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Abstract: Obesity has been suggested as an environmental risk factor for multiple sclerosis (MS)
and may negatively effect the progression of the disease. The aim of this study is to determine
any correlation between overweight/obesity and the clinical and neuroradiological features at the
onset of pediatric onset multiple sclerosis (POMS). Were included patients referred to the POMS
Unit of the Bambino Gesù Children’s Hospital between June 2012 and June 2021. The diagnosis
of MS with an onset of less than 18 years was required. For all included subjects, we considered
for the analysis the following data at the onset of symptoms: general data (age, sex, functional
system compromised by neurological signs, weight and height), brain and spinal magnetic resonance
imaging (MRI), cerebrospinal fluid exams. We identified 55 pediatric cases of POMS and divided
them into two groups according to the body mass index (BMI): 60% were healthy weight (HW) and
40% were overweight/obese (OW/O). OW/O patients experienced a two-year age difference in
disease onset compared to the HW patients (12.7 ± 3.8 years vs. 14.6 ± 4.1 years; p < 0.05). Onset
of polyfocal symptoms was seen more frequently in OW/O patients than in HW (72.7% vs. 21.2%;
p < 0.05). The pyramidal functions were involved more frequently in the OW/O group than in the
HW group (50% vs. 25%; p < 0.005). Black holes were detected more frequently in OW/O patients
in onset MRI scans compared to the HW group (50% vs. 15.5%; p < 0.05). Our findings suggest
that being overweight/obese affects the risk of developing MS at an earlier age and is associated
with an unfavorable clinical–radiological features at onset. Weight control can be considered as a
preventive/therapeutic treatment.

Keywords: pediatric onset multiple sclerosis; obesity; onset; risk factor

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central
nervous system (CNS) that is most commonly diagnosed in young adults; 3–5% of patients
have disease onset under the age of 18, and less than 2% of patients are younger than
10 years [1–4]. Pediatric MS has some differences from adults in the clinical presentation:
the pediatric population presents a higher relapse rate, despite better recoveries after
relapses, and a slower evolution toward a secondarily progressive disease [1]. About half
to two-thirds of pediatric patients present with multiple symptoms [4].

Obesity is a major public health problem, as the prevalence of obesity in Italian school-
aged children is 9.4%, while the prevalence of overweight is 20.4% [5]. Furthermore, the
prevalence of overweight and obesity persists, with an increasing trend, over the years,
following the trend of MS diagnosis in children [6].
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The etiology of MS is still unknown, although current evidence suggests that it is the
result of autoimmune injury triggered by a combination of an environmental stimulus in
genetically susceptible individuals, both adults and children. Low serum vitamin D levels,
passive or active smoking, remote infection with Epstein–Barr virus, and obesity are factors
that may increase environmental risks [6–8].

Adipose tissue, which is involved in many metabolic functions, regulates the immune
system and endocrine function. These functions are mediated by various components
of adipose tissue: adipocytes, which exert an endocrine function through the secretion
of various adipokines (adiponectin, leptin, and resistin), innate and adaptive immune
cells (macrophages, neutrophils, eosinophils, mast cells, and various T and B cells), and
fibroblasts. This is closely connected to how adipose tissue regulates inflammatory status [5].
An excessive amount of adipose tissue leads to an increased secretion of inflammatory
substances, such as pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α),
monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6); at the same time,
the secretion of anti-inflammatory adipokines is decreased in the over-weight/obese body.
Obesity is associated with chronic inflammatory status as a result of these factors [5].
Indeed, obesity in adults is associated with increased cerebrospinal fluid (CSF) levels of
proinflammatory molecules, including IL -6 and leptin, and a de-crease in anti-inflammatory
mediators such as IL-13 [9,10]. Similar data have been found in the pediatric population,
particularly in prepubertal patients, suggesting an interaction between excess body fat,
sex hormones, and the occurrence of pediatric onset multiple sclerosis (POMS) [11]. An
hypothesis is that children are more susceptible to inflammatory damage due to blood–
brain barrier (BBB) permeability, resulting in more pronounced acute axonal damage
in inflammatory demyelinating lesions than in adults [12], with a greater number and
volume of new T2 lesions on brain magnetic resonance imaging (MRI) [13], which may
affect outcomes, especially if they are abundant on baseline neuroimaging [14,15]. It is
particularly relevant to identify the risk factors involved in the development of the disease
during the early stages of life, considering this time as a window to potentially interfere: in
this sense many efforts have been spent and some studies focused on the role for childhood
obesity in risk of developing MS.

The presence of high BMI values in pediatric multiple sclerosis patients in their child-
hood and before the onset of neurological symptoms is a common occurrence [6,11,16,17].
Despite considering environmental and genetic risk factors, the connection between high
BMI and increased risk of MS remains valid [18]. Regarding genetic factors, a recent study
performing mendelian randomization could confirm the positive causal association be-
tween high BMI and MS, and detected as well common risk genes shared between MS and
obesity, suggesting a potential pathogenetic mechanism to justify this comorbidity [16].
High BMI may be considered not only a risk factor but also a negative predictive fac-tor, as
it appears to be associated with higher rates of relapse [10], development of disability [19],
and negative response to disease-modifying drugs in terms of relapses under treatment [20].
Meanwhile, as evidence increases about this correlation, the prevalence of obesity in the
MS pediatric population is growing at a rate of 25–50% compared to the past [21].

The objective of this research is to examine whether overweight/obesity is associated
with the clinical and neuroradiological presentation of POMS.

2. Materials and Methods
2.1. Participants and Inclusion Criteria

We performed a retrospective study that includes patients that referred to the POMS
Unit of the Bambino Gesù Children’s Hospital, between June 2012 and June 2021. The 2013
International Pediatric MS Study Group (IP-MSSG) criteria were used to diagnose MS, and
these patients were included in the analysis [22]. Pediatric MS diagnosis was made based
on these criteria if the patient had a history of:

(1) Two or more non-encephalopathic clinical CNS events with presumed inflammation,
separated by more than 30 days, involving more than one area of the CNS;
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(2) One non encephalopathic episode typical of MS which was associated with MRI find-
ings consistent with 2010 Revised McDonald criteria for dissemination in space (DIS)
and in which a follow up MRI shows at least one new enhancing or non enhancing
lesion consistent with dissemination in time (DIT);

(3) One ADEM attack followed by a non encephalopathic clinical event, three or more
months after symptom onset, that was associated with new MRI lesions that fulfill
2010 Revised McDonald for DIS criteria;

(4) A first, single, acute event that does not meet ADEM criteria and whose MRI findings
are consistent with the 2010 Revised McDonald criteria for DIS and DIT (this last
criterion was valid only for children over 12 years of age.

Other inclusion criteria for the studied are: age younger than 18 years at clinical onset;
the other inclusion criteria included: availability of an examination of the liquor taken by
rachicentes (physical chemical examination, determination of oligoclonal bands on liquor
and serum and microbiological examinations); examination of cerebral and spinal MRI
with and without injection of gadolinium and carried out 30 days after possible steroid
therapy and without the initiation of therapy modifying the course of disease.

Patients with other intercurrent chronic pathologies (endocrine, tumoral, cardiac,
respiratory) that could affect BMI were excluded.

The study was approved by the Ethical Committee of Bambino Gesù Children’s
Hospital (date 19 October 2023). All patients enrolled and their parents provided consent
for the publication of the results.

2.2. Data Collection

Medical records performed at the moment of disease onset, before starting steroid
treatment and disease modifying therapy were retrospectively reviewed for each patient.
The collected data included: (1) demographic variables: sex, age; (2) clinical variables:
measurement of weight (kg), height (cm), BMI calculated as weight in kilograms divided by
height in meters squared, expanded disability status scale (EDSS) score, presenting clinical
symptoms; (3) laboratory data: presence of oligoclonal bands (OCBs) in CSF, determined
by isoelectric focusing, combined with immunoblotting of matched serum, and CSF sample
pairs, presence of pleocytosis in CSF, defined as >5 white blood cells/mm3, previous Epstein–
Barr virus (EBV) infection, defined by measuring serum viral antibodies (IgM and IgG by
ELISA) and performing quantitative real-time PCR for the EBV; (4) characteristics of brain
and spine MRI, performed at the time of clinical onset with a 3T scanner, acquiring axial and
sagittal T2-weighted, fluid-attenuated in-version recovery (FLAIR)- weighted, T1-weighted
MRI sequences, and T1-weighted MRI images after administration of gadolinium.

Clinical symptoms were later classified according to the involvement of various func-
tional systems, related to nervous system activity. In details the following symptoms or
signs had been considered: Visual function (visual acuity, visual fields, and scotoma); Brain-
stem Functions (extraocular movement impairment, nystagmus, trigeminal damage, facial
weakness, hearing loss, dysarthria, dysphagia, and other cranial nerve functions); Pyrami-
dal functions (reflexes, limb strength, and spasticity); Cerebellar Functions (head tremor,
truncal ataxia, tremor or dysmetria of limbs, and gai ataxia); Sensory Functions (superficial
sensation of trunk and limbs, vibration sense of limbs, position sense of limbs, and paranes-
thesia); Bowel and Bladder Function (urinary hesitancy or urgency, and bowel disfunction).

We ensured that the brain MRI, performed at the onset, included axial and sagittal
T2-weighted, fluid-attenuated inversion recovery (FLAIR)-weighted, T1-weighted MRI
sequences, and T1-weighted MRI images after administration of gadolinium. All patients
included in the study also underwent a spinal MRI at the onset of symptoms and before the
start of corticosteroid therapy; dual-echo (proton-density and T2-weighted) conventional
and/or fast spin-echo, STIR (as alternative to proton-density weighted) and contrast-
enhanced T1-weighted spin-echo (in case of presence of T2 lesions) sequences were acquired.
The MRI scan revision was centralized and carried out by two operators (LP and MANF)
blinded to clinical outcome, at the Bambino Gesù children’s hospital. Lesion characteristics
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were recorded, including the location, distribution, border outline, symmetry, and number,
as well as size and gadolinium capture. Tumefactive lesions were defined as such if
larger than two cortical gyri. The presence or absence of black holes (non-enhancing
hypointense lesions visible on T1-weighted sequences) and post-gadolinium enhancement
were analyzed.

2.3. Subgroups Classification

The population was divided in two groups, according to the BMI, using the Center for
Disease Control (CDC) metrics [6]: the first group (healthy weight, HW) includes people
with BMI under 25, and the second group (overweight/obese, OW/O) included people
with BMI of 25–29.9, considered overweight, and people with a BMI over 30, categorized
as obese.

2.4. Statistical Analysis

We used the chi-squared test to compare the distribution of categorical variables in
the two groups. The categorical variables included sex, presence of encephalopathy at
clinical onset, symptoms at onset in various functional systems, presence of oligoclonal
bands in CSF, distribution of lesions in MRI in the different areas (periventricular, subcorti-
cal, subtentorial, and spine), presence of gadolinium-enhancing lesions, black holes and
swelling lesions.

The Mann–Whitney U-test was used to compare continuous variables like age, the
number of the relapses before diagnosis and the number of lesions visible in MRI scans
taken at onset.

Statistical analysis was conducted with SPSS software version 22. The level of signifi-
cance was set for p value values lower than 0.05.

3. Results

Among 65 patients selected, 10 of them were excluded for unavailability of data
required (3 no onset MRI images available, 2 no data from CSF collected at onset available,
5 no measurement of weight and height performed at onset).

The statistical analysis included 55 patients with a diagnosis of relapsing-remitting
MS with pediatric onset. This population was composed of 34 girls (61.8%) and 21 boys
(38.2%), with a mean age of 13.5 years (Table 1).

Table 1. Demographic features of the patients included in the study. SD: standard deviation.

POMS Subjects

Sex No. % Age, y

Mean SD
Male 21 38.2% 13.1 3.2

Female 34 61.8% 13.7 3.06
Total 55 100% 13.5 3.1

Patients were divided into two groups: HW (33 patients, 60%) and OW/O (22 patients,
40%). The HW group consisted of 57.6% girls and 42.4% boys while the OW/O population
was composed of 68.2% girls and 31.8% boys (p > 0.05) (Table 2).

Table 2. Demographic features of the healthy weight and overweight/obese patients.

Healthy Weight Obese/Overweight

No. % Age, y No. % Age, y

Mean DS Mean DS
Total 33 60 14.6 4.1 22 40 12.7 3.8
Male 14 42.4 12.4 3.5 7 31.8 14.5 1.8

Female 19 57.6 13 3.8 15 68.2 14.6 1.2
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3.1. Age at Disease Onset

OW/O patients had an age of disease onset approximately two years lower than HW
patients (12.7 ± 3.8 years vs. 14.6 ± 4.1 years; p < 0.05).

3.2. Clinical Features at Disease Onset

An acute disseminated encephalomyelitis (ADEM)-like with encephalopathy at onset
occurred with a similar frequency in the OW/O group versus HW patients (p > 0.05).
Excluding patients with ADEM-like, an onset with polyfocal symptoms was more often
seen in OW/O patients than in the HW group (72.7% vs. 21.2%; p < 0.05). In order of
frequency, the onset symptoms occurred in patients with polyfocal presentation involved
superficial/proprioceptive sensation (No. 16, 69.5%), brainstem deficit (No. 12, 52.1%),
pyramidal functions (No. 12, 52.1%), cerebellar functions (No. 11, 47.8%), visual deficit
(No. 8, 34.7%), bowel and bladder functions (No. 2, 8.6%).

On the contrary, monofocal onset was seen more often in HW patients than in the
OW/O group (66.6% vs. 18.1%; p < 0.05). In order of frequency, the onset symptom occurred
in patients with monofocal presentation involved visual deficit (No. 9, 34.6%), brainstem
deficit (No. 7, 26.9%), superficial/proprioceptive sensation (No. 6, 23%), pyramidal
function (No.4, 15.3%).

Involvement of the pyramidal functions was more often detected in the OW/O group
than in the HW group (50% vs. 25.4%; p < 0.005), (Table 3). The analysis of the total number
of relapses that occurred before diagnosis did not reveal a statistically significant difference
between the two groups.

Table 3. Clinical features at onset of the healthy weight and overweight/obese patients.

Healthy Weight Obese/Overweight p-Value

Mean SD Mean SD

Age at onset, y 14.6 4.1 12.7 3.8 <0.05
Expanded disability status scale (EDSS) at onset 1.9 0.5 2.2 0.6 0.07

No. % No. %
Monofocal onset 22 66.6 4 18.1 <0.05
Polifocal onset 7 21.2 16 72.7 <0.05

Encephalopathy at onset 4 12.1 2 9.1 0.08
Pyramidal functions 8 25.4 11 50 <0.05

Superficial sensation (light, touch and pain) 9 27.3 11 50 0.07
Proprioceptive sensation 9 27.3 6 27.3 0.08

Cerebellar functions 9 27.3 3 13.6 0.19
Brainstem functions 16 48.5 9 40.9 0.39

Visual deficit 10 30.3 9 40.8 0.3
Bowel and bladder functions 2 6.1 2 9.1 0.52

Oligoclonal band (intrathecal IgG synthesis) 26 83.9 19 95 0.23
Pleocytosis (>5 cell/mmc) 13 50 14 70 0.14

Ig G anti-Epstein–Bar virus 30 91 22 100 0.2

3.3. MRI Features at Disease Onset

Regarding MRI scans performed at onset, a statistically significant difference was
revealed analyzing the number of black holes: they were more frequently detected in
OW/O patients in onset MRI compared to the HW group (50% vs. 15.5%; p < 0.05)
(Figure 1).

When analyzing the presence of other MRI features such as periventricular lesions, jux-
tacortical/cortical lesions, infratentorial lesions, spinal cord lesions, gadolinium-enhanced
lesions, and tumefactive lesions, no statistically significant differences were found between
the two groups (Table 4).
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Table 4. Onset Magnetic Resonance Imaging features for the healthy weight and overweight/obese patients.

Healthy Weight Obese/Overweight p-Value

No. % No. %

Black holes 5 15.5 12 54.5 <0.05
Periventricular lesion 29 87.9 18 81.8 0.4
Juxtacortical/cortical 25 75.8 19 86.4 0.27

Infratentorial 23 69.7 13 59.1 0.3
Optic nerve 13 39.4 9 40.9 0.5
Spinal cord 20 60.6 13 59.1 0.09
Gadolinium

enhancing lesions 25 75.8 19 86.4 0.27

Tumefactive lesions 8 24.2 6 27.3 0.52

We found no statistically significant difference between the two groups about the total
number of T2 hyperintense cerebral lesions at onset.

3.4. Laboratorial Features at Disease Onset

Oligoclonal bands (OCBs) in CSF were found in 26 HW patients (83.9%) and in 19 (95%)
OW/O patients, pleocytosis were found in 13 HW patients (50%) and in 14 OW/O patients
(70%), previous EBV infection were found in 30 HW patients (91%) and in 22 OW/O
patients (100%).

We found no statistically significant difference between the two groups analyzing the
presence of oligoclonal bands (OCBs) in CSF, the presence of pleocytosis in CSF, previous
EBV infection.

4. Discussion

Our study shows that patients with POMS who are OW/O experience clinical onset
at a younger age than those who are HW. At the onset of the disease, OW/O individuals
exhibit a worse clinical picture and less favorable MRI findings than HW individuals.
POMS is a disease that is caused by genetic and environmental factors, which increase the
risk of development [23].

Susceptibility to SM has been identified in several genes within the major histocom-
patibility complex (MHC) loci. Around one-third of them have been associated with POMS,
which suggests that there is a shared genetic inheritance. The HLA-DRB1 gene is the gene
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responsible for the most significant genetic contribution, which is associated with changes
in HLA in general and specifically [24].

Epstein–Barr virus (EBV) infection is a determinant of POMS that has been exten-
sively studied [25,26]. Vitamin D deficiency, not breastfeeding infants, pesticide exposure,
smoking, air quality, and hormonal influences [18] were among the other factors [18]. Fur-
thermore, certain risk factors seem to have a more significant impact during a particular
time frame. BMI and obesity in adolescence, not during childhood, is associated with an
increased risk of developing MS [27–30].

Authors, in particular, attempted to establish if there was a correlation between obesity
age and the risk of MS [17,23]. Identifying the age range in which obesity may increase the
future risk of developing MS is important for implementing prevention measures for being
overweight. Some studies showed that in obese subjects, correcting their body weight
reduces the risk of developing MS during the life period [17,27].

Recently a Mendelian randomization study was performed to evaluate whether child-
hood BMI has a causal influence on MS, and whether this putative effect is independent
of early adult obesity and pubertal timing. This study found that a higher genetically pre-
dicted childhood BMI was associated with increased odds of MS. The association between
childhood obesity and MS susceptibility was mediated by the persistence of obesity into
early adulthood, but independent of the timing of puberty [31].

A Danish longitudinal study conducted in school children found that among girls,
at each age from 7 to 13, a one-unit increase in a the BMI z-score was associated with
significant hazard ratios of MS. The risk of MS increased by 1.61–1.95 times for girls in
the 95th percentile for BMI compared to girls in the 85th percentile. The associations were
weaker in boys. A hazard ratio of 1.17 was found for a one-unit increase in BMI z-score at
age 7, and 1.15 was found at age 13 [17].

Munger et al. reported a study in which some women were questioned, using a
self-reported representative pictogram about their body silhouettes at the ages of 5, 10, and
20. In this study, the author found that the women who reported having a larger body size
at age 20 had a two-fold increased risk of MS compared to women who reported a thinner
body size. There was also a suggestion that having a larger body size during childhood
at ages 5 or 10 may increase the risk of MS. Furthermore, after adjusting for body size at
age 20, there was no increased risk of MS associated with having a large body size during
childhood. The twofold risk of MS associated with large body size at age 20 remained
unchanged [28].

These studies support the previous findings that overweight individuals in late ado-
lescence/early adulthood have a 40% increased risk of MS [32]. Unfortunately, we do not
have information about the BMI trajectory of our cohort, but our data show that a high
BMI at the onset of MS is associated with an earlier age of onset of MS, polyfocal symptoms
at onset, and early hypointense MRI lesions.

The onset of MS in childhood has significant implications for the prognosis. Compared
to adults, children and adolescents with MS experience a higher relapse rate and more
commonly affect the cerebellar and brainstem regions [33]. Pediatric MS patients take about
10 years longer than adults to reach irreversible levels of disability. Nevertheless, these
levels are attained by a final age that is 10 years younger than in adult-onset patients [34].
Furthermore, POMS can impact the cognitive function and development of children. Early-
onset MS patients have a faster decline in cognitive performances compared to patients
with adult-onset disease, resulting in a higher risk of cognitive impairment and psychiatric
comorbidity in adulthood, even when adjusted for disease duration [35–40]. POMS is
linked to psychiatric comorbidity in adulthood. Overall, it is estimated that approximately
25–30% of patients with POMS experience mild cognitive changes [40], mainly related to
attention and processing speed [41]. Long-term repercussions on the cognitive performance
of POMS patients have also been described [36]. Therefore, efforts towards early diagnosis,
the discovery of early predictors of long-term outcomes, and appropriate early drug
intervention are highly warranted.
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Regarding clinical features at onset, a recent review estimated that approximately
half to two-thirds of pediatric MS patients have a polysymptomatic presentation [42]
and this is more frequent in patients with onset at a younger age, which may reflect a
greater susceptibility of an immature brain to the inflammatory insult [43]. Children are
most commonly diagnosed with motor dysfunction (30%), sensory symptoms (15–30%),
brainstem symptoms (25%), optic neuritis (10–22%), and ataxia (5–15%) [38]. The results of
our analysis show that a clinical onset with polyfocal signs is more frequently observed
in overweight/obese patients than in healthy weight patients, who tend to present with
monofocal clinical manifestations. In addition, in our study, overweight/obese patients
are more likely to have pyramidal domain involvement (50% OW/O) than healthy weight
patients (25.4% HW).

The presence of polyfocal symptoms at the clinical onset of MS has been associated in
both children and adults, with an increased risk of moderate or severe disability [2,44–46]
and a decreased response to disease-modifying treatments [47]. A higher EDSS score is
linked to the involvement of the pyramidal system [48]. Langer-Gould et al. analyzing
a multiethnic population of 75 new diagnoses of pediatric clinically isolated Syndrome
(CIS) and POMS, found that moderately and extremely obese children were more likely to
present with motor/sensory symptoms of transverse myelitis [16].

Regarding MRI findings at the onset of the disease, our analysis shows that hy-
pointense T1 lesions (also known as Black Holes) [49], are found more frequently in the
overweight/obese group than in the healthy weight group. The presence of black holes is a
sign of chronic inflammatory damage and tissue damage due to axonal loss [50].

It is known in adults that the black hole burden is related to cerebral atrophy [51–54],
and both reflect and are a negative prognostic factor of physical disability [49,55,56] and
poor cognitive performance [57]. Furthermore, children with MS are more likely to present
black holes already at onset of the disease compared to AOMS, probably due to a more
aggressive disease early on and the susceptibility to axonal damage [12], and tend to have
more rapid loss of brain parenchyma during the course of the disease [58].

Studies in the adult MS population on the effects of over weight on neuroradiological
factors that are associated with progression and persistent disability have yielded conflicting
results [10,59–62]. Some studies have documented a relationship between an increase in
BMI and a reduction in cerebral gray matter over time, which leads to a greater burden
of T1 lesions [59,61,62]. This type of relationship [10,60] has not been found by others,
however. Other factors, such as the duration of the disease, may affect the reduction in
brain volume or lesion load in the adult population [53].

The study of these phenomena in the pediatric population allows us to analyze the
disease at an earlier stage, which therefore gives more value to the effect of weight. Few
studies have investigated this topic in POMS, and those that have, have found that patient
BMI did not affect the probability of presenting numerous T2 lesions or contrast enhancing
lesions at the onset [63]. However, a second study did not observe significant differences in
the clinical characteristics of POMS between normal weight and overweight subjects [20].

The correlation between overweight and MS can also have implications in the thera-
peutic field. In adults with MS, the risk of developing persistent disability has gradually
decreased through the early use of effective disease-modifying treatments [64,65]. However,
the therapeutic management of POMS has greater limitations than that of adults because we
have fewer pharmacological strategies available than in adults [66,67]. Therapeutic targets
can be focused on preventing and controlling overweight. Prior studies have demonstrated
the protective effect of vigorous physical exercise during adolescence and childhood against
the development of MS [14,68,69] and the protective effect of physical exercise on disease
outcome, in terms of accumulation of disability, relapse rate, neurocognitive performance
and MS-related MRI lesions accrual [70].

Diet may also play a role in susceptibility to developing MS and may affect the course
of the disease in both adults [71,72] and in pediatric populations with MS [73,74]. In recent
years, MS treatment strategies have included other therapeutic dietary interventions, in
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addition to vitamin D supplementation [53]. Omega-3 and omega-6 acid supplements [75]
and the ketogenic diet [76,77] are included. Dietary interventions should be considered as
a potential therapeutic strategies that may impact pathophysiological mechanisms and the
well-being of patients with MS.

In conclusion, although our study highlighted and presented more evidence about
how negatively obesity influences the onset features of POMS [53], it is possible, even
after the disease onset, to remove risk factors, ameliorate the progression of disability and
comorbidities, and improve the neurological reserve, able to repair and compensate for
neuronal damage [19,58,78].

Our study has a series of limitations, which consist of the retrospective analysis of the
data and the failure to observe changes in BMI over time.

5. Conclusions

Early diagnosis and treatment of MS have a very strong impact on the prognosis of
multiple sclerosis. The identification of risk factors for the development of the disease
is of great importance. Our study strengthens the thesis that being overweight may
have an unfavorable prognostic role in MS patients. The onset of MS in childhood offers
disadvantages in terms of impact on cognition, future disability, and reduced availability
of drugs to reduce disease progression. To these, the addition of overweight in childhood
may have a further unfavorable prognostic factor. Controlling weight during adolescence,
rather than childhood or adulthood, is critical in determining the risk of MS.
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