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Abstract—The machine learning (ML)-based modeling of elec-
tromagnetic (EM) structures involves the development of a
surrogate model that approximates the relationship between EM
geometries and responses, such as S11, gain, etc. The performance
of the surrogate model is mainly affected by the simulation
data for training. Normally, the training data is collected by
uniformly sweeping the geometric parameters. Restricted by
the computation power, only a limited parameter space can
be sampled. The trained surrogate model behaves well within
the sampling range but deteriorates as the parameter range
extends. In this paper, we expand the predictable parameter
range of an ML model with the same simulation expense by
optimizing the data acquisition strategy. This approach leads
to the proposed model demonstrating higher accuracy within
an extended parameter space than conventional models, while
the simulation consumption remains the same. We present an
application example to validate its effectiveness. The proposed
modified ML-based design method can potentially improve the
performance of surrogate models in real-world applications.

Index Terms—electromagnetic, machine learning, modeling,
surrogate model

I. INTRODUCTION

Electromagnetic (EM) structures (e.g., antennas, filters,
metasurfaces, etc.) play an essential role in modern wire-
less communication systems. The modeling of EM structures
means to determine the EM responses (e.g., Gain, Sij , etc.)
for a given setting of geometric parameters. It is ruled by
Maxwell’s theory, but can hardly be formulated quantita-
tively. The conventional modeling of EM structures relies on
time-consuming and computation-expensive simulation soft-
ware (e.g., Computer Simulation Technology (CST)). Machine
Learning (ML) has been widely applied and validated for the
fast modeling of EM structures by developing a surrogate
model that approximates the projection between geometric
parameters and EM responses [1]–[3].

ML-based modeling of an EM structure starts by sweeping
its key geometric parameters over a specific parameter space
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and simulating all the combinations to corresponding EM
responses. These pairs of geometric parameters and simulated
EM responses are taken as training data to develop a surrogate
model. The well-trained surrogate model will then be expected
to approximate the projection of the EM structure: known a
parameter setting, predicting its EM responses [2]; known EM
responses, determining the parameter setting that leads to them
[1]. The approximation accuracy and range heavily depend on
the sweeping density and range. Provided a fixed computation
budget, only a limited parameter space can be sampled at a
certain sampling density to reach an expected accuracy within
this parameter space. The approximation performance out of
the sampling space deteriorates.

This paper enhances the performance of ML-based model-
ing of EM structures. We expand the predictable parameter
range of an ML model with the same simulation expense by
optimizing the data acquisition strategy. Instead of sweeping
over a fixed parameter space uniformly, the training data are
generated iteratively, and the parameter settings to collect
are adjusted dynamically during each iteration based on the
analysis of existing simulation data. The proposed approach
investigates the correlation among data samples and optimizes
the training data distribution to maximize the informativeness
of the collected training data set while maintaining the sim-
ulation expense. The proposed method is implemented on a
microwave filter to validate its effectiveness.

II. METHOD AND VALIDATION

The proposed method is implemented on a microwave filter
proposed by Yang et al. [4] for validation. It operates from
0.1GHz to 4.5GHz. Fig. 1 exhibits the structure of the
microwave filter, which consists of three metal layers and two
substrate layers (RogersRO4003C with relative permittivity
of εr = 3.38 and loss tangent of tanδ = 0.0027). The top
and bottom metal layers are open-ended two-order microstrip
feedlines are centrosymmetric to each other. The middle layer
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Fig. 1. Structure of the microwave filter [4]. (a) 3D view; (b) Top and bottom
metal layers; (c) Middle metal layer.

TABLE I
GEOMETRIC PARAMETERS OF THE MICROWAVE FILTER [4]

Parameter Value (mm) Parameter Value (mm)
ls1 [11.5, 12.5] wf 1.5
ls2 [2, 3] ws 1.5
ls3 [9.5, 10.5] ws1 0.5
lm 20.5 wm 3.88
ls 9.9 h 0.813
lf 24

TABLE II
TRAINING AND TESTING DATA OF CONVENTIONAL METHOD

Parameter Training (343 samples) Testing (988 samples)
(mm) min max step min max step
ls1 11.7 12.3 0.1 11.5 12.5 0.1
ls2 2.2 2.8 0.1 2 3 0.1
ls3 9.7 10.3 0.1 9.5 10.5 0.1

Note: Testing samples exclude 343 training samples.

is a rectangular patch etched with a symmetric four-folded-
branched slot. The geometric parameters are marked in Fig. 1
and listed in Table I. Three geometric parameters (ls1, ls2, ls3)
are selected as adjustable variables, while the rest parameters
are fixed as constant values.

A forward model is defined to model the microwave filter.
It aims to predict the |S11| for a given setting of ls1, ls2, and
ls3. Each |S11| is discretely sampled and represented as a 45-
element vector. Accordingly, the input size of the surrogate
model is 1 by 45, and its output size is 1 by 3. The forward
model is first developed from scratch by using the conventional
method. Its training and testing data are listed in Table II. The
size of testing data is larger than the training data because
the testing data is an expanded set of the training data. The
mean squared errors (MSE) on the training set and testing set
are 6.9 × 10−4 and 1.8 × 10−3, respectively. It shows that
the model performance deteriorates significantly out of the
sampling parameter space.

We then utilize the proposed method to develop the forward
model from scratch:

1) Sweep ls1, ls2, and ls3 over [11.7, 12.3], [2.2, 2.8], and
[9.7, 10.3] on a sparse and uniform sampling grid of 4×4×4.
Each parameter setting is normalized and formulated as a 3-
element vector X, and corresponding |S11| is normalized and
formulated as a 45-element vector Y.

2) Pick a reference input vector X̂j for each existing input

TABLE III
ARCHITECTURE OF THE MACHINE LEARNING MODEL

No. Layer Neurons Function
1 Input 3 Input: [ls1, ls2, ls3]
2 Activation function - Tanh
3 Fully-connected 160 Hidden layer
4 Activation function - Tanh
5 Fully-connected 180 Hidden layer
6 Activation function - Tanh
7 Output 45 Output: [|S11|]
8 Activation function - Linear

Loss function Mean Squared Error
Optimizer Adam

Learning rate 0.001
Batch size 10

Epochs 180

vector Xj , by minimizing the distance between X̂j and Xj .
Form a list of reference samples {(X̂j , Ŷj)}Nt

with respect to
existing samples {(Xj , Yj)}Nt

.
3) Pick one input vector Xk by maximizing the distance

between its output Yk and its reference output Ŷk. The selected
sample (Xk, Yk) and its reference sample (X̂k, Ŷk) point at
an input space where the sample of high quality exists. The
underlying reason is that selected samples have a large distance
between their output vectors and a small distance between their
input vectors, implying that they confine a parameter space
where the output is sensitive to the input. Hence, it is likely
that this space contributes a lot to the prediction error of the
ML model. On the other hand, adding a new sample in this
space can improve the model performance significantly. In this
sense, a potential high-quality sample of high informativeness
referred to as (X∗, Y∗) can be generated from the selected
sample (Xk, Yk) and its reference sample (X̂k, Ŷk).

4) Examine if the absolute difference between Xk and X̂k

exceeds 2×Xstep. If yes, it guarantees an input space large
enough to generate a new input vector; otherwise, go to step
3) after excluding these two samples.

5) Train the forward model using the existing training data.
Check its MSE on the training dataset (343 samples). If its
MSE is higher than 6.9 × 10−4, go to step 6); otherwise, go
to step 7).

6) Generate a new input vector X∗ from the selected input
vector Xk and its reference vector X̂k through formula (1):

X∗ = 0.5 · Xk + 0.5 · X̂k. (1)

The input vector of the new sample is obtained through swarm
operation, as given in formula (1), on the selected input vector
Xk and its reference input vector X̂k. Here, the input vector
of the new sample is referred to as X∗ and it is set as the
weighted sum of the Xk and X̂k. The weights for Xk and X̂k

is 0.5. Go to step 8).
7) Check if Xk has one of the minimum or maximum values

(11.7, 2.2, 9.7, or 12.3, 2.8, 10.3). If not, go to step 3) after
excluding these two samples. Otherwise, generate a new input
vector from the two samples. The generation follows equation
2,

X∗ = 2 · Xk − X̂k. (2)



TABLE IV
COMPARISON OF PERFORMANCE BETWEEN PROPOSED METHOD AND

CONVENTIONAL METHOD

MSE Sampled space Expanded space
Conventional method 6.9× 10−4 1.8× 10−3

Proposed method 6.9× 10−4 1.1× 10−3 (↓0.7× 10−3)

Go to step 8).
8) Obtain the output label vector Y∗ for this new input vector

X∗ through full-wave simulation via CST.
9) Form a new sample (X∗, Y∗), add this new sample to

the existing data set, and repeat sub-steps (a-h) until sufficient
data have been acquired.

The optimized dataset with the same size of 343 data
samples is used to train the forward model. The well-trained
model is evaluated on the same training and testing dataset in
Table II again. The training and testing MSEs are 6.9× 10−4

and 1.1×10−3. Compared to conventional methods, as shown
in Table IV, the proposed method shows superior modeling
performance in the expanded parameter space while maintain-
ing accuracy within the sampled parameter space.

III. CONCLUSION

This paper proposes a modified machine learning (ML)-
based modeling method for electromagnetic (EM) structures.
The proposed method enhances the modeling performance by
optimizing the data acquisition strategy. A microwave filter is
utilized to validate its effectiveness. The comparative results
demonstrate that the proposed method enhances the modeling
performance in an expanded parameter space significantly
compared to conventional methods.
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