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 Abstract—The increasing penetration of wind power leads to 

diverse stability issues, which present more extreme fluctuation 

and nonlinearity, especially under a weak grid. For the nonlinear 

transient process, it is particularly complex to estimate since no 

analytical solution can be found in math. To determine the 

transient stability of the grid-following (GFL) wind turbine, this 

article develops a third-order transient model of the GFL-doubly 

fed induction generator, which consists of a second-order phase-

locked loop model and a first-order active power control model. 

Then, a motion discretization equal area criterion (MD-EAC) 

method is proposed to estimate the damping effect in the second-

order system, which could enhance transient trajectory accuracy 

and improve stable region reliability. Based on MD-EAC, a 

power angle to time sequence mapping EAC (SM-EAC) method 

is proposed to perform the stability analysis in third-order 

systems with active power control. Finally, numerical simulation 

results are given to validate the effectiveness of the proposed MD-

EAC and SM-EAC under various scenarios. And the mechanism 

of multi-swing stability is analyzed by numerical simulation and 

SM-EAC. 

 

Index Terms—Damping, Equal area criterion, Phase-locked 

loop, Sequence mapping, Third-order, Transient stability. 

NOMENCLATURE 

Is, Ir Stator and rotor current. 

Us, Es Stator terminal and generated voltage. 

Ug PCC voltage. 

Lm, Xm Mutual inductance and reactance. 

Ls, Xs Stator inductance and reactance. 

Xl Line reactance. 

s, n Electrical angular velocity of stator and rated 

electrical angular velocity of PCC voltage. 

mec Rotor mechanical angular position. 
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pll g PLL output angular position and PCC voltage 

angular position. 

,  Power angle and its angular velocity. 

step Step size of power angle. 

kpp, kpi Proportional and integral parameters of PLL. 

kap, kai Proportional and integral parameters of active 

power control. 

Imax Maximum rotor current. 
Ims Stator excitation current 

Ps Stator output active power. 

P Park transform matrix. 

Ek, Ep, Ed Equivalent kinetic, potential, and damping 

energy. 

Pem, Pem, Ped Equivalent mechanical, electromagnetic and 

damping power 

Subscripts 

d, q Direct and quadrature axis components. 

ref Reference value. 

I. INTRODUCTION 

he application of renewable generation (RG), such as 

wind turbines (WT), significantly reduces carbon 

emissions of modern power system. However, new 

stability issues emerge in power grids with high penetration of 

RG, such as synchronization stability, sub-synchronous 

resonance, etc. [1], [2]. Unlike synchronous generators, the 

power electronic-interfaced RG exhibits different 

characteristics due to the control loop within a wide bandwidth 

range. Grid-following (GFL) control is an important control 

mode for RGs, which utilizes a phase-locked loop (PLL) to 

synchronize with the grid phase and output the power. This 

control structure is highly related to unstable phenomena 

within a wide frequency range due to the various timescales 

between control loops [3]. These unique stability problems 

require further analysis and discussion. 

Small-signal analysis is an effective tool that linearizes the 

system at a certain operating point and performs stability 

analysis for small disturbances. For GFL-RG, the state-space 

models are established in [4]–[7], and impedance models are 

developed [8]–[10] to simplify the computation. In [4], the 

instability mechanism during low voltage ride-through is 

illustrated, which reveals that the interaction of the PLL and 

the current loop may lead to reduced system damping. To 

improve stability under fault conditions, in [5], a method for 

determining the PLL bandwidth is presented. Furthermore, in 

T 
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[9], the PLL is considered to exhibit negative resistance 

characteristics primarily affecting low-frequency stability. The 

above studies show that the PLL dynamics are highly related 

to synchronization stability. Based on this consensus, the work 

in [11] analyzes the synchronization characteristics between 

PLL and grid, and quantifies the effect of different feedback 

channels. However, these studies mainly reveal the system’s 

stability under small disturbances where the system is 

linearized at a certain operating point. However, the instability 

phenomenon in modern power systems with RG often happens 

in weak grids with longer durations [12], which causes the RG 

to deviate more from the operation point and results the 

system present a nonlinear characteristic. 

Unlike small-signal analysis, transient analysis under large 

disturbances is performed directly based on nonlinear 

differential equations. Since higher-order differential 

equations cannot be solved analytically, three common 

methods are often employed for transient analysis, including 

numerical simulation, Lyapunov direct methods, and equal 

area criterion (EAC) method. 

Numerical simulation methods are relatively 

straightforward for transient stability analysis since they 

usually rely on solving differential equations. In [13], an 

accurate time-domain model is established to assess the 

system stability under various control strategies. To identify 

key factors for transient stability, the model of RG is reduced 

and solved in the time domain in [14], [15]. However, 

numerical algorithms run slowly in large-scale simulations, 

and the most significant drawback is the lack of quantifiable 

stability criteria, which prevents the researchers from 

acquiring a physical concept and mechanism of transient 

stability. 

The Lyapunov direct method is previously proposed to 

analyze and illustrate the stability boundary of a system by a 

well-established constructed energy function of the system. In 

[16], energy functions for GFL and grid-forming RG are 

constructed to compare their stability regions. The energy 

function is modified to ensure complete conservativeness in 

[17]. Nevertheless, the construction of energy function with 

minimal conservativeness is a significant challenge. Especially, 

the construction of the energy function mainly depends on 

experience in high-order systems, which makes it difficult to 

address stability issues in a form of general mathematical 

model. 

Another effective solution for transient stability analysis is 

the EAC method [18]. In recent studies, the EAC method is 

employed in GFL-RG, which equivalents the system as a 

motion system and analyzes energy transfers. For example, the 

PLL is modeled as a second-order system similar to the rotor 

motion equation, and EAC is used for transient analysis in 

[19]. However, the analysis in [20] concludes that 

misjudgments may happen when using EAC that ignores the 

damping term. Then, it proposes a method to estimate 

maximum negative damping and ensure conservativeness. A 

discretized iterative method is further presented in [21] to 

eliminate the misjudgments but increases some computation. 

In summary, the computational accuracy and difficulty to 

estimate damping become contradictory. A modified EAC 

method that balances these two sides needs to be proposed. 

Apart from PLL, power control also impacts transient 

stability in weak grid [22], which results in higher-order 

equations and makes it challenging to analyze with EAC 

methods. In the power control, the reactive power control 

supports the voltage stability of the power grid, and the active 

power control (APC) prevents the source side from DC 

overvoltage or rotor overspeed. In [23], reactive current 

control is modeled and analyzed to evaluate the transient 

stability during the low voltage ride-through process. In [24], a 

unified model of reactive power control is given to extend the 

stability analysis under different power control strategies. In 

[23] and [24], the effect of DC voltage control is considered, 

and the effect of APC on transient stability is analyzed. 

However, since the EAC method can only be applied in 

second-order systems, the above studies consider the power 

control as a proportional controller to avoid increased order or 

merely perform qualitative analysis. 

To address aforementioned gaps, this paper combines the 

advantages of the clear mechanism in the EAC method and the 

high precision of discrete computations. Inspired by the work 

in [27], this article presents a motion discretization EAC (MD-

EAC) method to calculate the effect of damping. Based on 

MD-EAC, a sequence mapping EAC (SM-EAC) method is 

further established to evaluate transient stability in the third-

order system with power control. The main contributions of 

this paper are clarified as follows: 

1) With a limited amount of calculation, the proposed MD-

EAC method allows the damping energy to be considered 

analytically in each step, thus basically eliminating the error 

due to neglecting damping in the conventional EAC (CEAC) 

method. 

2) The time sequence is obtained from the motion 

computation in the MD-EAC method. On this basis, the 

proposed SM-EAC method makes it possible to analyze the 

transient stability of third-order systems with power control. 

3) The proposed SM-EAC method can evaluate possible 

multi-swing stability problems in GFL-DFIG. The integral 

parameter kai in APC is noted to be an important factor 

affecting multi-swing stability. 

The rest of this paper is organized as follows. In Section II, 

a third-order transient model of the GFL-doubly fed induction 

generator (DFIG) is derived as an example of the GFL-WT. In 

Section III, an MD-EAC method is developed to solve the 

misjudgment in the CEAC method caused by damping. In 

addition, the power angle to time sequence is established to 

estimate the output of the APC. The MD-EAC and the 

sequence mapping together form the SM-EAC method. In 

Section IV, simulation is given to validate the effectiveness of 

MD-EAC and SM-EAC. Also, the phenomenon of multi-

swing instability is found and analyzed in GFL-DFIG. The 

conclusions are drawn in Section V. 

II. TRANSIENT MODELING OF GFL-DFIG 

A. Modeling of DFIG and PLL 

The stator of GFL-DFIG is directly connected to the point 

of common coupling (PCC) through line impedance. The grid 

side converter (GSC) ensures a constant voltage on the DC 

bus, while the rotor side converter (RSC) controls the stator 
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output current to follow the grid phase generated by PLL. The 

reference current values of RSC are from the power control 

loop, where the APC generates the active current Ird, and the 

reactive current is constant as Ims in unit power factor 

operation. Pitch control is used to adjust the blade angle  to 

control the input torque. The block diagram of GFL-DFIG 

system with control loops is shown in Fig. 1. According to the 

winding turns, the rotor side quantities above are converted to 

the stator side. All reactance values are calculated in the rated 

frequency f. 

Xl

dq

abc
n

DFIG

dq

abc

PLL
sU

pll

gU

Pref

Ps

kpp+kpi/s

kap+kai/s
Ird_ref

Irq_ref

Ims

GSC
Udc

+

_

RSC

sI sU

Udc

Udc_ref

PI

Igd_ref

Igq_ref

PI

PI

Igd

Igq

DUgq

DUgdugabc

pll

dq

abc

pll-mec

urabc

DUrq

DUrd

rI

PI

PI

Ird

Irq

Ird_ref

Irq_ref

Pitch

Control

mec
MPPT

1/s

MPPT & Pitch control APC

DC-link control

Current Loop
Current Loop

Ps+jQs

mec

mec



 
Fig. 1. Block diagram of GFL-DFIG system with control 

loops. 

 

Before the transient stability analysis, the relevant 

simplifications and conditions are clarified as follows. 

1) For the large renewable power system, the resistance of 

the system is ignored. Besides, since the output current 

frequency of the GFL-DFIG does not significantly change the 

grid reactance, the reactance is calculated only at the rated 

frequency f [14]. In fact, if the analysis object is the converter, 

the consideration of the reactance change due to frequency 

mutation does not affect the model’s order but only changes 

the coefficients of the equation [21]. 

2) The transient overcurrent and overvoltage protection 

process is ignored, since this duration is often less than 50ms 

[28] and barely affects the transient synchronization stability. 

3) Unlike the transient work between PLL and current loop 

in [29], this study focuses on the transient stability affected by 

the APC and PLL parts, which are slower compared to the 

current loop. Therefore, the current loop dynamics could be 

ignored, i.e., Irdq=Irdq_ref. 

4) The dynamic of the GSC is neglected because it occupies 

a small capacity and shares the same PLL with the RSC. 

In DFIG, the rotor current phase and the mechanical angle 

are superimposed to build the synthetic magnetic field. The 

generated voltage on the stator lags the synthetic magnetic 

field by /2. Therefore, the generated voltage on the stator of 

the DFIG during the transient process is given as (1). 

 mec mecj j
s s m r m rE j L I e jX I e

 = - = -  (1) 

In the current loop of GFL-DFIG, the rotor current is 

decomposed by the difference between pll and mec: 

 [ ] ( )T
rd rq pll mec rI I I = -P  (2) 

Extracting mec from P, we can obtain: 

 [ ] ( ) mecjT
rd rq pll rI I I e

= P  (3) 

where rdq is defined as: 

 arctan( )
rq

rdq

rd

I

I
 =  (4) 

The generated voltage on the stator can be calculated as (5) 

by combining (1) and (3). 

 ( ) pllj

s m rd rqE jX I jI e


= - +  (5) 

The DFIG connects to the PCC via the line reactance, and 

the circuit equation of the system can be established as (6). 

 g s s s l sU E jX I jX I= - -  (6) 

From (6), the circuit diagram and phase diagram of DFIG 

are shown in Fig. 2. 

Xl
sI

sU

Xs

g

Stationary reference

mecj

rI e
 Irq

Ird

sU

sE

sE

s

pll
Usq

gU
gU

(a) (b)
 

Fig. 2. The transient model of GFL-DFIG. (a) circuit, (b) 

phase diagram. 
 

From Fig. 2(b), the input of the PLL Usq can be derived as: 

 Im[ ] (1 ) sin( )=pllj

sq s g g pll m rdU U e a U aX I


 
-

= - - -  (7) 

where, 

 l

l s

X
a

X X
=

+
 (8) 

The differential equation of PLL in Fig. 1 is given as: 

 
1

[( ) ]
pi

pll pp sq n

k
k U

s s
 = + +  (9) 

Substituting (7) into (9), we can obtain the second-order 

nonlinear equations of PLL as: 

 (1 ) cos (1 ) sinpp g pi m rd pi gk a U k aX I k a U  + - = - - - (10) 

where the power angle  is defined as: 

 pll g  = -  (11) 

The velocity  is the differential of the power angle : 

  =  (12) 

Equations (10) and (12) construct a second-order motion 

system, which determines the transient characteristic of DFIG 

and PLL in GFL control. 

B. Modeling of APC 

For GFL-RG, the APC is an essential part in the transient 

process since the safety of the renewable energy source relies 

on the APC. For instance, during the transient process of a 

DFIG, it should still output a certain power to prevent the 
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rotor overspeed. In addition, APC provides sufficient active 

power support to the power grid, preventing other problems 

like low-frequency load shedding. The general form of the 

APC is given as: 

 _ ( )( )ai
rd ref ap ref s

k
I k P P

s
= - + -  (13) 

(13) is a first-order differential equation. The stator power 

in (13) can be calculated from (5) and (6). 

 

sin( )
2

( sin cos )

r m g

s pll rdq g

s l

m g

rq rd

s l

I X U
P

X X

X U
I I

X X


  

 

= + - -
+

= -
+

 (14) 

Due to the application of APC, the GFL-DFIG becomes a 

third-order nonlinear system consisting of (10), (12) and (13). 

III. TRANSIENT STABILITY ANALYSIS 

This section first shows the CEAC method and investigates 

its limitations. Furthermore, to solve the misjudgment in 

CEAC method, the MD-EAC method is proposed to correct 

the non-Hamiltonian damping component. Finally, the SM-

EAC method is applied to the third-order system by the 

proposed sequence mapping. 

A. CEAC Method 

Neglecting the effect of APC on Ird, for the second-order 

system defined by (10), it can be multiplied by   and then 

integrated over t for both sides: 

 
(1 ) cos

( (1 ) sin )

pp g

pi m rd pi g

dt k a U d

k aX I k a U d

  

 

+ -

= - - -

 


 (15) 

For the sake of uniform formatting,  is not used in (15) to 

replace  . (15) represents the energy equation in a second-

order system, which satisfies energy conservation: 

 0k p dE E E+ + =  (16) 

Ek, Ep, and Ed can be defined and simplified as: 

2 21 1

2 2

( (1 ) sin )

(1 ) cos

(1 ) cos (1 ) cos

k

p pi m rd pi g

pi m rd pi g

d pp g pp g

E dt d

E k aX I k a U d

k aX I k a U

E k a U d k a U d

    

 

 

   


= = = =


 = + -

 = - -

 = - = -


 



 

(17) 

Similar to the synchronous generator, we can find Pem, Pee 

and Ped as: 

 (1 ) sin

(1 ) cos

em pi m rd

ee pi g

ed pp g

P k aX I

P k a U

P k a U



 

 = -


= -


= -

 (18) 

(18) characterizes a rotating system which is driven by Pem, 

restrained by Pee and damped by Ped. As shown in Fig. 3, The 

intersection of Pem and Pee on the left and right are stable 

equilibrium point (SEP) and unstable equilibrium point (UEP), 

respectively. The second-order system can be analyzed using 

the CEAC method to obtain a stability criterion S for the 

system: 

 
0

=
UEP

em ee edS P P P d



- -  (19) 

where 0 is the starting point in the transient process, and UEP 

is the position of UEP. Neglecting Ped, S can be solved 

analytically. When S≤0, the system is asymptotically stable; 

when S>0, the system is unstable in the transient process. 

0 SEP UEP/2





 

Pem & Pee

Pdamp

(k)

 

...



Next 
swing

0

1

2

3

0

t1

t

Next 
swing

t2

t3

.  .  .

n-1

n

n+1

.  .  .

.  .  .

tn-1

tn

tn+1

.  .  .



t

(k)(k-1)

Ird(k)

eq.(34)/(39)

 
Fig. 3. SM-EAC with MD-EAC and sequence mapping part. 

 

The CEAC method is based on the synchronous generator, 

which always has a positive damping power [18]. Hence, 

CEAC is conservative to the synchronous generator when 

neglecting damping. However, in GFL-DFIG, the cosine 

component of Ped in (18) causes the damping negative on the 

right side of /2. This uncertainty regarding the damping 

component leads to either aggressive or conservative 

misjudgments about the system’s stability, as mentioned in 

[17], [21]. 

B. MD-EAC Method 

The system containing the Ped and  is a non-Hamiltonian 

system, which indicates that when the trajectory moves to a 

certain position at different moments, the power is determined 

not only by the position, but also by the different velocities. 

Consequently, to accurately analyze transient processes in 

such systems, it is necessary to determine  in the motion. 

To determine  and Ped, we can first discrete the motion by 

the step size step. A recursive algorithm then calculates the 

velocity k at the kth step, and the k can be used to forecast 

the damping in the next step. 

In order to implement the above algorithm, the initial 

velocity should first be determined. (0-) and (0+) are the 

velocities before and after the disturbance, respectively, and 

they can be calculated from (9), (11) and (12): 

 

0

0

(0 ) (0 )
0

(0 ) (0 )
0

t

pp sq pi sq

t

pp sq pi sq

k U k U dt

k U k U dt





-

+

- -

+ +

 = +


 = +





 (20) 

Since the integral does not abrupt at the disturbance 

moment, (0+) can be derived from the output of the proportion 
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part: 

 (0 ) (0 ) 0 (0 ) (0 )(1 )sin ( )= pp g gk a U U  + - + -- - -  (21) 

After calculating (0+), the velocity from the beginning to 

the first step 1 can be considered as (0+) and calculate the 

Ped. 

 (0 ,1) (0 ) (1 ) cosed pp gP k a U + += -  (22) 

Thus, the change of kinetic energy in this step and the new 

velocity in the next step can be represented as (23)-(25). 

 

1

0

1 1

00

(0 ,1) (0 ,1)

(0 ) (1 ) sin

k em ee ed

p pp g

E P P P dt

E k a U





 


 

+ +

+

D = - -

= - -


 (23) 

 2
(1) (0 ) (0 ,1)

1

2
k kE E + += + D  (24) 

 (1) (1)kE =  (25) 

where the integral in (23) can be calculated analytically. For 

subsequent steps, we can substitute 0+ and 1 with the step 

numbers k-1 and k in the recursive MD-EAC. 

If Ek(n)<0 in (25), it indicates that the power angle at n-1 is 

already close to the first-swing endpoint (FEP). Subsequently, 

it reaches the FEP, then returns to the position of n-1. This 

process completes the first swing and enters the second swing. 

In these two stages, due to the reversal of the integral limits on 

the -axis, the original driving force and resistance transform 

into each other. Therefore, the motion process is symmetrical 

in these two stages, and the initial velocity of the second 

swing is given as (26). 

 ( ) ( 1)n n  -= -  (26) 

With the initial velocity known as (26), the transient process 

in the second swing can be calculated by repeating (23)-(25). 

Similarly, the analysis in the muti-swing process can be 

performed. 

The application of the MD-EAC is shown in Fig. 3. It is 

important to note that the power transfer in EAC is rigorous, 

and the error here is from the approximation for . Besides, 

the dynamic of PLL is much faster than that of APC [30], 

[31], which means the variation of Ird is tiny within one step. 

Therefore, the equations of the PLL do not include 

differentiation of Ird. To minimize the precision loss, the 

linearized slope of Ird or a well-selected interpolation method 

can be introduced to enhance MD-EAC. However, the 

accuracy improvements with these methods are limited due to 

the separated timescales, especially when the step is small. 

C. MD-EAC Method Applied to Multi-DFIG Parallel System 

We also investigate the MD-EAC method’s applicability in 

multi-DFIG parallel systems. In an actual multi-DFIG parallel 

system, each DFIG operates under distinct wind speeds and 

line reactance conditions. Fig. 4 shows the diagram of the 

multi-DFIG parallel system. 

The voltage equation for the system in Fig. 4 is given as 

(27). 

 

1 11 1

1

0

0

0

0 0

t t

tn tnn n

t tn l bus

l lg g

y yI E

y yI E

y y y y U

y yI U



   - 
    
    
    = -
    

- - -    
    -    

 (27) 

where iE  and iI  represent the generated voltage and output 

current of the DFIGi, busU is the bus voltage of the wind farm, 

yti is the line admittance of DFIGi, and y represents the self-

admittance of the bus. 

Xl

gU

DFIGn

.
..

DFIG1

Xt1

Xtn

PLL1

PLLn

Current

Loop

Current

Loop

1sU

snU

Idq1_ref

Idqn_ref

busU

1I

nI

gI
plln

pll1

 
Fig. 4. The diagram of multi-DFIG parallel system.  

 

 

The DFIGi’s stator voltage siU  is given as (28). 

 si g l g l iU U jX I jX I= - -  (28) 

Substituting the current obtained from (27), we can obtain 

the structure of siU : 

 
1

n

si j j g

j

U A E BU
=

= +  (29) 

in which, A and B are the constants defined by (27). As the 

input of PLLi, Usqi is: 

1

[ sin( ) cos( )]

sin( )

n

sqi j m rqj pllj plli rdj pllj plli

j
j i

g g plli i m rdi

U A X I I

BU A X I

   

 

=


= - - -

+ - -


 (30) 

Then, the nonlinear equation of PLLi can be established as: 

 plli emi eei ediP P P = - -  (31) 

in which, 

1

sin( )
sin

cos( )

cos

cos( )( )

sin( )(

emi pi i m rdi

n
rqj pllj plli

eei pi g plli m j

j rdj pllj plli
j i

g plli plli

rqj pllj plli pllj plliedi pp
m j

rdj pllj plli p

P k A X I

I
P k BU X A

I

BU

IP k
X A

I

 


 

 

   

  

=


= -

 
-  

= -   
- -   

 

-

- -= -
+

+ -



1 )

n

j llj plli
j i

=










 
 
    

   
-     



  (32) 

plli is defined as the power angle for the DFIGi. For a wind 

farm containing n identical DFIGs, the power angle and its 

velocity of the equivalent swing center [32] can be defined as 

the average value of DFIGs: 

 
1

/
n

o j

j

n 
=

=   (33) 
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1

/
n

o j

j

n 
=

=   (34) 

For the swing center, its second-order equation can be 

derived by superposing the nonlinear equations of the DFIG 

units as (35). 

 
1

1
( )

n

o emi eei edi

i

P P P
n


=

= - -  (35) 

Since swing center represents the external characteristics of 

the DFIG cluster, the relative motion within the cluster in (35) 

can be neglected, which makes the swing-center equation 

similar to the single-machine equation. The introduction of the 

swing center reduces the order of multi-DFIG parallel system 

and enables the analysis through MD-EAC. 

D. Power Angle to Time Sequence Mapping 

The challenge in applying EAC to a third-order system is 

that all energy calculations within CEAC are conducted in the 

power angle domain, whereas APC dynamic as (13) is in time-

domain. Therefore, it is important to establish the relation 

between the power angle and time in the third-order system. In 

the MD-EAC process, we discretize the system dynamics into 

equidistant points along the -axis. If the time sequence can be 

established corresponding to the -axis, then APC in the third-

order system could be considered and computed at each . 

As the system moves from k-1 to k, the average value of 

velocity is: 

 
( 1) ( )

1,
2

=
k k

k k

 


-

-

+
（ ）  (36) 

If 1,k k -（ ）  is regarded as the average velocity of this 

displacement, the time passed in this displacement is: 

 ( 1, )

( 1, )

step

k k

k k

t



-

-

D =  (37) 

Then, we can obtain the time sequence at step k, as: 

 ( ) ( 1, )

0

k

k i i

i

t t -

=

= D  (38) 

For the n-1 close to FEP and the n in the next swing, the 

duration between them can be defined as: 

 
( 1) ( 1)

( 1, )

( 2) ( 1) ( 2) ( 1)

2

( ) / 2

n n step

n n

n n step n n

t
  

    

- -

-

- - - -

D =  =
- -

(39) 

The implication of (39) is to linearize the process from n-1 

to FEP in the phase plane as the same slope from n-2 to n-1, 

and then consider the velocity of this displacement as the 

average of (n-1) and 0. In the calculation with a smaller step, 

since n-1 and FEP are close, the time duration between these 

two points could be set to 0. In the next swing, repeating (36)-

(38) yields a new power angle to time sequence, as shown in 

Fig.3. 

E. APC in Time Sequence 

The dynamics of the APC can be obtained in a discrete 

sequence. In the initialization process, the mutation in the 

APC’s proportion part needs to be taken into account. From 

(13) and (14), Ird(0+) can be solved as: 

 

(0 ) 0 (0 ) (0 )

0 (0 )

0 (0 ) (0 )

[ sin ( )
1 cos

1
( sin ) )]

ap

rd rq g g

ap g

g rd

ap

k
I I b U U

k b U

b U I
k






+ - +

+

- -

-
= -

+

+ - -

(40) 

where, 

 m

s l

X
b

X X
=

+
 (41) 

At each of the following points in the time sequence, Ird(k) 

could be calculated by two methods: 

1) Incremental Method 

The increments of the PI controller output can be expressed 

by proportion and integral in the step. Therefore, the 

relationship between Ird(k-1) and Ird(k) can be calculated as: 

( ) ( 1) ( 1, )

( 1) ( 1) ( ) ( 1, ) ( 1)( ) ( )

rd k rd k rd k k

rd k ap s k s k ai k k ref s k

I I I

I k P P k t P P

- -

- - - -

= + D

= - - - D -

  (42) 

where Ird(k) is included in the Ps(k). When Ps(k) is rewritten with 

Ird(k-1) and DIrd(k-1,k), DIrd(k-1,k) can be solved as: 

 
( 1, ) ( 1, ) ( 1)

( 1) ( 1)

1
{ ( )

1 cos

[ ( sin sin )]}

=rd k k ai k k ref s k

ap g k

ap s k g rq k rd k k

I k t P P
k bU

k P bU I I



 

- - -

- -

-
D D -

+

+ - -

(43) 

2) Exponential Fitting Method 

Taking the derivatives on both sides of (13) and neglecting 

the current loop dynamic, it can be obtained: 

 ( )rd ap s ai ref sI k P k P P= - -  (44) 

The DFIG operates at unit power factor mode, therefore the 

differentiation of Irq can be neglected, and sP  is  

 ( cos sin cos )
m g

s rq rd rd

s l

X U
P I I I

X X
    = + -

+
 (45) 

Substituting sP , (44) can be rewritten into a differential 

equation as: 

 rd rdAI BI C+ =  (46) 

where, 

 

1 cos

sin cos

cos sin

ap g

ap g ai g

ap g rq ai ref ai rq

A k U b

B k U b k U b

C k U b I k P k bI



  

  

 = +


= - +


= - +

 (47) 

Then Ird can be solved as: 

 

B
t

A
rd I

B
I k e

C

-

= +  (48) 

A(k-1), B(k-1), and C(k-1) are all directly calculated algebraically 

at k, and the coefficient kI(k-1) is also directly solved as: 

 
( 1)

( 1)
( 1)

( 1)
( 1)

( 1)

( 1)
k

k
k

k
rd k

k

I k B
t

A

B
I

C
k

e

-

-
-

-
-

-

-
-

 
-  

 
=  (49) 

Now (48) turns into a time function, and Ird(k) in the next 

step can be forecasted as: 



7 

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. xx, NO. x, OCTOBER 2022 

 

 

( 1)

( 1)
( 1) ( 1)

( ) ( 1)

( 1)

k

k
k

B
t

A k

rd k I k

k

B
I k e

C

-

+
-

-
-

-

-

= +  (50) 

After determining the calculation method of Ird in the initial 

and each step next, the Ird in the whole transient process is 

known entirely, which can be calculated and applied step by 

step. The difference between the two methods is that the 

exponential method performs the differentiation of Ps in (46), 

which means that the dynamic of Ps is estimated in this step. 

However, the incremental method considers the error integral 

as an accumulation of the error at point k. 

Two aforementioned APC calculation methods above 

exhibit a similar feedback negative mechanism: in calculating 

the Ird(k), the methods consider the input as the error generated 

by the Ird(k-1), so that the error input of the algorithm is higher 

than of actual error. Subsequently, the methods yield an Ird 

output slightly greater than the actual in that step. Then, in the 

next step, the accumulated error in the previous step decreases 

Ird. Therefore, no static error is accumulated and amplified in 

the algorithm of Ird. This algorithm enhances accuracy in long-

time-lasting and multi-swing analysis.  

F. SM-EAC Method 

For the transient process, the response of the APC is much 

slower than that of the PLL [30], [31], which means the 

variation of Ird is tiny within one step of . Therefore, in the 

previous analysis, the slow dynamic of Ird is ignored in the 

MD-EAC calculation, while the rapid changes in power angle 

are considered through the exponential fitting method 

incorporating the velocity of power angle. Such an approach 

achieves a trade-off between algorithmic complexity and 

accuracy. To summarize and apply the above methods to a 

third-order system, we consider Ird as constant to use MD-

EAC method in each step and perform the power angle to time 

mapping after this step. Then, a new Ird is generated for the 

MD-EAC calculation in the next step. This alternating 

approach between the -domain and time domain is named 

SM-EAC, whose computational loop contains MD-EAC and 

sequence mapping is illustrated in Fig .3. The flowchart of 

SM-EAC is depicted in Fig. 5 to provide a clear representation 

of the computational structure between parts. 

For RG systems, the droop control of reactive current and 

current saturation may cause a decrease in Pem in a larger 

power angle region, resulting in a rightward shift of the UEP 

[23]. In various reactive droop modes, the curve of Pem differs 

but remains greater than 0, which means that the UEP is 

always less than . Therefore, in Fig. 5, the criterion for 

judging the system instability is set as k>. For the stable 

condition, in this paper, the judgment is set to be k<|min|, 

which indicates the phase trajectory is stabilized on the x-axis. 

While retaining the advantages of the clear mechanism in 

EAC method, the proposed SM-EAC introduces APC through 

sequence mapping, which makes it applicable to third-order 

systems. Its alternating computation between the time domain 

and the  domain utilizes the concept of partial linearization in 

a dynamic process. In SM-EAC, the effects of damping and 

APC are algebraically computed before and after each step 

with the discrete EAC method, which avoids additional 

integration loops or iteration calculations. In fact, SM-EAC 

runs the same number of steps as one loop calculation in the 

relative iterative method [21]. Compared to previous iterative 

methods, SM-EAC significantly enhances operational speed, 

which makes it highly valuable for engineering applications. 

start

Calculate initial value of 

(0+) and Ird(0+) by (21) 

and (30)

Calculate DEk(k-1,k) and 

Ek(k) by (23) and (24)

Calculate (k) by (25)

 Ek(k)<0 ?

(k) <|min| ?

Determine power 

angle step step
k=1, sw=1

Y

(k) =-(k-1) 

step=-step

sw=sw+1

k> ?

YN

Y

N

Calculate (k-1,k) 

and Dt(k-1,k) by (27) 

and (28)

Calculate Ird(k) by 

(34)/(39)

unstablestable

k=k+1

N

Initialization

Next swing

MD-EAC

APC in time sequence

Stability

Judgement

 
Fig. 5. Computational flowchart of proposed SM-EAC 

 

IV. SIMULATION VERIFICATION AND ANALYSIS 

In this section, as the basis of SM-EAC, the accuracy of the 

MD-EAC is first validated in various conditions. 

Subsequently, we analyze the SM-EAC method’s 

effectiveness and potential inaccuracy. Finally, the proposed 

SM-EAC is used for the evaluation and analysis of multi-

swing stability. 

A. Accuracy of MD-EAC 

Firstly, a single machine infinite bus (SMIB) is employed 

for validation, in which a detailed model aggregated with 6 

DFIGs connects to the infinity bus through the line. The 

parameters of DFIGs are listed in Table I in the Appendix. 

The objective of this part is to validate the effectiveness of 

MD-EAC in second-order systems. Therefore, the APC is not 

introduced, Ird and Irq are set as constant values of -0.69 pu 

and 0.26 pu respectively in this part. In the discrete transient 

calculations, the step size is selected as 1×10-3 rad. 
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In order to demonstrate that the conservative or aggressive 

problems of CEAC are modified by MD-EAC, two cases are 

introduced as follows. 

Case 1: The PCC suffers a permanent fault, resulting in a 

voltage drop of 0.5 pu. The line reactance is 0.6 pu. 

Case 2: The line reactance is the same as case 1. The PCC 

suffers a voltage drop of 0.8 pu for 400 ms, and then the PCC 

voltage is restored to 1 pu. 

As shown in Fig. 6, different stable boundaries and 

trajectories are drawn under the CEAC and MD-EAC. The 

actual simulation results under the two cases are also shown in 

Fig. 6. 
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Fig. 6. GFL-DFIG’s transient boundaries and trajectories in 

simulation and different methods. (a) Case 1. (b) Case 2. 

 

The line segment OA in Fig. 6(a) represents the velocity 

mutation at the moment of the voltage drop. Point A is the 

starting point of MD-EAC and CEAC calculation, and its 

vertical coordinate (0+) is obtained by initializing the equation 

(21). Point A is located at the intersection of the CEAC 

instability region and the MD-EAC stability region, which 

could obtain different transient stability results to compare the 

effectiveness of the methods. In this case, when the majority 

of the post-disturbance trajectory is within the positively 

damped region, the CEAC method fails to determine the 

system’s stability and reflects conservatism due to insufficient 

estimation of positive damping. However, when applying the 

MD-EAC method, the system has more resistance force than 

the previous CEAC estimation because the positive damping 

is properly considered. Therefore, the transient and actual 

trajectory are consistently stable and almost converge at the 

same point in the phase plane, which verifies the effectiveness 

of MD- EAC. 

The OA and AB processes in Fig. 6(b) represent the stage 

from the voltage drop to the end of the drop after 400ms, 

during which MD-EAC and CEAC yield consistent stability 

assessments. For simplicity, the trajectories obtained by both 

EAC methods during this stage are not depicted in Fig.6(b). 

After that, the line segment BC is the voltage recovery 

moment. Point C is the starting point for both methods, and it 

is critical since it lies in the intersection of the MD-EAC 

instability region and the CEAC stability region. For the 

stability of the system after Point C, the MD-EAC method 

aligns with the actual trajectory and tends towards instability, 

while the CEAC method makes a misjudgment, which 

validates the effectiveness of MD-EAC in case 2. So, MD-

EAC solves the aggressive problem of CEAC. The contrasting 

judgment results occur due to the CEAC method’s oversight 

of damping effects when the post-disturbance trajectory 

largely exists within the negatively damped region. This 

oversight leads to underestimating acceleration energy, 

allowing for a stable cycle without adequate energy 

dissipation. By contrast, the MD-EAC method estimates the 

negative damping, which is a part of the actual driving force in 

the system. Therefore, the calculated unstable trajectory nearly 

matches the same as the actual trajectory. 
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
 (
ra

d
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
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Fig. 7. Transient process of two-DFIG parallel system. (a) 

Phase trajectories in simulation and different methods. (b) 

Power angles under time domain in simulation. 

 

To verify the applicability of MD-EAC in a multi-DFIG 

parallel system, we select a two-DFIG parallel system, where 

each DFIG is aggregated from 3*1.5 MW DFIG units. Due to 

the different locations of DFIGs, they present different Ird and 
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line reactance to the bus, and the system parameters are shown 

in Table II in the Appendix. The fault is a 0.6 pu permanent 

drop voltage in the Ug at 20s. The trajectories of CEAC, MD-

EAC and actual simulation are shown in Fig. 7(a), and the 

time domain waveforms of the power angle for each unit and 

swing center are shown in Fig. 7(b). 

As shown in Fig. 7(a), MD-EAC successfully estimates the 

transient trajectory of the system and effectively judges the 

stability of the parallel DFIG system. However, CEAC 

misjudges the system as unstable. Fig. 7(b) shows that the 

power angle of the swing center is always in sync with the 

parallel DFIG unit, which proves the reasonableness of using 

the swing center to judge the transient stability of the parallel 

DFIG. 

B. Effectiveness of SM-EAC 

In the validation part of SM-EAC method, DFIG with the 

same parameters as Table I is selected. The line impedance in 

the SMIB system is 0.45 pu. The detailed model with APC is 

introduced in simulation, and its parameters are set as kap=3 

and kai=0.6 according to [33]. The SM-EAC methods using 

both incremental and exponential fitting methods are 

validated. The previous EAC method, which only considers 

proportional controllers as [21] and [23], is used as a 

comparison. Besides, we employ the MD-EAC to calculate the 

damping in the previous method to conduct the comparison. 

To improve the accuracy of this proportional MD-EAC 

method, we consider the effect of the initial value of the 

integral as: 

 _ 0 ( )rd ref ap ref sI x k P P= - -  (51) 

where x0 is the output of the integrator of the PI controller 

before the fault. Therefore, (51) considers the controller as a 

PI before disturbance and then degrades to a proportional 

controller during the transient process. This change allows the 

system to operate without static error during normal operation 

and solves the problem of inconsistency between previous 

studies and actual operation. 

Case 1, case 2, and case 3 suffered permanent voltage drops 

of 0.2, 0.3, and 0.35 pu to demonstrate stability under different 

conditions, respectively. The 3D trajectories with Ird as z-axis 

and phase trajectories are shown in Fig. 8. 

In Fig. 8(a), all three methods evaluate that the system is 

stable. However, since the proportional MD-EAC method 

does not consider the integration of error,  stops at about 

0.47, where Ird is about -0.86. The two proposed SM-EAC 

methods coincide with the actual trajectory. Finally,  stops at 

about 0.54, where Ird is about -0.97.  

In Fig. 8(b), the proportional MD-EAC method evaluates 

that the system is stable, which is inconsistent with the actual 

situation. In fact, the system becomes unstable after entering 

the third swing. The proposed SM-EAC methods accurately 

predict the instability in the third swing. However, in the 

region with a larger power angle, the proposed methods show 

some deviation compared to the actual trajectory, particularly 
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Fig. 8. 3D trajectories and plane trajectories in simulation and different methods. (a) Case 1. (b) Case 2. (c) Case 3. 
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the incremental SM-EAC method. This might be attributed to 

slow velocities but rapid accelerations during this condition, 

which causes a certain delay in the proposed methods. 

Nevertheless, the unstable phenomenon can be determined by 

calculating the acceleration/deceleration energy and the 

existence of SEP before entering the error region. SM-EAC 

remains effective in transient stability analysis.  

Fig. 8(c) is a more critical scenario, which reveals the 

instability phenomenon that occurs at the velocity very close 

to 0 in the first swing. For the proportional MD-EAC method, 

the absence of APC’s integration in the first swing leads to the 

incorrect stability judgment. On the other hand, the two 

proposed methods successfully estimate the integral output 

and indicate system instability. Similar to case 2, there are also 

some deviations in the zone with lower velocities, but these do 

not affect the final result. 

To demonstrate the accuracy of the power angle to time 

sequence mapping, the time-domain waveforms about 

calculation variables in case 2 are shown in Fig. 9(a). Besides, 

important variables not included in the calculation are shown 

in Fig. 9(b). 
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Fig. 9. GFL-DFIG’s transient waveforms. (a) Calculation 

variables in simulation and different methods; (b) Important 

variables in the simulation. 

 

As shown in Fig. 9(a), in the first swing, all three methods 

reasonably estimate the maximum power angle. Subsequently, 

due to the misjudgment of stability, the proportional MD-EAC 

stops calculation at 21.7s. After this moment, the proposed 

SM-EAC method, similar to the detailed model, continues to 

increase Ird as the dynamic of APC. Throughout this process, 

Ir does not exceed the maximum value of 1.5 pu. After 30 

seconds, as SEP disappears, the system accelerates and 

becomes unstable. Therefore, the proposed method 

successfully calculates the transient situation after the 

disturbance occurs until the SEP disappears, which is critical 

for transient energy calculations and stability assessment. 

From Fig. 9(b), it can be seen that as the power angle and 

rotor current increase, the stator voltage keeps deteriorating. 

Since the DFIG maintains unit power factor operation during 

this process, Qs varies less and Is is closely related to Ird. For 

the mechanical part, the rotor speed tends to stabilize at 30s 

due to the pitch control. However, at this moment, the SEP is 

already vanished, leading the DFIG to accelerate further and 

lose synchronization. 

C. Simulation and Analysis of Multi-Swing Stability 

Previous studies have effectively investigated the effects of 

parameters such as Xl, Ug, kpp, kpi and kap on system stability. 

In this work, we mainly focus on the relationship between kai 

and transient stability. 

The analysis is performed using the scenario similar to case 

2 in Fig. 8. While keeping other parameters and disturbance 

conditions constant, kai is varied across five values ranging 

from 0.3 to 5. Under these values, the phase plane trajectories 

of exponential SM-EAC are presented in Fig. 10, and the 

simulation results of the detailed model are depicted in Fig. 

11. 

All the cases eventually become unstable, which is 

consistent with the SM-EAC judgment. For a clearer 

presentation of the dynamics of the system, the instability after 

a longer period of time is not plotted in Fig. 11. The SM-EAC 

method successfully identifies three unstable cases in the third 

swing and two unstable cases in the first swing, which agrees 

with the time-domain simulations. It can be observed that 

increasing kai leads to an earlier and more intense instability 

phenomenon. While a larger kai enables faster tracking of the 

reference power, it also subjects the system to a larger area of 

acceleration and an earlier disappearance of SEP. 

In the two first-swing unstable cases in Fig. 11, the system’s 

velocity does not decelerate to 0 at the UEP and continues to 

accelerate on the right side of the UEP. Before the UEP, lower 

deceleration energy compared to higher acceleration energy 

led to the occurrence of instability in the first swing. In 

contrast, the three third-swing unstable cases depicted in Fig. 

11 show the system’s velocity approaching near 0 while  

increasing slowly in the third swing. In this process, the slow 

increase of Ird in the third swing causes the SEP to rise slowly 

while  continuously following the SEP. Eventually, since Pem 

and Pee have no intersection, the SEP disappears, leading to 

the system’s instability and acceleration. 
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Fig. 10. Phase plane trajectories under SM-EAC with different 

kai. 
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Fig. 11. Simulation results of the detailed model with different 

kai. (a) ; (b) .  

 

V. CONCLUSION 

In this paper, transient modeling and stability analysis of 

DFIGs are investigated, which includes the dynamics of PLL 

and APC. To enhance the reliability of the EAC method, the 

proposed MD-EAC method is established to compute the 

damping energy analytically in each step and is further 

extended to be applied to multi-DFIG parallel systems. By 

introducing sequence mapping, the dynamic of the APC is 

carefully estimated. Based on these works, the SM-EAC 

method is presented as a recursive transient analysis method 

for third-order nonlinear systems. Finally, numerical 

simulations demonstrate the effectiveness of MD-EAC and 

SM-EAC. Multi-swing stability is found in numerical 

simulation, and the mechanism is cross-analyzed with the SM-

EAC method. The main contributions of this paper are as 

follows: 

1) The discretization allows the damping effect to be 

estimated accurately in MD-EAC, and the conservatism or 

aggressiveness in the CEAC method is resolved in various 

conditions. 

2) The proposed exponential fitting method effectively 

estimates the dynamics of the APC in transient power angle 

variation. For APC and PLL, the different response 

bandwidths allow them to be analyzed by the recursive SM-

EAC method. 

3) The multi-swing stability is closely related to the 

parameter kai in the APC, and the multi-swing stability can be 

further strengthened by a well-selected kai. 
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APPENDIX 

TABLE I 

PARAMETERS OF THE DFIG IN SIMULATION 

Parameter Value Parameter Value 

Sn (MVA) 6*1.67 Wind speed (m/s) 11 

f (Hz) 60 Un (V, phase to phase) 575 

Ims (p.u.) 0.26 Imax (p.u.) 1.5 

Xs (p.u.) 3.08 Xr (p.u.) 3.06 

Xm (p.u.) 2.9 kpp 16 

kpi 50   

 

TABLE II 

PARAMETERS OF THE MULTI-DFIG PARALLEL SYSTEM 

Parameter Value Parameter Value 

Sbase (MVA) 6*1.67 Xt1 (p.u.) 0 

Sn1 (MVA) 3*1.67 Xt2 (p.u.) 0.4 

Sn2 (MVA) 3*1.67 Ird1 (p.u.) -0.69 

Xl (p.u.) 0.6 Ird2 ( p.u.) -0.32 

Wind speed 1 (m/s) 11 Wind speed 2 (m/s) 8.5 
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