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Abstract—Frequency instability generates significant chal-
lenges to the stability of the system. To solve the frequency
deviation problem, the traditional secondary control uses PID
controller to achieve frequency compensation for the primary
control, but simultaneously the traditional PID controller has
disadvantages such as poor dynamic performance and the need
for manual tuning of parameters. The problems mentioned
above will lead to poor compensation accuracy. To address such
issue, this paper proposes a new frequency compensation scheme
that divides the traditional frequency secondary control into
two layers, the first layer uses an improved PID controller
that considers the average value of output frequency of all
distributed generators, and the second layer is based on Q-
learning technology to compensate again. The proposed scheme
shortens the response time and improves the control accuracy,
and effectiveness is verified in MATLAB/Simulink.

Index Terms—Secondary Control, Frequency Compensation,
Q-Learning, PID Controller, Islanded Microgrid

I. INTRODUCTION

With the development of renewable energy, the emergence
of a large number of distributed generators (DGs) in the power
system has changed the control and operation scheme of the
previous system, creating new challenges. For that, Consor-
tium for Electric Reliability Technology Solutions (CERTS)
came out with the concept of microgrid [1]. Meanwhile,
to solve the problems of power distribution, and frequency
compensation in microgrids, distributed hierarchical control
schemes are extensively accepted by scholars [2]. In islanded
microgrids, droop control as a primary control scheme to
achieve power distribution is one of the main control options
[3-4]. Some progress has been made in the proposed im-
provement schemes based on droop control. In [5] the authors
proposed a virtual multi-relaxation droop control to achieve
power distribution by regulating the bus voltage. In [6], the
authors improved the conventional droop control to adaptive
droop control, so that the control gain can be changed with
the line conditions to improve the power distribution accuracy.
At the same time, the system will have frequency deviations,
which are caused by various factors. A sudden increase or
decrease in load can result in a deviation of the system output
frequency from the reference value. Unbalanced microgrid

generations can also result in frequency deviations, and system
faults or environmental factors can lead to frequency instability
[7]. Therefore, frequnency compensation by secondary control
is required. In [8], frequency compensation is proposed at
multiple time levels and the system output frequency partition
is compensated by priority. In [9], the authors proposed
secondary control based on small AC signal injection (SACS-
SFC), which achieves frequency compensation by injecting
power signals on additional buses for each DG. However,
the aforementioned control schemes suffer from poor dynamic
characteristics and the traditional control is less robust under
complex operating conditions. To solve the above problems,
machine learning (ML) based-control schemes seem to be
more future-oriented [10]. ML can be mainly classified as
supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, deep learning and transfer
learning [11]. Among them, reinforcement learning techniques
without a priory data have been paid more attention by
scholars in the secondary control of microgrids. A deep rein-
forcement learning scheme based on deep deterministic policy
gradient (DDPG) was proposed in [12] for the secondary
control of a microgrid, instead of using PID controller. The
multi-intelligence quantum deep reinforcement learning was
proposed in [13], which uses an algorithm that combines
a neural network with a quantum simulator for distributed
compensation of frequency deviations. In [14], a deep rein-
forcement learning technique with multiple intelligences was
proposed to achieve secondary compensation of frequency for
complex control environments with multiple regions. In [15],
the authors proposed an improved reinforcement learning-
based scheme i.e., a brain emotional learning-based intelligent
controller (BELBIC), for secondary control.

Based on previous studies, in this paper, a distributed
two-layer frequency compensation scheme is proposed for
islanded microgrids. In the first layer, besides considering
individual DG frequency output values, the conventional PID
controller compensation scheme is replaced by an improved
PID controller solution using the average value of the overall
DG output frequency. In the second layer, the frequency is
compensated again on top of the compensation output of the



first layer by employing a Q-learning based technique. Two
layers of control are applied to ensure the accuracy of the
control and to improve the dynamic performance for optimal
compensation.

II. PRIMARY CONTROL OF ISLANDED MICROGRIDS

Droop control has excellent “plug-and-play” characteristics
and does not require a communication link to the neighboring
control units. In this paper, droop control is used at the primary
level for the studied islanded microgrid to enable proportional
power distribution as shown in (1) and (2).

fi = f∗ −mi(Pi − P ∗
i ) (1)

ui = u∗ − ni(Qi −Q∗
i ) (2)

where fi and ui,represent the frequency and voltage, f∗ and
u∗ are corresponding rated values and mi, ni are the droop
factors of the ith DG output. Where Pi and Qi ,represent the
active power and reactive power outputs by the ith DG, while
P ∗,Q∗ are rated values.
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Fig. 1. Frequency droop control diagram.
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Fig. 2. Frequency droop control with secondary compensation diagram.

Whenever the load changes, the active power output will
change, and the output frequency will deviate according to

the droop control curve as shown in Fig. 1. In this paper, the
secondary control compensation is realized and carried out for
the islanded microgrid as shown in Fig. 2, where the system
can achieve stable operation following a disturbance.

III. PROPOSED NOVEL SECONDARY CONTROL

In this paper, an islanded microgrid hierarchical control
system with four DGs is built. In order to compensate the
frequency deviation of primary control with droop control,
this paper proposes a new distributed secondary control with a
two-layer control structure. The first layer adopts an improved
PID-based controller, and the second layer uses Q-learning
based control to compensate on the basis of the first layer to
improve the compensation accuracy and the response speed.

A. First-layer control based on improved PID control

PID controllers are accepted by industry because of their
ease of implementation, low cost, robustness and stability.
The secondary control method based on PID control is also
one of the common compensation methods for microgrids. In
this paper, the traditional PID control structure is improved as
shown in Fig. 3.

PID

*
f

if

PID

+

−

*
f

f

+

−

+

Droop 
control

1f

+

Fig. 3. Improved PID control diagram.

In this structure, the original single PID controller is re-
placed with a dual PID controller. The first PID controller
uses the i-th DG output measured frequency value fi for
compensation, and the compensation signal can be obtained
from (3). The second PID controller uses the average value of
the output frequency f of the all DGs during stable operation
to compensate as stated in (4).

f1
PI = k1p(f

∗ − fi) + k1i

∫
(f∗ − fi)dx (3)

f2
PI = k2p(f

∗ − f) + k2i

∫
(f∗ − f)dx (4)

where k1p, k1i , k2p, k2i are proportional and integral gains
of the PID controllers. The sum of these two PID controller
outputs, δf1(as shown in (5)) will be entered into the droop
control loop as a compensation term.

δf1 = f1
PI + f2

PI (5)



B. second-layer control based on Q-learning technology

Q-learning is a reinforcement machine learning-type algo-
rithm that trains agents to make optimal decisions in dynamic
and complex environments by accumulating reward signals
through reward functions or penalty terms. It is a model-free,
offline policy algorithm that does not require a prior knowl-
edge about transition probabilities or environmental rewards,
the control agent learns the optimal policy by interacting with
the environment. Therefore, Q-learning is widely used in the
fields of robot control, and autonomous driving. In this paper,
a Q-learning based controller is developed to recompense the
frequency output received from the first control layer. The
Q function, also known as the state action value function, is
certainly a value-based learning technique. In this paper, the
Bellman equation is used to update the value function. Q-value
function is shown in (6) where s is state value, and a is action
value chosen in s under strategy π.

Qπ
t+1(s, a) = Qπ

t (s, a) + α[r(s, a) + γmax(Qπ
t (s

′
, a

′
)

−Qπ
t (s, a))]

(6)

Also, a,s represent the current value of action and state,
a′, s′ represent the next moment value, and α represents the
learning rate. γ represents the discount factor, which is the
weight that the agent places on obtaining the reward at the
time of making the action. It is chosen between 0 and 1.
γ values close to nearly 1 imply that the subject is more
influenced by future long-term rewards, while gamma values
close to 0 imply that the subject only considers short-term
immediate rewards. The choice of γ depends on the specific
problem and the agent’s goal. r(s, a) is the reward function
obtained after taking action a. Since Q-learning requires the
expected cumulative reward for following the optimal strategy,
the agent starts from the current state, accumulates the rewards
of subsequent states, and will obtain the expected cumulative
reward, as shown in (7).

Vπ(s) = E[rt+1 + γrt+2 + γ2rt+3 + ...] (7)

In Q-learning, the approach of greedy strategy is proposed
in order to implement the action of choosing the action
that maximizes the Q-value of the current state. However,
the greedy strategy sometimes leads the agent to fall into
the misconception of suboptimal strategies. If the agent only
focuses on the actions that can produce high Q-values in the
current state without considering other actions that may have
lower Q-values but will bring higher returns in the long term,
it will fall into the misconception. Therefore, in this paper,
we use the ϵ-greedy strategy to balance the exploration of
the current value with the consideration of the future state.
ϵ-greedy strategy is shown in (8), where ϵ is the probability
of making an arbitrary action, while 1-ϵ is the probability of
making the action with the highest Q-value among the existing
actions.

π(s, a) =

{
1− ε+ ε

|A(s)| , a = argmaxQ(s, a)
ε

|A(s)| otherwise
(8)
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Fig. 4. Q-learning based second layer frequency compensation process
diagram.

The process diagram of the second layer control algorithm
is shown in Fig. 4. In this paper, considering that the fre-
quency deviation has been compensated in the first layer of
control, according to [16], the obtained discrete frequency state
quantity is set as: S={(-∞,-0.06), [-0.06,-0.04), [-0.04,-0.02),
[-0.02,0.02], (-0.02,0.04], (0.04,0.06], (0.06,+∞)}. The action
is set to A={-0.07, -0.035, -0.05, -0.03, -0.005, 0, 0.005, 0.03,
0.05, 0.035, 0.07}. The rewards is set as r={-120.244, -100,
-1000, 0, -1000, -100, -120.244}. The learning rate is set to
0.1, the discount factor is set to 0.9.

After implementing the second layer of Q-learning based
secondary compensation again, the droop control frequency
output can be realized as (9).

fi = f∗ −mi(Pi − P ∗
i ) + δf1 + δf2 (9)

δf1 is the first layer frequency compensation value, and
δf2, i.e. a, is the action taken by Q-learning, which is also the
second layer of frequency compensation amount.The entire
system control structure diagram is shown in Fig. 5.

IV. SIMULATION RESULTS

To verify the effectiveness of the proposed control scheme,
an islanded microgrid consisting of four DGs is modeled in
Matlab 2023a with a number of load change scenarios. The
simulation structure is shown in Fig. 6. The initial value of
the load is 46kW, when t=1s, the load changes to 62kW,
and finally at t=2s, the load is decreased to 54kW. The PID
parameters in the first layer of secondary control are selected
as k1p = 0.8, k1i = 10, k2p = 0.08, k2i = 10. The droop
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Fig. 5. Single DG hierarchical control diagram.
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Fig. 6. Simulation structure diagram consisting of 4 DGs.

coefficients of active power is selected as shown in Table I.
The droop coefficients of reactive power is 2e-4V/V Ar.s.

TABLE I
DROOP GAIN OF FOUR DGS(rad/W )

DG1 DG2 DG3 DG4
0.552e-4 0.373e-4 0.674e-3 1e-3

Firstly, the distributed secondary control with only a single
PID controller is used for frequency compensation, and the
simulation results are shown in Fig. 7. Secondly, the first layer
of improved PID control secondary control proposed in this
paper is used for compensation, and the results are shown
in Fig. 8. Finally, the compensation is carried out using the
improved PID controller and Q-learning proposed in this paper
as shown in Fig. 9 and the active power output results are given
as shown in Fig. 10.

The above three frequency compensation results are sum-
marized in Table II. From the simulation results, it can be

TABLE II
SIMULATION RESULTS COMPARISON

Method Settling time Max overshoot Mean
PID 1s 0.25Hz 49.9Hz

Improved PID 0.9s 0.23Hz 49.9Hz
Improved PID+Q-learning 0.45s 0.23Hz 50Hz

Fig. 7. Secondary compensation results based on PID.

seen that the control proposed in this paper achieves the best
results for frequency compensation, reduces the overshoot and
shortens the time required to reach the reference values. The
settling time is defined as the time required for the system to
reach the steady value [49.99, 50.01].



Fig. 8. Secondary compensation results based on improved PID.

Fig. 9. Secondary compensation results based on improved PID and Q-
learning double-layer compensation.

V. CONCLUSION

In this paper, a distributed two-layer control structure for
frequency secondary control was proposed. The first layer
adopted an improved PID control that considered the average
value of output frequency when all DGs operate stably, and
the second layer adopted a Q-learning-based control scheme to
enable accurate compensation of DG output frequency. Com-
pared to the conventional PID quadratic compensation, the pro-
posed strategy in this paper gave more accurate compensation
results with less settling time. The Q-learning compensation
was used after a layer of improved PID control. This scheme
reduced the impact of Q-learning uncertainty on the system
and ensured that the system has the ability to operate properly.
How to reduce the overshoot, with the implementation of
voltage compensation will be further studied in the future.
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