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Abstract—The development of the next-generation 5G wireless
networks depends critically on the engineering of optimized high-
frequency devices, employing dielectric materials. This work
presents a comprehensive broadband dielectric characterization
of polymers, ceramics and glasses from 5 GHz until 115 GHz.
Various measurement techniques including split-post, split cavity,
open resonator and free-space transmission are utilized to obtain
wideband spectra. The frequency-dependent permittivity and loss
tangent are analyzed to identify suitable candidate materials
exhibiting minimal dispersion and loss in the 5G millimeter-wave
bands. The characterization reveals almost constant permittivity
and a loss tangent that increases linearly with the frequency.

Index Terms—characterization, ceramic, dielectric, glass, loss,
material, measurements, substrate, 5G, 6G.

I. INTRODUCTION

The implementation of 5G millimeter-wave (mm-wave)
wireless networks has required the redesign of RF front-end
components like antennas, filters, and amplifiers so they can
operate at higher frequencies than previous generations [1].
These devices are usually fabricated using dielectric substrate
materials and metal conductors, which need to be characterized
at the new frequency bands is essential.

Materials with both low dielectric constants and low loss
are desirable for 5G applications [2]. Lower dielectric con-
stants enable faster signal propagation through the substrate,
allowing for higher data rates and lower latency. Additionally,
low loss tangents help compensate for the intrinsically higher
attenuation present at mm-wave frequencies, ensuring accept-
able propagation loss through devices [3], [4].

However, the dielectric properties of materials exhibit fre-
quency dependence arising from intrinsic relaxation mecha-
nisms. These atomic-scale processes cause resonance peaks
and dispersion effects that span the electromagnetic spectrum.
In solid materials, dipolar relaxation of molecular dipoles tends
to occur in the MHz frequencies, while vibrational resonances
of lattice ions are found in the THz region [5], [6]. The
dielectric behavior in the GHz range relevant for 5G devices
lies in an intermediate region that may be influenced by the
tails of the dipolar and ionic relaxations, around MHz and THz
frequencies, respectively. Therefore, accurate broadband char-
acterization is crucial to fully capture the frequency variations
of dielectric properties arising from these underlying physical
processes. Measuring only the low-frequency response could
provide an incomplete picture of a material’s suitability for
5G applications. However, there are limited published studies

characterizing the GHz dielectric properties of materials suited
for 5G applications. While some work has measured insulating
materials for printed circuit board (PCB) laminates [7], some
materials until 35 GHz in [8], some representative materials
from 20 to 110 GHz in [9], and the characterization of silicates
until THz frequencies has been done by the authors [10],
[11], comprehensive data on ceramics and polymers in the
5G mmWave range is lacking. Bridging this knowledge gap
with broadband dielectric metrology is imperative to facilitate
the development of 5G-enabled technologies.

In this paper, we provide the measurement results of many
commercial glasses, fused silica, quartz, some ceramics and
polymers.

II. MEASUREMENT TECHNIQUES

To obtain wideband dielectric characterization, a range of
measurement techniques spanning different frequency bands
must be employed. For dielectric characterization from 5 GHz
to 115 GHz, the Materials Research Institute at Penn State
University possesses the following measurement techniques,
which are shown in Fig. 1:

• Split-post dielectric resonator (SPDR) from QWED, op-
erating at 5.1 GHz.

• Split cavity or resonant mode dielectrometer (RMD-C,
GDK Product Inc.), with a single frequency below 20
GHz.

• Fabry-Perot open resonator (from Damaskos, Inc.) can
provide measurement results between 15-67 GHz.

• Material characterization kit (MCK, from SWISSto12)
provides measurement results between 70-115 GHz.

The resonant techniques (split-post, split cavity, and open
resonator) can obtain more accurate loss measurements than
the free-space transmission techniques (MCK) [12]. However,
each technique has its own loss threshold. For this reason, not
all frequency points could be measured for all the materials.
Further explanation about the measurement techniques can be
found in [10].

III. RESULTS

A wideband frequency characterization of the dielectric
properties of several glasses, fused silicas, crystalline materials
(quartz, sapphire, alumina), ceramics and polymers is shown
in Fig. 2 and Fig. 3. A flat response of the real part of the
permittivity can be seen in Fig. 2. Polymers are the dielectrics
with the lowest permittivity, which goes between 2 and 3.



(a) (b)

(c) (d)

Fig. 1. Characterization techniques employed. (a) Split-post dielectric res-
onator (b) Split cavity. (c) Open resonator. (d) MCK from SWISSto12.

The measured Rogers ceramics, RO3003 and RO4835, come
after the polymers, with dielectric constants of 3 and 3.7,
respectively. Fused silicas come next, with a permittivity of
3.8, followed by quartz. The commercial glasses measured
range between 4.4 and 8, depending on the percentage of
network modifiers. The materials with higher permittivity
measured are sapphire and alumina, both crystalline aluminum
oxides, but with different crystal structure. Sapphire has a
hexagonal crystal structure, while alumina has a cubic one,
which leads to different properties.
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Fig. 2. Dielectric constant of different materials as a function of frequency.
FS stands for fused silica.

The loss tangent is plotted in Fig. 3. The tendency is an
increment of one order of magnitude over 100 GHz. Crys-
talline materials exhibit the lowest loss, due to their ordered
internal structure. They reach the minimum loss threshold of
the measurement techniques available at lower frequencies.

The lowest loss measurable by the MCK is 10−3, therefore it is
not possible to measure the crystalline materials at the highest
part of the spectrum. Fused silicas are the materials with lower
loss after crystalline materials, followed by polymers. Glasses
are the materials with the highest loss.
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Fig. 3. Frequency evolution of the loss tangent of different materials.

IV. CONCLUSION

In conclusion, this work has demonstrated broadband di-
electric characterization of various materials classes over a
wide frequency range from 5 GHz to 115 GHz relevant to
5G applications. The results revealed that of the materials
characterized, crystalline substrates provided the lowest loss
on the order of 10−4, followed by fused silicas and certain
polymers with loss below 10−3. Ceramic materials displayed
loss tangents generally less than 10−2, while glasses exhibited
the highest losses but still below 10−1 at 100 GHz. Meanwhile,
the dielectric constant was observed to be relatively constant
over the full frequency span for most materials. These insights
highlight the need for broadband metrology and confirm crys-
tals, fused silicas, and select polymers as promising candidate
substrate materials for 5G antennas, packaging, and other
wireless components due to their stable and low-loss dielectric
properties.
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