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Abstract—In this paper, we present an unsupervised approach
for frequency sub-band allocation in wireless networks using
graph-based learning. We consider a dense deployment of sub-
networks in the factory environment with a limited number of
sub-bands which must be optimally allocated to coordinate inter-
subnetwork interference. We model the subnetwork deployment
as a conflict graph and propose an unsupervised learning
approach inspired by the graph colouring heuristic and the Potts
model to optimize the sub-band allocation using graph neural net-
works. The numerical evaluation shows that the proposed method
achieves close performance to the centralized greedy colouring
sub-band allocation heuristic with lower computational time
complexity. In addition, it incurs reduced signalling overhead
compared to iterative optimization heuristics that require all the
mutual interfering channel information. We further demonstrate
that the method is robust to different network settings.

Index Terms—Sub-band allocation, interference coordination,
graph neural networks, subnetworks.

I. INTRODUCTION

The densification of wireless networks is necessary to
support the growing connectivity demand, a trend that will
continue towards 6G [1]. The authors in [2] envisioned 6G
to be a ’network of networks’, where autonomous short-
range low-power subnetworks inside entities such as vehicles,
robots, industrial modules etc. can offload local communica-
tion within the entities from the central network. In addition,
other network architectures, such as unmanned aerial vehicle
communication, and private cells are also being developed.
However, the increasing density, mobility, and uncoordinated
deployment of cells would increase the strain on available
radio resources, demanding the need for dynamic and efficient
approaches to managing them. These radio resources include
power, space, time and frequency. The latter is the focus of
this paper.

The typical approach to managing the frequency resources
involves dividing the available bandwidth into sub-bands to
be reused at different cells in the network. Frequency reuse
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is crucial to balance the tradeoff between maximizing the
cellular network’s ability to accommodate more users and
mitigating interference [3]. However, the number of sub-bands
is usually limited compared to the number of cells. Hence,
optimally allocating the sub-bands results in a combinatorial
optimization problem which is known to be NP-hard [3]. As
a consequence, various sub-optimal heuristics and data-driven
solutions have been developed.

The sub-band allocation can be formulated as a graph
colouring problem as in [4]–[6], where APs or cells are
represented as nodes in a graph and the edges model mutual
interference. The graph colouring problem defines the assign-
ment of colours (sub-bands) to nodes (AP or cell) such that no
nodes connected by an edge (i.e., adjacent nodes) are assigned
the same colour [7]. The approach of formulating sub-band al-
location as a graph colouring problem is advantageous because
wireless networks can be naturally represented as graphs.
Additionally, graph colouring has been extensively studied,
resulting in a variety of proposed solutions. A common
approach is to use a sub-optimal greedy colouring algorithm
since exact solutions are typically exponential in complexity
[8]. This approach has been considered for sub-band allocation
in ultra-dense networks, femtocells and subnetworks in [4]–
[6]. It has also been widely adopted for sub-band allocation
in Wireless Local Area Network (WLAN) [9]. Compared to
other iterative heuristics like simulated annealing [10] and
Sequential Iterative Subband Allocation (SISA) [11], greedy
colouring algorithms are less computationally complex [4].
Nevertheless, there is growing interest in solving the sub-band
allocation problem using data-driven methods, mainly moti-
vated by the reduction in computational complexity offered
by such approaches [9], [12]–[15]. Typically, most data-driven
approaches model sub-band allocation as a mixed integer opti-
mization problem solved by supervised learning, unsupervised
learning or reinforcement learning with loss function and input
features characterized by the channel gain information.

This paper presents a novel unsupervised approach to sub-
band allocation using graph-based learning. Our approach is
inspired by the graph colouring heuristic and utilizes a loss
function based on the Potts model which learns to penalize
adjacent nodes allocating the same sub-band, hence the loss
function does not depend on the channel gain information



Fig. 1. Deployment of N subnetworks with J devices

for training. We employ a Graph Neural Network (GNN) as
the graph-based learning model. The GNN is permutation-
equivariant, scalable to changes in the size of the wireless
network, and robust to different channel measurements. In
addition, it can be executed in a centralized or decentralized
manner. In this regard, our major contributions are as follows;

• We represent the subnetworks deployment as a conflict
graph considering two graph construction rules based
on information on mutual interference and signal-to-
interference ratio.

• We model the sub-band allocation as a node classification
task and propose an unsupervised graph-based learning
approach inspired by the Potts model.

• We conduct extensive simulations to evaluate the per-
formance and complexity of the approach compared
to heuristic benchmarks. Furthermore, we evaluate the
generalizability of the approach to different numbers of
subnetworks, deployment density and channel models.

The rest of the paper is structured as follows. The next
section presents the subnetwork system model and the problem
formulation for sub-band allocation. In Section III, we describe
the proposed GNN algorithm followed by the performance
evaluation and the simulation assumption in Section IV. Fi-
nally, we give some concluding remarks and future direction
in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Subnetworks System Model

We consider a network of N = {1, 2, 3, · · · , N} subnet-
works which are densely and randomly deployed in an area
as shown in figure 1 [6]. Each subnetwork consists of an
access point (AP) that coordinates the communication of its
J = {1, 2, · · · , J} connected devices. The subnetwork and
devices are indexed with n ∈ N and j ∈ J respectively. We
assume that the subnetworks operate over a synchronized time-
frequency resource grid with the available bandwidth divided
into K orthogonal sub-bands, where K << N . Hence, the K
sub-bands are expected to be reused by multiple subnetworks,
generating mutual interference. The sub-bands allocated to

a subnetwork are further partitioned into orthogonal time-
frequency slots so that each device in a subnetwork is allocated
a dedicated time-frequency slot to avoid intra-subnetwork
interference. We assume that each subnetwork can be allocated
only one sub-band k ∈ {1, 2, · · · ,K}, which is identified by
a one-hot encoded vector θn ∈ BK . Hence, for the network
of N subnetworks, we can define a sub-band selection matrix
Θ ∈ BK×N , such that θn = Θ[:, n]. The SINR of the uplink
transmission between the jth device and the AP in subnetwork
n occupying a channel slot in sub-band θn, with a channel
gain, γj,n and fixed transmit power, pt can be written as

Γj,n =
pt | γj,n |2

N∑
m=1
m ̸=n

1(θn, θm) pt | γj′,m,n |2 +σ2

, (1)

1(θn, θm) =

{
1, if θn = θm

0, Otherwise,
(2)

where j′ ∈ J identifies the interfering device in subnetwork
m ∈ N ,m ̸= n operating over the same time-frequency slot
as device j in subnetwork n with the corresponding interfering
channel gain, γj′,m,n. σ2 denotes the thermal noise power.

B. Conflict Graph Model of Subnetworks

The subnetwork deployment can be represented as a graph
G(V, E), where the set of nodes V = {1, 2, · · · , N} represent
the subnetworks and the set of edges E = {(n,m) : n,m ∈ V}
represents potential inter-subnetwork interference. An edge
exists if subnetwork n and subnetwork m are considered
neighbouring subnetworks, i.e. m ∈ N(n) which can be based
on different rules, where N(n) denotes a set of the neighbours
of n. Foremost, it is important that the resulting interference
graph has a chromatic number of K. The chromatic number
of a graph is the number of colours required to colour the
nodes of the graph such that no adjacent nodes have the same
colour. That is, it should be possible that all the nodes in the
subnetwork conflict graph can be allocated orthogonal sub-
bands such that no adjacent nodes are allocated the same
sub-band given a maximum of K sub-bands. One possible
approximation to consider when building the subnetwork
conflict graph described in [6] is to connect each subnetwork
to K − 1 neighbours. In this paper, we consider the following
two approaches to constructing G(V, E) for the subnetwork
deployment.

• Interference Graph (IG) - In this case, we consider a set
MIn which includes all the K − 1 strongest interfering
subnetworks to subnetwork n. G(V, E) is built, such that;

{∀(n,m) | En,m = 1 if m ∈ MIn , else En,m = 0},
(3)

• Signal to Interference Ratio (SIR) Graph (SG) - The SIR



of device j in subnetwork n can be defined as

SIRj,n =
pt | γj,n |2

N∑
m=1
m̸=n

1(θn, θm) pt | γj′,m,n |2
. (4)

We consider a set MSn
of all the neighbours of the nth

subnetwork that results in its K − 1 lowest SIR. In this
case

{∀(n,m) | En,m = 1 if m ∈ MSn
, else En,m = 0}.

(5)

C. Sub-band Allocation as a Node Classification Task

Given the subnetwork deployment conflict graph G(V, E),
the node n ∈ V is labelled by the sub-band selection θn. The
optimization problem is to select θn, θm such that 1(θn, θm) =
0 if m ∈ N(n) ∀n which would intuitively minimize mu-
tual inter-subnetwork interference for the nth subnetwork if
N(n) = MIn , or maximize SIR, if N(n) = MSn . This
optimization problem is similar to graph colouring [8]. The
graph colouring problem has been statistically analyzed using
the physics anti-ferromagnetic Pott spin model [16]. According
to [16], the Potts model on a graph G(V, E) defines the
Hamiltonian of the interaction between adjacent nodes n,m
with spin variables ηn, ηm ∈ {1, 2, · · · ,K} as

H(η) =
∑

(n,m)∈E

δ(ηn, ηm), (6)

where, δ(ηn, ηm) = 0 if ηn ̸= ηm, which implies that the en-
ergy contribution of adjacent spins with different spin variables
is zero, and positive otherwise. Essentially, if G(V, E) is K-
colourable, to achieve a ground state energy of zero, the model
penalizes adjacent spins that have the same spin variables. In
relation, we can consider the sub-band allocation θn as a one-
hot code for a spin variable ηn given the subnetwork conflict
graph. According to [17], the Hamiltonian can be reformulated
in terms of the one-hot vector θn to derive the loss function
[17]

min
Θ

L(θn) =
∑

(n,m)∈E

θTn · θm. (7)

This loss function would have a minimum value of zero if all
the adjacent subnetworks are allocated orthogonal subbands,
i.e. if θn ̸= θm ∀(n,m) ∈ E corresponding to equation (6). For
the unsupervised procedure that minimizes (7), we redefine the
problem as a multi-class node classification, where a class is
a sub-band. To enable a differentiable procedure, we replace
the one-hot vector with a normalized smooth approximation
of its class, θn 7→ θ̂n ∈ [0, 1]K . Hence,

min
Θ̂

L(θ̂n) =
∑

(n,m)∈E

θ̂Tn · θ̂m (8)

The next section proposes the graph-driven model to learn
θ̂ and describes the training procedure.

Fig. 2. Graph Neural Network Design

III. SUB-BAND ALLOCATION USING GRAPH NEURAL
NETWORK

GNN is a family of neural network algorithms capable of
learning from graph signals. As shown in figure 2, the GNN
architecture consists of L layers. The propagation model in a
GNN layer can be described using two functions, the message
aggregation function and the update function. The message
aggregation function is a permutation equivariant function that
aggregates a pairwise exchange of embeddings between adja-
cent nodes. The update function generates a new embedding
for the node from the aggregated messages. For the design of
the message aggregation and update functions, we adopted the
following Gated Graph Neural Network architecture (GGNN)
[18].

A. Gated Graph Neural Network Architecture

Given the conflict graph of the subnetwork deployment
G(V, E), the aggregated message for each node n ∈ V at
layer l ∈ {1, 2, · · · , L} as illustrated in figure 2 is given as;

µl
n =

∑
m∈N(n)

Em,n · Φl · δl−1
m , (9)

where Φl is the trainable feature transformation weight matrix
of the message aggregation function, and δl−1

m denotes the pre-
vious node embedding of the neighbour. The update function
is implemented using a gated recurrent unit (GRU), where the
input is the aggregated message and the hidden state is the
previous node embedding. So, the new embedding of node n
at layer l is given as

δln = GRU(µl
n, δ

l−1
n ). (10)

The GRU function consists of the reset gate rl, update gate
ul and the new gates ol which are define as

rl = σ(Al
rµ

l
n + alr +Bl

rδ
l−1
n + blr),

ul = σ(Al
uµ

l
n + alu +Bl

uδ
l−1
n + blu),

ol = τ(Al
oµ

l
n + alo + rl ⊗ (Bl

oδ
l−1
n + blo)),

(11)

where σ(·) is a sigmoid activation function, τ(·) is a hyper-
bolic tangent activation function. Al

r, Bl
r, Al

u, Bl
u, Al

o, Bl
o

are trainable weights of the reset gate, update gate and new



gate respectively, alr, blr, alu, blu, alo, blo are their corresponding
biases. The update function in (10) is then given as

δln = (1− ul)⊗ ol + ul ⊗ δl−1
n , (12)

where ⊗ denotes Hadamard product.
The trainable message aggregation weight allows the GGNN

to learn the representation of the input graph structure while
the update GRU allows the GGNN to learn the relationship
between different intermediate internal embeddings in the L
layers [18].

Finally, a readout function compresses the final node em-
bedding after L GGNN layers into a normalized soft vector
of size K, θ̂n as in

θ̂n = Softmax(WδLn + b), (13)

where W and b are the weights and biases of the readout
function.

B. Training and Execution Procedure
We employed an unsupervised training algorithm which

does not depend on any ground truth. The training graphs are
generated using the conflict graph model of the subnetworks. A
mini-batch of graphs is propagated through the GGNN layers
which execute (9), (10), and (13). The output θ̂n ∀n is passed
to the loss function (8). By using mini-batch gradient descent,
the θ̂n at training iteration t, θ̂tn is updated as in

θ̂tn = θ̂t−1
n − ϑEB∇θ̂n

L(θ̂t−1
n ) (14)

The training is terminated when EB(L(θ̂
t
n)−L(θ̂t−1

n )) < ϵ,
where ϵ is the error tolerance, EB is the expectation over the
batch of graph, and ϑ is the learning rate.

Since the input graphs have no attributes, all nodes are
treated equally, hence the prediction depends on the structure
of the graph which is learned during the message-passing
procedure. The predicted sub-band for subnetwork n is given
as argmax(θ̂n).

The trained model can be executed in a centralized or decen-
tralized manner. For decentralized execution, each subnetwork
obtains a copy of the trained GGNN model and executes layer
l to obtain embedding δln based on the message δl−1

m received
from neighbouring subnetworks. Hence, such implementation
would require L rounds of such message passing and the size
of each message depends on the size of the embedding. This
however would incur considerable signalling overhead and
require synchronization between the subnetworks in executing
each GGNN layer. On the other hand, centralized execution
could be preferred if the subnetworks are within the coverage
of a central network. In this case, the central network controller
obtains the K − 1 neighbour identifiers for all subnetworks,
builds the conflict graph, executes the trained GGNN model,
and signals the sub-band selection decision to the subnetworks.

IV. RESULTS AND DISCUSSION

In this section, we discuss the simulation assumption for the
subnetwork deployment, the GGNN model selection and train-
ing parameters shown in table I, including brief descriptions

TABLE I
SIMULATION ASSUMPTION

Parameter Value Parameter Value
Factory area 40m x 25m Number of subnetworks 50
Subnetwork radius 2.5m Number of devices per subnetwork 1
Minimum distance between APs 2.5m Device to AP minimum distance 1m
InF-DL clutter density, clutter size 0.6, 2 Correlation distance 10m
Shadowing std (LOS, NLOS) 4dB, 7.2dB Path loss exponent (LOS, NLOS) 2.15, 3.57
Transmit power 0 dBm Number of subbands 5
Total bandwidth 20 MHz Center frequency 28 GHz
Noise figure 10 dB Number of GGNN layers 10
Size of embedding 64 Training epochs 500
Training data size 50000 Batch size 64
Initial learning rate 10−3 Optimizer ADAM

of the benchmark algorithms. We compare the performance of
the various benchmarks and our proposed approach in terms
of the network spectral efficiency, execution complexity and
generalizability. For the graph-based methods, we consider
the two subnetwork conflict graphs construction methods IG
and SG discussed in section 2.B. The spectral efficiency
(SE) (bits/s/Hz) is approximated using Shannon capacity as
SEj,n = log2(1 + Γj,n).

A. Simulation Assumptions

1) Subnetwork Deployment: To evaluate the proposed
method, we randomly deploy N = 50 subnetworks in a
factory floor of size 40m × 25m resulting in a density of
50000 subnetworks/km2. We consider K = 5 sub-bands. To
model the large-scale fading, we used the 3GPP TR 38.901
Indoor Factory (InF) channel model [19] for the Dense-clutter
Low-antenna (InF-DL) scenario and the associated model
for the probability of non-line of sight (NLOS) and line of
sight (LOS). The InF-DL scenario is appropriate since the
subnetwork’s AP and the devices are clutter-embedded. We
consider full buffer uplink transmission. The transmission link
path-loss ρ is represented by the alpha-beta-gamma model
[19]. The shadow fading s is modelled using the spatially
correlated shadowing model used in [14]. The small-scale
fading is Rayleigh distributed and complex-valued, denoted
as h ∼ CN (0, 1). Finally, the corresponding channel gain is
then calculated as γ = h×

√
10(ρ+s)/10.

2) GGNN Model and Training Settings: The GGNN model
is implemented with PyTorch Geometric and comprises L =
10 layers, with each layer having an output node embedding
of size 64. The model is trained with a batch of 64 graphs
and a total of 50000 graphs for 500 epochs, using the Adaptive
Moment Estimation (ADAM) optimizer with an initial learning
rate of 10−3. The parameters for training and model selection
as shown in table I were chosen based on experimental
validation.

B. Benchmarks

To evaluate the performance of our proposed scheme in
improving the network performance, we compare it with the
following schemes;

1) Random Allocation (RA) - A distributed scheme where
one sub-band is randomly selected from the available K
options for each subnetwork.
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2) Sequential Iterative Sub-band Allocation (SISA) - The
sub-band selection sequential algorithm for subnetworks
as detailed in [11] is a centralized iterative algorithm that
minimizes the sum of the weighted interference.

3) Centralized Graph Coloring (CGC) - The approach de-
scribed in [12] applies a greedy graph colouring heuristic
for sub-band allocation in subnetworks. We applied this
method to the same conflict graph used for evaluating our
proposed graph-based learning technique.

C. Network Performance Evaluation

Figures 3 and 4 show the empirical cumulative distribution
function (CDF) of the sum SE and per-device SE, respectively,
for the proposed scheme and the different benchmarks tested
with 10000 network realizations. Given IG, our proposed
method outperforms random sub-band allocation by 20% in
terms of achievable sum SE at the median. Below the median,
GGNN achieves the same performance as CGC and lags
behind SISA by 8%. However, note that SISA requires full
channel gain information of all the mutual interfering links
and desired links. Furthermore, we can achieve a notable gain
in per-device SE by up to 33% at the median, and multiply the
1% per-device SE by a factor of 3 (3×) compared to random
sub-band allocation as shown in figure 4. The SG graph
construction can improve performance in the lower percentiles
of per-device SE at the expense of the upper percentiles. For
example, we can enhance the 1% per-device SE by up to 5×
using GGNN. This performance is comparable to CGC, and
only marginally lower than SISA which can achieve a 6×
increase in 1% per-device SE compared to random sub-band
allocation.

D. Complexity Analysis

We analyzed the complexity of our proposed GGNN method
and compared it with the benchmark algorithms, CGC and
SISA in terms of the computational runtime and signalling
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requirement. Each algorithm is developed with Python frame-
works and ran on a Windows machine with an 11th Gen
Intel(R) Core(TM) i7-11850H @ 2.50GHz processor and 32G
memory. The result of the runtime analysis for different
numbers of subnetworks, N ∈ {50, 60, · · · , 200} in figure 5
is averaged over 10000 realizations. As shown in the figure,
our GGNN method has a faster runtime, growing at a slower
linear rate compared to the SISA and CGC. Hence, it would
be more suitable for very dense networks with a large number
of subnetworks or APs. While the runtime analysis is carried
out on a CPU, it is expected that the runtime for the GGNN
method would further decrease on a GPU.

For the signalling overhead considering centralized imple-
mentation, the GGNN requires less information and therefore
incurs fewer signalling resources than SISA. For example, N2

signalling messages are required to be signalled to the central
resource management entity from N subnetworks to execute
the SISA algorithm; on the other hand, the GGNN method



TABLE II
GENERALIZABILITY OF THE PROPOSED METHOD TO DIFFERENT NETWORK
SETTINGS AND CHANNEL MODEL IN TERMS OF AVERAGE RATE (BPS/HZ)

Test
Default Scenario 1 Scenario 2

Default 2.9445 2.8167 6.1154
Train Scenario 1 2.9403 2.8124 6.1100

Scenario 2 2.9298 2.7965 6.1238

only requires N(K−1) signalling messages, where K << N
in a large network. This further justifies the suitability of the
proposed method for a large-scale deployment of subnetworks.

E. Generalizability

We analyze the ability of the proposed graph-based learning
method to generalize to different network settings and channel
models different from the training system model assumption
as shown in table II. The default scenario is as presented
in table I and we consider two different scenarios. Scenario
1 is a network consisting of 80 subnetworks deployed in
a 50m × 30m area, resulting in a 53300 subnetworks/km2

density, with the channel model based on 3GPP in-factory
sparse clutter low antenna (InF-SL) model [19]. The NLOS
path loss exponent, shadow fading standard deviation, clutter
size and clutter density are 2.55, 5.7 dB, 10 and 0.35 re-
spectively. Scenario 2 involves a less dense deployment of 20
subnetworks in 25m×25m area, i.e. 32000 subnetworks/km2

with path-loss modelled following the 3GPP model for inH-
Office [19]. The NLOS path loss exponent, shadow fading
standard deviation, and correlation distance are 3.83, 8.03 dB,
and 6m. We train different GGNN models from training graphs
constructed based on IG for a given scenario and tested on
all three scenarios. As shown in table II, we observe that
the average SE from testing with 10000 snapshots remain
relatively the same for a test scenario, regardless of the training
scenario. This shows that the trained model can generalize to
different numbers of subnetworks, density and channel models.
The robustness to different settings is due to the fact that
the GGNN model learns based on the graph structure, which
depends on the graph construction rule and not the distribution
of the channel model.

V. CONCLUSION AND FUTURE WORK

This paper investigates an unsupervised graph-based learn-
ing approach to sub-band allocation for dense wireless sub-
networks. The topology of the subnetwork is represented
as a graph and the sub-band allocation is formulated as a
node classification task parameterized by GGNN using a loss
function inspired by Potts model. We propose two different
conflict graph representations and show that the tradeoff of
improving outage and global performance depends on the
conflict graph construction rule. We show that our approach
offers comparable performance and requires lower runtime and
signalling overhead than the centralized benchmark heuristics.
We further show that the trained GGNN model is scalable,

agnostic to the channel model and can be executed in a
centralized or decentralized manner. Hence, the approach can
be suitable for large-scale deployment of subnetworks. To
better take advantage of the data-driven technique, our future
work will consider more complex scenarios including traffic
and mobility, where graph-based learning methods could out-
perform heuristics using the predictive ability of data-driven
techniques.
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