

Aalborg Universitet

Efficient Cost Modeling of Space-filling Curves

Liu, Guanli; Kulik, Lars; Jensen, Christian S.; Li, Tianyi; Qi, Jianzhong

Publication date:
2023

Link to publication from Aalborg University

Citation for published version (APA):
Liu, G., Kulik, L., Jensen, C. S., Li, T., & Qi, J. (2023). Efficient Cost Modeling of Space-filling Curves.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: January 23, 2024

https://vbn.aau.dk/en/publications/d48f1e0b-cbfa-4fe7-a2fd-f1de48503cbc

Efficient Cost Modeling of Space-filling Curves
Guanli Liu

The University of Melbourne

Australia

guanli@student.unimelb.edu.au

Lars Kulik

The University of Melbourne

Australia

lkulik@unimelb.edu.au

Christian S. Jensen

Aalborg University

Denmark

csj@cs.aau.dk

Tianyi Li

Aalborg University

Denmark

tianyi@cs.aau.dk

Jianzhong Qi

The University of Melbourne

Australia

jianzhong.qi@unimelb.edu.au

ABSTRACT
A space-filling curve (SFC) maps points in a multi-dimensional space

to one-dimensional points by discretizing the multi-dimensional

space into cells and imposing a linear order on the cells. This way,

an SFC enables the indexing of multi-dimensional data using a one-

dimensional index such as a B
+
-tree. Choosing an appropriate SFC

is crucial, as different SFCs have different effects on query perfor-

mance. Currently, there are two primary strategies: 1) deterministic

schemes, which are computationally efficient but often yield subop-

timal query performance, and 2) dynamic schemes, which consider

a broad range of candidate SFCs based on cost functions but incur

significant computational overhead. Despite these strategies, exist-

ing methods cannot efficiently measure the effectiveness of SFCs

under heavy query workloads and numerous SFC options.

To address this problem, we propose means of constant-time cost
estimations that can enhance existing SFC selection algorithms, en-

abling them to learn more effective SFCs. Additionally, we propose

an SFC learning method that leverages reinforcement learning and

our cost estimation to choose an SFC pattern efficiently. Experi-

mental studies offer evidence of the effectiveness and efficiency of

the proposed means of cost estimation and SFC learning.

KEYWORDS
Space-filling Curves, Cost Model, Reinforcement Learning

ACM Reference Format:
Guanli Liu, Lars Kulik, Christian S. Jensen, Tianyi Li, and Jianzhong Qi.

2024. Efficient Cost Modeling of Space-filling Curves. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 13 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Indexing is essential to enable efficient query processing on increas-

ingly massive data, including spatial and other low-dimensional

data. In this setting, indices based on space-filling curves (SFC)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

are used widely. For example, Z-order curves (ZC, see Figures 1a
and 1b) [22] are used in Hudi [2], RedShift [1], and SparkSQL [4];

lexicographic-order curves (LC, see Figure 1c) are used in Post-

greSQL [24] and SQL Server [15]; and Hilbert curves (HC) [5] are
used in Google S2 [27]. Next, the arguably most important type

of query in this setting is the range query that also serves as a

foundation for other queries, including 𝑘NN queries.

The most efficient query processing occurs when the data needed

for a query result is stored consecutively, or when the data is stored

in a few data blocks. Thus, the storage organization—the order

in which the data is stored—affects the cost of processing a query

profoundly.When indexing data using SFC-based indices, the choice

of which SFC to use for ordering the data is important.

x

y

q1
q3

q2

(a) Curve 1 (ZC)
x

y

q1
q3

q2

(b) Curve 2 (ZC)
x

y

q1
q3

q2

(c) Curve 3 (LC)

Figure 1: Examples of SFCs (in grey) and queries (in red).
Different range queries benefit differently from different SFCs.

In Figure 1, three SFCs on the same data space are shown along

with three queries. The fewer disconnected segments of an SFC

that need to be accessed to compute a query, the better. To compute

𝑞1, the SFC in Figure 1a is preferable because only a single segment

needs to be accessed. Put differently, the data needed may be in a

single or in consecutive blocks. In contrast, the SFCs in Figures 1b

and 1c map the needed data to two and four segments, respectively.

Next, we observe that no single SFC is optimal for all queries.

While the SFC in Figure 1a is good for 𝑞1, it is suboptimal for 𝑞2
and 𝑞3. It is thus critical to select the right SFC for a given query (or

query workload). This in turn calls for efficient means of estimating

the cost of computing a query using a particular SFC (without query

execution) to guide SFC selection.

Existing studies [17, 32] provide cost estimations based on count-

ing the number of clusters (continuous curve segments) covered

by a query. However, their calculations rely on curve segment

scans that require 𝑂 (𝑉) time, where 𝑉 is proportional to the size

of a query. Given a workload of 𝑛 queries and𝑚 candidate SFCs,

𝑂 (𝑛 ·𝑚 · 𝑉) time is needed to choose an SFC. This is expensive

given large 𝑛 and𝑚 (e.g., a 𝑘 × 𝑘 grid can form𝑚 = 𝑘2! candidate

SFCs), thus jeopardizing the applicability of the cost model.

1

ar
X

iv
:2

31
2.

16
35

5v
1

 [
cs

.D
B

]
 2

6
D

ec
 2

02
3

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA et al.

In this paper, we provide efficient means of SFC cost estimation

such that a query-optimal SFC can be found efficiently. Specifically,

we present algorithms that compute the cost of a query in𝑂 (1) time.

After an 𝑂 (𝑛)-time initialization, the algorithms compute the cost

of 𝑛 queries in 𝑂 (1) time for each new SFC to be considered. This

means that given𝑚 candidate SFCs, our algorithms can find the

optimal SFC in𝑂 (𝑚) time, which is much smaller than𝑂 (𝑛 ·𝑚 ·𝑉)
and thus renders SFC cost estimation practical.

Our algorithms are based on a well-chosen family of SFCs, the

bit-merging curves (BMC) [7, 19]. A BMC maps multi-dimensional

points by merging the bit sequences of the point coordinates (i.e.,

column indices) from all 𝑑 dimensions (detailed in Section 3.1). We

consider BMCs for two reasons: (1) BMCs generalize ZC and LC

used in real systems [2, 4, 15, 24]. Algorithms to find optimal BMCs

can be integrated seamlessly into real systems. (2) The space of

BMCs is large. For example, in a 2-dimensional space (𝑑 = 2), where

each dimension uses 16 bits (ℓ = 16) for a column index, there are

𝑘 = 2
ℓ
columns in each dimension of the grid. This yields about

6×108 (i.e., (𝑑 ·ℓ)!(ℓ!)𝑑) candidate BMCs. An efficient cost model enables

finding a query-efficient SFC in this large space.

Our algorithms model the cost of a range query based on the

number and lengths of curve segments covered by the query, which

in turn relate to the difference between the curve values of the

end points of each curve segment. We exploit the property that the

curve values of a BMC come from merging the bits of the column

indices. This property enables deriving a closed-form equation to

compute the length of a curve segment in 𝑂 (𝑑 · ℓ) = 𝑂 (1) time

(given that 𝑑 and ℓ are constants) for 𝑛 queries. The property also

enables pre-computing 𝑑 look-up tables that allow computing the

number of curve segments in𝑂 (𝑑 ·ℓ) = 𝑂 (1) time. Thus, we achieve

constant-time SFC cost estimation.

We show the applicability of the cost estimation algorithms by

incorporating them into the state-of-the-art learned BMC-based

structure, the BMTree [13]. The BMTree computes empirical query

costs by executing a query workload on the dataset to be indexed.

Even with its dataset sampling strategy to reduce the computational

costs for query cost estimation, the original SFC learning algorithm

of the BMTree takes seven hours (cf. BMTree-SP in Figure 11a) to

index a dataset of 100 million points (with only 100,000 sampled

points for query cost estimation). Our cost estimation algorithms

bring this time down to 57 seconds (cf. BMTree-GC in Figure 11a)

with little impact on query efficiency.

Furthermore, we develop an SFC learning algorithm named

LBMC that uses Reinforcement Learning (RL) techniques to find

the optimal BMC. Importantly, the reward calculation in RL lever-

ages our closed-form cost estimation equation and pre-computed

look-up tables, thus making the entire learning process extremely

efficient. This enables the RL agent to converge rapidly to near-

optimal solutions while navigating the state space.

In summary, the paper makes the following contributions:

(1) We propose algorithms for efficient range query cost estima-

tion when using BMC-based indices on multi-dimensional datasets.

The algorithms can compute the cost of a range query in𝑂 (1) time

as well as the cost of a workload of 𝑛 queries in 𝑂 (1) time, after

a simple scan over the queries. (2) We generalize the applicabil-

ity of the cost estimation to existing state-of-the-art SFC learning

methods based on BMCs, enhancing the learning efficiency of such

methods. (3) We propose LBMC, an efficient BMC learning algo-

rithm that leverages the proposed cost estimation. (4) We evaluate

the cost estimation and LBMC algorithms on both real and synthetic

datasets, finding that (i) our cost estimation outperforms baselines

consistently by up to 10
5
times in efficiency, (ii) our cost estima-

tion accelerates the reward calculation of the BMTree by 400x with

little impact on query efficiency, and (iii) the LBMC algorithm has

lower learning and query costs than the competing SFC learning

algorithms, including the BMTree.

The rest of the paper is organized as follows. Section 2 covers

related work. Section 3 presents preliminaries, and Section 4 details

our cost estimations. Section 5 presents LBMC, and Section 6 reports

the experimental results. Section 7 concludes the paper.

2 RELATEDWORK
Space-filling curves. SFCs find use in many fields, including in in-

dexing [10, 12, 21, 31], data mining [3], and machine learning [8, 29].

An SFC maps multi-dimensional data values to one-dimensional

values, which are then indexed using a one-dimensional index, e.g.,

the B
+
-tree.

Two popular SFCs, ZC [22] and HC [5], are being deployed in

practical data systems [1, 2, 4]. Bit-merging curves (BMCs, detailed

in Section 3.1) are a family of SFCs, where the curve value of a grid

cell is formed by merging the bits of the cell’s column indices from

all 𝑑 dimensions. To better order the data points for specific query

workloads, QUILTS [19] provides a heuristic method to design a

series of BMCs and selects the optimal one. A recent technique, the

Bit Merging Tree (BMTree) [13], learns piece-wise SFCs (i.e., BMCs)

by using a quadtree [6]-like strategy to partition the data space and

selecting different BMCs for different space partitions.

Cost estimation for space-filling curves. To learn an optimal

SFC, cost estimation is employed to approximate the query costs

without actually computing the queries. Two studies [17, 32] offer

theoretical means of estimating the number of curve segments

covered by a query range. They do not offer empirical results or

guidance on how to construct a query-efficient SFC index.

QUILTS formulates the query cost C𝑡 for a BMC index over a

set of queries as C𝑡 = C𝑔 · C𝑙 , where C𝑔 is a global cost and C𝑙
is a local cost. The global cost is the length of a continuous BMC

segment that is able to cover a query range 𝑞 fully minus the length

of the BMC segments in 𝑞, for each query. The idea is to count

the number of segments outside 𝑞 that may need to be visited to

compute the queries. The local cost is the entropy of the relative

length of each segment of the BMC curve outside 𝑞 counted in the

global cost, which reflects how uniformly distributed the lengths

of such segments are. However, computing these two costs relies

on the accumulated length of the curve segments outside 𝑞, which

is expensive to compute. Given 𝑛 range queries, it takes 𝑂 (𝑛 · 𝑐𝑡)
time to compute C𝑡 , where𝑂 (𝑐𝑡) is the average estimation cost per

query. Further, they can only be used to estimate the query costs

of a given BMC index and do not enable an efficient search for a

query-efficient BMC index.

The BMTree estimates query costs using data points sampled

from the target dataset. Such cost estimations are expensive for large

datasets and many queries. For example, BMTree curve learning

2

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

over a dataset of 100 million points (with 100,000 sampled points)

and 1,000 queries can take more than seven hours (cf. BMTree-SP

in Figure 11a). While using a smaller sampled dataset and fewer

queries may reduce the learning time, the resulting curve may cause

suboptimal query performance (cf. BMTree-SP-6/8/10 in Figure 13).

LMSFC [7], another recent proposal, learns a parameterized SFC

(which is effectively a BMC) using Bayesian optimization [9]. Like

the BMTree, LMSFC uses a sampled dataset and a query work-

load for query cost estimation and thus has the same issues as the

BMTree. Our study aims to address these issues by providing a

highly effective and efficient cost estimation.

Space-filling curve-based indices. The Hilbert R-tree [10] is
a classic index structure based on SFC. It uses an HC to map and

order multi-dimensional data, based on which an R-tree is built on

the data. This simple structure has been shown to be competitive in

many follow-up studies. A recent study further achieves worst-case

optimal range query processing by adding an extra rank space-
based mapping step over the input data before the Hilbert R-tree is

built [26]. Another index, the Instance-Optimal Z-Index [23], uses

a quadtree-like strategy to recursively partition the data space. It

creates four sub-spaces of a (sub-)space, which may be of different

sizes. The four sub-spaces are each ordered by ZCs of different

sizes and follow a ‘ z’ or an ‘N’ shape. At the bottom level of the

space partitioning hierarchy, the ZCs of sub-spaces that come from

different parent sub-spaces are connected following the order of the

ZC that traverses the parent sub-spaces. This way, a curve is formed

that traverses all bottom-level sub-spaces, and the data points are

indexed in that order.

In the recent wave of machine learning-based optimization for

indices [11, 18], SFCs have been used to order and map multi-

dimensional data points to one-dimensional values, such that one-

dimensional learned indices (e.g., RMI [11]) can be applied. ZM [30]

and RSMI [25] are representative proposals. As the BMTree [13]

work shows, different learned SFCs can be plugged into these index

structures to (possibly) improve their query performance. Our cost

estimations can be applied to further enhance the SFC learning

process as discussed above, which are orthogonal to these studies.

3 PRELIMINARIES
We start with core concepts underlying BMCs and list frequently

used symbols in Table 1.

3.1 BMC Definition
ABMCmapsmulti-dimensional points bymerging the bit sequences
of the coordinates (i.e., column indices) from all 𝑑 dimensions into

a single bit sequence that becomes a one-dimension value [19].

 00 01 10 11x

00

01

10

11

y

0000
0

0001
1

0010
2

0011
3

0100
4

0101
5

0110
6

0111
7

1000
8

1001
9

1010
10

1011
11

1100
12

1101
13

1110
14

1111
15

BMC YXYX

 00 01 10 11x

00

01

10

11

y

0000
0

0001
1

0010
2

0011
3

0100
4

0101
5

0110
6

0111
7

1000
8

1001
9

1010
10

1011
11

1100
12

1101
13

1110
14

1111
15

BMC YXXY

 00 01 10 11x

00

01

10

11

y

0000
0

0001
1

0010
2

0011
3

0100
4

0101
5

0110
6

0111
7

1000
8

1001
9

1010
10

1011
11

1100
12

1101
13

1110
14

1111
15

BMC YYXX

Figure 2: BMC examples (𝑑 = 2 and ℓ = 2).
Figure 2 plots three BMC schemes, which are represented by

YXYX, YXXY, and YYXX. Here, the ordering of the X’s and Y’s

Table 1: Frequently used symbols.

Symbol Description

𝑑 The data space dimensionality

ℓ The number of bits for grid cell numbering in each dimension

𝐷 A multi-dimensional dataset

𝑝 A data point

𝑞 A range query

𝑄 A set of range queries

𝐵 The block size

𝑝𝑠 , 𝑝𝑒 The start and end points on an SFC of a range query

𝑛 The number of range queries

𝜎 A bit-merging curve (BMC)

F𝜎 The curve value calculation function over BMC 𝜎

𝛼
𝑗

𝑖
The 𝑗 th bit value in dimension 𝑖

𝛾
𝑗

𝑖
The position (0-indexed) of 𝛼

𝑗

𝑖
in a BMC 𝜎

𝑥𝑖 A value in dimension 𝑖

[𝑥𝑠,𝑖 , 𝑥𝑒,𝑖] A value range in dimension 𝑖

specify how the bits from dimensions 𝑥 and 𝑦 are combined to

obtain a BMC 𝜎 . The coordinates from each dimension have two

bits, i.e., the bit length ℓ of each dimension is 2. The merged bit

sequence (i.e., the curve value in binary form) has 𝑑 · ℓ = 4 bits.

The bit length ℓ is determined by the grid resolution, which

is a system parameter. We use the same ℓ for each dimension to

simplify the discussion, and we use the little endian bit order, i.e.,

the rightmost bit has the lowest rank (cf. Figure 3). For simplicity,

we call the column indices of a point 𝑝 in a cell (or the cell itself)

the coordinates of 𝑝 (or the cell).

BMC value calculation. Given a BMC 𝜎 , we compute the curve

value of a point 𝑝 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) using function F𝜎 (𝑝):

F𝜎 (𝑝) =
𝑑∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝛼
𝑗

𝑖
· 2𝛾

𝑗
𝑖 (1)

Let 𝑥𝑖 be the dimension-𝑖 coordinate of 𝑝 . In the equation,𝛼
𝑗

𝑖
∈ {0, 1}

is the 𝑗th (𝑗 ∈ [1, ℓ]) bit of 𝑥𝑖 , and 𝛾
𝑗

𝑖
is the rank of 𝛼

𝑗

𝑖
in the BMC.

ℓ∑︁
𝑗=1

𝛼
𝑗

𝑖
· 2𝑗−1 = 𝑥𝑖 (2)

Note that the order among the bits from the same dimension does

not change when the bits are merged with those from the other

dimensions to calculate F𝜎 (𝑝), i.e., for bits 𝛼 𝑗
𝑖
and 𝛼

𝑗+1
𝑖

, 𝛾
𝑗

𝑖
< 𝛾

𝑗+1
𝑖

.

For ease of discussion, we use examples with up to three dimen-

sions 𝑥 , 𝑦, and 𝑧. Figure 3 calculates F𝜎 (𝑝) for 𝑝 = (2, 1, 7) given
𝜎 = XYZXYZXYZ. Here, 𝛼1

3
= 1 is the first bit value in dimension 𝑧,

and the rank of the first (i.e., rightmost) Z bit in 𝜎 is zero, which

means 𝛾1
3
= 0. To calculate the curve value of a point for a given 𝜎 ,

we derive each 𝛼
𝑗
𝑖
and 𝛾

𝑗
𝑖
based on 𝑥𝑖 and 𝜎 , respectively.

8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1
X Y Z X Y Z X Y Z

0 1 0 (2) 0 0 1 (1) 1 1 1 (7)

2 1 0

Y Y YX X X Z Z Z

2 1 0 2 1 0

Little Endian
High Low

Position:

Bit sequence:

Figure 3: BMC curve value calculation (𝑑 = 3 and ℓ = 3).
3

Conference’17, July 2017, Washington, DC, USA et al.

BMCmonotonicity. The BMC value calculation process implies

that any BMC is monotonic.

Theorem 1 (Monotonicity). Given 𝑝1 = (𝑥1,1, . . . , 𝑥1,𝑑) and
𝑝2 = (𝑥2,1, . . . , 𝑥2,𝑑) then ∀𝑖 ∈ [1, 𝑑] (𝑥1,𝑖 ≤ 𝑥2,𝑖) → F𝜎 (𝑝1) ≤ F𝜎 (𝑝2) .

Proof. Given 𝑥1,𝑖 ≤ 𝑥2,𝑖 , we have
∑ℓ
𝑗=1 𝛼

𝑗

1,𝑖
· 2𝑗−1 ≤ ∑ℓ

𝑗=1 𝛼
𝑗

2,𝑖
· 2𝑗−1

based on Equation 2. The order among the bits from 𝑥1,𝑖 and 𝑥2,𝑖
do not change when they are used to calculate F𝜎 (𝑝1) and F𝜎 (𝑝2),
respectively. Thus,

∑ℓ
𝑗=1 𝛼

𝑗

1,𝑖
· 2𝛾

𝑗
1,𝑖 ≤ ∑ℓ

𝑗=1 𝛼
𝑗

2,𝑖
· 2𝛾

𝑗
2,𝑖 . Since this holds

for any 𝑖 ∈ [1, 𝑑], we have ∑𝑑
𝑖=1

∑ℓ
𝑗=1 𝛼

𝑗

1,𝑖
· 2𝛾

𝑗

1,𝑖 ≤ ∑𝑑
𝑖=1

∑ℓ
𝑗=1 𝛼

𝑗

2,𝑖
·

2
𝛾
𝑗

2,𝑖 , i.e., F𝜎 (𝑝1) ≤ F𝜎 (𝑝2) . □

3.2 Range Querying Using a BMC
Next, we present concepts on range query processing with BMCs

that will be used later to formulate query cost estimation.

Definition 1 (Range Query). Given a 𝑑-dimensional dataset 𝐷
and a range query 𝑞 = [𝑥𝑠,1, 𝑥𝑒,1] × [𝑥𝑠,2, 𝑥𝑒,2] × . . .× [𝑥𝑠,𝑑 , 𝑥𝑒,𝑑], where
[𝑥𝑠,𝑖 , 𝑥𝑒,𝑖] denotes the query range in dimension 𝑖 , query 𝑞 returns all
points 𝑝 = (𝑥1, 𝑥2, ..., 𝑥𝑑) ∈ 𝐷 that satisfy: ∀𝑖 ∈ [1, 𝑑] (𝑥𝑠,𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑒,𝑖) .

As mentioned earlier, computing a query 𝑞 using different BMCs

can lead to different costs. To simplify the discussion for determin-

ing the cost of a query, we use the following corollary.

Corollary 1. Given 𝑝𝑠 = (𝑥𝑠1 , . . . , 𝑥𝑠𝑑) and 𝑝𝑒 = (𝑥𝑒1 , . . . , 𝑥𝑒𝑑) ,
any query 𝑞 is bounded by the curve value range [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)].

Corollary 1 follows directly from the monotonicity of BMCs

(Theorem 1). To simplify the discussion, we use a point 𝑝 and the

cell that encloses 𝑝 interchangeably and rely on the context for

disambiguation.

Query section [19]. A continuous curve segment in a query

𝑞 is called a query section. We denote a query section 𝑠 with end

points 𝑝𝑖 and 𝑝 𝑗 by [F𝜎 (𝑝𝑖), F𝜎 (𝑝 𝑗)]. Intuitively, each query section
translates to a one-dimensional range query [F𝜎 (𝑝𝑖), F𝜎 (𝑝 𝑗)] on a

B
+
-tree index on dataset 𝐷 . Thus, the number of query sections in

[F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)] determines the cost of 𝑞.

 0 1 2 3 4 5 6 7x

0
1
2
3
4
5
6
7

y

q

pi− 1

pj+ 1
40

39

35

36

s1

s2

s3

e1

e2 e3 e4

e5

pi

pj

(a) BMC XYXYXY

 0 1 2 3 4 5 6 7x

0
1
2
3
4
5
6
7

y

q

s1

s2

s3

s4e3

e1

e2 e4

(b) BMC YXYXYX

Figure 4: Query sections and directed edges in BMCs.

Example 1. In Figure 4a, there are three query sections 𝑠1, 𝑠2,
and 𝑠3, with 𝑠2 = [F𝜎 (𝑝𝑖), F𝜎 (𝑝 𝑗)] = [36, 39]. By definition, a point
(cell) immediately preceding 𝑝𝑖 or succeeding 𝑝 𝑗 must be outside 𝑞;
otherwise, it is part of the query section. For example, 𝑝𝑖−1 (F𝜎 (𝑝𝑖−1) =
35) and 𝑝 𝑗+1 (F𝜎 (𝑝 𝑗+1) = 40) in Figure 4a are outside 𝑞. The number
of query sections in 𝑞 varies across different BMCs, e.g., the same 𝑞 as
in Figure 4a has four query sections in Figure 4b.

Directed edge [32].Query sections are composed by connecting

a series of points (cells). The pair of two consecutive points 𝑝𝑖 and

𝑝 𝑗 forms a directed edge (denoted by 𝑒) if the curve values of 𝑝𝑖 and
𝑝 𝑗 differ by one under a given 𝜎 , i.e., F𝜎 (𝑝 𝑗) − F𝜎 (𝑝𝑖) = 1. As each

point is represented through a binary value, the difference occurs

because F𝜎 (𝑝𝑖) = ...︸︷︷︸
prefix

0 1...1︸︷︷︸
𝐾 1s

and F𝜎 (𝑝 𝑗) = ...︸︷︷︸
prefix

1 0...0︸︷︷︸
𝐾 0s

, where the

last 𝐾 (𝐾 ≥ 0) bits are changed from 1 to 0 and the (𝐾 + 1)st bit is
changed from 0 to 1.

Example 2. We use the binary form of two pairs of integers that
form directed edges to illustrate this concept, one for 𝐾 > 0 and the
other for 𝐾 = 0. First, suppose that the binary representations of
F𝜎 (𝑝𝑖) = 15 and F𝜎 (𝑝 𝑗) = 16 are 001111 and 010000, respectively. In
this case, four bits starting from the right (i.e., 𝐾 = 4) are changed
from 1 to 0, and the fifth bit is changed from 0 to 1. The last bit 0
is the shared prefix. Second, if the binary forms of F𝜎 (𝑝𝑖) = 16 and
F𝜎 (𝑝 𝑗) = 17 are 010000 and 010001, respectively, only the first bit
(from the right) is changed from 0 to 1, i.e., no bits (𝐾 = 0) are changed
from 1 to 0, and the shared prefix is 01000.

We explain now why the number of directed edges (denoted by

E𝜎 (𝑞)) plus the number of query sections (denoted by S𝜎 (𝑞)) in
a given query 𝑞 yields the number of distinct points (denoted by

V(𝑞)) in 𝑞. The intuition is that if 𝑞 consists of a single section

𝑠 , i.e., the curve stays completely inside 𝑠 and S𝜎 (𝑞) = 1 then

there are V(𝑞) − 1 directed edges connecting a given start point 𝑝𝑠
and end point 𝑝𝑒 of 𝑠 . In other words, we obtain E𝜎 (𝑞) + S𝜎 (𝑞) =
V(𝑞) − 1 + 1 = V(𝑞) . This is because each time a curve exits a

query section 𝑠𝑖 and enters the next section 𝑠𝑖+1, the last point in
𝑠𝑖 becomes disconnected (minus one directed edge) but one new

query section is added (plus 1 for the query section) when the curve

reenters 𝑠𝑖+1. This leads to the following equation:

E𝜎 (𝑞) + S𝜎 (𝑞) = V(𝑞) (3)

WhileV(𝑞) is independent of 𝜎 , the values for E𝜎 (𝑞) and S𝜎 (𝑞)
depend on 𝜎 . For example, in Figure 4a (𝜎 =XYXYXY), there are

3 query sections (S𝜎 (𝑞)) and 5 directed edges (E𝜎 (𝑞)) in 𝑞; in Fig-

ure 4b (𝜎 =YXYXYX), there are 4 query sections and 4 directed

edges in 𝑞. Both figures haveV(𝑞) = 8 points in 𝑞. Equation 3 is

key in computing the local cost (Section 4.2) of a query.

4 EFFICIENT BMC COST ESTIMATION
Consider a range query 𝑞 with start point 𝑝𝑠 and end point 𝑝𝑒 and

assume that dataset 𝐷 has been indexed with a B
+
-tree using BMC

𝜎 . A simple query algorithm accesses the range [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)]
using the B

+
-tree, and filters any false positives not included in 𝑞.

The query cost of 𝑞 then relates to the length of [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)]
and the number of false positives in the range. The number of false

positives in turn relates to the number of query sections in 𝑞. Thus,

we define the cost of 𝑞 (when using BMC 𝜎), denoted by C𝜎 (𝑞), as
a combination of the length of [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)] (called the global
cost, C𝑔𝜎 (𝑞)) and the number of query sections (called the local cost,
C𝑙𝜎 (𝑞)) in 𝑞. Empirically, we find that the product of the global and

the local costs best differentiates the query performance of different

BMC indices, which helps identify query-optimal BMC indices (i.e.,

the goal of our study). Hence, we define C𝜎 (𝑞) as:
C𝜎 (𝑞) = C𝑔𝜎 (𝑞) · C𝑙𝜎 (𝑞) (4)

4

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

Note that a commonly used alternative query algorithm is to break

𝑞 into query sections and perform a range query on the B
+
-tree

for each such section. In this case, the local cost applies directly.

The global cost, on the other hand, applies implicitly, because a

larger range of [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)] implies a higher cost to examine

and uncover the query sections in the range.

Note also that the cost model of QUILTS [19] uses the product

of a global and a local cost. However, its definitions of global and

local costs, described in Section 2 are different from ours.

Next, we present efficient algorithms for computing the global

and local costs in Sections 4.1 and 4.2, respectively.

4.1 Global Cost Estimation for BMC
As mentioned above, we define the global cost of query 𝑞 as the

length of [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)].

Definition 2 (Global Cost). The global cost C𝑔𝜎 (𝑞) of query 𝑞
under BMC 𝜎 is the length of the curve segment from 𝑝𝑠 to 𝑝𝑒 :

C𝑔𝜎 (𝑞) = F𝜎 (𝑝𝑒) − F𝜎 (𝑝𝑠) + 1 =
𝑑∑︁
𝑗=1

ℓ∑︁
𝑘=1

(𝛼𝑘𝑒,𝑗 − 𝛼𝑘𝑠,𝑗) · 2
𝛾𝑘
𝑗 + 1 (5)

Efficient computation. Following the definition, given a set

𝑄 of 𝑛 queries, their total global cost can be calculated by visiting

every query 𝑞 ∈ 𝑄 and adding up C𝑔𝜎 (𝑞). This naive approach takes

time proportional to the number of queries to compute. To reduce

the time cost without loss of accuracy, we rewrite the global cost

as a closed-form function for efficient computation.

C𝑔𝜎 (𝑄) =
𝑛∑︁
𝑖=1

C𝑔𝜎 (𝑞𝑖) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

ℓ∑︁
𝑘=1

(𝛼𝑘𝑖,𝑒,𝑗 − 𝛼𝑘𝑖,𝑠,𝑗)︸ ︷︷ ︸
BMC independent

· 2
𝛾𝑘
𝑗︸︷︷︸

BMC dependent

+𝑛

=

𝑑∑︁
𝑗=1

ℓ∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝛼𝑘𝑖,𝑒,𝑗 − 𝛼𝑘𝑖,𝑠,𝑗)︸ ︷︷ ︸
BMC independent

·2𝛾
𝑘
𝑗 + 𝑛 =

𝑑∑︁
𝑗=1

ℓ∑︁
𝑘=1

𝐴𝑘𝑗 · 2
𝛾𝑘
𝑗 + 𝑛

(6)

Here, 𝑞𝑖 ∈ 𝑄 ; 𝛼𝑘𝑖,𝑠,𝑗 and 𝛼𝑘
𝑖,𝑒,𝑗

denote the 𝑘th bits of the coordi-

nates of the lower and the upper end points of 𝑞𝑖 in dimension 𝑗 ,

respectively; 𝐴𝑘
𝑗
=
∑𝑛
𝑖=1 (𝛼𝑘𝑖,𝑒,𝑗 − 𝛼𝑘𝑖,𝑠,𝑗) , which is BMC independent

and can be calculated once by scanning the 𝑛 range queries in 𝑄

to compute the gap between 𝑝𝑒 and 𝑝𝑠 on the 𝑘th bit of the 𝑗th

dimension, for any BMC. Only the term 2
𝛾𝑘
𝑗 is BMC dependent and

must be calculated for each curve because 𝛾
𝑗

𝑖
represents the rank

of the 𝑗th bit from dimension 𝑖 of a BMC (cf. Section 3.1). If the

BMC 𝜎 is changed, e.g., from XYXYXY to XYXYYX, then 𝛾1
1
= 1

and 𝛾1
2
= 0 are changed to 𝛾1

1
= 0 and 𝛾1

2
= 1, respectively.

Algorithm costs. The above property helps reduce the cost of

computing the global cost when given multiple candidate BMCs.

For example, when learning the best BMC from a large volume of

candidate BMCs (see Section 5), each BMC is evaluated individually

in each iteration (Algorithm 3). Without an efficient cost modeling,

the global cost is 𝑂 (𝑚 · 𝑛 · 𝑑 · ℓ) for 𝑚 candidate BMCs over 𝑛

queries (based on Equation 5). Based on our proposed closed form

method (Equation 6), after an initial 𝑂 (𝑛)-time scan over the 𝑛

queries (to compute 𝐴𝑘
𝑗
), the holistic global cost over 𝑛 queries can

be calculated in 𝑂 (𝑚 · 𝑑 · ℓ) time, i.e., 𝑂 (𝑚) time given constant

number of dimensions 𝑑 and number of bits ℓ in each dimension.

4.2 Local Cost Estimation for BMC
The local cost measures the degree of segmentation of the curve

in [F𝜎 (𝑝𝑠), F𝜎 (𝑝𝑒)], which indicates the number of false positive

data blocks that are retrieved unnecessarily and need to be filtered.

We define the local cost as the number of query sections, following

existing studies [17, 32] that use the term “number of clusters” for
the same concept.

Definition 3 (Local Cost). The local cost C𝑙𝜎 (𝑞) of query 𝑞
under BMC 𝜎 is the number query sections in 𝑞, i.e., S𝜎 (𝑞).

Intuition. Recall thatV(𝑞) is the number of distinct points in 𝑞.

We assume one data point per cell and that every 𝐵 data points are

stored in a block. A point is a true positive if it (and its cell) is in

query 𝑞 and a false positive if it is outside 𝑞 but is retrieved by the

query. If 𝑞 has only one query section, the largest number of block

accesses is ⌊ (V (𝑞) − 2)/𝐵⌋ + 2, i.e., only the first and last blocks can
contain false positives (at least one true positive point in each block).

In this case, the precision of the query process is at least
V(𝑞)

V (𝑞)+2· (𝐵−1) .

Following the same logic, if there are 𝑛𝑠 query sections, in the worst

case, each query section incurs two excess block accesses, each for

a block containing only one true positive point. The largest number

of block accesses is ⌊ (V (𝑞) − 2 · 𝑛𝑠)/𝐵⌋ + 2 · 𝑛𝑠 , and the precision is

V(𝑞)
V (𝑞)+2·𝑛𝑠 · (𝐵−1) . The excess block accesses grows linearly with 𝑛𝑠 .

Thus, we use 𝑛𝑠 to define the local cost.

query start query end
True positive False positive

One query
section under

Three query
sections under

Figure 5: Query sections vs. block accesses

Example 3. In Figure 5, we order points based on BMCs 𝜎1 and 𝜎2
and place the points in blocks where 𝐵 = 4. There are 14 true positives
(i.e., V(𝑞) = 14). There is only one query section under 𝜎1, which leads
to a precision of 14

5×4 = 70% for 5 block accesses, whereas 𝜎2 has three
query sections (due to a different curve). The number of block accesses
is 7, and the precision drops to 14

7×4 = 50%.

Efficient computation. A simple way to compute the local

cost of an arbitrary range query is to count the number of query

sections by traversing the curve segment from 𝑝𝑠 to 𝑝𝑒 , but this is

also time-consuming. To reduce the cost, we rewrite Equation 3 as:

S𝜎 (𝑞) = V(𝑞) − E𝜎 (𝑞) (7)

Given a query 𝑞 and the grid resolution of the data space, it is

straightforward (i.e., taking 𝑂 (𝑑) = 𝑂 (1) time) to compute the

number of cells in 𝑞 (i.e.,V(𝑞)). Then, our key insight is that S𝜎 (𝑞)
can be computed by counting the number of directed edges, i.e.,

E𝜎 (𝑞), which can be done efficiently in𝑂 (1) time as detailed below.

Thus, S𝜎 (𝑞) can be computed in 𝑂 (1) time.

4.2.1 Rise and Drop Patterns. To compute E𝜎 (𝑞) efficiently, we

analyse how the bit sequence of a BMC changes from one point

to another following a directed edge. A directed edge is formed by

two consecutive points with (binary) curve values that share the

same prefix, while the remaining bits are changed. We observe that

different directed edges have the same shape when they share the

same pattern in their changed bits, even if their prefixes are different.

5

Conference’17, July 2017, Washington, DC, USA et al.

In Figure 6a, consider edges 𝑒1 = (5, 6) = [000101, 000110] and
𝑒2 = (13, 14) = [001101, 001110]. Both edges are in query 𝑞 as

indicated by the red rectangle, and they share the same ‘\’ shape

because the two rightmost bits in both cases change from “01” to

“10”. However, in Figure 6a, edge (1, 2) = [000001, 000010] is not
in 𝑞, and the prefix (“0000”) differs from that of 𝑒1 and 𝑒2 above.

A query 𝑞 can only contain directed edges of a few different

shapes. In Figure 6a, edge (31, 32) = [011111, 100000] is not in 𝑞,
and the pattern of the changed bits differs from that of 𝑒1 and 𝑒2.

Note that the bits of the curve values come from the coordinates

(i.e., column indices) of the two end points of a directed edge. By

analyzing the bit patterns of the column indices spanned by a query

𝑞 in each dimension, we can count the number of directed edges

that can appear in 𝑞.

To generalize, recall that given a directed edge from 𝑝𝑖 to 𝑝 𝑗 ,

F𝜎 (𝑝𝑖) = ...︸︷︷︸
prefix

0 1...1︸︷︷︸
𝐾 1s

and F𝜎 (𝑝 𝑗) = ...︸︷︷︸
prefix

1 0...0︸︷︷︸
𝐾 0s

(𝐾 ≥ 0) must exist

where the 𝐾 rightmost bits are changed from 1 to 0, while the

(𝐾 + 1)st rightmost bit is changed from 0 to 1. The bits of F𝜎 (𝑝𝑖)
and F𝜎 (𝑝 𝑗) come from those of the column indices of 𝑝𝑖 and 𝑝 𝑗 .

Thus, the 𝐾 + 1 rightmost bits changed from F𝜎 (𝑝𝑖) to F𝜎 (𝑝 𝑗) must

also come from those of the column indices. In particular, there

must be one dimension, where the column index has contributed 𝑘

(1 ≤ 𝑘 ≤ 𝐾) changed bits and one of the bits has changed from 0 to

1, while the rest dimensions contribute bits changing from 1 to 0.

Our key observation is that the bit-changing patterns across the

column indices in a dimension only depend on the column indices

themselves, making them BMC independent. By pre-computing the

number of bit-changing patterns that can form the (𝐾 + 1)-bit
change of a directed edge, we can derive efficiently the number of

directed edges given a query 𝑞 and a BMC.

We summarize the bit-changing patterns to form a directed edge

with two basic patterns: a rise pattern and a drop pattern.

Definition 4 (Rise Pattern). A rise pattern R𝑘
𝑏
of a directed edge

from 𝑝𝑖 to 𝑝 𝑗 represents a 𝑘-bit (𝑘 ≥ 1) change in the dimension-𝑏
coordinate of 𝑝𝑖 (i.e., 𝑥𝑖,𝑏) to that of 𝑝 𝑗 (i.e., 𝑥 𝑗,𝑏), where the rightmost
𝑘 − 1 bits are changed from 1 to 0 and the 𝑘th bit (from the right) is
changed from 0 to 1, i.e., 𝑥𝑖,𝑏 = ...︸︷︷︸

prefix

0 1...1︸︷︷︸
(𝑘−1) 1s

and 𝑥 𝑗,𝑏 = ...︸︷︷︸
prefix

1 0...0︸︷︷︸
(𝑘−1) 0s

.

Definition 5 (Drop Pattern). A drop pattern D𝑘
𝑏
of a directed

edge from 𝑝𝑖 to 𝑝 𝑗 represents a rightmost 𝑘-bit (𝑘 ≥ 0) 1-to-0 change
in the dimension-𝑏 coordinate of 𝑝𝑖 (i.e., 𝑥𝑖,𝑏) to that of 𝑝 𝑗 (i.e., 𝑥 𝑗,𝑏),
i.e., 𝑥𝑖,𝑏 = ...︸︷︷︸

prefix

1...1︸︷︷︸
𝑘 1s

and 𝑥 𝑗,𝑏 = ...︸︷︷︸
prefix

0...0︸︷︷︸
𝑘 0s

.

Given a dimension where the coordinates use ℓ bits, there can

be ℓ different rise patterns, i.e., 𝑘 ∈ [1, ℓ], and there can be ℓ + 1
different drop patterns, i.e., 𝑘 ∈ [0, ℓ]. Note the special case where
𝑘 = 0, i.e., D0

𝑏
, indicating no bit value drop in dimension 𝑏.

Example 4. In Figure 6a, consider the directed edge from 𝑝𝑖 to
𝑝 𝑗 , where F𝜎 (𝑝𝑖) = 1 (000001) and F𝜎 (𝑝 𝑗) = 2 (000010), i.e., the ‘ \’
segment at the bottom left. The 𝑥-coordinate of 𝑝𝑖changes from 000 to
001 to that of 𝑝 𝑗 (i.e., rise pattern R1𝑥). The 𝑦-coordinate of 𝑝𝑖 changes
from 001 to 000 to that of 𝑝 𝑗 (i.e., drop pattern D1

𝑦). Thus, this directed
edge can be represented by a combination of R1𝑥 and D1

𝑦 , denoted as
R1𝑥 ⊕ D1

𝑦 . This same combination also applies in other directed edges,

(a) Rise pattern in dimension 𝑥 and
drop pattern in dimension 𝑦.

(b) Rise pattern in dimension 𝑦 and
drop pattern in dimension 𝑥 .

Figure 6: Example of forming a directed edge with rise and
drop patterns: for BMC XYXYXY (𝑑 = 2 and ℓ = 3), each
directed edge is formulated by a rise and a drop pattern.
such as that from F𝜎 (𝑝𝑖) = 13 to F𝜎 (𝑝 𝑗) = 14, which is another ‘\’-
shaped segment. Other directed edges may use a different combination,
e.g., R3𝑥 ⊕D3

𝑦 for the one from F𝜎 (𝑝𝑖) = 31 to F𝜎 (𝑝 𝑗) = 32, and R2𝑥 ⊕D2

𝑦

for the one from F𝜎 (𝑝𝑖) = 39 to F𝜎 (𝑝 𝑗) = 40.
Figure 6a has shown the rise patterns R𝑘𝑥 in dimension-𝑥 and the

drop patterns D𝑘𝑦 in dimension-𝑦. Combining a rise and a drop pattern
from these patterns forms a directed edge in red in the figure.

Similarly, we show in Figure 6b the rise patterns R𝑘𝑦 in dimension-𝑦
and the drop patterns D𝑘𝑥 in dimension-𝑥 . Combining a rise and a
drop pattern from these patterns forms a black directed edge.

The pattern combination operator ‘⊕’ applied on two (rise or

drop) patterns means that the (𝐾 + 1)-bit change of a directed edge

is formed by the two patterns.

Note also that while the rise and the drop patterns on a dimension

are BMC independent, which ones that can be combined to form a

directed edge is BMC dependent because different BMCs order the

bits from different dimensions differently. For example, consider

𝜎 = X
3
Y
3
X
2
Y
2
X
1
Y
1
(i.e., XYXYXY). From the right to the left of

𝜎 , the first rise pattern is R1𝑥 . It can only be combined with drop

patternD1

𝑦 , as there is just one bit𝑌
1
from dimension-𝑦 to the right

of𝑋 1
. Similarly,R2𝑥 andR3𝑥 can each be combined withD2

𝑦 andD3

𝑦 ,

respectively, i.e., all 1-bits to the right of𝑋 2
and𝑋 3

must be changed

to 0, according to the bit-changing pattern of a directed edge. In

general, for each dimension, there are only ℓ valid combinations of

a rise and a drop pattern, and this number generalizes to 𝑑 · ℓ in a

𝑑-dimensional space given a BMC.

Next, E𝜎 (𝑞) can be calculated by counting the number of valid

rise and drop patterns in 𝑞. For example, when 𝑑 = 2:

E𝜎 (𝑞) =
ℓ∑︁
𝑖=1

(
N(R𝑖𝑥) · N(D

𝑟𝑦
𝑦) + N(R𝑖𝑦) · N(D

𝑟𝑥
𝑥)

)
(8)

Here, N(·) counts the number of times that a pattern occurs in 𝑞,

and 𝑟𝑥 (𝑟𝑦) is a parameter depending on the drop patterns that can

be combined with R𝑖𝑥 (R𝑖𝑦). In Figure 6, for 𝑞 = ([0, 4] × [2, 3]),
there are two R1𝑥 , one R2𝑥 , and one R3𝑥 , i.e.,N(R1𝑥) = 2,N(R2𝑥) = 1,

and N(R3𝑥) = 1. Next, there is one D1

𝑦 , zero D2

𝑦 , and zero D3

𝑦

that are valid to match with these rise patterns, i.e., N(D1

𝑦) = 1,

N(D2

𝑦) = 0, and N(D3

𝑦) = 0. Similarly, N(R1𝑦) = 1, and R1𝑦 can

be matched with D0

𝑥 , where N(D0

𝑥) = 5. Recall that D0

𝑥 is the

6

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

special case with no bit value drop. It is counted as the length of the

query range in dimension 𝑥 . Overall, E𝜎 (𝑞) = 2 × 1 + 1 × 5. Thus,
there are 10 − 7 = 3 query sections in 𝑞 according to Equation 7,

which is consistent with the figure.

Efficient counting of rise and drop patterns. A rise pattern

R𝑘
𝑏
represents a change in the dimension-𝑏 coordinate from 𝑥𝑖,𝑏 =

𝑎 · 2𝑘 + (2𝑘−1 − 1) to 𝑥 𝑗,𝑏 = 𝑎 · 2𝑘 + 2𝑘−1 (𝑎 ≥ 0 ∧ 𝑎 ∈ N) . Here, 𝑎 · 2𝑘
is the prefix, while 2

𝑘−1 − 1 (i.e., 0 1...1︸︷︷︸
(𝑘−1) 1s

) and 2
𝑘−1

(i.e., 1 0...0︸︷︷︸
(𝑘−1) 0s

)

represent the changed bits. Then, given the data domain [𝑥𝑠,𝑏 , 𝑥𝑒,𝑏]
of dimension 𝑏, each pattern can be counted by calculating ⌊(𝑥𝑒,𝑏 −
2
𝑘−1)/2𝑘 ⌋−⌈(𝑥𝑠,𝑏−(2𝑘−1−1))/2𝑘 ⌉+1, i.e., a bound on the different
values of 𝑎, which takes 𝑂 (1) time.

Similarly, a drop pattern D𝑘
𝑏
represents a change from 𝑥𝑖,𝑏 =

𝑎 ·2𝑘 +2𝑘 −1 to 𝑥 𝑗,𝑏 = 𝑎 ·2𝑘 +0 (𝑎 ≥ 0∧𝑎 ∈ N). Here, 𝑎 ·2𝑘 is the prefix,

while 2
𝑘 − 1 (i.e., 1...1︸︷︷︸

𝑘 1s

) and 0 (i.e., 0...0︸︷︷︸
𝑘 0s

) represent the changed bits.

We can count each pattern by calculating ⌊(𝑥𝑒,𝑏+1)/2𝑘 ⌋−⌈𝑥𝑠,𝑏/2𝑘 ⌉,
again in 𝑂 (1) time.

Generalizing to 𝑑 dimensions. As mentioned at the beginning

of the subsection, a directed edge can be decomposed into a rise

pattern in one dimension and drop patterns in the remaining 𝑑 −
1 dimensions. We call the set of all drop patterns in the 𝑑 − 1

dimensions a drop pattern collection.

Definition 6 (Drop Pattern Collection). For a directed edge
in 𝑑-dimensional space, a drop pattern collection D𝑘′ represents the
bit combination over 𝑑 − 1 drop patterns: D

∑𝑑−1
𝑖=1,𝑖≠𝑏

𝑘𝑖 =
⊎𝑑
𝑖=1,𝑖≠𝑏

D𝑘𝑖
𝑖

(𝑘′ =
∑𝑑
𝑖=1,𝑖≠𝑏

𝑘𝑖 = 𝐾 − 𝑘), where 𝑏 is the dimension with a rise
pattern. Here, ‘

⊎
’ is a pattern combination operator (like ⊕ above).

We note that D𝑘′ and D𝑘
𝑏
are interchangeable if 𝑑 = 2. For simplicity,

we call D𝑘′ a drop pattern when the context eliminates any ambiguity.

Now, in a 𝑑-dimensional data space, a directed edge can be

formed by combining one rise pattern and 𝑑 − 1 drop patterns,

i.e., R𝑘
𝑏
⊕ D

∑𝑑
𝑖=1,𝑖≠𝑏

𝑘𝑖 = R𝑘
𝑏
⊕ (⊎𝑑

𝑖=1,𝑖≠𝑏
D𝑘𝑖
𝑖
) where 𝑘′ =

∑𝑑
𝑖=1,𝑖≠𝑏

𝑘𝑖 .

Equation 8 is then rewritten as:

E𝜎 (𝑞) =
𝑑∑︁
𝑗=1

ℓ∑︁
𝑖=1

N(R𝑖𝑗) · N(D𝑟) (9)

Here, the value of parameter 𝑟 depends on the number of drop

patterns that can be combined with R𝑖
𝑗
.

4.2.2 Pattern Tables. We have shown how to compute the local

cost of a query efficiently. Given a set𝑄 of 𝑛 range queries (𝑞𝑖 ∈ 𝑄),
their total local cost based on Definition 3 is:

C𝑙𝜎 (𝑄) =
𝑛∑︁
𝑖=1

C𝑙𝜎 (𝑞𝑖) =
𝑛∑︁
𝑖=1

V(𝑞𝑖) −
𝑛∑︁
𝑖=1

E𝜎 (𝑞𝑖) (10)

This cost takes 𝑂 (𝑛) time to compute. Given 𝑚 BMCs, comput-

ing their respective total local costs C𝑙𝜎 (𝑄) takes 𝑂 (𝑚 · 𝑛) time.

As

∑𝑛
𝑖=1 V(𝑞𝑖) is independent of the BMCs, it can be computed

once by performing an 𝑂 (𝑛)-time scan over 𝑄 . The computational

bottleneck for𝑚 BMCs is then the computation of

∑𝑛
𝑖=1 E𝜎 (𝑞𝑖) .

We eliminate this bottleneck by introducing a look-up table

called a pattern table that stores pre-computed numbers of rise-and-

drop pattern combinations to form the directed edges at different

locations, which are BMC-independent. Since each directed edge is

a combination of a rise pattern in some dimension 𝑏 and 𝑑 − 1 drop
patterns, we proceed to show how to pre-compute 𝑑 pattern tables,

each recording the rise patterns of a dimension.

Table 2: Pattern table Table𝑏 for dimension 𝑏 using ℓ bits on
each dimension.

D0 D1 · · · Dℓ · (𝑑−1)

R1
𝑏
N(R1

𝑏
) · N(D0) N(R1

𝑏
) · N(D1) · · · N (R1

𝑏
) · N(Dℓ · (𝑑−1))

R2
𝑏
N(R2

𝑏
) · N(D1) N(R2

𝑏
) · N(D2) · · · N (R2

𝑏
) · N(Dℓ · (𝑑−1))

· · · · · · · · · · · · · · ·
Rℓ
𝑏
N(Rℓ

𝑏
) · N(D0) N(Rℓ

𝑏
) · N(D1) · · · N (Rℓ

𝑏
) · N(Dℓ · (𝑑−1))

Definition 7 (Pattern Table). The pattern table for dimension
𝑏, denoted by Table𝑏 , contains ℓ rows, each corresponding to a rise
pattern in the dimension, and ℓ · (𝑑−1)+1 columns, each corresponding
to a drop pattern in the other 𝑑 − 1 dimensions. As shown in Table 2,
the value in row 𝑖 and column 𝑗 is the product of the numbers of rise
pattern R𝑖

𝑏
and drop pattern D 𝑗 .

There is a total of ℓ · (𝑑 − 1) + 1 drop patterns in the 𝑑 − 1

dimensions because there are ℓ · (𝑑−1) bits in those dimensions, i.e.,

𝑘′ ∈ [0, ℓ · (𝑑 −1)] forD𝑘 ′
. Further, since the rise and drop patterns

correspond to only the bit sequences in each dimension and not

the curve values, the values in the pattern tables can be computed

once given a set of queries 𝑄 and can then be reused across local

cost estimation for different BMCs. Algorithm 1 summarizes the

steps to compute pattern table Table𝑏 based on its definition.

Algorithm 1: Generate pattern table (GPT)

Input: Query set𝑄 , target dimension 𝑏, data dimensionality 𝑑 ,
number of bits per dimension ℓ

Output: Pattern table Table𝑏

1 Initialize an ℓ × (ℓ · (𝑑 − 1) + 1) table Table𝑏 ;
2 for 𝑞 ∈ 𝑄 do
3 for 𝑖 ∈ [1, ℓ] do
4 for 𝑗 ∈ [0, ℓ · (𝑑 − 1)] do
5 N(R𝑖

𝑏
) ← count the number of R𝑖

𝑏
in 𝑞;

6 N(D 𝑗) ← count the number of D 𝑗 in 𝑞;
7 Table𝑏 [𝑖] [𝑗] ← Table𝑏 [𝑖] [𝑗] + N(R𝑖

𝑏
) · N(D 𝑗) ;

8 return Table𝑏 ;

Example 5. In Figure 7a, we show two queries 𝑞1 and 𝑞2, and the
pattern tables Table𝑥 and Table𝑦 are shown in Tables 3 and 4, respec-
tively. In the tables, we use ‘+’ to denote summing up the pattern table
cell values (i.e., N(R𝑖

𝑏
) · N(D 𝑗) , and N(D 𝑗) is N(D 𝑗𝑥) or N(D

𝑗
𝑦))

computed for 𝑞1 and 𝑞2. For example, in 𝑞1, N(R1𝑥) = 2 (the two R1𝑥
are labeled for 𝑞1 in Figure 7a) and N(D0

𝑦) = 2 (the value range of 𝑞1
in dimension 𝑦 is 2). Meanwhile, in 𝑞2, N(R1𝑥) = 1 (one R1𝑥 is labeled
for 𝑞2 in Figure 7a) and N(D0

𝑦) = 3 (the value range of 𝑞2 in dimen-
sion 𝑦 is 3). Thus, in Table𝑥 , the cell Table𝑥 [1] [0] (corresponding to
R1𝑥 ⊕ D0

𝑦) is the sum of N(R1𝑥) · N(D0

𝑦) in 𝑞1 and 𝑞2, i.e., 4 + 3.
Table 3: Table𝑥

D0

𝑦 D1

𝑦 D2

𝑦 D3

𝑦

R1𝑥 4 + 3
:
0
:
+
:
1 0 + 0 0 + 0

R2𝑥 2 + 0 0 + 0
:
0
:
+
:
0 0 + 0

R3𝑥 2 + 3 0 + 1 0 + 0
:
0
:
+
:
0

Table 4: Table𝑦

D0

𝑥 D1

𝑥 D2

𝑥 D3

𝑥

R1𝑦 :
0
:
+
:
3 0 + 1 0 + 0 0 + 0

R2𝑦 5 + 0
:
2
:
+
:
0 1 + 0 0 + 0

R3𝑦 0 + 3 0 + 1
:
0

:
+
:
0 0 + 0

7

Conference’17, July 2017, Washington, DC, USA et al.

x

y

R3
x R1

x

R3
y

R1
y

Nq2(D0
y) = 3

Nq2(D1
y) = 1

Nq2(D0
x) = 3

Nq2(D1
x) = 1

R1
x R2

x R1
x R3

x

R2
y

Nq1(D0
y) = 2

Nq1(D0
x) = 5

Nq1(D1
x) = 2

Nq1(D2
x) = 1

q1

q2

(a) Six directed edges (𝜎 = XYXYXY)
x

y

q1

q2

(b) Nine directed edges (𝜎 =YXYXYX)

Figure 7: Rise and drop pattern counting example (𝑑 = 2, ℓ = 3).
The results are shown in pattern tables in Tables 3 and 4.
4.2.3 Local Cost Estimation with Pattern Tables. Next, we describe
how to derive the number of directed edges (and hence compute

the total local cost) given the 𝑑 pattern tables for 𝑛 queries.

Algorithm 2 shows how to compute the local cost using the

pattern tables. Each dimension 𝑗 is considered for the rise patterns

(Line 2). Then, we consider each rise pattern in the dimension, i.e.,

each row 𝑖 in Table 𝑗 (Line 3). We locate the corresponding drop

pattern (i.e., the table column index) based on 𝑖 and a given BMC 𝜎 ,

which is done by the get_col function (Line 4). Then, we add the

cell value to the number of directed edges E𝜎 (Line 5). Note that

all ℓ rise patterns in each dimension are considered because a BMC

has ℓ bits on each dimension, which can all be the bit that changes

from 0 to 1. We return the total local cost by subtracting the total

number of directed edges from the total number of cells in 𝑄 .

Algorithm 2: Compute local cost with pattern tables

Input: BMC 𝜎 , data dimensionality 𝑑 , number of bits per

dimension ℓ , all pattern tables Table 𝑗 , total number of cells

in the queries V
Output: Total local cost of 𝑛 queries

1 E𝜎 ← 0;

2 for 𝑗 ∈ [1, 𝑑] do
3 for 𝑖 ∈ [1, ℓ] do
4 𝑐𝑜𝑙 ← get_col(𝜎, 𝑖, 𝑗) ;
5 E𝜎 ← E𝜎 + Table 𝑗 [𝑖] [𝑐𝑜𝑙];

6 return V − E𝜎 ;

Example 6. Based on Example 5, given BMCXYXYXY, from Table𝑥 ,
we read cells (R1

1
,D1

2
), (R2

1
,D2

2
), and (R3

1
,D3

2
), i.e., the cells with “wavy”

lines. Similarly, we read the cells with “wavy” lines from Table𝑦 . These
cells sum up to 6, which is the number of directed edges (segments with
arrows) in Figure 7a. Similarly, the cells relevant to BMC YXYXYX are
underlined, which yields a total of nine directed edges in Figure 7b.

Algorithm costs. In general, for each rise pattern, the total

number of possible drop pattern combinations is (ℓ +1)𝑑−1 based on
Definition 6. The time complexity of generating the 𝑑 pattern tables

is𝑂 (𝑑 · ℓ · (ℓ + 1)𝑑−1) , where 𝑑 denotes the number of dimensions, ℓ

denotes the number of rows, and (ℓ +1)𝑑−1 denotes the accumulated

number of drop patterns (equal to (ℓ + 1) when 𝑑 = 2). After

initialization, the retrieval time complexity of pattern tables is𝑂 (𝑑 ·
ℓ) = 𝑂 (1) , i.e., we retrieve ℓ cells from each table.

We generate 𝑑 pattern tables, each with ℓ · (ℓ + 1)𝑑−1 keys. Thus,
the space complexity for the pattern tables is 𝑂 (𝑑 · ℓ · (ℓ + 1)𝑑−1) .
For example, when 𝑑 = 3 and ℓ = 32, all the tables take 1.6 MB (1.2

MB for keys and 0.4 MB for values).

5 COST ESTIMATION-BASED BMC LEARNING
Next, powered by our efficient cost estimations, we aim to find the

optimal BMC 𝜎𝑜𝑝𝑡 that minimizes the costs of a set of queries 𝑄

on a dataset 𝐷 . While using BMCs reduces the number of curve

candidates from (2ℓ)𝑑 ! to (𝑑 ·ℓ) !(ℓ !)𝑑 (Section 1), it is still non-trivial to

find the optimal BMC from the
(𝑑 ·ℓ) !
(ℓ !)𝑑 candidates. We present an

efficient learning-based algorithm named LBMC for this search.

Problem transformation. Starting from any random BMC 𝜎 ,

the process to search for 𝜎𝑜𝑝𝑡 can be seen as a bit-swapping process,

until every bit falls into its optimal position, assuming an oracle to

guide the bit-swapping process.

To reduce the search space, we impose two constraints on the bit

swaps: (a) we only swap two adjacent bits each time, and (b) two bits

from the same dimension cannot be swapped (which guarantees

valid BMCs after swaps, cf. Section 3.1). Any bit then takes at most

(𝑑 − 1) · ℓ swaps to reach its optimal position, when such a position

is known. Given 𝑑 · ℓ bits, at most 𝑑 · (𝑑 − 1) · ℓ2 swaps are needed
to achieve the optimal BMC guided by an oracle.

In practice, an ideal oracle is unavailable. Now the problem

becomes how to run the bit swaps without an ideal oracle. There

are two approaches: (a) run a random swap (i.e., exploration) each
time and keep the result if it reduces the query cost, and (b) select

a position that leads to the largest query cost reduction each time

(i.e., exploitation). Using either approach yields local optima. We

integrate both approaches by leveraging deep reinforcement learning
(DRL) to approach a global optimum, since DRL aims to maximize a

long-term objective [14] and balance exploration and exploitation.

BMC learning formulation. We formulate BMC learning as a

DRL problem: (1) State space S, where a state (i.e., a BMC) 𝜎𝑡 ∈ S
at time step 𝑡 is a vector ⟨𝜎𝑡 [𝑑 · ℓ], 𝜎𝑡 [𝑑 · ℓ − 1], . . . , 𝜎𝑡 [1]⟩, and
𝜎𝑡 [𝑖] is the 𝑖th bit. For example, if 𝜎𝑡 =XYZ, 𝜎𝑡 [3]=X, 𝜎𝑡 [2]=Y, and
𝜎𝑡 [1]=Z. (2) Encoding function 𝜙 (·), which encodes a BMC to fit

the model input. We use one-hot encoding. For example, X, Y, and

Z can be encoded into [0, 0, 1], [0, 1, 0], and [1, 0, 0], respectively,
and XYZ by [0, 0, 1, 0, 1, 0, 1, 0, 0]. (3) Action space A, where an

action 𝑎 ∈ A is the position of a bit to swap. When the 𝑎th bit is

chosen, we swap it with the (𝑎 + 1)st bit (if 𝑎 + 1 ≤ 𝑑 · ℓ). Thus,
A = {𝑎 ∈ Z : 1 ≤ 𝑎 ≤ 𝑑 ·ℓ−1}. (4) Reward 𝑟 :S×A×S → 𝑟 , which

is the query cost reduction when reaching a new BMC 𝜎𝑡+1 from 𝜎𝑡 .

Since an oracle is unavailable, we use our cost model to estimate

the query cost of a BMC. The reward 𝑟𝑡 at step 𝑡 is calculated as

𝑟𝑡 = (C𝜎𝑡 − C𝜎𝑡+1)/C𝜎1 , where C𝜎𝑡 = C𝑔𝜎𝑡 (𝑄) · C
𝑙
𝜎𝑡
(𝑄) is the cost

of 𝜎𝑡 estimated by Equation 6 and Algorithm 2. (5) Parameter 𝜖 ,

which balances exploration and exploitation to avoid local optima.

Based on this formulation, we use deep Q-learning [16] in our

LBMC algorithm to learn a query-efficient BMC index.

The LBMC algorithm.We summarize LBMC in Algorithm 3

where the input 𝜎1 can be any initial BMC, e.g., a ZC. The key

idea of LBMC is to learn a policy 𝜋 : S → A that guides the

position selection for a bit swap given a status, to maximize a value

function Q∗ (𝜙 (𝜎𝑡), 𝑎) (i.e., the reward) at each step 𝑡 . Such a policy

𝜋 can be learned by training a model (a deep Q-network, DQN) with
parameters 𝜃 over existing “experience” (previously observed state

transitions and their rewards), which is used to predict the position

𝑎 to maximize the value function (i.e., max𝑎 Q
∗ (𝜙 (𝜎𝑡), 𝑎;𝜃)). After a

8

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

number of iterations, the learned BMC 𝜎∗𝑜𝑝𝑡 is expected to approach
𝜎𝑜𝑝𝑡 , which is returned as the algorithm output.

We initialize a storage𝑀𝑄 to store the latest 𝑁𝑀𝑄 bit-swapping

records (i.e., the experience, Line 1). We learn to approach 𝜎𝑜𝑝𝑡
with 𝑀 episodes and 𝑇 steps per episode (Lines 2 and 3). In each

episode, we start with 𝜎1 encoded by 𝜙 (·). To select a swap po-

sition 𝑎𝑡 at step 𝑡 , we generate a random number in [0, 1], if the
number is greater than 𝜖 , we randomly select a position 𝑎𝑡 , oth-

erwise, we set 𝑎𝑡 as the position with the highest probability to

obtain a maximal reward, i.e., max𝑎 Q
∗ (𝜙 (𝜎𝑡), 𝑎;𝜃) (Line 4). The pre-

diction is based on the current state 𝜎𝑡 and model weights 𝜃 . We

execute 𝑎𝑡 (E(𝜎𝑡 , 𝑎𝑡) at Line 5) and compute reward 𝑟𝑡 using our

cost model (Line 6). We record the new transition in𝑀𝑄 and train

the DQN (i.e., update 𝜃) over sampled data in 𝑀𝑄 (Lines 7 and

8). The training uses gradient descent to minimize a loss function

𝐿𝑡 (𝜃𝑡) = E𝜙 (𝜎),𝑎∼𝜌 (·)
[
(𝑦𝑡 − 𝑄 (𝜙 (𝜎), 𝑎;𝜃𝑡))2

]
where 𝑦𝑡 is the target

from iteration 𝑡 and 𝜌 (·) is the action distribution [16]. We use 𝜎∗𝑜𝑝𝑡
to record the new BMC from each swap (Line 9), which is returned

in the end (Line 10).

Algorithm 3: Learn BMC (LBMC)

Input: Initial BMC 𝜎1
Output: A query-efficient BMC 𝜎∗𝑜𝑝𝑡

1 Initialize replay memory𝑀𝑄 with capacity 𝑁𝑀𝑄 ;

2 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ [1, 𝑀] do
3 for 𝑡 ∈ [1,𝑇] do
4 With probability 𝜖 select a random position 𝑎𝑡 , or

𝑎𝑡 ← max𝑎 Q
∗ (𝜙 (𝜎𝑡), 𝑎;𝜃) ;

5 𝜎𝑡+1 ← E(𝜎𝑡 , 𝑎𝑡) ;
6 Compute reward 𝑟𝑡 ;

7 Store transition (𝜙 (𝜎𝑡), 𝑎𝑡 , 𝑟𝑡 , 𝜙 (𝜎𝑡+1)) in𝑀𝑄 ;

8 Train model 𝜃 with sampled transitions from𝑀𝑄 ;

9 𝜎∗𝑜𝑝𝑡 ← 𝜎𝑡+1;

10 return 𝜎∗𝑜𝑝𝑡 ;

x

y

Cg(q2)=7
Cl(q2)=2

Cg(q1)=8
Cl(q1)=1

Cg(q3)=3
Cl(q3)=2

q1

q2

q3

(a) YXXYYX, C1 = 175

x

y

Cg(q2)=7
Cl(q2)=2

Cg(q1)=8
Cl(q1)=1

Cg(q3)=3
Cl(q3)=2

q1

q2

q3

(b) YXYXYX, C2 = 90

x

y

Cg(q2)=6
Cl(q2)=1

Cg(q1)=8
Cl(q1)=1

Cg(q3)=2
Cl(q3)=1

q1

q2

q3

(c) YXYXXY, C3 = 48

YXYXYX YXYXXY1 0.24

...

YXXYYX YXYXYX3 0.49

Learn DQN model

YXYXXYnext:

position:1

exchange

Add to memory

reward:0.24

...

YXYXYXcurrent:

new

old

(d) Learning through LBMC

0 500 1000 1500
t

0.2

0.4

0.6

0.8

1.0

C
os

t r
at

io

Optimal
LBMC

(e) Cost ratio vs. number of steps

Figure 8: A BMC learning example.

Example 7. Figure 8 illustrates LBMC with ℓ = 3 and three queries
𝑞1, 𝑞2, and 𝑞3. The initial BMC 𝜎1 = YX

:
XYYX has an (estimated)

query cost of C1 = 175 (Figure 8a). We select position 𝑎1 = 3 and
swap the 3rd and the 4th bits to get 𝜎2 = YXY

:
XYX such that the cost is

decreased to C2 = 90 (Figure 8b). Next, we select position 𝑎2 = 1 and
swap the 1st and the 2nd bits to get 𝜎3 = YXYXXY with cost C3 = 48

(Figure 8c). We store all the intermediate results into memory 𝑀𝑄
for learning the DQN model in Figure 8d, where we show the BMCs
without encoding. Figure 8e shows the cost ratios, i.e., C𝑡/C1, which
decrease as 𝑡 increases (Figures 8a to 8c are three of the steps). The
learned BMC approaches the optimum in this process.

Algorithm cost. LBMC involves 𝑇 ·𝑀 iterations that each in-

volves three key operations: bit-swap position prediction, reward

calculation (cost estimation), and model training. Their costs are

𝑂 (1), 𝑂 (C𝑡), and 𝑂 (T𝜃), respectively. The total time cost is then

𝑂 (𝑇 ·𝑀 · (1 + C𝑡 + T𝜃)). Here, 𝑇 ·𝑀 is a constant, while 𝑂 (T𝜃) is
determined by the model structure. Our cost estimation results in

𝑂 (C𝑡) = 𝑂 (1), thus enabling an efficient BMC search.

6 EXPERIMENTS
We aim to evaluate the (1) efficiency and (2) effectiveness of the

proposed cost estimation algorithms, as well as (3) LBMC vs. other

SFCs, including the learning-based ones.

6.1 Experimental Settings
Our cost estimation algorithms (i.e., GC and LC) and BMC learning

algorithm (i.e., LBMC) are implemented in Python (available at

https://anonymous.4open.science/r/LearnSFC-B6D8). The learning

of BMC is supported by TensorFlow. We run experiments on a

desktop computer running 64-bit Ubuntu 20.04 with a 3.60 GHz

Intel i9 CPU, 64 GB RAM, and a 500 GB SSD.

Datasets. We use two real datasets: OSM [20] and NYC [28].

OSM contains 100 million 2-dimensional location points (2.2 GB).

NYC contains some 150 million yellow taxi transactions (8.4 GB).

After cleansing incomplete records, we retain the pick-up locations

(2-dimensional points) of 100 million records. Additionally, we

follow the study of the state-of-the-art competitor, the BMTree [13],

and use two synthetic datasets, each with 100 million points: UNI
and SKEW, which follow uniform and skewed distributions.

Queries.We again follow the BMTree study and generate syn-

thetic query workloads. Specifically, 1,000 synthetic queries are

used for SFC learning, while 2,000 queries are generated separately

for testing. The queries are of uniform size and follow the distri-

butions of their respective datasets. To assess our cost estimation

algorithms (Sections 6.2 and 6.3), we employ square queries, since

the query shape does not impact the cost estimation time.

Evaluationmetrics.The core evaluationmetrics used are (1) the

cost estimation time, (2) the average number of block accesses
per query when using different SFC ordering for query processing

(in PostgreSQL), and (3) the SFC learning time.
Parameter settings. Table 5 summarises the parameter values

used, with default values in bold. In the table, 𝑛 denotes the number

of queries; 𝛿 denotes the edge length of a query; 𝑑 denotes the data

dimensionality; and𝑁 denotes the dataset cardinality. We randomly

sample from the datasets described above to obtain datasets of

different cardinalities.

For SFCs, a key parameter is the number of bits ℓ , which impacts

the curve value mapping efficiency substantially. To evaluate the

cost estimation efficiency, we restrict ℓ to 18, beyond which a naive

local cost baseline becomes computationally infeasible. In later

experiments, we set ℓ = 20 following the BMTree to balance the

computational costs of curve value mapping and cost estimation.

9

https://anonymous.4open.science/r/LearnSFC-B6D8

Conference’17, July 2017, Washington, DC, USA et al.

The BMTree has two additional parameters: the dataset sampling

rate 𝜌 to form a subset for query cost estimation, and the depth ℎ

of space partitioning.

Table 5: Parameter settings.
Experiments Parameter Values

Cost 𝑛 2
0
, 2

1
, 2

2
, 2

3
, 2

4
2
4
2
4
, 2

5
, 2

6
, 2

7
, 2

8
, 2

9
, 2

10

estimation 𝛿 (×24) 1, 2, 4, 8, 16
efficiency ℓ 10, 12, 14, 16, 18

𝑑 2, 3, 4
Cost 𝑁 10

4
, 10

5
, 10

6
, 10

7
10

7
10

7
, 10

8

estimation 𝜌 (×10−3) 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10
effectiveness ℎ 5, 6, 7, 8, 9, 10

𝑛 100, 500, 1000, 1500, 2000
datasets OSM, SKEW

Query 𝑁 10
4
, 10

5
, 10

6
, 10

7
10

7
10

7
, 10

8

efficiency aspect ratio 16 : 1, 4 : 1, 1 : 1, 1 : 4, 1 : 161 : 161 : 16

𝛿 (×26) 1, 2, 4, 8, 16
datasets OSM, NYC, UNI, SKEW,

6.2 Cost Estimation Efficiency
We first evaluate the efficiency of our algorithms (excluding ini-

tialization) to compute the global cost GC and the local cost LC
(Algorithm 2), which are based on Equations 6 and 9. We use IGC
and ILC to denote the initialization steps of the two costs, respec-

tively. As there are no existing efficient algorithms to compute these

costs, we compare with baseline algorithms based on Equations 5

and 10, denoted by NGC and NLC.
We vary the number of queries 𝑛, the query size (via 𝛿), and

the number of bits ℓ . We run experiments for 2- to 4-dimensional

spaces. Due to page limits, we focus on the 2-dimensional space (the

algorithms’ comparative results are similar for 𝑑 ∈ {3, 4}). As the
cost estimation is data independent, a dataset is not needed to study

their efficiency. The queries are generated at random locations.

20 21 22 23 24 25 26 27 28 29 210

n

10−3

10−1

101
102

Ti
m

e
(m

s) NGC
GC

(a) Varying 𝑛

1 2 4 8 16
δ (×24)

10-2

10-1

Ti
m

e
(m

s) GC
NGC

(b) Varying 𝛿

10 12 14 16 18
`

10-2

10-1

Ti
m

e
(m

s) GC
NGC

(c) Varying ℓ

2 3 4
d

0

20

40

G
ai

n
(N

G
C

/G
C

)

24.76 27.07 27.54

(d) Varying 𝑑

Figure 9: Running times of global cost estimation.

6.2.1 Efficiency of GC. Figures 9a and 9b show the impact of 𝑛

and 𝛿 , respectively. Since GC takes 𝑂 (𝑑 · ℓ) time to compute (after

the initialization step), its running time is unaffected by 𝑛 and 𝛿 .

NGC takes 𝑂 (𝑛 · 𝑑 · ℓ) time. Its running time grows linearly with

𝑛 and is unaffected by 𝛿 as shown in the figures. Figure 9c shows

that the running times of GC and NGC both increase with ℓ , which

is consistent with their time complexities. Since the relative perfor-

mance of our algorithm and the baseline is stable when ℓ is varied,

we use a default value of 10 instead of the maximum value 18 as

mentioned earlier, to streamline this set of experiments. Figure 9d

shows the impact of 𝑑 . Here, we show the performance gain (i.e.,

the running time of NGC over that of GC) instead of the absolute

running times, which are of different scales when 𝑑 is varied such

that it is difficult to observe the relative performance. We see that

GC is faster than NGC by 24x. Overall, GC is consistently faster than

NGC, with up to more than an order of magnitude performance

gain, which confirms the high efficiency of GC.

20 21 22 23 24 25 26 27 28 29 210

n

10−5

10−2

101
102

Ti
m

e
(s

)

LC
NLC

(a) Varying 𝑛

1 2 4 8 16
δ (×24)

10−5

10−2

101

Ti
m

e
(s

) LC
NLC

(b) Varying 𝛿

10 12 14 16 18
`

10−5

100

104

Ti
m

e
(s

) LC NLC

(c) Varying ℓ

2 3 4
d

104

105

106

G
ai

n
(N

LC
/L

C
)

23105.48
86604.88

297337.33

(d) Varying 𝑑

Figure 10: Running times of local cost estimation.

6.2.2 Efficiency of LC. Figures 10a to 10d show the running times

of computing local costs. The performance patterns of LC and NLC

are similar to those observed above for GC and NGC, and they are

consistent with the cost analysis in Section 4.2. The performance

gains of LC are even larger, as its pre-computed pattern table en-

ables extremely fast local-cost estimation. As Figure 10d shows, LC

outperforms NLC by five orders of magnitude when 𝑑 = 4.

6.2.3 Initialization Costs of GC and LC. Table 6 shows the running
times of IGC and ILC, which increase with 𝑛, because the initial-

ization steps need to visit all range queries to compute a partial

global cost and prepare the pattern tables, respectively. These run-

ning times are smaller than those of NGC and NLC, confirming

the efficiency of the proposed cost estimation algorithms. Similar

patterns are observed when varying 𝛿 , ℓ , and 𝑑 , which are omitted

for brevity. We do not report the result when 𝑛 = 2
0
(i.e., 𝑛 = 1) as

no initialization is needed for a single query.

Table 6: Initialization costs of GC and LC (Varying 𝑛).

𝑛 2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

IGC (ms) 0.03 0.05 0.08 0.15 0.27 0.52 1.06 1.93 4.07 7.79
NGC (ms) 0.03 0.05 0.10 0.18 0.36 0.70 1.50 2.96 5.37 10.86

ILC (s) 0.01 0.01 0.02 0.06 0.12 0.23 0.48 0.95 1.83 3.63
NLC (s) 0.01 0.06 0.18 0.93 1.93 3.03 6.31 9.21 20.98 48.22

6.3 Effectiveness of Cost Estimation
We next explore the applicability and effectiveness of our GC and

LC cost estimations by using them to replace the built-in cost esti-

mations of the state-of-the-art SFC learning algorithm, the BMTree.

We denote the resulting variants by BMTree-GC and BMTree-LC.
The original BMTree uses a data sampling-based empirical cost

estimation method. We denote it as BMTree-SP.
We report the time cost of reward calculation for the three vari-

ants, as the other steps of the variants are the same. After the SFCs

are learned by the three variants, we build a B
+
-tree with each SFC

in PostgreSQL to index the input dataset. We measure the average

10

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

number of block accesses as reported by PostgreSQL to process

each of the queries as described earlier.

6.3.1 Varying the Dataset Cardinality. We start by varying the

dataset cardinality 𝑁 from 10
4
to 10

8
. Figure 11 shows the results

on the OSM dataset (the results on the other datasets show similar

patterns and are omitted for brevity; same below). BMTree-GC

and BMTree-LC have constant reward calculation times, since GC

and LC are computed in constant times. In comparison, the re-

ward calculation time of BMTree-SP increases linearly with the

dataset cardinality, as BMTree-SP builds intermediate index struc-

tures based on sampled data points for query cost estimation. When

𝑁 increases, the number of sampled data points also increases. At

𝑁 = 10
8
(the default sampling rate is 𝜌 = 0.001, i.e., BMTree-SP is

run on a sampled set of 10
5
points), the reward calculation time of

BMTree-SP (more than 7 hours) is 36x and 474x higher than those

of BMTree-LC (737 s) and BMTree-GC (57 s).

In terms of the query costs, the indices built using all three

algorithms require more block accesses as 𝑁 increases, which is

expected. Importantly, all three algorithms incur similar numbers

of block accesses given the same 𝑁 value. This suggests that the

GC and LC cost estimations can be applied to improve the curve

learning efficiency of the BMTree without adverse effects on the

query efficiency. In general, BMTree-LC offers lower query costs

than BMTree-GC. Thus, applications that are more sensitive to

query costs may use BMTree-LC, while those that aremore sensitive

to index building costs may use BMTree-GC.

104 105 106 107 108

N

101

102

103

104

105

R
ew

ar
d

ca
lc

ul
at

io
n

tim
e

(s
)

BMTree-GC
BMTree-LC
BMTree-SP

(a) Reward calculation time

104 105 106 107 108

N

101

102

103

104

105

B

lo
ck

 a
cc

es
se

s BMTree-GC
BMTree-LC
BMTree-SP

(b) Query processing cost

Figure 11: Varying the dataset cardinality (OSM).

6.3.2 Varying the Number of Queries. Next, we vary the number

of queries used in curve learning, 𝑛, from 100 to 2,000. We see

that BMTree-LC and BMTree-GC consistently outperform BMTree-

SP by one and two orders of magnitude in terms of the reward

calculation time, respectively (Figure 12a). We note that, now the

computation times of BMTree-LC and BMTree-GC vary with 𝑛,

which differs from what was reported in Figures 9a and 10a. This

happens because the BMTree uses different BMCs in different sub-

spaces to accommodate different data and query patterns. As there

are more queries, more different patterns may need to be considered,

resulting in more different BMCs, each of which requires a different

GC and LC cost estimation. Thus, the cost estimation costs grow

with the number of queries 𝑛.

Meanwhile, the query costs of the three algorithms are again

close, e.g., 9,199, 9,248, and 10,462, for BMTree-LC, BMTree-SP, and

BMTree-GC, respectively, when 𝑛 is 1,500. The higher query cost of

BMTree-GC shows that while GC is extremely simple and efficient,

it may not find the most query-efficient curves, which underlines

the importance of the LC cost estimation algorithm.

We further observe a slight drop in the number of block accesses

as 𝑛 increases. Intuitively, using more queries for curve learning

can lead to curves that better suit the query workload.

100 500 1000 1500 2000
n

101

102

103

104

105

R
ew

ar
d

ca
lc

ul
at

io
n

tim
e

(s
)

BMTree-GC BMTree-LC BMTree-SP

(a) Reward calculation time

100 500 1000 1500 2000
n

100

101

102

103

104

105

B

lo
ck

 a
cc

es
se

s

BMTree-GC BMTree-LC BMTree-SP

(b) Query processing cost

Figure 12: Varying the number of queries (OSM).

6.3.3 Varying the Sampling Rate and the Depth of the BMTree. Two
alternative approaches to improve the curve learning efficiency of

the BMTree are (1) to reduce its data sampling rate 𝜌 and (2) to

reduce the depth of its space partitioning ℎ.

In this set of experiments, we study how these two parameters

impact the reward calculation time and the query cost of the result-

ing SFCs. In particular, we vary 𝜌 from 10
−4

to 10
−2

(a total of 9

values, cf. Table 5), and we vary ℎ from 5 to 10.

Figure 13 plots the results on the SKEW and OSM datasets.

BMTree-SP has three result polylines: BMTree-SP-6, BMTree-SP-8,

and BMTree-SP-10, each of which uses a different ℎ value, while the

points on each polyline represent the results of different 𝜌 values

(points on the right come from larger 𝜌 values).

BMTree-GL and BMTree-LC are plotted with one polyline each,

as they are not impacted by 𝜌 . The points on these polylines repre-

sent the results of different values of ℎ (points on the right corre-

spond to larger ℎ values).

We see that a larger ℎ value tends to lead to lower query costs,

while it also yields a longer reward calculation time. Powered by

the LC cost estimation algorithm, BMTree-LC reduces the reward

calculation time by at least an order of magnitude while achieving

the same level of query costs (i.e., its curve lies at the bottom left of

the figure). BMTree-GC can also be very fast at reward calculation,

while it may suffer at query performance.

100 101 102 103 104

Reward calculation time (s)

3800

5000

7000

9000
10000

B

lo
ck

 a
cc

es
se

s

(a) SKEW

100 101 102 103 104

Reward calculation time (s)

9000

10000

11000

12000

B

lo
ck

 a
cc

es
se

s

BMTree-GC
BMTree-LC
BMTree-SP-6
BMTree-SP-8
BMTree-SP-10

(b) OSM

Figure 13: Varying the sampling rate and the space partition-
ing depth of the BMTree.

6.4 Query Efficiency with BMC Learning
We proceed to study the BMC learning efficiency of LBMC and

the query efficiency of the indices built using the learned BMCs.

Competitors. We compare with five different SFC-based or-

dering techniques. (1) QUILTS [19] orders data points by a BMC

derived by a curve design method as described in Section 2. We

implement it according to its paper as the source code is unavailable.

(2) ZC [21] orders data points by their Z-curve values. (3) HC [10]

orders data points by their Hilbert curve values. (4) LC, which is

11

Conference’17, July 2017, Washington, DC, USA et al.

also called the C-Curve, orders data points lexicographically by

their dimension values [13, 19]. (5) BMTree [13] orders data points
by multiple BMCs in different sub-spaces. We use its released code

(withℎ = 8 and 𝜌 = 0.001 to balance the reward calculation time and

the query costs, cf. the ‘★’-points on BMTree-SP-8 in Figure 13). We

cannot compare with the recent learned SFC, LMSFC [7], because

its source code and some implementation details are unavailable.

We do not compare with RSMI [25] as it has been shown to be

outperformed by the BMTree [13].

For all techniques, we use the curves obtained to order the data

points and build B
+
-trees in PostgreSQL for query processing, and

we report the average number of block accesses as before.

6.4.1 Overall Results. Figure 14 shows the average number of

block accesses on all four datasets. LBMC outperforms all com-

petitors consistently. On SKEW, the advantage of LBMC over the

BMTree is the most pronounced. It reduces the average number

of block accesses by 28x (111 vs. 3,084) and by 6x (111 vs. 674) in

comparison with the BMTree and QUILTS, respectively. On NYC,

the advantage of LBMC over the BMTree is the least, yet it still

requires only 2,638 block accesses which is fewer than that of the

BMTree at 3,448. These results suggest that LBMC is highly efficient

at reducing the query costs across diverse datasets.

LC is the worst, which is expected as LC curves fail to preserve

the data locality. The BMTree and QUILTS outperform LC, ZC, and

HC on real data such as NYC, where they benefit more from the

query based optimizations. However, there are no consistent results

across the different datasets. We conjecture that fine-tuning of the

parameter values of ℎ and 𝜌 may be needed for the BMTree over

each different dataset. Such fine-tuning is not required by LBMC.

OSM NYC UNI SKEW
Datasets

100
101
102
103
104
105

B

lo
ck

 a
cc

es
se

s BMTree LBMC QUILTS LC ZC HC

Figure 14: Block access over all datasets.

6.4.2 Varying the Dataset Cardinality. We further study the impact

of dataset cardinality 𝑁 . Figure 15 shows the results. Like before,

the average number of block accesses increases with 𝑁 , which is

expected. LBMCis again the most efficient in terms of query costs,

needing at least 39% fewer block accesses than the BMTree (4.0 vs.

6.6 when 𝑁 = 10
4
), and the advantage is up to 74% (1,044 vs. 4,131

when 𝑁 = 10
7
).

104 105 106 107 108

N

100

101

102

103

104

105

106

B

lo
ck

 a
cc

es
se

s

BMTree LBMC QUILTS LC ZC HC

Figure 15: Varying cardinality (OSM).

We report the SFC learning times of the BMTree and LBMC

when varying 𝑁 in Table 7. We see that LBMC is much faster than

the BMTree at SFC learning and that the advantage grows with

𝑁 . This is because the cost estimation (i.e., reward calculation) in

the BMTree is much slower than that in LBMC, as shown in the

last subsection. The cost estimation time dominates when there are

more data points for the BMTree, while the cost estimation time of

LBMC remains constant when varying 𝑁 .

LC, ZC, andHC are not learned, and they do not take any learning

time. QUILTS takes less than 1 second, as it only considers a few

curve candidates (which are generated based on query shapes)

using a cost model. We have used our cost estimation algorithms

in our implementation of QUILTS, as the original cost model is

prohibitively expensive.

Table 7: SFC learning time (seconds).

𝑁 10
4

10
5

10
6

10
7

10
8

BMTree 54 55 61 99 551

LBMC 15 15 15 15 15

QUILTS (with our cost estimation) 0.2 0.2 0.2 0.2 0.2

6.4.3 Varying the Aspect Ratio of Queries. Figure 16 shows the

query costs when varying the query aspect ratio. Here, LBMC

shows a stronger advantage over the competitors on queries that

are “stretched”, while LC also better suits the queries that are long

and thin (16:1) which is intuitive. When the aspect ratio is 1 : 1,

LBMC, QUILTS, and ZC share almost the same query performance

because they all tend to form a ‘ z’ shape to fit square queries. The

BMTree is again outperformed by LBMC, because of its less flexible

learning scheme (i.e., learning for only up to ℎ bits), while LBMC

can learn a BMC scheme with all ℓ bits (ℓ = 20 by default).

16 : 1 4 : 1 1 : 1 1 : 4 1 : 16
Aspect ratio

100

101

102

103

104

105

B

lo
ck

 a
cc

es
se

s

BMTree LBMC QUILTS LC ZC HC

Figure 16: Varying the query aspect ratio (OSM).

6.4.4 Varying the Edge Length of Queries. Figure 17 shows that

the average number of block accesses grows with the query edge

length, as expected. Here, LBMC again outperforms the competitors

consistently, further showing the robustness of LBMC.

1 2 4 8 16
δ (×26)

100

101

102

103

104

105

B

lo
ck

 a
cc

es
se

s BMTree LBMC QUILTS LC ZC HC

Figure 17: Varying the query edge length (OSM).

7 CONCLUSIONS AND FUTUREWORK
We studied efficient cost estimation for a family of SFCs, i.e., the

BMCs. Our cost algorithms can compute the global and the local

12

Efficient Cost Modeling of Space-filling Curves Conference’17, July 2017, Washington, DC, USA

query costs of BMCs in constant time given 𝑛 queries and after an

𝑂 (𝑛)-time initialization. We extended these algorithms to the state-

of-the-art curve learning algorithm, the BMTree, which originally

measured the effectiveness of SFCs by querying the data points to

be indexed. Experimental results show that the proposed algorithms

are capable of reducing the cost estimation time of the BMTree by

over an order of magnitude with little or no impact on the query

efficiency of the learned curves.

We further proposed a reinforcement learning-based curve learn-

ing algorithm. The result learned BMCs are shown to achieve lower

query costs than those of the BMTree and other baselines under

nearly all settings tested.

In future work, it is of interest to design cost estimation algo-

rithms for non-BMCs, e.g., HC, and use learning-based techniques

to build more efficient multi-dimensional indices.

REFERENCES
[1] Amazon AWS. 2016. https://aws.amazon.com/blogs/big-data/amazon-redshift-

engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-
keys. Accessed: 2023-10-10.

[2] Apache Hudi. 2021. https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-
hilbert-space-filling-curves. Accessed: 2023-10-10.

[3] Christian Böhm. 2020. Space-filling Curves for High-performance Data Mining.

CoRR abs/2008.01684 (2020).

[4] Databricks Engineering Blog. 2018. https://databricks.com/blog/2018/07/31/
processing-petabytes-of-data-in-seconds-with-databricks-delta.html. Accessed:
2023-10-10.

[5] Christos Faloutsos and Shari Roseman. 1989. Fractals for Secondary Key Retrieval.

In PODS. 247–252.
[6] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for

Retrieval on Composite Keys. Acta Informatica 4, 1 (1974), 1–9.
[7] Jian Gao, Xin Cao, Xin Yao, Gong Zhang, and Wei Wang. 2023. LMSFC: A

Novel Multidimensional Index based on Learned Monotonic Space Filling Curves.

PVLDB 16, 10 (2023), 2605–2617.

[8] Claire E. Heaney, Yuling Li, Omar K. Matar, and Christopher C. Pain. 2020.

Applying Convolutional Neural Networks to Data on Unstructured Meshes with

Space-Filling Curves. CoRR abs/2011.14820 (2020).

[9] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-

Based Optimization for General Algorithm Configuration. In International Con-
ference on Learning and Intelligent Optimization. 507–523.

[10] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree

using Fractals. In VLDB. 500–509.
[11] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504.

[12] Warren M. Lam and Jerome M. Shapiro. 1994. A Class of Fast Algorithms for

the Peano-Hilbert Space-Filling Curve. In International Conference on Image
Processing. 638–641.

[13] Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, and Bin Cui.

2023. Towards Designing and Learning Piecewise Space-Filling Curves. PVLDB
16, 9 (2023), 2158–2171.

[14] Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. 2019.

Solving the Rubik’s Cube Without Human Knowledge. In ICLR.
[15] Microsoft. 2023. https:// learn.microsoft.com/en-us/ sql/ relational-databases/

indexes/ indexes?view=sql-server-ver16. Accessed: 2023-10-10.
[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari

with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013).

[17] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis

of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions
on Knowledge and Data Engineering 13, 1 (2001), 124–141.

[18] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-Dimensional Indexes. In SIGMOD. 985–1000.
[19] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data Par-

titioning Framework Based on Query-Aware and Skew-Tolerant Space-Filling

Curves. In SIGMOD. 1525–1537.
[20] OpenStreetMap. 2018. OpenStreetMap North America data dump. https://download.

geofabrik.de. Accessed: 2023-10-10.
[21] Jack A. Orenstein. 1986. Spatial Query Processing in an Object-Oriented Database

System. In SIGMOD. 326–336.
[22] Jack A. Orenstein and T. H. Merrett. 1984. A Class of Data Structures for Asso-

ciative Searching. In PODS. 181–190.
[23] Sachith Pai, Michael Mathioudakis, and YanhaoWang. 2022. Towards an Instance-

Optimal Z-Index. In AIDB@VLDB.
[24] PostgreSQL. 2023. https://www.postgresql.org/docs/ current/ indexes-multicolumn.

html. Accessed: 2023-10-10.
[25] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively

Learning Spatial Indices. PVLDB 13, 11 (2020), 2341–2354.

[26] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2018. Theoretically

Optimal and Empirically Efficient R-trees with Strong Parallelizability. PVLDB
11, 5 (2018), 621–634.

[27] S2 Geometry. 2023. http:// s2geometry.io. Accessed: 2023-10-10.
[28] TLC Trip Record Data. 2022. https://www1.nyc.gov/ site/ tlc/about/ tlc-trip-record-

data.page. Accessed: 2023-10-10.
[29] Panagiotis Tsinganos, Bruno Cornelis, Cornelis Jan, Bart Jansen, and Athanassios

Skodras. 2021. The Effect of Space-filling Curves on the Efficiency of Hand

Gesture Recognition Based on sEMG Signals. International Journal of Electrical
and Computer Engineering Systems 12, 1 (2021), 23–31.

[30] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for

Spatial Queries. In MDM. 569–574.

[31] Pan Xu, Cuong Nguyen, and Srikanta Tirthapura. 2018. Onion Curve: A Space

Filling Curve with Near-Optimal Clustering. In ICDE. 1236–1239.
[32] Pan Xu and Srikanta Tirthapura. 2014. Optimality of Clustering Properties

of Space-Filling Curves. ACM Transactions on Database Systems 39, 2 (2014),

10:1–27.

13

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-hilbert-space-filling-curves
https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-hilbert-space-filling-curves
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes?view=sql-server-ver16
https://download.geofabrik.de
https://download.geofabrik.de
https://www.postgresql.org/docs/current/indexes-multicolumn.html
https://www.postgresql.org/docs/current/indexes-multicolumn.html
http://s2geometry.io
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 BMC Definition
	3.2 Range Querying Using a BMC

	4 Efficient BMC Cost Estimation
	4.1 Global Cost Estimation for BMC
	4.2 Local Cost Estimation for BMC

	5 Cost Estimation-Based BMC Learning
	6 Experiments
	6.1 Experimental Settings
	6.2 Cost Estimation Efficiency
	6.3 Effectiveness of Cost Estimation
	6.4 Query Efficiency with BMC Learning

	7 Conclusions and Future Work
	References

