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ENGLISH SUMMARY 

This PhD thesis explores the molecular landscape of rheumatoid arthritis (RA), with 
a focus on its translational implications for immune-checkpoint inhibitor induced 
inflammatory arthritis (ICI-IIA). The relationship between adverse events of cancer 
treatment and RA might seem counterintuitive at first thought. ICIs work by removing 
the “brakes” of the immune system and produces an anti-tumour effect. However, 
such an overactive immune system can mistakenly attack healthy tissue, resulting in 
ICI-IIA. RA is likewise considered to be the result of an overactive immune system 
that primarily attacks the synovial joints. Thus, ICI-IIA and RA could possibly share 
underlying immunological mechanisms, and studying this could provide valuable 
insights into both conditions. For instance, by employing proteomics to study 
elucidate the mechanisms of RA, this knowledge can be translated into an ICI-IIA 
context, and vice versa, by employing proteomics to elucidate the mechanisms of ICI-
IIA, this knowledge can be translated into an RA context. 

The thesis starts with an introduction to ICI-IIA and RA, followed by an introduction 
to the employed methods. These methods include proteomics, the large-scale study of 
proteins, and statistical tools that facilitate the interpretation of the complex 
proteomics data. The thesis then highlights the findings of four sub-studies, contained 
in two papers and one unpublished study, where these methods are central.  

Paper 1 is a non-systematic review that sought to review studies aiming to identify 
blood biomarkers for early diagnosis and prediction of ICI-IIA (1). A lack of 
substantial research in this field and an apparent lack of reliable diagnostic criteria for 
ICI-IIA became evident. This, in turn, led to unreliable clinical endpoints within these 
studies. Recognizing these limitations, we proposed a set of recommendations to 
facilitate and guide future research on biomarker discovery for ICI-IIA. Specifically, 
we discussed the use of different diagnostic approaches to define robust clinical 
endpoints and discussed the potential of employing omics technologies for biomarker 
discovery in ICI-IIA. 

Paper 2 lays the foundation for the anticipated future research on ICI-IIA, and 
secondly, it aims to answer fundamental questions about RA in two sub-studies. The 
study employed proteomics to study RA, yielding a comprehensive understanding of 
the pathological mechanisms occurring locally and systematically at different disease 
stages. Specifically, it answers some questions that are fundamental to our 
understanding of inflammatory arthritis in RA such as: What biological pathways are 
dysregulated in early untreated RA and what happens following treatment initiation? 
What biological pathways are dysregulated in longstanding RA and what happens 
following treatment intensification? What are the molecular differences between early 
RA and longstanding RA? What are the cellular and molecular determinants of 
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synovial heterogeneity? And can determinants of synovial heterogeneity predict 
treatment outcomes? 

The thesis concludes with an unpublished study that aimed to answer how proteins 
covary with different measures of disease activity following treatment initiation or 
intensification. This investigation identified five plasma proteins that have the 
potential to serve as a biomarker signature of disease activity in RA. 

Cumulatively, this thesis expands our understanding of the fundamental pathological 
mechanisms in RA, informs future translational research strategies for both ICI-IIA 
and RA, and paves the way for more personalized and effective treatments for these 
disabling conditions. 
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DANSK RESUME 

Denne Ph.d.-afhandling udforsker det molekylære landskab af reumatoid artrit (RA) 
med fokus på dets translationelle implikationer for immun checkpoint inhibitor (ICI)-
induceret inflammatorisk artrit (ICI-IIA). Sammenhængen mellem bivirkninger af 
kræftbehandling og RA kan virke lidt ulogisk ved første tanke. ICI’er virker ved at 
”fjerne bremserne” i immunforsvaret hvilket frembringer en anti-tumor effekt. 
Imidlertid kan sådan et overaktivt immunsystem også angribe raskt væv, hvilket 
resulterer i ICI-IIA. RA betragtes ligeledes som værende et resultat af et overaktivt 
immunsystem, der angriber de synoviale led. Således kan ICI-IIA og RA muligvis 
dele underliggende immunologiske mekanismer, og undersøgelser af dette kunne give 
værdifulde indblik i begge tilstande. Ved at bruge proteomik til at studere RA, kan 
denne viden for eksempel oversættes til en ICI-IIA-kontekst, og omvendt, ved at 
bruge proteomik til at belyse ICI-IIA-mekanismer, kan denne viden muligvis 
oversættes til en RA kontekst.  

Ph.d.-afhandlingen begynder med en introduktion til ICI-IIA og RA, efterfulgt af en 
introduktion de anvendte metoder. Disse metoder inkluderer proteomik, som er den 
storskalaede undersøgelse af proteiner, og statistiske metoder der faciliterer 
fortolkningen af disse komplekse proteomik data. Ph.d.-afhandlingen fremhæver 
derefter fundene fra fire delstudier, fordelt over to artikler og et upubliceret studie, 
hvor disse metoder er centrale.  

Artikel 1 er en ikke-systematisk gennemgang af litteraturen, der gennemgår studier 
som havde til formål at identificere blod-baserede biomarkører til tidlig diagnose og 
forudsigelse af ICI-IIA (1). Der var dog et klart mangelfuldt forskningsgrundlag på 
dette område og en tilsyneladende mangel på pålidelige diagnostiske kriterier for ICI-
IIA. Dette medførte til upålidelige kliniske endepunkter inden for disse studier. Som 
en anerkendelse af disse begrænsninger foreslog vi en række anbefalinger til at 
faciliterer og vejlede fremtidig forskning der har til formål at identificere ICI-IIA 
biomarkører. Vi diskuterede specifikt brugen af forskellige diagnostiske 
fremgangsmåder til at definere robuste kliniske endepunkter, og drøftede dernæst 
potentialet af at anvende omics-teknologier til identifikation af ICI-IIA biomarkører. 

Artikel 2 ligger grundlaget for den forventede fremtidig forskning indenfor ICI-IIA 
og søger, i to delstudier, at besvare spørgsmål der er fundamentale for vores forståelse 
af RA. Studiet anvendte proteomik til at undersøge RA, hvilket resulterede i en 
omfattende belysning af de patologiske mekanismer, der finder sted lokalt i de 
synoviale led og systemisk på forskellige sygdomsstadier. Specifikt besvarer studiet 
spørgsmål, der er fundamentale for vores forståelse af inflammatorisk artrit, såsom: 
Hvilke biologiske processer er dysreguleret i tidlig ubehandlet RA, og hvad sker der 
efter initiering af behandlingen? Hvilke biologiske processer er dysreguleret i 
langvarig RA, og hvad sker der efter intensivering af behandlingen? Hvad er de 
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molekylære forskelle mellem tidlig RA og langvarig RA? Hvilke cellulære og 
molekylære forskelle ligger til grund for synovial heterogenitet? Og kan disse 
forskelle forudsige behandlingsresultatet?  

Ph.d.-afhandlingen afsluttes med et upubliceret studie, der søger at besvare, hvordan 
proteiner kovarierer med forskellige mål for sygdomsaktivitet efter initiering eller 
intensivering af behandling. Studiet identificerede frem plasma proteiner, der har 
potentialet til at blive brugt som en biomarkør-signatur for sygdomsaktivitet i RA.  

Samlet set bidrager denne afhandling til vores forståelse af de fundamentale 
patologiske mekanismer i RA, informerer fremtidige translationelle 
forskningsstrategier indenfor både ICI-IIA og RA, og baner, på sigt, vejen for mere 
effektive behandlinger, der er skræddersyede til hver enkelt patient, som er påvirket 
af disse invaliderede tilstande 
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CHAPTER 1. INTRODUCTION 

1.1. IMMUNE-CHECKPOINT INHIBITOR-INDUCED 
INFLAMMATORY ARTHRITIS 

Immune-checkpoint inhibitors (ICIs) have improved the field of cancer treatment and 
become an integral part of standard therapy for various malignancies, especially for 
patients with advanced stage cancer (2–5). These drugs work by targeting and 
blocking programmed cell death protein 1 (PD-1), programmed cell death ligand 1 
(PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) that are key immune 
regulatory checkpoints (6). By targeting such immune checkpoints, ICIs blocks the 
inhibitory pathways that normally limit T cell activation, and thereby produces an 
anti-tumour immune response (6). Unfortunately, this potentiation of immune 
responses may also lead to the development of various autoimmune and 
autoinflammatory conditions known as immune-related adverse events (irAEs) 
(1,7,8). Most of these irAEs are transient, but some of the rheumatic irAEs may 
become chronic (9). One such rheumatic irAE is immune-checkpoint inhibitor-
induced inflammatory arthritis (ICI-IIA), a newly recognized condition with relatively 
unknown aetiology and pathophysiology, that poses a great challenge to oncologist 
and rheumatologists (9–13).  

1.1.1. PREVALENCE AND RISK FACTORS 

The prevalence of ICI-IIA varies greatly among studies, ranging from 1% to 7-8% of 
patients undergoing ICI therapy, with half of these cases presenting as rheumatoid 
arthritis (RA)-like inflammatory arthritis (1,9,11,14–17). However, as stated in Aboo 
et al. (2022) these number may underestimate the true incidence, because of under-
recognition and under-reporting of ICI-IIA due to the non-specific presentation, 
immature diagnostic criteria and overlapping symptoms with arthralgia and/or 
myalgia (1,9,18). The reported incidence of ICI-IIA tends to be higher in patients 
receiving PD-1 inhibitors as mono- or combination therapy (18), and the clinical 
presentation may also differ depending on type of therapy (19). In a study focusing 
on patients who developed ICI-IIA, Braaten et al. (2020) found that age, gender, 
family history of autoimmune disease and C-reactive protein (CRP) levels, did not 
increase the risk of developing persisting ICI-IIA (13). However, the duration of ICI 
treatment and combination therapy did increase the risk of persistence (13). Genetics 
may also contribute to the risk of developing ICI-IIA (20,21).  Specifically, a study 
by Cappelli et al. (2019) suggested that the frequency of a specific human leukocyte 
antigen (HLA) DRB1 allele was higher in patients who developed ICI-IIA compared 
to healthy controls (21). However, more genetic studies are indeed needed to confirm 
this association. 
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1.1.2. PATHOLOGY 

The pathogenesis of ICI-IIA remain poorly understood, but possible mechanisms have 
been proposed as to why (rheumatic) irAEs might occur (Figure 1) (9,22,23). These 
mechanisms include an increase of proinflammatory cytokines leading to heightened 
systemic inflammation, an increase in levels of pre-existing autoantibodies that 
unmasks pre-symptomatic autoimmune disease, and the binding of CTLA-4 inhibitors 
(Anti-CTLA-4 antibodies) to CTLA-4 expressed in healthy tissue that causes 
complement activation (9,22,23). Additionally, off-targets effects of T cell immunity 
caused by epitope spreading or cross reactivity between tumour antigens and synovial 
antigens may also be involved (9,22,23). A notable example of this is observed in 
melanoma patients treated with ICIs (24). Some of these patients may develop vitiligo, 
likely because the melanoma cells and healthy melanocytes express similar antigens 
(24). Generally, there is a lack of histological studies that have investigated the local 
synovial molecular and cellular mechanisms underlying ICI-IIA, with most of existing 
studies being case reports (25,26). These case reports will be presented in the 
discussion and are not elaborated further on here. 

Figure 1. Proposed mechanisms as to why rheumatoid immune-related adverse events 
occur. Reproduced with permission from Postow et al. (2018) (8), Copyright 
Massachusetts Medical Society. Created with Biorender.com. 
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1.1.3. TREATMENT 

The management of ICI-IIA is a multidisciplinary entity that should involve both 
oncologists and rheumatologists (1,12,17,27). Treatment strategies are generally 
based on the severity of ICI-IIA and may initially include Nonsteroidal anti-
inflammatory drugs (NSAIDs) or analgesics for mild ICI-IIA (12,17,27). If NSAIDs 
are insufficient, or in cases of moderate to severe ICI-IIA, oral or intraarticular 
glucocorticoids may be considered (12,17,27). In addition, disease-modifying 
antirheumatic drugs (DMARDs) may also be considered in cases of refractory ICI-
IIA that cannot be managed with NSAIDs and glucocorticoids, or when we want to 
minimize the long-term adverse effects of glucocorticoids (12,17,27). Examples of 
conventional DMARDs (csDMARDs) that can be used to manage ICI-IIA include 
Methotrexate (MTX), hydroxychloroquine and sulfasalazine (12,17,27). In cases 
where csDMARDs are ineffective or not well-tolerated, some biologic DMARDs 
(bDMARDs) may also be considered (17,26,27). Examples of these include IL-6 
receptor inhibitors (IL6Ri) such as tocilizumab, and TNF inhibitors (TNFi) such as 
infliximab (17,26–29).  

A very important aspect of treating ICI-IIA involves navigating through challenges 
arising from potential interactions between immunomodulatory therapies and ICI 
therapies (12,17,27,28). This is because immunosuppressive agents might disrupt the 
immune activation induced by ICI therapy, potentially reducing the anti-tumour 
efficacy of ICIs (12,17,27). The extent to which these interactions might affect 
treatment outcomes remains a subject of ongoing investigation (12,17,27). Back when 
Aboo et al. (2022) was published, there were no comprehensive comparative studies 
on the safety and effectiveness of DMARDs in ICI-IIA (1). However, Bass et al. 
(2023) recently explored the trade-off between rapid arthritis control and cancer 
progression risk in the treatment of ICI-IIA (30). The (retrospective) study included 
147 patients treated with TNFi, IL6Ri, or MTX (30). Results underscored that TNFi 
and IL6Ri facilitated faster ICI-IIA control, but at the expense of faster cancer 
progression (30). Conversely, MTX demonstrated slower ICI-IIA control, however, 
with lesser interference in cancer progression (30). However, there is indeed an unmet 
demand for larger prospective randomized studies on how different treatments may 
affect survival in ICI-IIA patients. Until more evidence is established to support 
clinical decision making, achieving a balance between managing ICI-IIA effectively 
and maintaining the therapeutic efficacy of ICI therapy presents a very complex 
clinical challenge (12,17,27). It is crucial to assess the potential risks and benefits of 
using immunosuppressive medications on an individual basis, considering factors like 
tumour type, cancer stage, ICI therapy and ICI-IIA severity, a task that requires 
collaboration between oncologists, rheumatologists and patients (12,17,27). 
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1.2. RHEUMATOID ARTHRITIS 

“RA is a chronic systemic autoimmune disease that predominantly affects the synovial 
joints” – Cited from Debreova et al. (2022) (31–36) (Aboo et al., unpublished – Paper 
2). The disease is marked by ongoing joint inflammation, which causes ongoing 
degradation of cartilage and bone of synovial joints, ultimately leading to significant 
functional impairment and decreased well-being (31,32). 

1.2.1. PREVALENCE AND RISK FACTORS 

RA affects approximately 0.5% of the world's population, with a slightly higher 
prevalence of approximately 1% in highly developed countries (32,37,38). RA is also 
more prevalent among women, with the female-to-male ratio being approximately 2:1 
(32,38,39). Lifestyle and environmental factors, such as heavy cigarette smoking, 
excessive weight, infections and dust exposure are thought to play a role in the onset 
of RA (32,38,40–44). Likewise, genetics are also thought to play a role in RA 
susceptibility (45). Some of the strongest associated genes to RA are primarily 
immune-related genes such as HLA-DRB1 (46), STAT4 (47), TRAF1/C5 (48), AIRE 
(49), CTLA4 (50), CD40 (51), and genes involved in citrullination such as PTPN22 
(52). The precise trigger of RA is difficult to pinpoint, but it is very likely to be a 
combination of both genetic and environmental factors (53). Tang et al. (2023), for 
instance, reported that exposure to occupational inhalable agents was associated with 
increased risk of anti-citrullinated protein antibodies (ACPA)-positive RA (54). That 
risk became even higher as the number and duration of exposure to these agents 
increased (54). However, the risk increased dramatically in patients who were 
genetically predisposed, smoked, and were exposed to inhalable agents 
simultaneously (54). 

1.2.2. PATHOLOGY 

The development of RA and the subsequent progression is thought to involve a 
complex series of interactions between immune cells, synovial fibroblasts, cytokines, 
and other molecular components (Figure 2) (31–33,55). There is a general belief that 
the process begins with citrullination of proteins, a critical process in RA pathogenesis 
that refers to a post-translational modification that transforms arginine residues in 
proteins into citrulline (31–33,55). This modification causes proteins to become self-
antigens that are perceived as foreign by the immune system, leading to the production 
of autoantibodies (31–33,55,56). The crucial step from generation of self-antigens to 
production of autoantibodies involves immune cell activation of T cells, B cells, 
dendritic cells, and plasma cells (31–33,55). Antigen loading and migration takes 
place in lymph nodes, where dendritic cells present antigens to T cells via major 
histocompatibility complex molecules (31–33,55,57). T cell activation then occurs 
through the T cell receptor, with a subsequent release of cytokines that activates B 
cells and causes autoantibody production (31–33,55). The autoantibodies can then 
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bind to the self-antigens and generate immune complexes that contribute to 
inflammation and joint damage (31–33,55). The immune complexes can also result in 
complement activation that further amplify the inflammatory response and recruit 
additional immune cells (31–33,55). Synovial fibroblasts and macrophages have also 
been long implicated in RA pathogenesis (58). They can release matrix 
metalloproteases that are extracellular matrix (ECM) degrading enzymes and secrete 
pro-inflammatory cytokines, including TNFα, IL-1 and IL-6, that can intensify joint 
inflammation, and stimulate osteoclast differentiation and activation, resulting in 
subsequent bone erosion and joint destruction (31–33,55,58–62). 

 

Figure 2. Onset and progression mechanisms of rheumatoid arthritis (32). 
Citrullination of proteins may initiate the onset of RA by creating altered proteins that 
provoke an immune response (32). Subsequent persistent inflammation and immune 
activation lead to disease progression and joint damage (32). Reproduced with 
permission from Smolen et al. (2018) (32), Springer Nature. Created with 
Biorender.com. 

The synovial lining, which encapsulates the joint space, is characterized by immune-
infiltration and  pannus formation, a dense layer of synovial tissue primarily 
containing synovial fibroblasts and macrophages, that infiltrates and erodes both 
cartilage and bone (31,32,60,63). Additionally, angiogenesis (formation of new 
blood vessels) also occurs in the synovium and promote the delivery of nutrients and 
immune cells to the affected joints (31,32,59,64–66).  
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In conclusion, the current understanding of RA pathology encompasses an extremely 
complex interplay of various cellular and molecular mechanisms, and this section 
have barely scratched the surface. However, further advancement in our 
understanding of these pathophysiological processes is of vital importance to 
development more effective treatment strategies for RA patients, such as personalized 
medicine approaches, which could significantly improve the management of this 
debilitating disease.  

1.2.3. TREATMENT OF RA 

As of today, RA not a curable disease, so primary goal of the treatment is to achieve 
remission with the aim of alleviating pain and preventing joint damage (67). 
csDMARDs, such as MTX is often used as first-line therapy, either alone or in 
combination with other csDMARDs including leflunomide, sulfasalazine (68). 
bDMARDs can also be used in patients that do not respond adequately to csDMARDs, 
or if patients do not tolerate the csDMARDs (68). These bDMARDs include TNFi 
(Adalimumab and Etanercept), IL6Ri (Tocilizumab and Sarilumab), IL-17 inhibitors 
(Secukinumab and Bimekizumab), IL-1 inhibitors (Anakinra), CTLA-4 fusion protein 
(Abatacept), and Anti-CD20 monoclonal antibody (Rituximab) (69,70). In addition, 
targeted synthetic DMARDs can also be used as an alternative to the bDMARDs (70). 
These primarily include Janus Kinase inhibitors such as Upadacitinib (70). 

The treatment of RA follows the treat-to-target approach that “encompasses several 
distinct elements: choosing a target and a method for measuring it; assessing the 
target at a pre-specified time point; a commitment to change the therapy if the target 
is not achieved; and shared decision-making.” - Cited from Ronald van Vollenhoven 
(2019) (71). Thus, treatment strategies using various combinations of the 
abovementioned DMARDs are cumulatively revised based on 1) disease severity and 
2) treatment outcomes including treatment efficacy and adverse events, with the aim 
of reaching the “target” that is remission or low disease activity (71,72). 

1.2.4. MONITORING DISEASE ACTIVITY IN RA 

Monitoring disease activity is essential for evaluating treatment response and 
adjusting the (treat-to-target) therapeutic strategies (73,74). The following sections 
will present various methods to assess disease activity, including blood biomarkers, 
composite scores, ultrasound, and magnetic resonance imaging (MRI). 

1.2.4.1 Blood biomarkers 

CRP and erythrocyte sedimentation rate (ESR) are commonly used blood biomarkers 
that reflect degree of inflammation in RA (75–77). Elevated levels of CRP and ESR 
are associated with higher disease activity and consequently more joint damage 
(76,78). “CRP is an acute-phase protein that is synthesized by the liver in response 
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to inflammation” – Cited from Liu et al. (2023) (79–81). ESR on other hand, 
“measures the settlement rate of the red blood cells in a test tube” – Cited from Passos 
et al. (2022) (82–85). A high degree of inflammation, as observed in RA (26,32), 
causes red blood cells to aggregate more, which makes them sediment faster and 
thereby increasing the ESR (82). 

Rheumatoid factor (RF) and ACPAs on the other hand, are not measures of disease 
activity but diagnostic biomarkers (86–88). “RF is an autoantibody that targets the 
Fc portion of immunoglobulin G” antibodies – Cited from Yap et al. (2018) 
(87,89,90), and ACPAs are also autoantibodies that target citrullinated proteins 
present in the synovial joints (91–93). Patients who test positive for these 
autoantibodies (i.e., seropositive RA), generally experience a more severe disease and 
increased radiographic progression compared to those patients that are seronegative 
(94–96).  Thus, although RF and ACPA are not measures of disease activity, they are 
still be put into use in the clinical decision making because they have a prognostic 
value (68). 

1.2.4.2 Disease Activity Score in 28 joints 

The Disease Activity Score in 28 joints (DAS28) is a measure that uses clinical 
parameters to assess disease activity (97). Specifically, it combines the number of 
tender joints and number of swollen joints out of 28 joints and the patient's global 
healthy (97,98). DAS28 is often used in combination with plasma CRP levels 
(DAS28CRP), but it can also be used in combination with the ESR (98,99). “A 
DAS28CRP score of less than 2.6 indicates remission, a score of 2.6 to 3.2 indicates 
low disease activity, a score of 3.2 to 5.1 indicates moderate disease activity, and a 
score greater than 5.1 indicates high disease activity” (100–103)*. The relatively 
simple nature of DAS28CRP has made it a valuable, widely implemented, and 
preferred measure of disease activity in both clinical and research settings (104). 
However, DAS28CRP is not a perfect measure of disease activity and should, if 
possible, be used in combination with other clinical assessments. Orr et al. (2018), for 
instance, found that 71% of patients in DAS28CRP-defined remission had evidence 
of synovial inflammation, and many patients with no so signs of synovial 
inflammation had a high DAS28CRP score (105). Furthermore, DAS28CRP does not 
consider other important aspects such as extra-articular manifestations, that are 
common in RA patients (106). 

1.2.4.3 Ultrasound imaging 

Ultrasound is a non-invasive imaging technique that is often utilized to detect and 
assess synovitis (i.e., synovial inflammation) (107). It does so by measuring the 
thickness of the synovial lining and degree of effusion in greyscale mode and 

 
* This sentence reflects a standardized definition/terminology/nomenclature in the field. 
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measuring active inflammation by visualising the synovial vascularity in power 
Doppler mode (107,108). One of the widely recognized standardized scoring system 
for ultrasound assessment in RA is the European League Against Rheumatism 
(EULAR) Outcome Measures in Rheumatology (OMERACT) ultrasound score (107). 
This scoring system evaluates the severity of synovitis in assessed joints by combining 
the scores of synovial hypertrophy/effusions (from 0 to 3) and the scores of power 
Doppler activity (from 0 to 3) into a semi-quantitative score of synovitis that likewise 
ranges from 0 to 3 with 0 indicating a normal joint and 3 indicating severe synovitis 
(107). Overall, the EULAR-OMERACT ultrasound score is sensitive and responsive 
to change, which has made it a valuable tool for detecting subclinical synovitis (109) 
and assessing disease activity/severity (and consequently, for monitoring treatment 
response) (108,110) . Nonetheless, ultrasound scores may be prone to intraobserver 
and interobserver variability (107,111,112). However, automated ultrasound 
solutions, like ARTHUR by ROPCA (Odense, Denmark), have been developed to 
address these limitations by standardizing the acquisition of ultrasound images 
(111,113,114). This solution uses artificial intelligence to scan the hand joints and 
capture ultrasound images automatically, thereby providing a faster and more 
standardized measure of synovitis (111,113,114). Such automated ultrasound 
solutions have significant clinical implications as they can inform clinical decision 
making more accurately (by reducing the variability associated with manual 
assessments) and more frequently (by saving time and making ultrasound more 
accessible in the routine clinical assessments) (111,113,114) 

1.2.4.4 Magnetic resonance imaging 

MRI is an advanced imaging technology that offers exceptional visualization of joint 
structures such as bone, cartilage, and connective tissue (115,116). MRI can detect 
early abnormalities that are not visible using other radiological techniques, making it 
particularly useful when other radiological techniques are inconclusive (115,117). The 
EULAR-OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging scoring 
system (RAMRIS) is a validated used scoring system to assess synovitis, bone 
erosions and bone marrow oedema based on MRI (115,118–122). More specifically, 
RAMRIS scores 1) the degree of synovitis in three wrist regions and the 
metacarpophalangeal joints from 0 to 3 with 0 being normal and 3 indicating severe 
synovitis, 2) the degree of bone erosions in the wrist joints and metacarpophalangeal 
joints from 0 to 10, with 0 indicating 0% erosion and 10 indicating 90-100% bone 
eroded, and 3) the degree of bone marrow oedema/osteitis in the same joints with 0 
indicating no oedema, and 3 indicating oedema in 67-100% of the bone 
(115,118,121,122). MRI is indeed powerful tool for assessing synovial joints in RA 
(116,117), and is even commonly used as a standard for validating the accuracy of 
ultrasound measures (123). However, it does have many major disadvantages. For 
instance, it is much more expensive and time-consuming than other imaging 
modalities, and it requires an experienced radiologist to interpret the results, which 
cumulatively makes it much less available in clinical settings (116,117,123,124). 
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Furthermore, seen from a patient perspective, MRI may be more unpleasant compared 
to ultrasound and X-ray, and may require contrast agents (116,117,123). 

1.3. SYNOVIAL TISSUE BIOPSIES 

Liquid biopsies such as plasma and synovial fluid are minimally invasive and easy to 
collect in outpatient settings and have both been extensively used to study RA 
(125,126). However, while RA is indeed a systemic disease, it primarily affects 
synovial joints (32,125,126). For the same reason, synovial tissue biopsies are highly 
relevant in RA research, and perhaps also in clinical settings where they might be used 
aid diagnosis, predict treatment responses, and disease progression (125–132).  

1.3.1. ULTRASOUND-GUIDED SYNOVIAL TISSUE BIOPSIES 

As briefly described in Paper 2, the collection and availability of synovial tissue 
biopsies have been historically challenging, and the generalizability of proteomics 
studies has been limited to late-stage disease (Aboo et al., unpublished – Paper 2). 
This is because the tissue biopsies were often collected post-mortem, following 
traumas, or during joint replacement surgery with the concurrent presence of 
osteoarthritis (OA) (Aboo et al., unpublished – Paper 2) (133–140). Although being a 
fairly old technique (141,142), only recent validation studies of the ultrasound-guided 
synovial biopsy (UGSB) technique have renewed the relevance of synovial tissue 
biopsies by addressing many of these challenges (143,144). Consequently, UGSB has 
become a promising tool for advancing our understanding of the pathological 
mechanisms in RA, but also for the management (125,126,145). As the name implies, 
UGSB uses ultrasound guidance to collect the synovial tissue, offering some major 
advantages compared to gold standard, arthroscopic guidance (142–144). For 
instance, it enables the collected of synovial tissue biopsies from smaller joints, which 
are more relevant than larger joints in an RA context (126,142,143). Furthermore, the 
procedure is minimally invasive, well-tolerated, and can be performed in outpatient 
settings (143,146,147). Thus, UGSB has now facilitated the collection of synovial 
tissue from RA patients at various disease stages (such as prior to treatment initiation 
in newly diagnosed patients) and from smaller joints (130–132,148,149). 

1.3.2. ADVANCES IN RA FACILITATED BY UGSB-DRIVEN RESEARCH. 

Dennis et al. (2014) identified four distinctive synovial phenotypes within the 
synovial tissue of RA patients: lymphoid, myeloid, low inflammatory, and fibroid 
(150). The study also found that patients with a prominent baseline myeloid gene 
signature were more responsive to TNFi therapy (150). Although this research was 
based on synovial tissue that was collected during arthroplasty or synovectomy from 
patients with more than three years disease duration, it laid the foundation for a new 
concept of synovial phenotypes (which later became known as pathotypes) 
(130,132,150). This concept of synovial pathotypes gained more attention shortly 
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after validation of the UGSB technique (143), which revolutionized the way 
researchers could access tissue samples from RA patients at different disease stages, 
thus expanding the extent of possible studies such as Humby et al. (2019) and Lewis 
et al. (2019) (130,132). Building on these advancements, Humby et al. (2019), 
identified the presence of distinct synovial pathotypes in early RA patients that were 
treatment naïve (132). Specifically, by employing histology in combination with 
transcriptomics, the study identified three distinct synovial pathotypes: a pauci-
immune fibroid, a diffuse-myeloid and a lympho-myeloid pathotype (132). They also 
found positive associations between the expression of myeloid and lymphoid 
pathotype-associated gene signatures and 1) the disease activity, 2) levels of acute 
phase reactants and 3) and the response to csDMARDs therapy (132). Additionally, 
they found that a higher expression of lymphoid-associated gene signatures was 
associated with seropositivity and a higher risk of bone erosion at 1-year follow-up, 
and vice versa that patients with a pauci-immune fibroid phenotype had less risk of 
bone erosion at 1-year follow-up (132). Similarly, Lewis et al. (2019) identified 
distinct transcriptional signatures for each of the RA pathotypes (130). They found 
positive associations between myeloid-associated gene signatures and clinical 
response to initial drug treatment (~88% of patients received MTX alone or in 
combination with hydroxychloroquine and/or sulfasalazine) (130). Additionally, high 
expression of plasma cell gene signatures, as observed in the lymphoid pathotype, was 
associated with more bone erosion at 1 year follow-up (130). Humby et al. (2021) 
then demonstrated, in the R4RA clinical trial (a UGSB-driven, multicentre 
randomized trial), that transcriptomics-based stratification of synovial tissue could 
predict clinical responses better than the conventional histopathological classification 
(127). Specifically, they observed that patients who did not respond well to or tolerate 
csDMARDs or at least one bDMARDs (excluding tocilizumab and rituximab), had a 
superior treatment response to Tocilizumab (an IL6Ri) compared to Rituximab (an 
anti-CD20 monoclonal antibody), when they had a low or absent B cell gene 
expression signature (127). Utilizing repository single-cell transcriptomics data, 
Micheroli et al. (2022) then studied the association between subsets of synovial 
fibroblasts and synovial pathotypes in early untreated RA patients (149). They 
identified four distinct subsets of synovial fibroblasts, and observed that these four 
subsets were differentially present in the synovial pathotypes (149). Additionally, they 
found that different synovial fibroblast subsets correlated with measures of disease 
activity depending on the pathotype (149). 
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1.4. PROTEOMICS - EVOLUTION AND APPLICATION IN 
BIOLOGICAL SCIENCES 

1.4.1. WHAT ARE PROTEINS? 

Proteins can be seen as the engine that runs the complex machinery of life, and the 
functional machinery itself (151). These complex macromolecules are made of chains 
of amino acids, that are determined by the genes in our DNA (152,153). These chains 
of amino acids follow a defined sequence that determines their spatial conformation, 
which in turn provides each protein with a unique set of functions (154),  and changes 
in this amino acid sequence can have varying degrees of impact on the protein's 
function (155). Similarly, changing a letter in a word can result in a word conveying 
its original meaning (gray  grey) or a completely different meaning (gray  pray). 
The functions of proteins are numerous and very important (151,155,156). In fact, 
they are essentially involved in every aspect of biological activity (157). They make 
up the core components of cellular structures, shape the cells, and provide mechanical 
support (156,157). But their functions go far beyond structural roles: They also carry 
out and coordinate the numerous biological processes that sustain life, serving as the 
enzymes that catalyse chemical reactions and the signalling molecules that regulate 
cellular responses (156,157). Therefore, it is no exaggeration to state that 
understanding proteins and their interactions is crucial for understanding the 
fundamental mechanisms of diseases (156,158–160). 

However, “proteomics is not an island, entire of itself.” – Cited from Zhang et al. 
(2019), which means: proteins are a part of a larger whole (161). Therefore, it is 
essential to understand the nuanced relationship between genes, transcripts, proteins, 
and other biological layers to understand the full picture (161–163). The genetic code 
carries important information about susceptibility (164), and due to its fairly static 
nature, it can be an exceptionally early predictor of diseases including RA (45–52). 
Furthermore, it can inform downstream analyses by generating new hypotheses 
(165,166). The first step towards functional manifestation of this genetic information 
occurs when genes are transcribed into transcripts (152,153,167,168). These 
transcripts very are dynamic in nature as their expression changes in response to 
cellular needs and both endogenous and exogenous stimuli (168,169). Yet, mRNA 
expression and protein abundance do not have a straightforward linear relationship, 
and one cannot uncritically employ transcript levels as a surrogate for proteins 
abundance (170–172). This is the result of very complex post-transcriptional and post-
translational mechanisms that control protein synthesis and stability of proteins, 
ultimately affecting the final abundance of proteins, but also their function and 
functionality (173–177). Proteins may also undergo degradation, accumulation, and 
transportation/relocation, which can also affect their abundance and function (178–
180). Thus, proteins are extremely dynamic molecules that evolve and adapt 
constantly in response to various factors (154,181). This dynamic nature of proteins 
makes them a very powerful tool for assessing the immediate (or “the actual”) state 



MOLECULAR PROFILING OF INFLAMMATORY ARTHRITIS 

30 

of biological systems and (dys)functions, while simultaneously capturing the effects 
of lifestyle choices, environmental exposures, genetics, epigenetic modifications, 
post-transcriptional, and post-translational regulation (172,182–185). Not to overlook 
the metabolites, that are even more powerful than proteins when it comes to assessing 
the actual phenotype (186,187). A fascinating example of this, that is commonly used 
by researchers in the proteomics field, can be found in the spoken metaphor involving 
the evolution of butterflies (Figure 3): ”The genetic sequence is largely the same 
regardless of whether the organism exists as a larva or an adult butterfly. The 
transcripts undergo extensive changes over time. Thus, the transcripts, although not 
precisely reflecting the immediate state of the organism, can shed light on the 
regulatory mechanisms and give hints on the potential state of the organism. 
However, one cannot be sure if the transcripts have been translated into actual 
proteins, or if the proteins have undergone subsequent changes, and this is important, 
because proteins are eventually the functional machinery and structural constituents 
through which genes and transcripts are expressed. Thus, assessment of the proteins 
(and metabolites) is essential to capture the immediate state of an organism, although 
one needs to inspect the organism visually to confirm the phenotype (i.e., the “truth”), 
which is a larva or an adult butterfly.” In conclusion, the genetic sequence and 
transcripts can answer fundamental biological questions such as How did the larva 
become a butterfly? And why is it orange? and the proteins and metabolites can 
provide a reflection of the immediate biological state and answer question such as Is 
the organism a larva or a butterfly? And is the butterfly orange or brown? 
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Figure 3. Temporal dynamics of genes, transcripts, proteins, and metabolites during 
the evolution of butterflies. The genetic code remains (fairly) constant, but the 
transcripts, proteins and metabolites are increasingly more temporal dynamic. Created 
with Biorender.com. 

1.4.2. LIQUID CHROMATOGRAPHY MASS-SPECTROMETRY BASED 
PROTEOMICS. 

The field of proteomics, that “is the large-scale study of proteins” – Cited from 
Wikipedia (188), has made it possible to measure (almost) the entire set of proteins 
(i.e., proteome) within an organ, or even in single cells (189–193). One of the key 
technologies in proteomics is Liquid Chromatography (LC)-Mass Spectrometry (MS) 
(LC-MS)-based proteomics, that constitutes an advanced and robust method for 
protein identification and quantification (190,194). The working principle of LC-MS-
based proteomics is to separate complex protein/peptide mixtures via liquid 
chromatography, ionize the proteins/peptides, and subsequently identify and quantify 
the proteins/peptides through MS (190,194,195). Based on this principle, it is possible 
to identify and quantify proteins in complex mixtures through two different 
approaches known as top-down proteomics or bottom-up proteomics (190,196). In 
top-down proteomics, intact proteins are analysed directly on the LC-MS without 
prior enzymatical digestion (197–199). This approach can be used to map the full 
amino acid sequence of proteins and subsequently study proteoforms, a term that 
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“designate all of the different molecular forms in which the protein product of a single 
gene can be found, including changes due to genetic variations, alternatively spliced 
RNA transcripts and post-translational modifications” – Cited from Smith et al. 
(2013) (197–199). In bottom-up proteomics, the proteins are enzymatically digested 
into smaller peptides and then analysed on the LC-MS (190,194,195). This approach 
can be used to identify and quantify many thousands of proteins simultaneously in 
very complex mixtures, enabling a comprehensive protein profiling of biological 
samples (189,190,194,195,200,201). In Paper 2, we employed a variant of bottom-up 
proteomics known as shotgun/discovery/untargeted proteomics with label-free 
quantification (LFQ), which is covered in the following sections (Figure 4) (202). 

 

Figure 4. General workflow of bottom-up mass spectrometry-based proteomics. 
Proteins are digested and analysed using liquid chromatography mass spectrometry 
followed by identification and quantification of the proteins using software (190,194). 

1.4.2.1 Sample preparation 

Sample preparation is important to ensure a reproducible and reliable identification 
and quantification in LC-MS-based bottom-up proteomics (203–205). The general 
principle of the sample preparation involves “protein extraction, solubilization, 
denaturation, enzymatic digestion into peptides followed by their purification” – 
Cited from Supasri et al. (2021), to remove remaining cellular debris, lipids, and 
contaminants such as detergents (204–208). One of the earliest sample preparation 
methods was in-gel digestion, that involves one- and two-dimensional gel 
electrophoresis (2-DE) to separate the proteins before digestion (209–211). This 
method is effective at solubilizing and digesting proteins (212). However, it is very 
time consuming, and requires a lot of hands-on work (205). In-solution digestion 
provides a solution to overcome these limitations by reducing time, costs, and hand-
on workload substantially, and thereby increasing the scalability of proteomics sample 
preparation (205,212). In addition, it is particularly useful for very low sample 
quantities, as seen in the field of single-cell proteomics today (213). However, In-
solution digestion has a major limitation, that is poor solubilization and incomplete 
digestion of proteins, resulting in fewer identified proteins and poor quantitative 
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reproducibility (212,214). The filter-based sample preparation techniques (as used in 
Paper 2) were then developed to overcome these limitations by combining the 
advantages of in-gel digestion (efficient solubilization and digestion of proteins), and 
the advantages of in-solution digestion (higher throughput and scalability) (215–218). 
The principle of these filter-based techniques is to utilize strong detergents to 
solubilize proteins, which yields a more efficient digestion (215,216,218). This is 
possible because the filter can retain the proteins and peptides while washing out the 
LC-MS-incompatible detergents prior to analysis (214,219,220). This ability to retain 
proteins/peptides during the sample preparation also minimizes sample loss 
(205,215,217). More recently, sample preparation techniques based on magnetic 
beads have emerged (221–223). These methods utilize magnetic beads to retain the 
proteins, which enables the use of strong detergents to solubilize proteins (and 
improve digestion efficiency), and subsequently washing out the detergents (221–
223). As such, the magnetic beads-based sample preparation techniques offer largely 
the same advantages as the filter-based sample preparation techniques (217,221–223). 
In addition, it does not require lengthy centrifugation steps, and the manual 
transferring associated hereto (217,221–224). This results in a very high throughput 
and the ability to be fully automized, which is essential for the scalability and 
reproducibility, and the subsequent advancement of LC-MS-based proteomics to 
clinical settings (224,225). 

1.4.2.2 Data acquisition modes 

The clean peptides are then separated by LC, ionized by the ionization source, and 
subsequently introduced to the MS (190,194,226). The MS then measures the mass-
to-charge ratio (m/z) of the precursor ions (MS1), that are intact peptides 
(190,201,227). The precursor ions are then fragmented, typically using collision-
induced dissociation, that accelerates the precursor ions and collides them with a gas, 
subsequently generating multiple fragment ions from each precursor ion 
(190,201,227). The MS then measures the m/z of these fragment ions (MS2), adding 
another dimension of information that can be used for identification and quantification 
of the proteins (190,201,227). Depending on what data acquisition mode is used to 
operate the MS, the process for selecting precursor ions for fragmentation can vary 
(190,201,227). The two primary data acquisition modes in untargeted LC-MS-based 
proteomics, are called Data Dependent Acquisition (DDA) and Data Independent 
Acquisition (DIA) (190,201,227). DDA preferentially selects the most 
abundant/intense precursor ions for fragmentation (190,201,227). This is a very 
simple approach, but it has some major limitations. For instance, less abundant 
peptides may not be fragmented as often if there are other very high abundant peptides 
in the sample (190,201,227). This variable selection of ions results in a low sensitivity 
for low abundant peptides, and large amounts of missing data across different runs 
(190,201,227–229). DIA, on the other hand, does not select the most abundant/intense 
precursor ions for fragmentation (190,228–230). Instead, it sequentially fragments all 
ions within a specified m/z mass range (190,228–230). This more unbiased approach 
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offers a more comprehensive proteome coverage and reduces amount of missing data 
(190,228–230). It does not depend on random fragmentation of precursor ions, and 
theoretically fragments the entire sample, including low abundant ions (190,228–
230). Consequently, DIA has improved reproducibility across different runs and 
makes the comparison of different samples more reliable (229,231–233). 

Recent advances in MS, that is the incorporation of Trapped Ion Mobility 
Spectrometry (TIMS) into Quadrupole Time-of-Flight mass spectrometers, have 
further leveraged the capabilities of DIA (234–239). TIMS can separate ions based on 
their collisional cross section, a measure that is associated to their size and shape, but 
also accumulate and retain ions for a specific duration before releasing them for 
further analysis (235,236,239). The Parallel Accumulation-Serial Fragmentation 
(PASEF) method is based on this concept (235,236,239). Specifically, it accumulates 
ions based on their collisional cross section and releases them sequentially in 
synchronization with the positioning of the quadrupole (235,236,239). This has given 
rise to DIA-PASEF, a data acquisition mode that integrates the capabilities of DIA 
with the rapid sequencing and additional separation dimension of PASEF (that is 
collisional cross section), and thereby enhances the complexity of DIA data and 
results in a more comprehensive and efficient method for analysing complex protein 
mixtures (236,239).  

1.4.2.3 Data analysis 

After the raw LC-MS data has been acquired, the data is preprocessed in several steps 
prior to protein identification and quantification (226,240–242). The preprocessing 
steps include filtering out background noise, peak detection, deisotoping, and charge 
state deconvolution (226,240–242). Retention time alignment between runs is also 
performed to ensure that the peaks from identical peptides have the same retention 
time in all samples (226,240–244). This is because retention time of peptides (i.e., the 
time at which a specific peptide elute from the LC) may shift over the course of an 
experiment (226,240–244). 

The preprocessing steps are followed by peptide identification (194,195,226,240–
242). This typically involves matching the peptides up against a database that contains 
the amino acid sequences of thousands of proteins (195,201,240,242). The principle 
of this process is to computationally “digest” the database proteins using the same 
enzyme that was used to digest the samples during sample preparation 
(195,201,240,242). This creates a theoretical list of peptides for each protein in the 
database, and a list of their theoretical MS2 spectra that is generated by considering 
their most likely fragmentation patterns (195,201,240,242). These theoretical peptides 
and their MS2 spectra should resemble the peptides in the sample (195,201,240,242). 
This is because certain proteases will digest proteins at specific sites and not randomly 
(195,201,240,242). For instance, trypsin will specifically digest the proteins at the 
carboxyl side of lysine or arginine, unless these are followed by a proline (245,246). 
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The computationally generated theoretical spectra are then compared with the 
acquired experimental MS2 spectra, and potential matches are scored based on how 
well m/z peak values and peak intensities aligns (247). Potential matches are then 
statically validated by calculating the False Discovery Rate (FDR), where the cut-off 
is typically set at 1% FDR (201,226,247,248). This is done by generating false peptide 
sequences (i.e., a decoy database) from the same database that used to generate the 
theoretical peptides and their MS2 spectra (i.e., the target database) 
(201,226,247,248). The proportion of decoy hits above a set cut-off, compared to the 
total number of hits, provides an estimate of the FDR (201,226,247,248). 

Once the peptides within the experimental sample have been identified, protein 
inference is carried out (201,240). The principle is to map the identified peptides back 
to the protein they originated from (201,240). Sometimes the peptides can map to 
multiple proteins because the sequences of these proteins are very similar, for instance 
if there are several proteoforms (201,240). In such case, proteins are grouped together 
in protein groups which simplifies the data (201,240). The more peptides that map to 
a protein, the more confident the protein identification (201,240). Once the proteins 
in the samples have been identified, quantification is carried out (201,240). In LFQ, 
this can be done using spectral counting and ion intensity-based quantification 
(226,249–252). Spectral counting involves counting the number of MS2 spectra to 
estimate relative protein abundancies, with the assumption that more abundant 
proteins results in more MS2 spectra (226,249–251). The intensity-based, on the other 
hand, measures the MS1 peak intensity (height of the peak, or by integrating the peak 
area) of each peptide, and then summarizes (all or some of) the peptide ion intensities 
to estimate relative protein abundancies (226,249–251). Finally, normalization is 
carried out to account for technical variability across different LC-MS runs, using, for 
instance, the well-established MaxLFQ algorithm (253). 

The outlined process of using database searching cannot be directly applied to DIA 
data, because each MS2 spectra in DIA data originates from several precursor ions 
(254–257). Traditionally, this has necessitated the use of spectral libraries that are 
generated in a preceding DDA experiment where project samples are pooled and 
fractionated, and then analysed (254–257). “The experimental MS2 spectra are then 
compared with those in the spectral library to identify the proteins in the sample”*, 
but the process of generating spectral libraries is labour intensive, costly and may be 
done repeatedly for each project (254–257). However, (spectral) library-free 
searching tools have recently been developed to bypass the need for spectral libraries, 
subsequently enabling peptide/protein identification directly from DIA data using 
database searching (255,258–261). The principle of directDIA™ in Spectronaut® 
(Biognosys, Schlieren, CH) that was used in Paper 2 enables this by deconstructing 
the MS2 spectra (that originates from several precursor ions) into a pseudo MS2 
spectra that resembles normal MS2 spectra (260,261). This is done computationally 
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by determining which fragment ions came from the same precursor ion based on the 
chromatographic coelution of precursor and fragment ions (260,261). Following this 
step, the DIA data can be analysed using database searching, comparable to the 
method used in traditional DDA workflows (260,261). This have significantly 
streamlined the process of analysing complex mixtures of proteins in DIA mode, and 
subsequently generate comprehensive datasets that contain the identity and relative 
quantity of thousands of proteins (255,260,261). 

1.5. STATISTICS IN PROTEOMICS AND MULTI-OMICS DATA 
INTEGRATION 

The field of proteomics has made large-scale identification and quantification of 
proteins more accessible than ever, providing novel opportunities for discovering 
biomarkers and investigating disease mechanisms. However, navigating the highly 
complex and highly dimensional proteomics data to extract relevant information that 
can answer the research question being addressed, requires appropriate statistics and 
statistical finesse. Such statistical methods are described in the following sections, that 
were inspired my research stay at Toulouse Mathematics Institute, during which I was 
mentored by Prof. Sébastien Déjean and all the mathematicians and statisticians I 
interacted with daily. 

1.5.1. UNIVARIATE METHODS 

Univariate statistics are methods that examine one variable separately (262), which 
can provide a fundamental understanding of each protein’s individual behaviour 
(263). They do not consider the relationships between proteins but serve as the key 
initial steps in the data analysis, laying the foundation for more complex downstream 
multivariate analyses (263). 

1.5.1.1 Linear mixed models 

The complexities of study designs, such as repeated measures experiments with multi-
group comparisons as seen in Paper 2, require statistical methods that can take into 
consideration several factors to understand how these affect the complex behaviours 
of proteins (264). One such method is linear mixed model (LMM), a statistical method 
that addresses these complexities by incorporating both fixed and random effects 
(264–267). Fixed effects are known experimental factors, such as experimental groups 
and type of interventions, that are intentionally controlled because the aim is to study 
how these factors affect the outcome (264). Random effects, on the other hand, are 
factors that are not of primary interest to the research question (264–267). Instead, 
they are included in the statistical model to account for the variability they introduce 
(264–267). A hypothetical example could be a multi-site clinical trial where the 
primary research aim is to study if two different treatments affect CRP differently 
over time. In this example, the fixed effects would be the treatment (MTX vs 
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Etanercept) and time (baseline versus follow-up). If we then assume that the response 
to the two treatments varies depending on the clinical trial sites, then “sites” can be 
included as a random effect. The LMM will then account for the between-subjects 
variability that “sites” introduce and ensure less biased estimates of the fixed effects. 

LMMs are also very useful in longitudinal studies where data are repeatedly collected 
from the same subjects over time (264–267). This adds another layer of complexity 
because the repeated measurements will be dependent of each other (264–267). 
Building on the previous example, if CRP was collected at baseline and follow-up 
from the same patients (i.e., repeated measures), then baseline and follow-up CRP 
abundance would likely be related to each other. For instance, a patient with high CRP 
at baseline may have a high score at follow-up, or perhaps a larger decrease in CRP 
over time. The LMM can account for such within-patient correlation by including 
“patient” as a random effect. By doing so, the LMM can simultaneously account for 
between-patients variability such as patients having different baseline CRP scores and 
different response to treatments. 

Overall, the LMMs are very versatile statistical tools that can model the effects of 
several factors on an outcome (264–267). This is particularly relevant when it is 
necessary to account for biological variability and repeated measures or handle 
unbalanced designs and missing data (264). The ability to address these challenges 
makes LLM a powerful tool for proteomics statistical analysis, where it can facilitate 
the identification of proteins whose abundance change in response to different 
conditions and various factors (268–270). 

1.5.1.2 Post-hoc analysis and visualization 

Once a LMM has been performed, and a significant effect (for instance, of group) has 
been identified, the LMM suggests there is a difference between group (267,271). 
However, it does not tell which groups are significantly different (271). To identify 
these differences, pairwise comparisons must be performed (271). T-tests are widely 
used for this purpose in a proteomics context (272). It essentially determines whether 
the mean abundance of a given protein is significantly different between two groups 
(272). Results can then be presented with data visualizations such as bar plots, box 
plots or violin plots to show the distribution of data (273). However, creating 
individual plots for each protein in Paper 2 would be impractical due to the high 
dimensionality of proteomics data. Volcano plots can overcome this challenge by 
summarizing the results of multiple t-tests (274–276). They achieve this by plotting 
the negative log10 p-values (indicating statistical significance) against the log2 fold 
change (indicating the difference between two groups) (274–276). 

However, while volcano plots can visualize thousands of t-test results, performing 
thousands of pairwise comparisons will increase the risk of Type I errors (false 
positives) substantially (277). This is especially true when dealing with high-
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dimensional proteomics data where thousands of pairwise comparisons are often 
made simultaneously (277,278). Therefore, it is critical to adjust the p-values for 
multiple comparisons and control the number of Type I errors (277,278). The 
Benjamini-Hochberg procedure is useful for this purpose in proteomics statistical 
analysis (277–280). This method, unlike the conservative Bonferroni method, 
minimizes the risk of Type I error without increasing the risk of Type II errors to the 
same extend (i.e., false negatives) (281,282). This is achieved by controlling the FDR, 
that is the expected proportion of wrongly identified significant results (280,283). The 
Benjamini-Hochberg procedure works by ranking p-values from the multiple tests 
from smallest to largest (280,281). “A critical value is then calculated by dividing the 
rank of each p-value with the number of tests and multiplying this with the chosen 
FDR” (277,281,282) *. This critical value is then compared with each p-value, and p-
values that fall below the critical value are considered to be significant (277,281,282). 
Controlling the FDR has proven to be an efficient way to limit the number of false 
discoveries and ensure more reliable results when analysing high-dimensional 
proteomics data (278,279,283). However, adjusting the p-values threshold, regardless 
of the method, always comes at a risk of increasing Type II errors (false negatives) 
(278,279). This may not be appropriate in some cases where true proteomic 
differences are so small that they are regarded as being non-significant following FDR 
correction (278,279). Thus, and this is my personal view, when applying FDR 
controlling procedures, it is essential to employ critical evaluation and make informed 
decision-making by considering findings in a biological context-specific manner, 
rather than accepting the statistical output without further examination. A hypothetical 
example could be a plasma proteomics study where 10 acute phase proteins are 
significantly upregulated in an inflammatory condition, but this significance 
disappears following FDR correction. However, from a biological point of view, it 
seems very plausible that 10 acute phase proteins would be upregulated as the results 
of an underlying inflammatory condition, and especially if these proteins are known 
to interact with each other. Thus, instead of ignoring the initial findings due to a 
stringent FDR correction, one might still consider these results to be significant based 
on their relevancy and the biological plausibility. Likewise, significant findings 
should not always be regarded as relevant just because they passed stringent statistical 
conditions. For example, if a study has investigated the proteomic differences between 
RA and OA, and it turns out a gender-specific protein is significantly upregulated in 
the RA group, this difference could indeed be the result of RA, but it may also be 
related to other factors than the disease itself. Such factors could be an 
overrepresentation of females in the RA group (if the groups were unmatched) or 
perhaps an incorrectly identified protein (if the groups were matched). Thus, and this 
is also my personal view, while statistical tools like FDR correction are important to 
control the risk of Type I errors, they should not be a standalone substitute for 
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scientific intuition. Interpretation should always be a balance between statistical 
stringency and common sense that is informed by context-specific biological insights.  

1.5.2. MULTIVARIATE METHODS 

Unlike univariate statistics, that examine one variable separately (262), multivariate 
methods consider multiple variables simultaneously, and has the potential to unravel 
complex relationship between variables that univariate statistics might overlook 
(263,284–286). They provide a holistic view into biological systems by identifying 
and summarizing the complexities and dynamics within large datasets (263,284–286). 
Multivariate methods are consequently particularly useful when analysing high-
dimensional omics data (including proteomics), where they can facilitate 
interpretation by reducing dimensionality, identifying true signals among noise, and 
visualize large amounts of data (263,284–286). Multivariate methods can also be used 
combine proteomics data with other omics layers and/or clinical data (263,284–286). 
This field, known as data integration or multi-omics, can be used to understand the 
relationships between multiple datasets, and subsequently unravel coupled molecular 
and cellular mechanisms underlying diseases and clinical presentations (263,284–
287). 

1.5.2.1 Principal component analysis 

Principal Component Analysis (PCA) is a dimension reduction method that reduces 
high dimensional data by retaining only the most relevant information (288–292). It 
is particularly useful for analysing high-dimensional data like proteomics, where it 
can facilitate visualization and interpretation of thousands of proteins simultaneously 
(263). Proteomics data are often characterized by many (redundant) strongly 
covarying variables (293,294). PCA works by identifying these covarying proteins 
and combines them “into a new set of variables called principal components, which 
are linear combinations of the original variables” - Cited from Symoniuk et al. (2023) 
(288–292,295). A principal component is constructed for each variable in the dataset, 
with each succeeding component capturing less of the remaining variability (288–
292). “For instance, the first principal component captures the highest proportion of 
variability in the data, and the second principal component captures the highest 
proportion of the remaining variability” (288–292)*. Dimension reduction is then 
achieved by focussing on the principal components that captures most of the 
variability in the data, and ignoring the succeeding principal components that contain 
less information (288–292). Most often, in a biological context, only the first two-
three principal components are retained and used for visualization because the aim is 
to explore the major sources of variability in the data (296). Subsequent visualization 
is achieved using scoreplots and loading plots (263,284). The scoreplots project each 
observation (such as patient) based on their scores on component one and component 
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two (284). This provides an overview of the data and trends herein such as clusters of 
patients and outliers (263,284). The PCA is an unsupervised model, and therefore it 
does not take any response variable (i.e., group membership of observations) into 
consideration (263,284). However, if such groupings exist and they give rise to large 
variability in the data, they could still be detected by the PCA (263,284). For example, 
if the major sources of variability in a proteomics dataset arises from proteomic 
differences between RA and OA patients, then the patients will cluster naturally 
according to their disease group on the first component. The loadings on component 
one (i.e., the contribution of each protein on the first component), can then be 
visualized and examined using loading plots to identify what proteins are responsible 
for discrimination of RA and OA samples (263,284). The PCA can also detect 
potential bias (such differences in sample collection) or confounders (such as disease 
duration or medication use) if these give rise to large variability in the proteomics 
dataset, and thereby highlight the need for addressing these limitations before 
proceeding with downstream analysis (263). Thus, PCA is indeed a powerful tool for 
exploring high-dimensional data and trends herein and might reveal patterns in the 
data associated with various factors/conditions (263). 

1.5.2.2 Partial least squares analysis 

Partial Least Squares (PLS) (297–299) analysis is another useful unsupervised 
multivariate method for proteomics data analysis (263,284,300). PLS reduces 
dimensionality of the data by constructing a new set of variables/linear combinations 
(components) (286,298,299,301,302). However, unlike PCA where the linear 
combinations (principal components) maximize the variability of data, the PLS 
constructs linear combinations that maximizes covariance between two datasets of 
continuous variables that were collected from the same subjects (predictor variables 
and response variables) (286,301,302). By doing so, PLS summarizes the variability 
of each dataset while simultaneously capturing their shared variance (286,301,302). 
This can be used to study the relationship between two datasets (263,286,300–302). 
For instance, proteomics data can be integrated with clinical data to identify predictors 
of treatment response or measures of disease activity (as in Paper 3), or proteomics 
data can be integrated with other types of omics data to identify coupled 
responses/covarying variables across different biological layers (263,284,300). 

1.5.2.3 Partial least squares for discriminant analysis 

Partial Least Squares Discriminant Analysis (PLS-DA) is an adaption of PLS that can 
be used for classification of categorical variables based on high-dimensional data 
(284,302–304). The principle of PLS-DA is largely the same as that of PLS (284,302–
304). However, instead of maximizing the covariance between two datasets of 
continuous variables, the PLS-DA reduces the dimensions of a continuous dataset 
(predictor variables) by creating linear combinations that maximize its covariance 
with a dummy block matrix of the categorical response variable (284,302–304). Thus, 
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PLS-DA can be used to identify (linear combinations of) variables from a high-
dimensional dataset that characterize or differentiate between different categorical 
groups (284,302–304). This is particularly relevant in a proteomics context, where it 
can facilitate identification of proteins that can discriminate between conditions such 
as responders versus non-responders, or diseased versus healthy. However, the PLS-
DA, like any other supervised models, shall be used with caution because applying 
them to any high-dimensional omics dataset result in noisy and misleading results 
(305).  

1.5.2.4 Multi-block partial least squares discriminant analysis - Data 
Integration Analysis for Biomarker discovery using Latent cOmponents 

Multiblock PLS-DA, widely known as Data Integration Analysis for Biomarker 
discovery using Latent cOmponents (DIABLO), is an extension of the PLS-DA, that 
allows prediction of categorical classes based on multiple datasets (blocks) of 
continuous predictor variables (284,306). This stands in contrast to the basic PLS-DA 
model, that can only handle one dataset at a time, and the basic PLS model, that cannot 
handle more than two datasets at a time or perform prediction of categorical classes 
(284,306). DIABLO works by creating linear combinations of each block that 1) 
maximizes its covariance with the other blocks, and 2) maximize its covariance with 
a dummy block matrix of the categorical response variable (284,306). Thus, it can be 
used to identify related variables across several high-dimensional datasets that 
simultaneously characterize and differentiate between different categorical groups 
(284,306). This has a range of applications, that are particularly relevant when 
analysing high-dimensional omics data (307–311). For example, DIABLO can be 
used to identify “minimalistic” biomarker signatures that contain a few proteins 
(284,306). These small biomarker signatures could pave the way for more 
personalized treatments by facilitating development of multiplex arrays, that are more 
feasible to implement in clinical settings (312,313). DIABLO can also be used in a 
systems biology context to identify large biomarker signatures containing hundreds 
of proteins along with other variables (284,306). This broader systems biology 
approach can provide a comprehensive and holistic insight into the molecular 
characteristics underlying various biological and clinical conditions, and can generate 
data for subsequent functional enrichment analyses, facilitating investigations into 
underlying dysregulated biological pathways and/or protein-protein interactions 
(263,284,306). 
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Figure 5. Overview of multivariate methods described in this chapter, and what they 
can be used for. These methods are available in the MixOmics R package (301). 
Principal component analysis (PCA) handles one omics dataset at a time and can, for 
example, answer if synovial tissue proteomes from rheumatoid arthritis (RA) patients 
and healthy controls cluster together without considering group affiliation of each 
patient. Partial least squares (PLS) can be used to integrate omics data with other 
omics data or clinical data and can, for example, answer if synovial tissue proteins 
covary with measures of disease activity, as demonstrated in Paper 3 (Unpublished 
results). PLS for discriminant analysis (PLS-DA) handles one omics dataset at a time 
together with a categorical response variable and can, for example, help identification 
of synovial tissue proteins that discriminate between RA and healthy controls in a 
supervised manner by considering group affiliation of each patient. Data Integration 
Analysis for Biomarker discovery using Latent cOmponents (DIABLO) can handle 
multiple omics datasets together with a categorical response variable. This method 
can, for example, facilitate identification of covarying synovial proteins and plasma 
proteins that can discriminate between RA patients and healthy controls. Reference: 
(286,301). 
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1.6. FUNCTIONAL ENRICHMENT ANALYSIS – TRANSLATING 
GENE LISTS INTO MEANINGFUL BIOLOGY. 

Once the statistical analyses have identified multiple proteins of interest, these lists of 
proteins must be translated into meaningful biology. Inferring biological relevance of 
a few proteins may be “manually” feasible by reviewing the literature. However, 
inferring biological relevance of hundreds or thousands of proteins is complicated and 
practically unfeasible without computational tools. Functional enrichment analysis is 
one such tool that can translate long lists of proteins into interpretable biology 
(314,315). One of the methods by which functional enrichment analysis achieves this 
is over-representation analysis (316–319). This method tests whether a functional 
term is overrepresented by comparing a test set of proteins (for instance differentially 
abundant proteins) with a reference set of proteins (316–319). By analysing the 
overlap between the test set of proteins and functional terms obtained from databases 
(i.e., gene lists associated with specific biological processes or functions), it is 
possible to identify functional terms that are statistically overrepresented (i.e., more 
represented in the test set of proteins than one can expect by random chance) 
(314,316–320). This can be done using Fisher’s exact test, that calculates a p-value 
indicating whether the overrepresentation is statistically significant (317,319). 

1.6.1. DATABASES 

There are several databases that contain information about gene and protein functions, 
and these are prerequisites for any functional enrichment analysis. Among these 
databases, the Gene Ontology Resource contains information about gene functions, 
including associated biological processes, cellular components, and molecular 
functions (321–323). The Kyoto Encyclopedia of Genes and Genomes and Reactome 
databases, on the other hand, contain information about genes and their associated 
biological pathways, interactions networks, molecular reactions, etc (324–328). 
Additionally, there are other expert-curated resources that contain information about 
genes and their associated canonical pathways (329,330). These canonical pathways 
represent biological pathways that have been well-studied and comprehensively 
characterized (329,330).  

1.6.2. INTEGRATING MULTIPLE DATABASES 

Using one database to infer biology from a list of proteins can indeed provide valuable 
information. However, information from multiple databases can also be integrated to 
increase the depth and width of the functional enrichment analysis, thereby providing 
a more holistic and comprehensive view into biology (331). Metascape is one such 
tool that can aggregate and summarize information from several databases (331). 
Specifically, is can cluster functionally related terms based on their similarity, that is 
defined by the overlap between their gene lists (331). Once the overrepresented terms 
have been clustered together, each cluster will be assigned a representative cluster 
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label, which is typically the most significantly enriched functional term of the cluster 
(331). This allows for grouping of vast amounts of redundant data into interpretable 
information, thereby facilitating identification of major functional themes (331). 
Metascape can also create network representations of the functional enrichment 
analysis, using nodes to represent an overrepresented functional term and edges to 
represent overlap between their gene lists (331). These network representations can 
be used visualize the complex relationships between and within functional clusters 
and help us understand the relationships of various biological pathways (331). These 
integrative approaches overall enhance the utility of functional enrichment analysis, 
providing a more comprehensive and holistic view into biology that otherwise may 
be missed (331). 

1.7. SYNOVIAL TISSUE PROTEOMICS IN RHEUMATOID 
ARTHRITIS  

Proteomics analysis of synovial tissue has provided valuable insight into the 
molecular landscape of RA. Some of the earliest investigations were by Tilleman et 
al. (2005) that utilized 2-DE to separate cytosolic proteins from synovial tissue of RA 
and OA patients (134). These proteins were then identified using matrix-assisted laser 
desorption/ionization (MALDI)-MS and LC-MS (134). This novel approach at the 
time identified S100A8 to be differentially abundant between RA and OA (134). 
Subsequent studies by Chang et al. (2009), compared synovial tissue of RA, OA, and 
Ankylosing Spondylitis (AS) (136). They separated proteins using 2-DE to find 
protein spots that were more intense in RA (136). These protein spots were then 
analysed using MALDI-MS to identify the proteins within, and western blot and 
ELISA were subsequently used to quantify the proteins (136). This approach 
identified Ig-kappa light-chain C region, PRDX4, SOD2, TPI, and TXNDC5 to be 
more abundant in RA compared to OA and AS (136). Yan et al. (2012) employed a 
similar approach to compare the synovial tissue of RA, OA, and AS (137). However, 
they separated proteins using 2-DE to find protein spots that were less intense in RA 
compared OA and AS, not more intense (137). One spot with particularly low 
intensity in RA was subsequently analysed using MALDI-MS and identified to be 
Vitamin D Binding Protein (137). Semiquantitative quantification using western blot 
they confirmed that Vitamin D Binding Protein had a significantly lower abundance 
in RA synovial tissue compared to OS and AS (137). The throughput of proteomics 
studies then began to increase rapidly owing to technological advancements in the 
proteomics field, and investigations became increasingly comprehensive over the 
years. This was seen in Hayashi et al. (2015) that employed an LC-MS-based LFQ 
proteomics approach to compare laser-micro dissected synoviocyte lesions from RA 
and OA patients (139). They identified and quantified 508 proteins, 98 of which were 
differentially abundant between RA and OA synoviocyte lesions (139). Functional 
enrichment analyses were then carried out to infer biological relevancy of these 98 
differentially abundant proteins (139). This identified several dysregulated pathways 
in RA including ribosome pathways, p53 signalling pathways, leukocyte migration 
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pathways, and NF-kB/MAPK (139). Ren et al. (2021) then used a LC-MS-based 
proteomics approach with tandem mass tag (TMT) labelling to compare synovial 
tissue proteome of RA and OA patients (133). Synovial tissue from 10 RA patients 
were divided into three pools, and synovial tissue from 12 OA patients were likewise 
divided into three pools (133). These six pools were then digested, labelled each with 
a unique TMT-label, pooled together, fractionated, and analysed using LC-MS (133). 
The relative protein abundance between RA and OA sample pools could then be 
calculated using the ratios of TMT reporter ion intensities in the MS2 spectra  (133). 
This led to the identification 4822 proteins, 510 of which were differentially abundant 
in RA synovial tissue compared to OA (133). Subsequent functional enrichment 
analyses revealed that these proteins were associated with developmental processes, 
extracellular structure organization, skeletal system development, collagen catabolic 
process, and various developmental processes (133). More recently, Xu et al. (2023) 
employed a similar LC-MS-based proteomics approach with TMT labelling to 
compare synovial tissue proteome of RA and OA patients (332). Although their 
primary aim was to study the role of protein glycosylation in RA, they also reported 
differences in protein abundance between RA and OA (332). They managed to 
identify an impressive total of 7227 proteins because they fractionated the pooled 
TMT-labelled samples into 20 fractions, thereby decreasing the complexity of the 
peptide mixtures, and increasing the number of identifications  (332). Of these 7227 
proteins, 427 were more abundant and 241 were less abundant in RA compared to OA 
(332). A subsequent gene set enrichment analysis of the overabundant RA proteins, 
revealed several dysregulated immune-related pathways in RA (332). 
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Figure 6. Evolution of synovial tissue proteomics. From identifying one differentially 
abundant protein in 2005 to 668 differentially abundant proteins in 2023, synovial 
tissue proteomics has increasingly improved our understanding of the molecular 
landscape of rheumatoid arthritis (RA) over time (133,134,137,139,332,333). 
Osteoarthritis, OA; Ankylosing Spondylitis, AS. 

The evolution of proteomics and its application to synovial tissue profiling has 
provided increasingly comprehensive insights into the molecular landscape of RA 
(Figure 6). However, there is an unmet need for more comprehensive proteomics-
driven investigations of RA synovial tissue, on an individual patient basis, to answer 
questions that are fundamental to our understanding of RA: What biological pathways 
are dysregulated in early untreated RA and what happens following treatment 
initiation? What biological pathways are dysregulated in longstanding RA and what 
happens following treatment intensification? What are the molecular differences 
between early RA and longstanding RA? What are the cellular and molecular 
determinants of synovial heterogeneity? And can determinants of synovial 
heterogeneity predict treatment outcomes? Facilitated by the rapid advancements in 
the field of proteomics, bioinformatics, and the UGSB procedure for collection of 
synovial tissue biopsies, this thesis aims to answer these fundamental questions. This 
is not only to expand our understanding of RA, but also to lay the foundation for future 
studies on ICI-IIA, and subsequently facilitate translational research between these 
two disabling conditions.  
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2.1. PAPER 1 

Prediction and early diagnosis of immune-checkpoint inhibitor-induced 
inflammatory arthritis from molecular biomarkers – Where are we now? 
Christopher Aboo a,b,c, Tue Wenzel Krastrup d,e, Helene Broch Tenstad f, Jie Ren c, 
Søren Andreas Just f, Morten Ladekarl g and Allan Stensballe a. EXPERT REVIEW OF 
PRECISION MEDICINE AND DRUG DEVELOPMENT 2022, VOL. 7, NO. 1, 162–168, 
https://doi.org/10.1080/23808993.2022.2156785, Received 2 June 2022, Accepted 6 December 
2022. 

a Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; b 

Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 
Beijing, China; cCAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of 
Genomics, Beijing, China; d Department of Biomedicine, Aarhus University, Aarhus, Denmark; 
e Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark; f Department 
of Rheumatology, Odense University Hospital, Odense, Denmark; g Department of Oncology 
and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark 

This investigation was a non-systematic review that sought to review existing studies 
aiming to identify blood biomarkers for early diagnosis and prediction of ICI-IIA (1). 
We identified a lack of substantial research in this specific field (1). Moreover, we 
discovered an apparent lack of reliable diagnostic criteria for ICI-IIA (1). This, in turn, 
led to unreliable clinical endpoints within these studies (1). Recognizing these 
limitations, we provided a set of recommendations to facilitate and guide future 
research on biomarker discovery for ICI-IIA (1). Specifically, we discussed the use of 
different diagnostic approaches to define robust clinical endpoints and briefly 
discussed the potential of employing omics technologies for biomarker discovery in 
ICI-IIA (1). 
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2.2. PAPER 2 

Synovial tissue proteomics unravels pathological trajectories in Rheumatoid 
Arthritis and identifies determinants of synovial heterogeneity. Christopher 
Aboo*1,4, Søren Andreas Just*2, Christian Nielsen5,6, Henrik Daa Schrøder7, Jacob 
Skallerup Andersen1,4, Mikkel Thomsen1, Sébastien Déjean8, Tue Bjerg Bennike9, 
Hanne Lindegaard3, Allan Stensballe1. 
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University of Southern Denmark, Odense, Denmark. 4 Sino-Danish Center for Research and 
Education, University of Chinese Academy of Sciences, Beijing, China. 5 Department of 
Clinical Immunology, Odense University Hospital, Odense, Denmark. 6 Open Patient Data 
Explorative Network (OPEN), Odense University Hospital, Odense, Denmark. 7 Department of 
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de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France. 9 Medical Microbiology 
and Immunology, Department of Health Science and Technology, Aalborg University, 
Aalborg, Denmark. *Shared first authorship. Manuscript submitted to Annals of Rheumatic 
Diseases, 8th September 2023. 
 

2.2.1. SUBSTUDY 1 

By employing proteomics to map the synovial tissue and plasma proteomic landscape 
of RA at its various stages, this investigation sought to answer fundamental questions 
about RA (202) (Aboo et al., unpublished – Paper 2). We identified several proteins 
and biological pathways that were dysregulated in untreated early RA (ERA) 
compared to healthy controls (HC) (202) (Aboo et al., unpublished – Paper 2). 
Proteomes of ERA patients were partially normalized following treatment (primarily 
MTX alone or as combination therapy), whereas the proteomes of longstanding RA 
(LRA) patients remained static following treatment intensification (202) (Aboo et al., 
unpublished – Paper 2). This suggest that a therapeutic “window of opportunity” at 
the protein level is present in ERA but not in LRA (202) (Aboo et al., unpublished – 
Paper 2). Despite a partial normalization of the synovial proteome in ERA at follow-
up, only a few pathways were attenuated (primarily complement cascade-related 
pathways) (202) (Aboo et al., unpublished – Paper 2). However, the remaining 
dysregulated pathways in ERA at follow-up resembled those observed in untreated 
ERA (202) (Aboo et al., unpublished – Paper 2). This was also observed in LRA 
patients where attenuation of complement cascade-related pathways was sustained at 
both timepoints (202) (Aboo et al., unpublished – Paper 2). However, the remaining 
dysregulated pathways in LRA resembled those observed in untreated ERA (202) 
(Aboo et al., unpublished – Paper 2). Notably, despite a sustained attenuation of 
complement cascade-related pathways in LRA, a more pronounced ECM-degradation 
was observed in LRA compared to ERA (202) (Aboo et al., unpublished – Paper 2). 
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This might explain the absence of the 'window of opportunity' in late-stage disease 
(202) (Aboo et al., unpublished – Paper 2). Given that treatment had only targeted a 
narrow spectrum of dysregulated pathways, we assumed that nontargeted 
dysregulated pathways could account for disease progression (202) (Aboo et al., 
unpublished – Paper 2). This was supported by our discovery of 99 synovial proteins 
and several dysregulated pathways that were consistently dysregulated in RA, 
regardless of disease state and treatment (202) (Aboo et al., unpublished – Paper 2). 
This observation highlights the potential of combination therapies to advance RA 
treatment beyond just achieving clinical remission (202) (Aboo et al., unpublished – 
Paper 2). Such combination therapies should not only target immune-related 
pathways, but also platelet/haemostasis, ECM-degradation, and oxidative stress-
related pathways (202) (Aboo et al., unpublished – Paper 2). 

2.2.2. SUBSTUDY 2 

Utilizing the generated proteomics dataset and employing data integration, this 
investigation sought to identify cellular and molecular determinants of synovial 
heterogeneity in untreated ERA patients (202) (Aboo et al., unpublished – Paper 2). 
We identified a continuous molecular and cellular difference between histologically 
defined synovial pathotypes in untreated ERA patients (202) (Aboo et al., unpublished 
– Paper 2). Patients with a lympho-myeloid pathotype tended to have higher 
abundance of proteins involved in antibody production and lower abundance of 
proteins that prevent ECM-degradation (202) (Aboo et al., unpublished – Paper 2). 
Untreated ERA patients with a baseline lympho-myeloid pathotype also showed large 
improvements in CRP, DAS28CRP, MRI and ultrasound scores over time (202) 
(Aboo et al., unpublished – Paper 2). However, these improvements were not the 
result of low follow-up scores, but rather the result of high baseline scores of disease 
activity and severity (202) (Aboo et al., unpublished – Paper 2). By including HC in 
a subsequent analysis, we observed that the histologically defined synovial pathotypes 
might reflect molecular and cellular deviations from HC, rather than three distinct 
molecular conditions (202) (Aboo et al., unpublished – Paper 2). Notably, we found 
the pauci-immune fibroid pathotype to be molecularly and cellularly least different 
from HC, the diffuse-myeloid pathotype to be slightly more different from HC, and 
the lympho-myeloid pathotype to be most different from HC (202) (Aboo et al., 
unpublished – Paper 2). This is interesting because the pauci-immune fibroid 
pathotype - who had a non-immune-centric nature and no signs of inflammation – is 
known to respond poorly to csDMARDs and bDMARDs (202) (Aboo et al., 
unpublished – Paper 2). 
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2.3. PAPER 3 – UNPUBLISHED RESULTS 

Protein Biomarker Signatures Covary with Measures of Disease Activity in 
Response to Treatment Initiation/Intensification in Rheumatoid Arthritis. 

This investigation was made as another substudy of the same project as Paper 2. 
Utilizing the generated proteomics dataset and employing data integration, this 
investigation sought to study what proteins covary with different measures of disease 
activity, and subsequently identify a biomarker signature of disease activity in RA. 
The study identified several synovial tissue proteins that decrease along with measures 
of disease activity following treatment initiation or intensification. Notably, five 
proteins (ORM1, LRG1, SAA1, CRP and LBP) exhibited a direct relationship with 
≥3 measures of disease activity, and the abundance of these proteins in plasma might 
constitute a biomarker signature for disease activity. 
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CHAPTER 3. DISCUSSION 

The aim of this thesis was to utilize state of the art proteomics, bioinformatics, and 
the UGSB procedure for the collection of synovial tissue biopsies to answer questions 
that are fundamental to our understanding of RA. The ultimate goal was to establish 
the foundation for future studies on ICI-IIA and facilitate translational research that 
could help us understand RA trough insights into ICI-IIA, and vice versa, help us 
understand ICI-IIA through insights into RA. So, can insights into RA pave the way 
for a better understanding of ICI-IIA? And can we leverage our understanding of ICI-
IIA to gain insights into RA? At the moment, we do not have all the necessary 
evidence to answer this conclusively. Nonetheless, early investigations, including 
those presented in Paper 1, Aboo et al. (2022) (1), suggest that there might be 
molecular and cellular similarities between these two conditions. 

Mooradian et al. (2018) found that pretreatment levels of CXCL10, IL-17, and TGF-
β1 (out of 1305 circulating proteins) could serve as biomarkers for prediction of ICI-
IIA in patients who were treated with PD-1 inhibitors, CTLA-4 inhibitors, or a 
combination of both (334). This is interesting because CXCL10, IL-17, and TGF-β1 
have all been implicated in the pathogenesis of RA (335–341). Serum levels of 
CXCL10 and IL-17 are elevated in RA and have been found to correlate various 
measures of disease activity (342–344). Furthermore, in Paper 2, an increase in 
synovial TGF-β1 abundance was observed in both ERA and LRA patients at baseline 
compared to HC (Aboo et al. unpublished – Paper 2, Supplementary Data 1) (202). 
Thus, the observation that pretreatment levels of these cytokines are predictive 
markers for ICI-IIA (334) could suggest that patients who develop ICI-IIA might have 
underlying preclinical RA that becomes unmasked, which is one of the proposed onset 
mechanisms of ICI-IIA (9,22,23). Contrarily, a study by Daoussis et al. (2020) 
measured TNFα, GM-CSF, IFN-g, IL-2, IL-4, IL-6, IL-10, IL-12 and IL-17, but found 
no significant upregulation in patients developing ICI-IIA (16). However, it is 
noteworthy to mention that Daoussis et al. (2020) measured post-treatment cytokine 
levels, which, as stated in Paper 1 was confirmed through correspondence with the 
authors (1,16). Consequently, these results cannot be compared directly with those of 
Mooradian et al. (2018). 

When examining ICI-IIA at the synovial tissue level, our knowledge stems from case 
reports (25,26). Medina et al. (2021) reported a case where a 32-year-old male with 
metastatic recurrence was successfully treated with a combination of ipilimumab and 
nivolumab (25). However, the patient subsequently developed ICI-IIA, leading to 
discontinuation of ICI therapy and an examination of his synovial tissue biopsy that 
revealed infiltration of B cells, T cells, and macrophages (25).When they compared 
these histopathological findings with those of Dennis et al. (2014), the pioneering 
study on synovial histopathological phenotypes in RA, the biopsy exhibited striking 
similarities to lymphoid phenotype described in Dennis et al. (2014) (25,150). This is 
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also true when we compare the histopathological findings of Medina et al. (2021) with 
those of Humby et al. (2019), where the ICI-IIA in this case report appears to exhibit 
striking similarities with the lympho-myeloid pathotype in RA described by Humby 
et al. (2019) (25,132). Murray-Brown et al. (2020) reported a case where a 62-year-
old male achieved oncological remission following treatment with nivolumab (26). 
However, following discontinuation of ICI therapy, the patient developed ICI-IIA that 
was nonresponsive to corticosteroids, MTX, and hydroxychloroquine (26). This led 
to examination of his synovial tissue biopsy that revealed infiltration of memory T 
cells, macrophages, but no B cells (26). When they compared these histopathological 
findings with those from three treatment-naïve RA patients, the biopsy exhibited 
similarities with RA in terms of immune cell infiltration phenotype, TNFα to IL-6 
ratio, and hypervascularization and synovial hyperplasia (assessed through 
arthroscopy) (26). Based on these findings, the patient was treated with infliximab (a 
TNFi), which led to resolution of his synovitis and reduced CRP levels (26). Thus, 
preliminary evidence from case reports suggests there could be an overlap between 
ICI-IIA and RA, and exploring this further could have the potential to improve our 
understanding of ICI-IIA. 

While studies on synovial tissue have indeed enhanced our understanding of RA, there 
is also cumulative evidence suggesting that histopathological analysis of synovial 
biopsies could be used to inform therapeutic choices in RA 
(127,128,130,132,145,345). Interestingly, by employing a similar approach, Murray-
Brown et al. (2020) were able to successfully treat ICI-IIA that was nonresponsive to 
corticosteroids and csDMARDs (26). Thus, by leveraging the insights gained from 
synovial biopsies in the context of RA (127,128,130,132,145,345), we could 
potentially inform the clinical decision-making and improve the treatment of ICI-IIA 
(26). The potential of synovial tissue biopsies to inform clinical decision-making, 
however, becomes even greater when treatments are tailored based on transcriptomic 
signatures of synovial tissue, which has proven to surpass the conventional 
histopathological characterization in predicting treatment outcomes in RA (127,128). 
The next question to address is whether proteomics is as powerful as transcriptomics 
in analysing synovial tissue biopsies to subsequently elucidate pathological 
mechanisms in RA and predict treatment outcomes. In Paper 2, which also served as 
a "proof-of-concept" study, we were indeed able to answer some fundamental 
questions concerning RA (Aboo et al. unpublished – Paper 2) (202). Specifically, our 
study highlighted the potential of combining UGSB, proteomics and bioinformatics 
to elucidate the complex molecular landscape of RA at different disease stages and 
facilitated the identification proteomic determinants of synovial pathotypes (Aboo et 
al. unpublished – Paper 2) (202). Additionally, in Paper 3 (unpublished results) the 
combination of UGSB, proteomics, and bioinformatics was successfully able to 
identify biological pathways associated with disease activity and identify a biomarker 
signature of disease activity (Paper 3). Now that “the concept has been proofed”, the 
logical progression would be to utilize the combination of  UGSB, proteomics and 
bioinformatics to study ICI-IIA. This task is very challenging when considering the 
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limited availability of synovial biopsies from ICI-IIA patients. However, our team at 
Odense University Hospital is currently establishing a well characterized ICI-IIA 
cohort comparable to the cohort in Paper 2. In the meantime, another opportunity 
might be to collaborate with researchers from larger medical centres, including Laura 
Cappelli from Johns Hopkins Medicine, who has established a large biobank 
containing blood and synovial fluid samples from ICI-IIA patients, but not synovial 
tissue biopsies. In Paper 2, we indeed imply that synovial tissue proteomics is far 
superior to plasma proteomics for elucidating the pathological mechanisms in RA, but 
this claim deserves a more nuanced discussion (Aboo et al. unpublished – Paper 2) 
(202). MS-based proteomics is indeed limited by the presence of a few very highly 
abundant plasma proteins, which hinders the identification and quantification of less 
abundant proteins (346–349). Consequently, MS-based plasma proteomics can only 
identify a couple of hundred proteins unless additional extensive sample preparation 
steps are employed to deplete highly abundant proteins,  a process that inherently 
compromises reproducibility (346–350). However, proteomics methods based on 
proximity extension assays, such as Olink (351), or aptamers, such as SomaScan 
(352,353), deserve attention because these methods offer high sensitivity when 
analysing plasma, and can detect less abundant proteins without prior depletion of 
highly abundant plasma proteins (354–356). Thus, analysing the more readily 
available blood and synovial fluid samples using other proteomics technologies than 
MS-based proteomics could hold the key to understand ICI-IIA further at this point in 
time. That said, another interesting possibility could be to utilize the biomarker 
signature of disease activity in RA, that was identified in Paper 3 using MS-based 
proteomics, to investigate if this changes in response to ICI therapy, and whether it is 
more elevated in those who develop ICI-IIA. If this is true, then it could pave the way 
for early interventions and prophylactic treatments in patients undergoing ICI therapy 
(1). Nonetheless, one thing is certain regardless of the technology we employ: before 
advancing with further studies, as emphasized in Paper 1, we must establish well-
defined diagnostic criteria and adopt a holistic approach to diagnosing ICI-IIA (1). 
Otherwise, we cannot establish valid endpoints for our biomarker discovery studies 
(1). Specifically, in Aboo et al. (2022) we stated “We suggest that future studies 
should adapt general diagnostic workflows from rheumatological settings to ensure 
more valid endpoints. This includes a holistic approach with the integration of clinical 
findings, radiological findings, biopsies, questionnaires, and laboratory 
measurements. Rheumatology Common Toxicity Criteria (RCTC) have been proposed 
(357), but since an ICI-IIA specific term is not listed in the scheme, the use of RCTC 
should be complemented by joint specific findings. Important points to consider when 
diagnosing rheumatic irAEs have also been proposed recently (27), and especially 
the first point herein is worth considering in future studies: “Rheumatologists should 
be aware of the wide spectrum of clinical presentations of rheumatic and/or systemic 
immune-related adverse events that often do not fulfil traditional classification 
criteria of rheumatic and musculoskeletal diseases.” – Cited from Kostine et al. 
(2021) (27).” – Cited from Aboo et al. (2022) (1). 
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Building on this recommendation, integrating UGSB into the future diagnostic 
procedures for ICI-IIA may indeed provide valuable insights for establishing more 
reliable clinical endpoints. As already stated in the introduction, Orr et al. (2018) 
demonstrated, within the context of RA, that 71% of patients in DAS28CRP-defined 
remission still exhibited signs of synovial inflammation, and many patients with no 
so signs of synovial inflammation had a high DAS28CRP score (105). This raises 
questions about the sufficiency of relying on conventional clinical markers for 
diagnosis, not only in RA but in ICI-IIA as well. 

As previously emphasized, utilizing synovial biopsies and pathotype classification 
can provide valuable insights into RA, and preliminary evidence from case reports 
suggests there could be an overlap between ICI-IIA and RA (25,26). Thus, synovial 
biopsies and pathotype classification could also serve as a useful tool for the diagnosis 
of ICI-IIA and the establishment of robust clinical endpoints for future biomarker 
discovery studies. However, our findings from Paper 2, adds another layer of 
complexity to this discussion. Proteomic analysis of UGSB samples from untreated 
ERA patients found that synovial pathotypes might reflect degrees of divergence from 
HC. Specifically, that the pauci-immune fibroid pathotype - characterized by a non-
immune-centric nature and no signs of inflammation - was the least different from 
HC. Interestingly, a correspondence letter from Buch et al. (2020), suggested that this 
pauci-immune fibroid pathotypes might not always represent “true RA” but post-
inflammatory scarring and/or coexistent OA (358). When we consider that the pauci-
immune fibroid pathotype is refractory to csDMARDs and bDMARDs (128,132,359), 
together with its reported frequency in untreated ERA patients ranging from 19-27% 
(130,132,359), it aligns perfectly with the proportion of RA patients (20-30%) who 
are refractory to all treatment options (360). This further supports the hypothesis that 
these pauci-immune fibroid cases may not represent 'true RA' (358) and could 
possibly account for the treatment-resistant RA population. Indeed, if they have a non-
immune-centric pathology, inhibiting the immune system will not improve their 
condition. If future studies can validate the hypothesis that the pauci-immune fibroid 
pathotype does not represent “true RA”, then the integration of synovial biopsies and 
subsequent pathotype classification into the diagnostic workflow could refine our 
perception of synovial pathotypes even further, and subsequently help us establish 
even more reliable clinical endpoints for ICI-IIA, but also in RA contexts.  
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So far, the discussion has focused on how insights from RA can be used to improve 
the understanding and treatment of ICI-IIA. But how can insights from ICI-IIA be 
utilized to gain insights into RA? RA develops slowly over the course of several years 
(32,361) which makes tracing the molecular and cellular changes from a healthy to a 
diseased state very challenging (1). ICI-IIA, on the other hand, develops within a 
much shorter timeframe (11,362) and in controlled settings, subsequently allowing 
patients to serve as their own controls (1). Thus, by collecting synovial tissue biopsies 
and blood samples from patients receiving ICI therapy, we can study the molecular 
and cellular changes in patients who develop ICI-IIA and patients who do not develop 
ICI-IIA (1). This could potentially shed light on the temporal development of RA, 
provided that ICI-IIA and RA share pathological mechanisms, and provided that ICI-
IIA is not simply unmasking of preclinical RA. Studying the molecular and cellular 
changes from a healthy to a diseased state in a similar way, is very difficult in the 
context of RA and would require substantial resources and efforts. Biobanks offer a 
possible solution to this challenge because they contain samples that date many years 
back. Nonetheless, a significant limitation of biobanks is their lack of synovial tissue 
biopsies, which are pivotal for understanding RA pathology. Although a few 
biobanks, like the Dansk Rheuma Biobank, might contain synovial tissue biopsies, 
they are very unlikely to date back to a time when the patients were healthy. Therefore, 
at present, ICI-IIA might represent one of the most promising possibilities to elucidate 
the temporal dynamics of RA (beside animal models), which can help us gain insights 
into RA and pinpoint early disease drivers (1). 
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CHAPTER 4. CONCLUSION 

This thesis highlights the potential of synovial tissue biopsies, proteomics, and 
bioinformatics to gain insights into the complex pathological mechanisms of RA. 
Employing a similar approach might also prove valuable as we progress to study the 
complexities of ICI-IIA. Nonetheless, this task requires multidisciplinary 
collaborations between rheumatologists, oncologists, pathologists, researchers from 
various fields, bioinformaticians, and patients. Preliminary evidence suggests that 
ICI-IIA and RA might share some pathological similarities. If this proves to be true, 
then RA can help us gain insights into ICI-IIA, and vice versa, ICI-IIA can help gain 
insights into RA. This could potentially lead to major breakthroughs in the treatment 
of both conditions and redefine the future of patients suffering from inflammatory 
arthritis. However, only time and collaborative efforts can truly validate this 
statement. 
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