of parameter value representations:

[rv1, rv2, ..., rvM]. These representations are then fed through an average pooling

layer, resulting in a consolidated vector Rv1 ∈ R1xd.

Mathematically, the transformation of the representations list into the vector

Rv1 is expressed as:

Rv1 =
1

M
ΣM

i=1rvi

The template vector RL1 is used to signify the template, and a linear layer is

introduced to model the interplay between templates and parameter values. The

comprehensive equation for a single group is computed as:

Rv1 = RL1W1 + Rv1W2 + b

Here, W1 ∈ Rdxd, W2 ∈ Rdxd, and b ∈ R1xd denote trainable parameters that

are updated during training.

Ultimately, an additional average pooling layer is employed to convert the list

3.9 LANOBERT 42

of parameter representations [RV 1, Rv2, ..., RV N] into the final representation of the

parameter sequence, denoted as Rp.

Attention-Based Classification

In the context of log analysis, the transformation of a log sequence involves generat-

ing two distinct vectors: the log sequence representation denoted as Rs, and the pa-

rameter sequence representation denoted as Rp. Since these representations, Rs and

Rp, exert varying influences on the classification outcome, an attention mechanism

is harnessed to construct a classification model. This mechanism assigns different

weights to the two representations, allowing for a more nuanced understanding of

their importance. The attention scores are calculated as follows:

αs =
exp(f(Rs))

exp(f(Rs))+exp(f(Rp))

αp =
exp(f(Rp))

exp(f(Rs))+exp(f(Rp))

The computations of f(Rs) and f(Rp) are as follows:

f(Rs) = vT tanh(RsWα)

f(Rp) = vT tanh(RpWα)

Here, Wα and v are parameters to the attention layer. Subsequently, a softmax

layer is introduced to calculate the probability distribution for anomalies:

y = softmax(αsRs + αpRp)

Training of the model is executed using the Stochastic Gradient Descent (SGD)

algorithm [17], with the cross-entropy loss serving as the chosen loss function.

3.9 LanoBERT

In the realm of anomaly detection from log data, conventional methods often rely

on log parsers to transform unstructured logs into a structured format. Notably,

3.9 LANOBERT 43

the Drain parser [2] has gained significant popularity and was discussed in previous

sections. While effective log parsers contribute to robust anomaly detection, their

performance is closely linked to the accuracy and efficiency of the parsing process.

A significant challenge emerges from software updates, which frequently lead to al-

terations in logging statements. Even minor changes can impede anomaly detection

when semantically similar log concepts are expressed differently but retain the same

meaning. To address this challenge, alternative solutions such as LogRobust [10]

and HitAnomaly [3] have been developed.

These approaches leverage word vectors and fixed-size semantic vectors to en-

hance their ability to withstand variations in logging statements. The primary

objective is to maintain consistent performance as software ecosystems evolve over

time.

In response to the limitations of traditional methods, a novel solution called

LanoBERT [4] has been introduced. LanoBERT breaks away from reliance on log

parsers by harnessing the power of the BERT [14] language model. Unlike methods

tied to parsers, LanoBERT employs BERT as a versatile language model that has

been trained from scratch specifically for anomaly detection.

A notable characteristic of LanoBERT lies in its parser-free methodology, which

involves minimal preprocessing exclusively for entities such as Numbers, IPs, and

dates. After this preprocessing, LanoBERT makes use of the standard tokenizer

WordPiece [16], a foundational component used by BERT. Notably, the tokenizer

used for log data has also undergone training from scratch. This meticulous approach

ensures that the vocabulary of log data from each distinct system can be thoroughly

learned and integrated into the anomaly detection process.

In summary, LanoBERT represents a significant advancement in anomaly de-

tection by liberating itself from the constraints of log parsers. By harnessing the

capabilities of BERT and employing a well-crafted tokenizer, LanoBERT provides a

3.9 LANOBERT 44

robust and versatile solution capable of adapting to the changing nature of software

systems.

3.9.1 Architecture

The architecture of LanoBERT, as depicted in Figure 3.16, closely resembles the

model architecture of BERT. However, a significant difference exists: LanoBERT

omits the Next Sentence Prediction (NSP) training objective. Instead, it exclusively

employs the Masked Language Model (MLM) technique [18], which aligns with the

pre-training approach used by BERT.

The training parameters within LanoBERT closely mirror those utilized by the

original BERT model, differing primarily in the masking probability. LanoBERT

employs a masking probability of 20

Figure 3.16: LanoBERT architecture

3.9 LANOBERT 45

3.9.2 Training

LanoBERT employs normal log data for training, as previously mentioned, and

does not rely on a separate parser for logs. Instead, it harnesses the standard

WordPiece tokenizer [16], which is also utilized by BERT. The Masked Language

Model (MLM) approach is applied during both the training phase and anomaly

detection. Given that the majority of log data consists of regular log entries, this

strategy proves effective for pre-training the BERT model. With a sufficient volume

of data, LanoBERT acquires the ability to learn contextual and structural features

from the log data, thereby enhancing its generalization performance in detecting

abnormal logs by understanding the characteristics of a normal log system. Notably,

LanoBERT does not require labeled log data for training; it solely relies on normal

data.

3.9.3 Anomaly Detection

LanoBERT’s central assumption is rooted in its primary training with normal logs,

leading to the inference that it yields low errors and high predictive probabilities

when applying MLM to normal log data inputs. Commonly observed logs with

regular patterns are recognized as familiar contexts. Conversely, larger errors and

lower predictive probabilities are generated when applying MLM to abnormal log

data inputs, as depicted in Figure 3.17.

Abnormal Score

LanoBERT computes an abnormal score for anomaly detection, derived from in-

dividual abnormal scores. This strategy is motivated by the similarity in features

often exhibited by normal and abnormal logs. The prediction error introduced by

LanoBERT can be defined as follows: given a log sequence L = (w1, w2, ..., wN), a

sequence is generated for each log key, and predictive probabilities and prediction

3.9 LANOBERT 46

Figure 3.17: LanoBERT normal vs abnormal logs.

errors are computed. Tokens are repeatedly replaced with the [MASK] token to

facilitate error and probability calculation for each logline. The top k values are se-

lected. The count of predictions equals the length of the log sequence, as illustrated

in Figure 3.18. The final abnormal score is calculated using these values, as depicted

in Equations 3.9.3 and 3.9.3.

abnormalerror =
∑︁k

i
error1+error2+...+errork

k

abnormalprob =
∑︁k

i
prob1+prob2+...+probk

k

3.10 SUMMARY 47

Figure 3.18: Testing Phase of LanoBERT Model.

3.10 Summary

The first log anomaly detection method, introduced in the 90s, was Swatch [5], which

employed simple regular expression rules to identify anomalous logs. However, this

method was unable to detect anomalies based on log sequences. Logsurfer, the sec-

ond method discussed in this chapter, also used regular expressions for anomaly

detection, but featured a more complex rule system capable of detecting anoma-

lies from sequences of messages. This was achieved through the use of context

3.10 SUMMARY 48

and dynamic rule addition and removal. Despite their power, these rules required

considerable effort to develop and maintain.

Subsequent methods aimed to automate anomaly detection more effectively.

Data mining techniques were employed to cluster logs into relevant groups, fol-

lowed by the application of association rule algorithms to detect temporal associ-

ations between event types. The authors in [8] parsed logging templates from raw

log data using source code, which were then used to parse raw log data into log

events. Principal Component Analysis (PCA) was employed to determine when a

log was considered anomalous. This approach, however, had limitations in detecting

complex errors from log sequences and faced challenges related to parsing different

programming languages and source code availability. Consequently, Spell and Drain

parsers were developed to parse raw log data into log templates using unsupervised

techniques.

DeepLog [9] was the first method to utilize Deep Learning for anomaly detection,

using Long Short-Term Memory (LSTM) networks. The model detected execution

path anomalies, such as a log line appearing in an incorrect place. However, some

anomalies could not be detected by this model, and DeepLog struggled with evolv-

ing logging statements. To address these issues, LogRobust [10] transformed log

data into fixed-size semantic vectors that were more resilient to changes in logging

statements. By using off-the-shelf word vectors pre-trained on the Common Crawl

Corpus dataset with the FastText algorithm, LogRobust was better equipped to

handle changes in log line semantics.

HitAnomaly [3] employed a similar approach but utilized a transformer model

and considered both log key sequences and their parameter values for anomaly de-

tection. Most previous Deep Learning approaches relied on a log parser to convert

raw text from log data into log templates, which could be used with Deep Learn-

ing models. LanoBERT [4] eliminated the need for a separate log parser, using a

3.10 SUMMARY 49

standard tokenizer with the BERT language model and applying Masked Language

Modeling (MLM) to detect anomalies. This approach made the model more robust

to changes and less dependent on parser performance.

Anomaly detection methods have evolved towards Deep Learning techniques with

minimal pre-processing. Modern methods are more robust to changes in logging

statements and can detect more complex anomalies by capturing intricate relation-

ships within log data. This trend is also observed in other fields, such as computer

vision and natural language processing. However, the exponential increase in com-

putational power has enabled the use of advanced Deep Learning methods, which

would not have been possible in the 90s or even the early 2000s. While these pow-

erful methods are highly effective, they may be inaccessible or impractical for many

organizations due to computational requirements. Moreover, they necessitate large

amounts of training data, although modern systems can typically generate sufficient

data.

4 Case Study

This thesis focuses on the log data generated by 1,000 to 2,000 Linux-based em-

bedded payment terminals. These terminals are primarily installed in buses, with

some found in swimming halls. Capable of running multiple programs concurrently,

they generate overlapping log entries. The objective of this research is to iden-

tify log anomaly detection techniques from established literature and evaluate their

suitability for this type of log data. The ideal technique would:

1. Reduce human effort in ensuring system stability.

2. Demand limited human oversight for maintenance.

3. Be cost-effective, considering the constrained resources.

The effectiveness of the chosen technique will be assessed by its ability to detect

previously identified issues in the system.

Furthermore, this thesis will present strategies and delve into the specifics of

enhancing the efficiency of the log collection and analysis process. Currently, logs

are retrieved from the terminals using a script that employs SSH. This method,

however, falls short when targeting offline terminals and often results in the collection

of redundant logs, leading to unwarranted storage consumption.

4.1 PLAN 51

4.1 Plan

4.1.1 Tooling

To effectively apply the methodologies gleaned from the literature to the log data

produced by these devices, it’s imperative to have the data in an easily accessible

format. There are known anomalies from the past that can serve as benchmarks

for the methodologies’ efficacy. However, the current state of the log data, due to

its inaccessible format, poses a challenge in extracting valuable log lines for model

training and evaluation, despite their known existence. Thus, the first step in the

testing and implementation phase of this thesis involves developing tools that gives

more straightforward access to the logs.

Many anomaly detection models for log data necessitate a specific format—primarily

converting textual log data to a numerical form. Drain [2], which permits log pars-

ing in an unsupervised and online streaming manner, stands out as a paramount

method in this conversion process. Integrating Drain into the tool will not only sim-

plify the generation of datasets for training and evaluation but also be indispensable

for real-time anomaly detection.

4.1.2 Testing

Initially, the model will be evaluated using a dataset augmented with injected

anomalies. This approach helps establish a baseline performance in scenarios with

optimal data quality. Following this, the model will be tested against real-world log

data to gauge its practical applicability.

Subsequent to testing, analysis will be conducted to assess the model’s perfor-

mance. This will also provide insights into potential areas for future enhancement

and refinement.

5 Designing the Data Processing

Pipeline

In previous chapters, various methods for anomaly detection from log data were

presented. The methods that yield the best results are based on deep learning,

but they require a considerable amount of training data. Moreover, it is crucial

that alerting thresholds can be adjusted to reduce false positives and false negatives

when anomalies are detected. To achieve this, a carefully designed pipeline could be

employed, which includes the ability to label data as anomalous or non-anomalous,

enhancing the overall efficiency of the process.

5.1 Feedback Loop

To optimize the performance of anomaly detection methods, it is essential to in-

corporate feedback into the entire process. Without proper feedback mechanisms,

these methods may detect anomalies but also generate a high number of false pos-

itives. This abundance of false positives can significantly undermine the system’s

credibility.

False positives can arise from inaccurately set detection thresholds or erroneous

predictions made by the deep learning model. Typically, when the model identifies

anomalies, a human operator must verify whether the detected anomaly requires

further action or if it was falsely flagged.

5.1 FEEDBACK LOOP 53

To address this challenge, it is vital to establish a mechanism through which the

human operator can provide feedback to the system regarding incorrect predictions.

This feedback loop enables the system to learn from its mistakes and refine its future

predictions. The specifics of how this learning is implemented vary depending on

the particular anomaly detection method being used. By incorporating effective

feedback loops, the system can continually improve its performance and reduce the

incidence of false positives, thereby enhancing its overall accuracy and reliability.

Another form of learning involves creating new anomaly detection rules for previ-

ously unseen issues. These rules can be simple, like identifying log lines that should

not exist at all or those that occur too frequently. Additionally, labeling log keys as

anomalous can facilitate model retraining.

Since it is impossible to anticipate all potential problems that may arise in a

system, the best approach to handling anomalies is to minimize their occurrence

in the future. This begins with addressing the root cause of the anomaly, such as

fixing software bugs. The next step is to implement preventive measures to avoid

its recurrence. In software systems, automatic and manual testing is commonly

used for this purpose. Anomaly detection rules serve a similar purpose, but instead

of testing how the code works, they assess its behavior based on the logs. These

rules can be applied even in testing environments to catch issues before they reach

production.

The feedback loop, as illustrated in 5.1 of this thesis, includes two sources of

anomaly detection: those reported by customers and those identified by automatic

anomaly detection rules. All anomalies are reviewed by a human operator who

determines their validity. If a detection is a false positive, the operator is guided

to modify the rules to prevent similar occurrences in the future. If the anomaly is

genuine and was automatically detected, no changes are required. However, if it

was reported by a customer, a new rule should be added to enable the system to

5.2 DATAFLOW 54

Figure 5.1: Diagram of anomaly detection feedback cycle.

detect similar anomalies in the future. This iterative feedback process enhances the

effectiveness of the anomaly detection system.

5.2 Dataflow

To enable easy experimentation and building of anomaly detection rules, data ac-

cessibility is essential. The data goes through various processing stages before it can

be used with the model. However, not all methods require extensive preprocessing.

For example, simple text search does not need complex preprocessing, but parsing

easily extractable information like timestamps or program names can be helpful.

Data processing can be parallelized to improve system performance. Each device

has its own processor responsible for handling the logs it receives. The processor

checks for anomaly detection rules and obtains model predictions. If any anomalies

are found, they are added to the database. The operator can then check these

anomalies to confirm if they are real anomalies, allowing adjustments to the model

5.3 ALERTS 55

Figure 5.2: Dataflow graph how the data flows through the system

and detection rules accordingly (refer to Figure 5.2).

5.3 Alerts

In order to ensure quick response to anomalies, it is essential to establish a reliable

notification system for the operators. The most common and convenient methods of

notification include email and Slack. However, even if the alarms are sent correctly

to the operators, there is a risk that they might be ignored. One significant reason for

this is the excessive number of false positives generated by the system. When users

receive numerous false alerts, it becomes challenging to take the system seriously.

To address this issue, it is crucial to facilitate easy modification and testing of new

rules and models. Some log-based monitoring software, such as Google Stackdriver,

allow the addition of detection rules based on log lines. However, testing these rules

5.5 USER INTERFACE 56

can be difficult. The only viable method of testing is attempting to replicate the

same anomaly in a test environment. The subsequent section will delve further into

potential solutions for mitigating this problem.

5.4 Test Suites

In order to evaluate the efficacy of log anomaly detection rules, it is imperative to

establish a mechanism that can feed historical anomaly data into the system and

assess its ability to accurately identify it as anomalous. Consequently, this approach

can be instrumental in the development of comprehensive test suites; these suites

ensure that even in the event of modifications to the detection rules, the capacity

to recognize past anomalies remains unimpacted.

Undertaking such a form of testing necessitates the existence of a method to

replay past loglines. This would aid in confirming the satisfactory performance of

the detection rules as per their initial design and intention. An improvement in the

level of confidence in anomaly detection rules will resultantly reduce the incidence

of false positives. Moreover, it mitigates the likelihood that the anomalies flagged

by the system will be overlooked. Through these measures, the overall reliability

and trustworthiness of anomaly detection rules can be significantly augmented.

5.5 User Interface

Delivering a user interface explicitly designed for human operators significantly

streamlines the task of anomaly investigation, while also facilitating system status

monitoring. This interface should incorporate a detailed list of open and resolved

anomalies, coupled with a feature that empowers human operators to designate

particular anomalies as examined.

Furthermore, this user interface should present an array of metrics for review,

5.5 USER INTERFACE 57

enabling the investigation of diverse aspects such as the volume of log data a spe-

cific device generates or the frequency of certain log line occurrences. A search

function, designed to promote the discovery of log lines produced within a selected

timeframe or by distinct devices, shall also enhance operational efficiency during

anomaly inquiries.

The primary objective of the user interface is to offer users a platform through

which they can formulate, edit, and observe rules for anomaly detection. The estab-

lishment of an intuitive process for deploying new rules and subsequently amending

them when they result in an excess of false positives or negatives is vital. With

this system, the operator is given leeway to tag individual log lines as anomalous;

this information can then be used for refining the model, subsequently enhancing

its capability in accurate anomaly detection.

5.5.1 Visualisations

Error Count

Figure 5.3 illustrates a common way to visualize errors in a software system. The y-

axis represents the error count, while the x-axis represents time. A red line is drawn

to indicate the chosen threshold that the system operator deems as an excessive

number of errors, prompting them to be alerted.

5.5 USER INTERFACE 58

Figure 5.3: Error count with the alert threshold indicated by the red line. A higher

value indicates more errors in the system.

It is uncommon for the threshold value to be set to zero because errors are

expected to occur even under normal system functioning. This is especially true as

the usage of the system increases. With a significant number of users, it is highly

likely that someone will always encounter some form of error, even if it is relatively

minor.

The interpretation of the error count itself can vary. In its simplest form, it

could represent the number of loglines that match a specific text search, such as

"HTTP request error." Alternatively, the count could be a combination of many

different types of errors. More sophisticated error detection methods, such as those

utilizing deep learning, may also contribute to the error count based on their own

decision-making processes.

Furthermore, the error count is typically measured over a specific alignment

period, which signifies the number of errors that have occurred within a given time

5.5 USER INTERFACE 59

frame, such as five minutes.

Outlier detection

When using clustering methods for anomaly detection, the PCA algorithm can be

employed to reduce the dimensions of the data. This reduction allows the data to be

plotted in a 2D scatter plot, where the proximity of points indicates their closeness.

By visualizing the data in this way, it becomes easier to detect outliers or anomalous

loglines that deviate from the cluster.

Figure 5.4 visually represents this concept, where the anomalous loglines are

depicted as points that are farther away from the rest of the data points. This

visualization aids in the identification and detection of anomalies.

Figure 5.4: Scatterplot of normal and anomalous loglines.

Model confidence

Anomaly detection models, such as DeepLog [9], function by comparing their predic-

tions for the next logline with the actual logline. DeepLog generates a probability

5.5 USER INTERFACE 60

indicating how likely the real next logline is based on its own prediction. This

probability information can be utilized to visualize the model’s confidence at any

given point. When an operator is investigating a problem, they can identify areas in

the log data where the model has lower prediction confidence. This could indicate

potential issues in those areas.

Picture 5.5 displays the logline index on the x-axis and the model’s confidence

level on the y-axis. The red line represents the threshold chosen by the operator

for alerts. The chart indicates that the model exhibits lower prediction confidence

between logline indexes 45 and 65, suggesting the presence of an anomaly.

Figure 5.5: Model confidence for loglines with alert threshold indicated by the red

line. A lower value means the model is less confident about its predictions.

6 Implementation

The selected model for this thesis’s evaluation is DeepLog [9], notable for being the

first method to leverage deep learning in anomaly detection. As elaborated upon in

Chapter 3, DeepLog utilizes a Long Short-Term Memory (LSTM) network [19] to

predict subsequent loglines.

In the original paper [9], two distinct neural network models were developed

within the scope of DeepLog: one focusing on log key-based anomaly detection and

the other on parameter value anomaly detection. Both models functioned to classify

loglines as either normal or anomalous. However, for the purpose of this thesis, only

the log key version has been utilized.

Training the DeepLog model involves several preparatory steps. This chapter

aims to detail the process, including the collection and preprocessing of log data, as

well as the model’s training and evaluation stages.

6.1 Data Collection and Enhancement

6.1.1 Challenges of the Current Data Collection Strategy

The current strategy involves running a simple script to gather loglines from online

devices. This method, albeit functional, confronts significant challenges in achieving

optimal data collection and analysis.

A primary limitation is that this strategy only considers online devices, disre-

6.1 DATA COLLECTION AND ENHANCEMENT 62

garding offline devices. This assumption of consistent device usage patterns can lead

to inaccurate anomaly detection, especially for devices with irregular schedules.

Additionally, the existing method lacks an efficient redundancy management

system, resulting in the collection of duplicate loglines. This leads to unnecessary

storage and bandwidth consumption, with measurements suggesting that duplicates

account for 40-50% of the collected loglines.

Finally, the issue of rapid logline generation by certain devices often results in

some loglines being missed during the collection interval due to older logs’ deletion,

indicating a potential overproduction of unnecessary loglines.

6.1.2 Implementing an Agent Program

To address these issues, an agent program was developed and installed on the device

during this thesis work. This agent is programmed to transmit logs to the server

in a compressed format, either daily or at higher frequencies, thereby minimizing

logline duplication and adjusting its sending interval as necessary.

This agent operates directly on the device and is better equipped to handle

devices with non-standard usage patterns. Despite the devices’ limited processing

power, the agent could potentially be used to detect and report some anomalies

directly thus, reducing latency in anomaly detection.

6.1.3 Improving Logline Storage

The present storage method involves saving loglines in single compressed files for

each device, with filenames indicating the collection date and device number for

quick referencing. However, this approach leads to an extensive volume of files and

doesn’t effectively handle duplicate logfiles within a single compressed file.

Improvements could include ensuring that each file accurately reflects the loglines

from the day of its creation and creating an index file with paths for all loglines as

6.2 PREPROCESSING 63

they accumulate, to facilitate more efficient data retrieval. Implementing compres-

sion techniques is essential because according to measurements compression results

in ten-fond reduction in logfile size, significantly reducing storage requirements.

The development and implementation of the agent program during this thesis

work represent a substantial stride towards enhancing the efficiency and accuracy

of the logline collection and analysis process.

6.2 Preprocessing

6.2.1 Log Data Structure

The system logs can exist in one of three forms:

1. Raw Text Format: The original form of the logs as retrieved from the device.

An example of a raw logline is as follows:

"2022−04−02T16 :45 :49 .515058+03 :00 pt10ex_90762 buss i

−2 . 2 . 9 0 . 1 : t r y ing to do something"

The logline starts with a timestamp, followed by the device type and device

number. Subsequently, the program (and occasionally its version) that gener-

ated the logline is mentioned. In some instances, system services that are part

of the operating system generate these loglines. The logline ends with a free

text portion that lacks a specific structure. These raw loglines can be trans-

formed into a more structured format using Regular Expressions (RegExr).

2. Preprocessed Format: In this format, loglines have been structured using

RegExr, yielding the following arrangement:

This format is a significant improvement over the raw text as it allows for easy

filtering or sorting by columns. While rudimentary anomaly detection based

6.2 PREPROCESSING 64

Table 6.1: Metadata parsed from raw log data.

Parameter Value

Date 2022-04-02T16:45:49

Device type pt10ex

Device number 90762

Program bussi

Version 2.2.90.1

Logtext trying to do something

on logline frequency is possible in this format, our primary interest lies in the

specific events created by a program.

3. Tokenized format: This format is numerical representation of logline and is

used as input for the deep learning model. Next section will go through this

more closely.

6.2.2 Tokenization

Tokenization, a process of converting text into numbers for machine learning models,

can be accomplished via various methods. Discussed in Chapter 3, these methods

are as follows:

1. Source Code Analysis: This approach involves analyzing the source code

to identify original logging statements and using this information to convert

raw log data into numerical form. However, parsing this information can be

difficult due to the variety of programming languages used and the involvement

of various external libraries. Also, full access to the source code may not

always be feasible, particularly with logs from Linux devices running multiple

programs in parallel.

6.2 PREPROCESSING 65

2. Online Parsing: Methods such as spell [1] and drain [2] provide alternatives.

They use the longest common subsequence or parse tree to deduce the origi-

nal logging statement, subsequently creating a log template for each distinct

logging statement. These methods pioneered the strategy of online parsing,

which allows for loglines to be processed in a streaming fashion as they arrive,

rather than in batches.

3. WordPiece with LanoBERT: The WordPiece tokenizer, in conjunction

with the LanoBERT architecture [4], represents a more recent and robust

approach. Unlike Spell and Drain, which convert loglines into single num-

bers, limiting their ability to capture complex relationships between loglines,

WordPiece can extract finer-grained information.

For instance, consider the logline "sleeping for 50s." WordPiece tokenizes it as

"[’sleeping’, ’for’, ’50’, ’##s’]," demonstrating its capability to recognize even

the units of numbers, a crucial aspect for effective anomaly detection. After

tokenization, these tokens can be converted into numerical representations,

resulting in a vector such as "[5777, 2005, 2753, 2015]."

However, it’s important to note that the use of WordPiece tokenizer may lead

to larger models and require additional training resources due to the vector

representation as opposed to a single number.

In this thesis, the Drain parser is the method of choice. It was preferred due to

its efficiency over Spell while maintaining a similar level of accuracy [2] also since

similar method was used in DeepLog as tokenizer.

Implementation

The drain parser was implemented using the Rust programming language for this

thesis. Rust’s memory safety feature enables the creation of reliable programs that

6.2 PREPROCESSING 66

perform efficiently. Similar projects, such as [20], have utilized Rust for the imple-

mentation of tokenizers used in large transformer models.

The parser’s parse tree was constructed following the methodology delineated in

[2], incorporating three layers. The initial layer is a hash map that organizes log se-

quences into varied-length groups based on their token count post-tokenization. The

second layer is another hash map categorizing the first token of each log sequence.

A number or a token that matches a predetermined processing rule is represented

by an asterisk, preventing the tree from excessive expansion. The final layer of the

parse tree, the log cluster, performs the last stage of processing to convert the log-

line into the log template. Each log cluster may contain numerous log templates,

which are assessed to identify the highest-scoring one. If a template’s score reaches

or exceeds a certain threshold, the parser selects and modifies it as necessary. These

modifications could involve updating the pre-established template to align with the

structure of the newly parsed log message. For instance, the parser might intro-

duce new placeholders or adjust existing ones to create more precise log templates

that capture more of the variation in system log messages. If no suitable match is

identified, a new log template without variables is generated.

Performance

The inaugural version of the drain parser exhibited suboptimal performance charac-

teristics. As shown in the chart 6.1, the parsing speed drastically declined from over

300,000 loglines per second to fewer than 10,000. This decrease significantly hinders

the parser’s practicality, as it needs to parse roughly 50,000 loglines per second to

keep pace with the live system’s log production. The loglines underwent no pre-

processing before being parsed by the drain parser, which resulted in the creation

of excessive, unnecessary log templates, thereby slowing down the parser. When

functioning correctly, the parser is anticipated to create a finite number of different

6.2 PREPROCESSING 67

Figure 6.1: Parsing speed of the log parser without preprocessing as the number of

parsed loglines increases.

loglines, given the finite number of logging statements in the code. Preprocessing to

remove elements like IP addresses, as was done in the original drain paper [2], could

alleviate this issue.

Upon deeper analysis, it was apparent that the parser occasionally generated

new templates incorrectly. For instance, one issue occurred when a logline payload

began with a timestamp in the format "2023-10-5", causing the parser to create a

new subtree for every logline with a timestamp. Instead, these loglines should be

converted into variables, symbolized by an asterisk, as they form part of the log

printing statement. Additional problems surfaced where improper tokenization led

to unnecessary log template creation. A logline like

"src/ntp.c:decode_msg() offset=0.060462 delay=0.193699"

would be parsed inaccurately, with "offset=0.060462" becoming part of the log tem-

plate. This improper parsing led to the creation of numerous unnecessary log tem-

plates that impeded the parser’s performance. By adding "=" to the parser’s de-

limiter list, this issue can be rectified, allowing the parser to correctly interpret the

6.2 PREPROCESSING 68

Figure 6.2: Parsing speed of the log parser after preprocessing as the number of

parsed loglines increases.

previous example as:

"src/ntp.c:decode_msg() offset=* delay=*"

After implementing several filtering rules and modifications, the parser’s speed sig-

nificantly increased, as evidenced by the chart in 6.2.

The parser’s speed could potentially be enhanced further by introducing paral-

lelism. Given the parser’s reliance on parse trees and the fact that leaf nodes are a

performance bottleneck, parsing logs in parallel at the leaf node level might accel-

erate processing. However, parallelism would also increase the parser’s complexity,

which might negate any performance benefits gained.

6.2.3 Dataset

To train the model, the generated data needs to be transformed into a format

that facilitates training and evaluation. Table 6.1, as previously described, details

the type of metadata extracted from the raw log data. This metadata includes

6.2 PREPROCESSING 69

elements like timestamp, device number, and program, which play a critical role in

the formulation of the dataset. The primary objective of the DeepLog model is to

learn authentic logline sequences from the log data.

In the context of this thesis, loglines are generated by 1000-2000 devices, each

running a custom Linux operating system, and all of the log data is consolidated into

a single file on the device. Each device operates numerous programs concurrently.

On the server side, all logs are aggregated into a single stream. Parsing log sequences

from this combined stream would result in fragmented, less realistic log sequences,

diminishing the predictive performance of the model. Therefore, it is vital to sort

logs based on date and group them by device number and program. This method

preserves more accurate logline sequences.

Each program may also have parallel-executing components that independently

generate loglines. This could pose a problem, but grouping at this level would

require more domain or language-specific knowledge, which is beyond the scope of

this thesis.

Upon constructing log groups, they are used to formulate log sequences, as shown

in the format below:

Table 6.2: Dataset structure for encoded loglines

Label Encoded Loglines (Features) Real Next Logline

1 3946 3946 3946 3946 3946 4411

1 3946 3946 3946 3946 4411 4411

0 3946 3946 3946 4411 4411 374

...

The example presented in table 6.2 begins with a logline label: 1 indicates an

anomaly, while 0 signifies normalcy. The remaining numbers represent the logline

sequence, with each number corresponding to a log template number produced by

6.3 MODEL TRAINING AND EVALUATION 70

the drain parser. In this case, the window size is 5, indicating that the first five

numbers describe the logline sequence. The final number, which the model is trained

to predict, is used to evaluate the model by assessing its accuracy in prediction. If

the model incorrectly predicts the next logline, then the log sequence is considered

anomalous. The following section provides a more comprehensive explanation of

this training and evaluation process.

6.3 Model Training and Evaluation

DeepLog model was implemented for this thesis with PyTorch library using python

programming language.

6.3.1 Training Objective and Procedure

The dataset, as formulated in the previous section, was employed as the training

source for the DeepLog model. The structure of each line in the dataset, representing

a single log sequence, its anomaly status, and the actual next logline, is suited to

the goal of the DeepLog model as described in Chapter 3 – predicting the next

logline in a given log sequence. The anomaly status of each logline in the dataset

was determined by searching for keywords whose presence would suggest that the

current logline might be anomalous.

The DeepLog model was architected as follows:

• An input layer to receive the encoded logline sequences.

• Two LSTM layers, each with 64 hidden units, constructed to capture the

temporal dependencies within the data.

• A fully connected (dense) layer that maps the LSTM outputs to the final

prediction.

6.3 MODEL TRAINING AND EVALUATION 71

Training of the model utilized the cross-entropy loss function, a commonly adopted

choice for classification tasks where the model is tasked with predicting one outcome

from a set of possibilities. The Adam optimizer was employed for training, known

for its effectiveness in various sequence prediction tasks. [21]

Over a span of 6 epochs, the model was trained with a batch size of 1000.

To foster good generalization and to mitigate overfitting, the training data was

subjected to random shuffling before each epoch. The loss for each epoch was

computed as the average loss per instance in the training dataset.

Evaluation of the model’s performance focused on the accuracy in predicting

wether logline is considered to be anomalous or not. Further discussion on additional

metrics and validation strategy will be provided in the ensuing sections.

6.3.2 Performance Evaluation

The F-score is a common measure for evaluating the performance of binary clas-

sification models. It provides a more comprehensive perspective on real-world ap-

plicability. Although DeepLog is a logline prediction model rather than a binary

classification model, it can be utilized for anomaly detection. By predicting what

the subsequent logline might be and considering any deviations from this prediction

as anomalies, the F-score calculation can be adapted.

Model Evaluation Metrics

DeepLog is an anomaly detection system for log sequences. Given a vocabulary

size denoted as W , it determines the probability for each logline I ∈ W in a log

sequence S. Higher numbers imply a higher likelihood, suggesting that the specific

logline could be the next one in the sequence. The output of this process is a set of

probabilities L = {P (I)|I ∈ W}, where P (I) represents the predicted probability

for each logline I. By arranging this set L in descending order, the most probable

6.3 MODEL TRAINING AND EVALUATION 72

candidates are at the top, with the least probable at the bottom. This output can

be utilized for anomaly detection in two distinct ways.

Method 1: Using Position Index The first approach relies on the loglines’

position index within L. As a sequence of loglines can be succeeded by a number of

valid loglines, the top ’n’ candidates from L are selected, where ’n’ is a configurable

parameter. The determination of whether the next real logline belongs to this group

will decide if it’s anomalous.

• True Positives (tp): Loglines marked as anomalous that do not fall within

the top ’n’ candidates.

• False Positives (fp): Instances where the actual logline isn’t among the

predictions yet isn’t marked as anomalous.

• False Negatives (fn): Loglines tagged as anomalous but are part of the top

’n’ candidates.

Method 2: Using Probability Values The second method involves using the

probability values generated by the DeepLog model directly. These values are scaled

to a 0-1 range and a threshold value denoted by ’t’ is used to determine if a logline

is anomalous. The value of ’t’ can be adjusted based on the balance needed between

different types of errors.

• True Positives: Instances labeled anomalous but with a prediction probabil-

ity below the threshold ’t’.

• False Positives: Loglines not labeled as anomalous, but with prediction prob-

abilities lower than ’t’.

• False Negatives: Loglines labeled as anomalous but with prediction proba-

bilities higher than ’t’.

6.3 MODEL TRAINING AND EVALUATION 73

Once the tp, fp, and fn values have been accumulated, they can be used to

compute the F1-score with the formula F1 =
2tp

2tp+fp+fn
. The F1-score is a common

measurement of a model’s performance, but it has limitations, such as the implicit

assumption that false positives and false negatives carry the same cost.

Challenges

The primary challenge in this domain is the scarcity of well-labeled log data. Often,

only a handful of loglines are known to be anomalous, which limits the efficiency

of the anomaly detection process. Two strategies can be employed to address this

issue.

Leveraging Known Anomalous Loglines The first strategy involves seeking

out known anomalous loglines within the logs. By identifying these loglines, it’s

possible to extract sequences that contain anomalies. This approach, while limited

by the availability of known anomalous loglines, can provide valuable insights for

the model.

Artificial Anomaly Injection The second strategy proposes the artificial injec-

tion of anomalies into normal sequences. By labeling these injected instances as

anomalous, the model can gain additional data for learning and prediction. While

this approach deviates from the pure log data, it can enhance the model’s capabil-

ity to recognize and predict anomalies, making the testing more representative of

real-world scenarios. This approach must be applied cautiously to avoid overfitting

on artificially injected anomalies and underperformance on real-world anomalies.

Dataset

For evaluation, we utilize a dataset consisting of 1,400,000 loglines, formatted as

described in 6.2. Out of these, 1,300,000 loglines are categorized as normal, while

6.3 MODEL TRAINING AND EVALUATION 74

100,000 are labeled as anomalous. The anomalous classification is based on specific

keyword matches within the log text. For clarity, anomalous loglines are identified

by direct comparison with a predefined list of keywords:

• “Left overs”

• “channel closed”

• “Resource temporarily unavailable”

• “Could not import device key”

• “No connection to cEMV device”

• “Device is changed; this should not happen”

• “Error while validating request: request/body/0/location/latitude must match

format ‘float’ ”

For instance, any sequence containing the log text “channel closed” is marked as

anomalous.

Test Configurations

This dataset is applied for training and testing through four different configurations:

1. Anomalies are removed from the entire dataset. Then, 5% of normal loglines

in the test dataset alone are transformed into anomalies by assigning a ran-

dom value to the real label and then marking it as anomalous. This test is

expected to produce the best score but also represents the most unrealistic

scenario, given that the anomalies are artificially generated and excluded from

the training.

6.3 MODEL TRAINING AND EVALUATION 75

2. Anomalies are removed from the dataset just as in the first case. However, this

time, anomalies are artificially injected into the entire dataset, making them

part of both the training and the testing data. Although this situation may

yield poorer results compared to the first case, it provides a somewhat more

realistic depiction because the anomalies become part of the training set.

3. In the third case, anomalies are only removed from the training set and not

the test set. There are no additional anomalies injected into the test set. The

test set comprises 1,300,000 normal loglines and 100,000 anomalous loglines.

This represents a more realistic test, as real anomalies are used.

4. In the fourth scenario, no modifications are made to the dataset prior to train-

ing or testing. This is the most realistic approach, but also likely to yield the

worst results.

By specifying the context of anomaly injection in each case, we can better un-

derstand the differences in their setup and consequently, their outcomes.

Baseline

In the field of machine learning, it’s common to compare the performance of our

models with certain basic strategies or simple models, often referred to as baselines.

A baseline provides a point of reference to understand whether the model is giving

meaningful outputs. In the context of anomaly detection, where the goal is to

identify data points that are significantly different from the norm, our baselines are

methods which use simple strategies to predict whether a data point is an anomaly.

Random Guess The Random Guess method is used as a foundational baseline

for anomaly detection. Instead of having patterns or information within the data

analyzed, a prediction on whether a data point is an anomaly is made purely based

6.4 RESULTS 76

on randomness. Its main function is to offer a basic benchmark against which more

sophisticated models can be measured.

In this method, a guess threshold is established. For every data point in the

dataset, a random number is generated. If this number falls below the threshold,

the data point is labeled as an anomaly.

During the evaluation, true positives, false positives, and false negatives are

accumulated as data points are processed. Precision, recall, and F1 score are then

computed using these results. Due to the method’s inherent randomness, a lower

performance in its metrics is expected. Consequently, it is anticipated that any

comprehensive anomaly detection model would exceed this basic baseline in terms

of performance.

6.4 Results

The performance of DeepLog was assessed across various test cases to evaluate its

efficacy in different scenarios. These evaluations can be found in Table 6.3.

From the table, it’s evident that DeepLog achieves the highest F-scores in Cases

1 and 2. However, in Case 3, where real anomalies are introduced into the test set,

there is a noticeable decline in performance when compared to Cases 1 and 2. For

Case 4, the performance shows a minor improvement over the random baseline. The

transition from Case 1 to Case 2 exhibiting only a marginal decline in performance,

while a more pronounced drop is observed from Case 3 to Case 4, suggests distinct

variations in the datasets or conditions between these cases. This could happen

because certain anomalous sequences are overrepresented in the dataset which means

the model will overfit to those anomalies. From Case 4 results it can be seen that

anomalies have lower average position than normal loglines which also supports

overfitting idea.

6.4 RESULTS 77

Case 1 Case 2 Case 3 Case 4

Probability F-score 0.9439 0.9314 0.7321 0.1761

True positives 63705 64359 57247 59956

False positives 6468 9029 217 522665

False negatives 1103 449 41690 38501

Threshold 0.6000 0.6000 0.2000 0.7000

Average anomaly probability 0.5164 0.4816 0.2885 0.7128

Average normal probability 0.8189 0.8205 0.6801 0.7214

Position F-score 0.8387 0.8564 0.6722 0.0557

True positives 64605 64627 60797 6421

False positives 24652 21491 21147 125801

False negatives 203 181 38140 92036

Top-k 15.0000 15.0000 15.0000 1.0000

Average anomaly position 2667.1010 2644.2716 2492.6879 0.6081

Average normal position 5.1945 4.9815 2.7450 2.4921

Median anomaly position 2672.0000 2631.5000 4018.0000 0.0000

Median normal position 0.0000 0.0000 0.0000 0.0000

Random F-score 0.0945 0.0942 0.1304 0.1295

True positives 53161 53017 80885 80261

False positives 1007154 1007884 1060306 1060385

False negatives 11647 11791 18052 18196

Table 6.3: Results of the experiments

Further insights into the performance of DeepLog can be gathered from Figures

6.3 and 6.4. In these figures, the results of threshold-based and position-based

anomaly detection, across different k and threshold values, are depicted. In Cases

1, 2, and 3, superior performance by DeepLog is consistently displayed. However,

6.4 RESULTS 78

in Case 4, only a marginal surpassing of the random baseline is observed.

Figure 6.3: Threshold-based F-score calculation.

Figure 6.4: Position-based F-score calculation.

In Figure 6.5, the prediction probabilities for subsequent loglines, classified as

normal or anomalous, are shown. A distinct separation in predictions is observed in

Cases 1 and 2. Some separation in Case 3 is noted, while in Case 4, a blending of

normal and anomalous predictions is evident.

6.4 RESULTS 79

Figure 6.5: Scatterplot of prediction probabilities for normal and anomalous loglines.

In Figure 6.6, the sorted prediction positions of a sample of 1000 data points are

showcased. Here, anomalous loglines are color-coded in orange, while the normal

ones are in blue. A position of 0 implies that the model recognizes the logline as

the most likely subsequent entry. As the positions increase, the model’s confidence

in that prediction diminishes.

From the chart, the distinction in the model’s confidence between normal and

anomalous loglines in Cases 1 and 2 is quite pronounced. However, in Case 3, there’s

a mix, though there are certain anomalous predictions that the model is less sure

about. In contrast, Case 4 reveals a muddled distinction, with normal loglines even

exhibiting reduced prediction confidence. Upon closer examination, it appears that

only normal loglines receive a higher prediction position, as opposed to those close

to 0. This observation further reinforces the earlier hypothesis regarding overfitting.

6.4 RESULTS 80

Figure 6.6: Scatterplot of relative positions for normal and anomalous loglines.

7 Analysis

This chapter aims to present and discuss the results obtained in the previous chap-

ter. Firstly, we will provide a detailed overview of the data analysis and findings.

Subsequently, we will compare our results with other studies from the literature,

highlighting similarities and differences. Finally, we will identify potential limita-

tions of the current method and suggest some possible ways to improve it in the

future.

7.1 Results Breakdown

7.1.1 Parsing and Preprocessing Analysis

This study utilized the DeepLog model for log key anomaly detection and the Drain

parser. The initial usage of Drain without any modifications led to excessive log

templates and poor parsing performance with larger log datasets. However, with the

implementation of several filtering rules, the parser’s performance notably improved.

A significant challenge faced was maintaining robustness amidst changing logging

statements. Two proposed solutions in the literature included using fixed-size se-

mantic vectors that describe loglines or bypassing the parser altogether and applying

minimal preprocessing with regular expressions followed by tokenization.

7.1 RESULTS BREAKDOWN 82

7.1.2 Anomaly Detection Analysis

DeepLog’s training and evaluation process involved four unique training and testing

configurations. In the first scenario, a dataset free from anomalies was used for

training while a 5% anomaly rate was introduced into the test dataset. This allowed

for the assessment of the model’s anomaly detection performance on previously

unseen anomalies.

In the second scenario, anomalies were introduced throughout the entire dataset,

evaluating the model’s performance when trained on data containing anomalies.

The third scenario entirely excluded artificial anomalies, with naturally occurring

anomalies removed from the training set. This tested the models performance on

previously unseen logs.

In the fourth scenario no other modifications were made than standard shuffling

and data splitting tehniques to the data. This scenario tested the models perfor-

mance in situation where no anomalies were removed from the training which could

be the starting point where model is being used for the first time.

DeepLog’s evaluation involved one baseline method: random guessing. The pri-

mary performance metric was the F-score, and scatter plots of model predictions

were used to visually assess the separation between normal and anomalous loglines.

7.1.3 Performance Comparisons

The original DeepLog paper achieved F-scores (0.96 on HDFS, 0.98 on OpenStack

1, and 0.97 on OpenStack 2). The implementation in this study achieved F-score of

0.94 and 0.93 in cases 1 and 2 which are pretty close to the orginal paper. However

these case were using artificially injected anomalies which they are not completely

realistic. Third case gave F-score of 0.73 which while being better than random

guessing is significantly less than other tests.

In the third scenario, the model achieved an F-score of 0.73 which while being

7.1 RESULTS BREAKDOWN 83

higher than random guessing is still not considered to be very good result.

In the fourth scenario, DeepLog displayed subpar performance, achieving an F-

score of 0.13. DeepLog did not show any clear distinction between normal and

anomalous loglines as can be seen from scatterplot 6.5 and it barely can surpass the

random guessing baseline.

7.1.4 Interpretation of Results

In the fourth scenario DeepLog did not perform well however it should also be

thought as baseline performance when just starting to use the model for anomaly

detection in realworld deployment since it is probably feasible to remove known

anomalous sequences from training data. This would potentially increase the model

performance overtime when more true positive cases are identified and then removed

from training data. Also the simplistic anomaly-labeling methods used in this thesis

might not effectively pinpoint all present anomalies in the logs.

The log sesequences in the dataset used in the sixth chapter were constructed by

gy hrouping based on device number, and program and then sorted by timestamp.

This approach aimed to maintain the sequential integrity of the logs. However, this

straightforward technique leaves room for enhancement to assure better sequence

retention.

Upon delving deeper into the DeepLog predictions, it was observed that they

primarily constituted a single anomaly type. The sequences deemed anomalous

typically included just one or two types of repeated loglines. Moreover, numerous

sequences presented difficulties for human interpretation. Consider the following

instance of a logline perceived as normal:

GATEINFO set_busy_state for node * value *

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

7.1 RESULTS BREAKDOWN 84

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

STATUSREQUEST_SENDER Node * has never answered to status requests.

In this instance, the model’s top predictions were:

can't open '/dev/ttymxc0' No such file or directory

qml bindNode/Node * Exists true Online * open *

STATUSREQUEST_SENDER Node * has never answered to status requests.

plugins/ofono.c * /gemalto_1 * *

qml pt10 Line * * required false

plugins/ofono.c * /gemalto_3 * *

qml pt10 * *

plugins/ofono.c * /gemalto_2 * *

/source/flexcard-core/src/flexcard-class.cpp * * * *

DOOR_ACCESS_DUMPER Redump access lists after * s

The actual subsequent logline was:

STATUSREQUEST_SENDER Node * has never answered to status requests.

This indicates that the real next logline was the model’s third likeliest prediction.

A typical anomalous sequence in the log data appeared as follows:

[ERROR] Execute method failed channel closed

[ERROR] Execute method failed channel closed

qml *

7.1 RESULTS BREAKDOWN 85

qml *

[ERROR] Publishing new state failed channel closed

[ERROR] Execute method failed channel closed

qml *

[ERROR] Publishing new state failed channel closed

[ERROR] Publishing new state failed channel closed

[ERROR] Publishing new state failed channel closed

And the model’s top predictions were:

pdo link message *

qml *

qml * * * * * *

qml * state from PT11eX *

qml * * *

qml * * * * *

qml NO MESSAGE

qml linestop open * ajosarja * linenr * linename * driver *

qml infocontrol *

/data/send_request finished

Since the actual next logline didn’t exist among the model’s predictions, the

sequence was deemed anomalous. In this instance, the model had a prediction

confidence of 0.35, with the position of the real next logline being 5014 out of 8739.

This example derived from case 3, wherein known anomalies were excluded from the

training set.

If there is many of this type of anomalies in the training set like in case 4 the

model will learn how to predict them. This paradoxically means that model will

learn not to predict anomalies since anomaly detection is based on the fact that

anomalous sequences should give lower prediction performance. These observations

7.1 RESULTS BREAKDOWN 86

about the data corroborate the hypothesis presented in Chapter 6, suggesting that

the training data is predominantly influenced by a single type of anomaly, leading

to model overfitting to these anomalous sequences.

7.1.5 Key Takeaways from Results

As previously mentioned, Cases 1 and 2 demonstrated excellent performance. How-

ever, since they employ synthetic anomalies, they more closely resemble ideal con-

ditions wherein anomalous sequences signifigantly differ from the normal ones. In

Case 3, which incorporated real anomalies, DeepLog exhibited potential. Yet, the

performance in Case 4 was very bad. Initially, it appeared that DeepLog failed in

the most realistic scenario, Case 4. But, as highlighted earlier, this should be inter-

preted more as a baseline for model performance with a specific dataset. Anomaly

detection in real-world settings would be a continuous process. At the outset, the

model might yield numerous false positives and negatives, but over time, as training

data is refined, the model’s proficiency at predicting normal log sequences improves.

This enhancement implies that its capability to predict anomalous sequences should

diminish. By excluding new true positive sequences from the training data, model

performance will incrementally improve.

With this methodology, the model can achieve very good results on log data

that remains consistent over time. Nevertheless, many software systems are updated

frequently nowadays. It’s thus essential for anomaly detection systems to adapt to

evolving log structures. Part of issues with changing log data arises from the use of

parsers like Drain [2]. A limitation with Drain is that two distinct log templates lack

semantic similarity. Consequently, even a minor alteration to a logging statement

would render it entirely unfamiliar to the model. This challenge was also pinpointed

in [10] and [3]. Their proposed solution was the incorporation of off-the-shelf word

vectors. This approach enables unique log lines to be depicted with word vectors,

7.1 RESULTS BREAKDOWN 87

rendering the representation more resilient to minor changes, especially when the

semantic essence of two unique log lines remains consistent. However, utilizing word

vectors designed for general text might not adequately capture the nuances of log

data. Although log data predominantly uses English, it doesn’t always conform

to standard language conventions. [4] explored training a BERT model both from

scratch and with prior natural language pre-training. Their results showed a modest

F-score increase in the BGL dataset and a slight decrease with the HDFS dataset,

indicating that depending on the log data structure, models trained with natural

language might either excel or underperform.

Despite these challenges, DeepLog could still be applicable in real-world scenar-

ios, provided there’s adequate training dataset manipulation and frequent retraining.

A potential strategy would be to monitor the creation of new log templates and se-

quences in the operational system, update the training data accordingly, remove true

positives, and subsequently retrain the model. Given DeepLog’s relatively simple

and light weight architecture, periodic retraining is plausible with modest compu-

tational capabilities.

To the best of my understanding, there has been absence of research focusing

on production systems with evolving log data. Zhang et al. [10] investigated the

robustness of the LogRobust model by introducing anomalies into the system. Their

findings indicated only a marginal decline in the F-score when the anomaly injection

rate reached 20%. Nonetheless, it’s essential to underscore that the use of artificial

anomaly injections may not fully capture the intricacies of real-world scenarios.

The potential of this research area is evident, but it also presents challenges. For

instance, many academic institutions might not have access to production systems,

which restricts their ability to gather authentic data. Historically, the majority of

literature reviews in this domain have relied on established datasets like HDFS and

BGL.

7.2 PERFORMANCE 88

7.2 Performance

The performance of log anomaly detection method is very important when consid-

ering their practical applicability. The value of an optimal model decreases signifi-

cantly if it cannot deliver timely results. This section delves into the performance

analysis of the Drain parser and DeepLog and suggests potential improvements.

7.2.1 Performance of the Drain Parser

Initially, the Drain parser’s performance fell short of expectations. However, upon

incorporating several preprocessing and filtering rules, its performance witnessed a

significant boost.

In a setting where all devices cumulatively produce around 10,000 log lines per

second, this thesis’ Drain parser implementation demonstrates commendable effi-

ciency. It can parse more than 200,000 log lines per second, even after processing

an count of 1 billion log lines. Such performance levels showcase the Drain parser’s

capacity to handle the system’s total log line production effectively.

7.2.2 Performance of DeepLog

Using an RTX 2070 GPU and an i7-8700k CPU, DeepLog processes about 50,000

log lines per second, with a batch size of 1,000. This rate far exceeds the 10,000 log

lines per second threshold, illustrating that DeepLog can feasibly process each log

line generated by the system even with relatively inexpensive hardware.

When tested without GPU acceleration in the same environment, the processing

rate dropped to around 3,500 log lines per second. This drop shows the GPU’s

crucial role in speeding up the inference. Although there is a requirement for more

specialized hardware, such as GPUs, the cost of a system with this computational

capability is relatively low. If we were to use a state-of-the-art model like LanoBERT

7.2 PERFORMANCE 89

[4], the costs would likely be much higher. Subsequent sections of this chapter will

delve deeper into this topic.

7.2.3 Potential Performance Improvements

The nature of deep learning model inference allows for parallel processing, creating

opportunities for speed enhancement when necessary. This capability ensures scala-

bility and adaptability to increasing data volumes, emphasizing the practicality and

effectiveness of the approach.

Performance can also be ’improved’ indirectly by reducing the number of log

lines processed. For example, exclusively processing logs from devices utilized for

production could reduce the volume of logs the model must handle. There are

devices used solely for testing purposes that could be excluded. Another strategy

might involve prioritizing certain devices deemed more important based on specific

metrics. Improving logging behavior could also reduce amount of logs produced

and contributing to overall improved software maintainability. Additionally, there

might be new log groups used exclusively for debugging, such as the ’debug’ log

level. These could be excluded from model training since they are likely used when

an anomaly has already been detected in the system.

7.2.4 Performance Insights

While the current pipeline’s speed appears sufficient for parsing every new log

line the system generates, future models with more complex architectures might

be slower. However, this section has proposed methods to reduce the number of

log lines requiring parsing and introduced parallelization to enhance performance,

offering potential solutions to such anticipated challenges.

7.3 COST 90

7.3 Cost

The trajectory of automatic anomaly detection appears to be shifting towards in-

creasingly complex neural network architectures. An unavoidable consequence of

this trend is the escalating computational demands these models place on their

infrastructures. Consequently, these escalating demands also come with increased

financial cost and an ever-growing requirement for specialized hardware.

In contrast, simpler solutions employing rule-based systems or classical data sci-

ence methodologies such as Principal Component Analysis (PCA) primarily require

a relatively swift CPU and substantial memory. The main function of these require-

ments is to ensure timely processing of incoming loglines.

An example of a more resource-friendly model is DeepLog, discussed in previous

sections of this thesis. This model is capable of processing loglines at an rate of

50,000 loglines per second on a standard gaming PC. The total cost of implementing

this system is likely to fall below 2,000€, and could be reduced to even under 1,000€

by opting for second hand parts.

However, it is important to note that while cost-effective, DeepLog also carries its

share of limitations as discussed earlier. Adopting a more advanced method could

invariably require significantly greater resources, both in terms of computational

power and cost. Thus, one must strike a delicate balance between the sophistication

of the method and the feasibility of its implementation.

7.3.1 Computational Cost of State-of-the-Art Methods

LanoBERT, as discussed in Chapter 3, is a BERT model trained from scratch, which

allows the model to be more generalizable as it can learn the vocabulary of the log

data. However, training a BERT model from scratch can be quite expensive. The

original BERT paper by Devlin et al. [14] utilized 64 TPU chips for training, with the

pretraining process taking 4 days to complete. One TPU v4 chip has a peak compute

7.3 COST 91

capacity of 275 teraflops [22], meaning that 64 chips amount to 64 ∗ 275 = 17, 600

teraflops. However, the TPU v2, which was the highest version available at the time,

had a peak compute capacity of 45 teraflops per chip. Consequently, the compute

used for training the original BERT was 64 ∗ 45 = 2, 880 teraflops over 4 days.

According to the GCP pricing calculator [23], this would cost €6,367 to pretrain.

If TPUv4 were used, only 10 chips would be needed, but since one TPU card has 4

chips, 12 chips would be utilized. This would cost €3,417, which is nearly half the

cost of using v2 TPUs. Additionally, these calculations were made in 2023, so there

may be some price adjustments to TPUv2 from 2018. When using NVIDIA A100

GPUs from LambdaLabs [24], one A100 GPU can produce 312 teraflops according

to [25], which means that 2, 880/312 = 8.97, or 9 GPUs, would be needed to pretrain

the model. This would cost €864, making it over 7 times less expensive to pretrain

a BERT model on LambdaLabs compared to using v2 TPU from Google Cloud.

Researchers have also explored ways to reduce the cost of training BERT from

scratch. In [26], the authors aimed to find a way to pretrain BERT models within

an academic budget. They simulated an academic budget by limiting the training

time to 24 hours and the hardware to a single low-end deep learning server, which

they considered equivalent to 1 day with 4 RTX 3090 GPUs. Even in 2021, when

the paper was published, the cost of such hardware would be over €10,000. An

alternative would be to rent GPU computation from a cloud service. LambdaLabs

offers a GPU virtual machine with an NVIDIA A100 40GB VRAM, 30 vCPUs, 200

GB RAM, and 512 GB storage for $1.10 per hour [24]. In [26], the authors stated

that training a BERT model with similar performance to the original would take

about 2.4 days using one A100 GPU. This means that pretraining a BERT model

from scratch with this level of computation would cost approximately €63, which

is quite affordable. To match the training speed of 4 RTX 3090 GPUs, two A100

GPUs would be needed, doubling the price to €126. To reach the price of a €10,000

7.3 COST 92

machine, one could conduct nearly 80 pretraining runs. This means that a BERT

model could be pretrained every week for 1.5 years before owning the hardware

becomes more cost-effective. This calculation does not take into account electricity

consumption and other maintenance needs of the machine. Of course, owning the

hardware also offers the benefit of using it for inference tasks, which, in this case,

means anomaly detection and fine-tuning the model. However, fine-tuning and

inference are less computationally expensive than pretraining. Therefore, the key

factors to consider when deciding between renting and purchasing hardware are the

frequency of model pretraining and the amount of log data produced for anomaly

detection.

While the previous analysis provides a cost overview, it’s essential to consider

the model’s performance and viability. To my knowledge, no pretrained models have

been specifically designed for log anomaly detection. A study by Lee et al. [4] found

that the performance of a model pretrained using normal log data varies between

log anomaly detection datasets. In some cases, more complex datasets showed slight

performance improvements, while in others, performance was slightly reduced.

7.3.2 Cost of Implementation

In a previous subsection, calculations indicated that using lightweight methods like

DeepLog can make the costs of a Deep Learning system relatively affordable. Even

when employing state-of-the-art models and rented hardware, the expenses remain

manageable. However, it’s crucial to also factor in the implementation and mainte-

nance costs when assessing the total financial implications of such systems.

Constructing a system from scratch often means that the human effort involved

outweighs the actual hardware expenses. There are off-the-shelf solutions available,

such as Google Cloud Stackdriver, but they might not possess advanced deep learn-

ing capabilities. While these existing systems provide fundamental functionalities

7.3 COST 93

like log collection, search features, and visualizations, they’re most suitable for soft-

ware operating in standard cloud environments. When the software is running in

a custom setup, as in the context of this thesis, leveraging existing systems effec-

tively can be challenging. Moreover, the costs associated with platforms like Google

Stackdriver can escalate quickly, especially when managing vast amounts of logs.

8 Conclusions

Chapter 3 examined the evolution of detecting anomalies from log data. It did dive

deep into various techniques, noting a shift towards methods similar to those used

in language technology. This thesis also addresses practical considerations: the type

of computer systems needed, cost-effective methods suitable for small businesses,

ways to display detected anomalies, and an evaluation of whether these automated

tools truly save time in system maintenance. This chapter aims to provide answers

to the key questions posed at the beginning of the thesis.

8.1 Answers to Research Questions

RQ1: What kind of methods are currently being used for log anomaly

detection.

Chapter 2 presented a comprehensive examination of the historical approaches

to log anomaly detection. The content was organized chronologically, offering a clear

understanding of the field’s evolution. Initial efforts in log anomaly detection relied

on rule-based approaches, which demanded significant human effort for maintenance.

Subsequently, researchers sought methods to automate log parsing into a format

that could facilitate the identification of temporal associations between log lines by

algorithms, even for errors unknown to operators beforehand.

Unsupervised log data parsing techniques, such as Drain [1] and Spell [2], were

introduced to eliminate the need for additional domain knowledge. However, Drain

8.1 ANSWERS TO RESEARCH QUESTIONS 95

necessitates some basic preprocessing rules for optimal performance, as discussed

in Chapter 3. Early deep learning methods like DeepLog [9] demonstrated high

prediction accuracy when logs were stable but failed with evolving log statements.

Consequently, subsequent methods incorporated NLP concepts to address this issue.

By employing fixed-size semantic vectors generated from standard word vectors

in large NLP models, [3] these approaches aimed to make anomaly detection models

more resilient to changing log statements. The fixed-size semantic vectors were

designed to capture the semantic meaning of log lines without relying on their specific

structure. However, the unique vocabulary of log data may impact model accuracy.

Cutting-edge methods like LanoBERT [4] train the large language model BERT

from scratch or initialize it with natural language then finetuning it with logdata,

eliminating the need for a separate log parser to preprocess log data. As LanoBERT

learns the log data vocabulary, it exhibits greater robustness to changes.

This thorough investigation revealed the various methods used in log anomaly

detection, showcasing state-of-the-art techniques and their limitations. This infor-

mation is essential when choosing the appropriate method for a specific use case.

RQ2: What kind of infrastructure does machine learning methods

need to be used for anomaly detection.

Chapter 5 of the thesis discusses the infrastructure needed to implement auto-

matic anomaly detection methods. It explains that to use the methods described in

Chapter 3, a pipeline must be built. This pipeline takes into account the collection

of logs from devices, processing of log data, and using it for anomaly detection. The

reported anomalies are then presented to operators, who can react to them.

To ensure that the system is accurate, it is important to incorporate proper feed-

back loops into the pipeline. This allows for continuous monitoring and improvement

of the system’s detection accuracy over time.

Chapter 5 provides a comprehensive guide on the requirements of the pipeline,

8.1 ANSWERS TO RESEARCH QUESTIONS 96

including the necessary hardware and software components, data processing tech-

niques, and the importance of data quality and management. Additionally, it out-

lines the roles and responsibilities of stakeholders involved in the development and

maintenance of the pipeline, including operators, developers, and data analysts.

Overall, Chapter 5 emphasizes the importance of building reliable infrastructure

for automatic anomaly detection.

RQ3: What kind of methods are economically viable to use in a small

company.

Rule-based systems generally do not require extensive computational resources

or specialized hardware. They do, however, necessitate sufficient CPU processing

power to handle incoming logs. The required processing power is directly propor-

tional to the volume of logs being processed. Chapter 6 demonstrated that the

Drain parser implemented for this thesis can process over 200,000 log lines per sec-

ond, after processing more than 1 billion log lines. This performance was achieved

on a workflow that is mostly single-threaded, which indicates potential for further

improvements. The results were obtained using an AMD Ryzen 9 5900X 12-Core

Processor, indicating that the overall cost of a system capable of processing logs at

this scale is relatively low. DeepLog models used achieved speed of 50 000 loglines

per seconds far exceeds worst case scenario of 10 000 loglines per second. This was

achieved with relatively inexpensive hardware.

Even state-of-the art Deep Learning models like LanoBERT [4] can be trained

from scrach with relatively low costs around €800 and with some optimisations even

closer to €100 which is quite afortable. However these models will likely need to be

retrained sometime and inference requires some resources too.

In conclusion, deep learning techniques are viable for smaller companies, but they

do require some understanding of deep learning technologies and their application.

Although modern deep learning libraries are relatively user-friendly, developers may

8.1 ANSWERS TO RESEARCH QUESTIONS 97

not be familiar with them and may need time to learn. Additionally, using these

methods effectively requires building a log analysis and anomaly detection pipeline,

like the one described in Chapter 5. The developer effort needed to construct these

systems might be more costly than the methods themselves.

RQ4: How to visualise anomalies found from the system so that the

human maintainer can investigate the anomaly efficiently.

Chapter 5’s section on user interface provides valuable insights into enhancing

operator efficiency when investigating anomalies through visualization. This section

offers a range of illustrative examples, showcasing the potential visualizations for

effectively deciphering anomalous logs. The chapter presents three distinct types of

plots, each serving a unique purpose in visualizing these logs.

The first plot employs a simplistic representation to visualize the occurrence

of error loglines over time. By mapping specific points in time along with the

corresponding count of detected error loglines, this plot offers a straightforward

overview of temporal anomalies.

Moving forward, the second plot adopts a scatter plot approach to differentiate

between normal and outlier points based on their spatial distribution. This plot

effectively portrays the deviation of outlier points from the norm by measuring

the distance between them. An outlier, in this context, is defined as a data point

significantly distant from the clustering of other loglines. Consequently, this scatter

plot aids in pinpointing loglines that substantially deviate from expected behavior.

The final visualization within this section provides an intricate insight into the

model’s prediction confidence for individual loglines. By measuring the likelihood

of a specific logline appearing within a sequence, this visualization becomes particu-

larly invaluable in scenarios where operators are already aware of anomalies within

the system. The visual representation of prediction confidence serves as a guide,

directing operators to sections within logfiles that hold the potential to uncover

8.1 ANSWERS TO RESEARCH QUESTIONS 98

anomalies.

RQ5: Does automatic log anomaly detection decrease the overall work-

time required for system maintenance.

Automatic log anomaly detection can significantly decrease the overall worktime

required for system maintenance. One way to achieve this is by using regex to

identify known anomalous loglines, such as those indicating invalid code execution

paths or segmentation faults. This method relies on past experiences and language

features like panics to detect anomalies.

A more advanced approach involves counting specific types of loglines detected

through regex and using these counts to determine if an anomaly is present. For

example, monitoring the number of failed HTTP requests within a certain period

can help identify anomalous system behavior. Cloud providers like GCP support

these types of methods, which can detect anomalies based on single occurrences of

specific loglines.

For more complex anomaly detection, tools like logsurfer can be used, which

offer a sophisticated rule system that allows for dynamic rule addition and deletion,

as well as context support. However, this method requires system administrators

to define every possible anomaly they want to detect, which can be time-consuming

and may not cover unknown anomalies.

Machine learning-based approaches can address this limitation by detecting anoma-

lies without prior knowledge. Although these methods require more preprocessing

and pipeline setup, they generally require less human effort for rule creation.

In summary, automatic anomaly detection can reduce the worktime required

for system maintenance, but it does require some form of pipeline, including log

collection, parsing, and analysis, to be effective. By implementing these automated

methods, system administrators can focus on more critical tasks and improve overall

system quality.

8.2 KEY FINDINGS 99

8.2 Key Findings

In this study, the performance of DeepLog was evaluated using log data sourced

from real-world systems, particularly Linux-based payment terminals. An in-depth

investigation was conducted into the essential factors for effective anomaly detec-

tion. It was found that even basic Deep Learning models could yield satisfactory

results when provided with high-quality data. Nonetheless, attention must be given

to ensuring the model does not overfit to specific anomalous sequences prevalent

in the training data. A proposed solution to this challenge is to remove any new

anomaly from the training data as it’s identified, which would prevent model overfit-

ting. This strategy could potentially enhance the system’s performance over time.

However, this study did not assess the efficacy of this method with changing log

data, highlighting a potential area for subsequent research.

Another notable finding from this study is the affordability of training even the

most advanced anomaly detection models.

References

[1] M. Du and F. Li, “Spell: Streaming parsing of system event logs”, in 2016

IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016,

pp. 859–864.

[2] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing approach

with fixed depth tree”, in 2017 IEEE international conference on web services

(ICWS), IEEE, 2017, pp. 33–40.

[3] S. Huang, Y. Liu, C. Fung, et al., “Hitanomaly: Hierarchical transformers for

anomaly detection in system log”, IEEE Transactions on Network and Service

Management, vol. 17, no. 4, pp. 2064–2076, 2020.

[4] Y. Lee, J. Kim, and P. Kang, “Lanobert: System log anomaly detection based

on bert masked language model”, arXiv preprint arXiv:2111.09564, 2021.

[5] S. E. Hansen and E. T. Atkins, “Automated system monitoring and notifica-

tion with swatch.”, in LISA, Monterey, CA, vol. 93, 1993, pp. 145–152.

[6] J. E. Prewett, “Analyzing cluster log files using logsurfer”, in Proceedings of

the 4th Annual Conference on Linux Clusters, Citeseer, 2003.

[7] R. Vaarandi, “A data clustering algorithm for mining patterns from event logs”,

in Proceedings of the 3rd IEEE Workshop on IP Operations & Management

(IPOM 2003)(IEEE Cat. No. 03EX764), Ieee, 2003, pp. 119–126.

REFERENCES 101

[8] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-

scale system problems by mining console logs”, in Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, 2009, pp. 117–

132.

[9] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and

diagnosis from system logs through deep learning”, in Proceedings of the 2017

ACM SIGSAC conference on computer and communications security, 2017,

pp. 1285–1298.

[10] X. Zhang, Y. Xu, Q. Lin, et al., “Robust log-based anomaly detection on un-

stable log data”, in Proceedings of the 2019 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2019, pp. 807–817.

[11] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan, “Ex-

amining the stability of logging statements”, Empirical Software Engineering,

vol. 23, pp. 290–333, 2018.

[12] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,

“Fasttext. zip: Compressing text classification models”, arXiv preprint arXiv:1612.03651,

2016.

[13] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”, Advances

in neural information processing systems, vol. 30, 2017.

[14] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding”, in Proceedings of naacL-

HLT, vol. 1, 2019, p. 2.

[15] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log pars-

ing and its use in log mining”, in 2016 46th annual IEEE/IFIP international

REFERENCES 102

conference on dependable systems and networks (DSN), IEEE, 2016, pp. 654–

661.

[16] Y. Wu, M. Schuster, Z. Chen, et al., “Google’s neural machine translation

system: Bridging the gap between human and machine translation”, arXiv

preprint arXiv:1609.08144, 2016.

[17] L. Bottou, “Large-scale machine learning with stochastic gradient descent”,

in Proceedings of COMPSTAT’2010: 19th International Conference on Com-

putational StatisticsParis France, August 22-27, 2010 Keynote, Invited and

Contributed Papers, Springer, 2010, pp. 177–186.

[18] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability”, Jour-

nalism quarterly, vol. 30, no. 4, pp. 415–433, 1953.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] H. Face, Tokenizers, https://github.com/huggingface/tokenizers, Ac-

cessed on February 24, 2023, 2022.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv

preprint arXiv:1412.6980, 2014.

[22] Tpu system architecture | cloud tpu documentation, https://cloud.google.

com/tpu/docs/system-architecture-tpu-vm#tpu_v4, accessed 2023.

[23] Google cloud pricing calculator, https://cloud.google.com/products/

calculator#id=acebd692-807c-47bc-bed1-3f8080086229, accessed 2023.

[24] Lambda labs gpu cloud, https://lambdalabs.com/service/gpu- cloud,

accessed 2023.

[25] Nvidia a100 datasheet, https://www.nvidia.com/content/dam/en-zz/

Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-

1758950-r4-web.pdf, accessed 2023.

https://github.com/huggingface/tokenizers
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4
https://cloud.google.com/products/calculator##id=acebd692-807c-47bc-bed1-3f8080086229
https://cloud.google.com/products/calculator##id=acebd692-807c-47bc-bed1-3f8080086229
https://lambdalabs.com/service/gpu-cloud
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

REFERENCES 103

[26] P. Izsak, M. Berchansky, and O. Levy, “How to train bert with an academic

budget”, arXiv preprint arXiv:2104.07705, 2021.

	Introduction
	Log Anomaly Detection
	Types of Anomaly Detection Systems
	Rule-Based Systems
	Data Analysis and Clustering
	Deep Learning

	Concepts
	Parsing
	F-score

	Analysis of Detection Methods
	Swatch
	Logsurfer
	Rules
	Actions
	Contexts

	Pattern Mining from Event Logs
	Source Code Analysis
	Structure of logs
	Problems
	Solution
	PCA Anomaly Detection

	Unsupervised Streaming Parser
	Spell
	Drain

	DeepLog
	Log Key Model
	Parameter Value Prediction Model
	Updating parameters

	Robust Log Anomaly Detection
	Architecture
	Semantic Vectorization
	Anomaly Detection

	HitAnomaly
	Architecture
	Encoding

	LanoBERT
	Architecture
	Training
	Anomaly Detection

	Summary

	Case Study
	Plan
	Tooling
	Testing

	Designing the Data Processing Pipeline
	Feedback Loop
	Dataflow
	Alerts
	Test Suites
	User Interface
	Visualisations

	Implementation
	Data Collection and Enhancement
	Challenges of the Current Data Collection Strategy
	Implementing an Agent Program
	Improving Logline Storage

	Preprocessing
	Log Data Structure
	Tokenization
	Dataset

	Model Training and Evaluation
	Training Objective and Procedure
	Performance Evaluation

	Results

	Analysis
	Results Breakdown
	Parsing and Preprocessing Analysis
	Anomaly Detection Analysis
	Performance Comparisons
	Interpretation of Results
	Key Takeaways from Results

	Performance
	Performance of the Drain Parser
	Performance of DeepLog
	Potential Performance Improvements
	Performance Insights

	Cost
	Computational Cost of State-of-the-Art Methods
	Cost of Implementation

	Conclusions
	Answers to Research Questions
	Key Findings

	References

