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Abstract—The development of sixth-generation (6G)/Beyond
Fifth-Generation (B5G) wireless networks, which have
requirements that go beyond current 5G networks, is gaining
interest from academia and industry. However, to increase
6G/B5G network quality, conventional cellular networks that
rely on terrestrial base stations are constrained geographically
and economically. Meanwhile, Non-Orthogonal Multiple Access
(NOMA) allows multiple users to share the same resources,
which improves the spectral efficiency of the system and
has the advantage of supporting a larger number of users.
Additionally, by intelligently manipulating the phase and
amplitude of both the reflected and transmitted signals,
Simultaneously Transmitting and Reflecting RISs (STAR-RISs)
can achieve improved coverage, increased spectral efficiency,
and enhanced communication reliability. However, STAR-RISs
must simultaneously optimize the amplitude and phase shift
corresponding to reflection and transmission, which makes the
existing terrestrial networks more complicated and is considered
a major challenging issue. Motivated by the above, we study
the joint user pairing for NOMA and beamforming design of
Multi-STAR-RISs in an indoor environment. Then, we formulate
the optimization problem with the objective of maximizing the
total throughput of mobile users (MUs) by jointly optimizing
the decoding order, user pairing, active beamforming, and
passive beamforming. However, the formulated problem is a
mixed-integer non-linear programming (MINLP). To address
this challenge, we first introduce the decoding order for NOMA
networks. Next, we decompose the original problem into two
subproblems, namely: 1) MU pairing and 2) Beamforming
optimization under the optimal decoding order. For the first
subproblem, we employ correlation-based K-means clustering
to solve the user pairing problem. Then, to jointly deal with
beamforming vector optimizations, we propose Multi-Agent
Proximal Policy Optimization (MAPPO), which can make quick
decisions in the given environment owing to its low complexity.
Finally, simulation results prove that our proposed MAPPO
algorithm is superior to Proximal Policy Optimization (PPO)
and Advanced Actor-Critic (A2C) by a maximum of 1% and
6%, respectively.

Index Terms—STAR-RIS, NOMA network, indoor environ-
ment, reinforcement learning, multi-agent proximal policy op-
timization.

I. INTRODUCTION

There is a growing interest among both academic and in-
dustrial circles regarding the advancement of sixth-generation
(6G)/Beyond Fifth-Generation (B5G) wireless networks. The
requirements are to address the more stringent demands that
surpass those of the existing 5G networks. These requirements
include achieving ultra high data rates and energy efficiency,

ensuring global coverage and connectivity, and attaining ex-
tremely high reliability and low latency [1], [2]. However,
Existing cellular networks that rely on terrestrial base sta-
tions have economic and geographic limitations for improving
network quality. Meanwhile, Reconfigurable Intelligent Sur-
faces (RISs) are new communication equipment for future
next-generation wireless communication network performance
improvement [3]. RIS is a plane reflector composed of multi-
ple low-cost reconfigurable passive communication elements.
The corresponding element may reconstruct the radio signal
propagation by manually adjusting the amplitude and phase
appropriately. Therefore, RIS may be deployed in a wireless
network concentration area to improve communication quality
with economical and low energy consumption. In [4], the
authors minimized the latency by improving the communi-
cation throughput of ground users through RIS located in
buildings in full-duplex communication environments. In ad-
dition, the work in [5] provided a study that provides wireless
communication for high-speed trains by further maximizing
line-of-sight (LoS) by mounting RIS on UAVs. However, the
disadvantage of existing RIS is that it only has a reflection
function, so the transmitter and receiver must be on the
same side. This topological constraint limits the flexibility of
employing existing RISs.

To overcome this, unlike the RIS described above, Si-
multaneously Transmitting and Reflecting (STAR-RIS) can
provide communication services to both parties by enabling
simultaneous transmission and reflection of incident signals.
STAR-RIS is largely classified into three types depending on
how transmission and reflection signals are controlled [6]. The
types of STAR-RIS are classified into Energy Splitting (ES),
which controls the energy for transmission and reflection sig-
nals, Mode Switching (MS), which converts the mode of each
element to determine the signal method, and Time Switching
(TS), which changes the signal method over time. Among
these types, ES-type STAR-RIS has high flexibility but has
the disadvantage of optimizing energy variables along with the
phase variables of each signal. By intelligently manipulating
the phase and amplitude of both the reflected and transmitted
signals, STAR-RISs can achieve improved coverage, increased
spectral efficiency, and enhanced communication reliability
[7]. Meanwhile, in [8], a study was conducted on how to
optimize a number of STAR-RISs. However, optimization for
the Non-Orthogonal Multiple Access (NOMA) networks was
left as an assumption without considering it.
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NOMA is a multi-access technology that allows multiple
users to access the same frequency band simultaneously
without the need for orthogonal resource allocation, such as
the existing Orthogonal Frequency Division Multiple Access
(OFDMA) or Code Division Multiple Access (CDMA) sys-
tems [9]. NOMA can separate signals that overlap each other
in the same time and frequency domain from the receiver using
continuous interference cancellation (SIC) or other signal
processing techniques. This allows multiple users to share
the same resources, which improves the spectral efficiency
of the system and has the advantage of supporting a larger
number of users. However, there are currently no studies that
have carefully addressed the Multi-STAR-RISs-aided NOMA
networks. In this paper, we try to fill this gap and our major
contributions may be summed up as follows:

• We propose a novel network architecture for indoor
environment wireless communication where the access
point provide services to multiple mobile users with the
aid of multiple STAR-RIS (Multi-STAR-RISs) in NOMA
networks.

• Drawing upon the suggested system architecture, we
formulate an optimization problem to address the user
pairing, AP active beamforming, as well as passive beam-
forming included amplitude and phase shift of STAR-
RISs.

• To tackle the aforementioned problem, we decompose the
main problem into two sub-problems by using the block
coordinate descent (BCD) method, and then solve each
sub-problem, iteratively.

• Additionally, we propose correlation-based clustering to
address the user pairing problem. In addition, the beam-
forming opimization problem was solved by applying
multi-agent reinforcement learning (MARL) to optimize
beamforming vectors.

• Finally, we perform in-depth simulations to show that
our suggested approach performs better than the baseline
algorithms. The simulation results show that the pro-
posed MAPPO performance is better than comparison
algorithms to a maximum of 6%.

The subsections of the paper are organized in the following
manner. The system model and problem formulation are
outlined in Section II. Subsequently, Section III provides a
detailed description of the method that has been proposed.
The details of the implementation and simulation outcomes
are expounded upon in Section IV, while the conclusion of
the paper comes in Section V.

II. SYSTEM MODEL & PROBLEM FORMULATION

A. System Model Overview

As illustrated in Fig. 1, we consider a downlink communi-
cation in Multi-STAR-RISs-aided NOMA networks for indoor
environments, which consists of an access point (AP) with Nb

antenna, a set L of L STAR-RISs, and a set U of U mobile
users (MUs) with a single antenna. We also consider STAR-
RISs with M = MhMv elements, where Mh and Mv denote

Transmitted link

Reflected link

Inter InterferenceDirect link

MU 1

MU 2

MU 3

AP 1

STAR-RIS 1 STAR-RIS 3

MU 3

Intra Interference

Fig. 1: Illustration of our system model.

the number of elements along the vertical and the horizontal,
respectively. The locations of AP, center of STAR-RIS l ∈ L
and MU u ∈ U are p0 = [x0, y0, h0]

T , pl = [xl, yl, hl]
T

and pu = [xu, yu]
T . As shown in Fig. 1, we assume that the

environment under consideration consists of several rooms,
and some of the walls of the rooms are composed of START-
RIS. Downlink communication between APs and MUs in
different rooms is possible through walls composed of STAR-
RISs. In this paper, we assume that perfect channel state
information (CSI) is available at the AP to investigate the
performance gain of Multi-STAR-RISs. The STAR-RIS adopts
an energy splitting (ES) protocol, where each element can
operate simultaneous transmission and reflection modes. For
given transmission and reflection amplitude coefficients, the
signals incident upon each element is split into transmitted
and reflected signals having different energy. In a practical
implementation, the amplitude and phase shift coefficients of
each element for transmission and reflection will be jointly
optimized for achieving diverse design objectives in wireless
networks.

In our system model, the reflection and transmission sur-
faces of STAR-RIS are considered differently depending on
the location of the AP. Thus, we assume that clockwise
surfaces are forward and otherwise backward. Therefore, the
forward and backward side passive beamforming vectors of
STAR-RIS l are given by

ΦF
l = diag

{√
βF
l1
ejθ

F
l1 ,

√
βF
l2
ejθ

F
l2 , ...,

√
βF
lM

ejθ
F
lM

}
, (1)

ΦB
l = diag

{√
βB
l1
ejθ

B
l1 ,

√
βB
l2
ejθ

B
l2 , ...,

√
βB
lM

ejθ
B
lM

}
, (2)

where βF
lm

and βB
lm

are amplitudes of the forward and back-
ward sides for STAR-RIS l’s element m. θFlm and θBlm are
phase shift coefficients of the forward and backward sides for
STAR-RIS l’s element m.

By considering the path loss model for the indoor hotspot
scenario, as presented in 3GPP TR 38.901 version 16.1.0
Release 16, the path losses, at the reference distance of the
LoS link and NLoS link, are given by

PLLoS = 32.4 + 17.3 log10 (d) + 20 log10 (f), (3)



PLNLoS = 32.4 + 31.9 log10 (d) + 20 log10 (f), (4)

where d is the distance between the transmitter and the
receiver, and f is the sub-carrier frequency. The channel
between an AP and a MU can be modeled as a Rician channel,
which includes one LoS path and a number of NLoS paths.
Therefore, the channel gain hu from AP to MU u can be
formulated as

hu =

√
κ

κ+ 1
hLoS
u +

√
1

κ+ 1
hNLoS
u , (5)

where κ is the Rician factor, hLoS
u ∈ CNb×1 and hNLoS

u ∈
CNb×1 are LoS and NLoS channel gains between AP and
MU u, where CNb×1 denotes a complex matrix of size Nb×1.
Similarly, we can define the channel gain gl from AP to the
STAR-RIS l and the channel gain gl,u from STAR-RIS l to
MU u as follows:

gl =

√
κ

κ+ 1
gLoS
l +

√
1

κ+ 1
gNLoS
l , (6)

gl,u =

√
κ

κ+ 1
gLoS
l,u +

√
1

κ+ 1
gNLoS
l,u , (7)

where gLoS
l ∈ CNb×M and gNLoS

l ∈ CNb×M are LoS and NLoS
channel gains from AP b to STAR-RIS l, and gLoS

l,u ∈ CM×1

and gNLoS
l,u ∈ CM×1 are LoS and NLoS channel gains from

STAR-RIS l to MU u. Hence, the combined channel gain from
AP to MU u is given by

ĥu =


hu +

∑
l∈L

{
cbl (c

lF
u glΦ

F
l gl,u + clBu glΦ

B
l gl,u)

}
if cbu = 1,∑

l∈L

{
cbl (c

lF
u glΦ

F
l gl,u + clBu glΦ

B
l gl,u)

}
if cbu = 0,

(8)
where cbu, c

b
l , c

lF
u , clBu ∈ {0, 1} are adjacency indicators be-

tween AP and MU u, between AP b and STAR-RIS l, between
a forward side of STAR-RIS lF and MU u, and between a
backward side of STAR-RIS lB and MU u.

In NOMA networks, intra-cluster and inter-cluster inter-
ference can be considered, where intra-cluster interference
occurs between MUs grouped in the same cluster of AP,
and inter-cluster interference occurs between MUs grouped
in different clusters of AP. Thus, the MUs associated with
AP are further clustered into K groups. Therefore, we define
γk,u ∈ {0, 1} as a user pairing factor, where γk,u = 1 if MU u
is involved in cluster k of AP, otherwise γb

k,u = 0. Moreover,
let ωb = {w1, w2, ..., wK} be the active beamforming vector
of AP. Therefore, the received signal of MU u associated with
AP in cluster k can be given by

yk,u = ĥu[ωb,k(γk,up0sk,u +

U∑
u′ ̸=u

γk,u′p0sk,u′)

+

K∑
k′ ̸=k

U∑
u′

γk′,u′ωk′p0sk′,u′ ] +N0, (9)

where p0 is the power allocation coefficient of each MU
associated with AP. We assume that MUs connected to the AP
use power equally. Therefore, the power allocation coefficient
for AP satisfies p0 = 1/|U|. sk,u denotes the signal transmitted
by AP for MU u in cluster k, and N0 is the Additive White
Gaussian Noise (AWGN) with variance σ2. Without loss of
generality, for any cluster k ∈ K, δ(u) denotes the MU index
that corresponds to MU u decoded order in the Successive
Interference Cancellation (SIC) procedure. For cluster k, after
applying the SIC decoding procedure [10], the intra-cluster and
inter-cluster powers of MU u associated with AP on cluster k
can be calculated as

I intra
k,u = |ĥuωk|2

U∑
δk(u′)>δk(u)

γk,u′p0, (10)

I inter
k,u =

K∑
k′ ̸=k

U∑
u′

γk′,u′ |ĥuωk′ |2, (11)

Accordingly, the received signal-to-interference-plus-noise
ratio (SINR) of MU u associated with AP in cluster k is given
by

SINRk,u =
|ĥuωk|2γk,up0

I intra
k,u + I inter

k,u + σ2
, (12)

For any two MUs v and u with decoding order δk(v) >
δk(u) in the same AP and cluster k, the received SINR of the
signal sk,u at the MU v is given by

SINRk,v→u =
|ĥb,vωk|2γk,vp0

I intra
k,v→u + I inter

k,v→u + σ2
, (13)

where I intra
k,v→u = |ĥvωk|2

∑U
δk(u′)>δk(u)

γk,u′p0 is the intra-
cluster interference power of the signal sk,u at MU v.
I inter
k,v→u =

∑K
k′ ̸=k

∑U
u′ γk′,u′ |ĥvωk′ |2 is the inter-cluster in-

terference power of the signal sk,u at MU v. It is worth
pointing out that given a decoding order, to guarantee the SIC
performed successfully, the condition SINRk,v→u ≥ SINRk,u

with δk(v) > δk(u) must be guaranteed. Therefore, the
achievable data rate of MU u associated with AP in cluster k
is calculated as

Rk,u = log2 (1 + SINRk,u) , (14)

B. Problem Formulation

In this subsection, we define the detailed problem for-
mulation based on the proposed system model. This work’s
major goal is to maximize the achievable sum rate of U MUs
(considered as a network utility), while jointly optimizing user
pairing factor γ, decoding order δ, active beamforming ω, and
passive beamforming Φ =

{
ΦF ,ΦB

}
of STAR-Multi-RISs.



Therefore, we can define our optimization problem as follows:

P1: maximize
γ,δ,ω,Φ

K∑
k=1

U∑
u=1

Rk,u (15a)

subject to Rk,u ≥ Rmin
u , ∀u ∈ U , (15b)

SINRk,v→u ≥ SINRk,u, δk(v) > δk(u),
(15c)

γk,u ∈ {0, 1} , ∀k ∈ K, ∀u ∈ U , (15d)
K∑

k=1

∥wk∥2 ≤ Pmax, (15e)√
βt
lm
,
√
βe
lm
∈ [0, 1], ∀l ∈ L, ∀m ∈M,

(15f)
βt
lm + βr

lm = 1, ∀l ∈ L, ∀m ∈M, (15g)
θtlm , θrlm ∈ [0, 2π), ∀l ∈ L, ∀m ∈M,

(15h)

where Rmin
u is the minimum rate requirement of each MU.

Constraint (15b) guarantees the QoS requirement of each
MU, and constraint (15c) ensures the success of the SIC
decoding. Furthermore, constraint (15d) represents the binary
variables. Constraint (15e) ensures the power budget constraint
of each AP. Finally, Constraints (15f) to (15h) indicate the
requirements of each reflecting and transmission element in
STAR-RIS. To solve this proposed problem, we provide a
solution approach in the next section.

III. SOLUTION APPROACH

As our proposed problem (15) is a mixed-integer non-linear
programming (MINLP), which is NP-hard due to complexity.
To solve this problem, we first introduce the decoding order
for NOMA networks. Next, we decompose the main problem
into two sub-problems by using the block coordinate descent
(BCD) method, and then solve each sub-problem iteratively
until the convergence criteria meet.

A. Decoding Order

Prior to handling the pairing and beamforming optimization
problems, the decoding order must be addressed because it is
a important one for the Multi-STAR-RIS in NOMA networks.
Therefore, we propose a scheme to obtain the optimal decod-
ing order by the following lemma.
Lemma 1. Given the active beamforming vector ω and the
passive beamforming vector Φ, The decoding order for cluster
k with |Ck| MUs in AP is defined as

gkδk(1)
≤ gkδk(2)

≤ · · · ≤ gkδk(|Ck|), (16)

where gkδk(j)
= |ĥuωk|2∑K

k′ ̸=k

∑
u′∈C

k′ |ĥuωk′ |2+σ2
is the equivalent-

combined channel gain [11], [12].
Lemma 1 indicates that the decoding order for each cluster

of the Multi-STAR-RIS in the NOMA system is a function of
the active beamforming vectors ω, the passive beamforming
vectors Φ.

Algorithm 1 Correlation-based K-means Clustering for MU
Pairing

1: Input: the initial passive beamforming vector Φ0

2: Cpre, C = ∅
3: Randomly select χk from u ∈ U , ∀k = 1, ...,K
4: while Cpre ̸= C do
5: Cpre ← C
6: for u ∈ U with u ̸= χk , ∀k = 1, ...,K do
7: k∗ = argmax1≤k∗≤K Cu,χk∗

8: Ck∗ = Ck∗ ∪ {u}
9: end for

10: Update χk according to (21), ∀k = 1, ...,K
11: Ck = Ck \ u, ∀u ̸= χk ∈ Ck, ∀k = 1, ...,K
12: end while
13: Output: The optimal clustering vector C∗ → MU pairing

vector γ∗.

Proposition 1. For any two users u and v belong to cluster
k, if the decoding order of the two users satisfies

δ−1
k (v) > δ−1

k (u), (17)

where δ−1
k (·) is the inverse of mapping function δk(·). Then,

under the optimal decoding order, the following SIC condition
is guaranteed:

SINRk,v→u ≥ SINRk,u. (18)

According to Proposition 1, the constraint in (15c) can be
removed under the optimal decoding order of the NOMA
system. This operation will not affect the optimality of the
problem (15). Furthermore, Lemma 1 and Proposition 2
guarantee that once the association, pairing, and beamforming
vectors are determined, the optimal decoding order in each
cluster is fixed [10], [11]. Therefore, we develop the optimal
beamforming vectors for MUs in STAR-Multi-RIS NOMA
system based on this observation.

B. Correlation-Based K-means Clustering for MU Pairing

MUs whose channels are highly correlated should be as-
signed to the same group to make full use of the multiplexing
gain, while MUs whose channels are uncorrelated should be
assigned to different groups to decrease the interference. We
adapt the K-means clustering algorithm to implement the MU
pairing in NOMA networks. K-means clustering is one way to
divide given data into multiple partitions [13]. The K-means
algorithm determines the cost function as the sum of squares
at the center of each group and the group’s distance from
the data subject. Clustering is also performed by updating the
group that each data object belongs to to minimize the value
of this cost function. Therefore, we use the channel correlation
between each MU for the cost function for MU pairing. The
normalized channel correlation between MU i and MU j can
be calculated as [14]

Cori,j =
ĥH
i ĥj

∥ĥi∥∥ĥj∥
. (19)



Algorithm 2 Learning Process for Multi-Agent Proximal
Policy Optimization (MAPPO)

1: Initialize: the initial network πω
0 and πΦ

0 for agent of
active and beamforming.

2: for episode= 1, 2, ..., E do
3: Initialize randomly each MU’s position and calculate

the optimal user pairing from III-B solution, i.e., γ∗.
4: for time slot= 1, 2, ..., N do
5: Update observation S(n).
6: Run policy Aω ∼ πω

θold
,AΦ ∼ πΦ

θold
.

7: Compute the common reward R(n).
8: Save (S(n),A(n),R(n),S(n + 1)) in memory of

each agent.
9: end for

10: Compute advantage estimates
〈
Âω

1 , ..., Â
ω
N

〉
,〈

ÂΦ
1 , ..., Â

Φ
N

〉
based on (25).

11: Optimize surrogate LPPO wrt θω , θΦ with minibatch
from memory based on (26).

12: θωold ← θω , θΦold ← θΦ

13: end for
14: Output: Optimal networks πω

θopt
, πΦ

θopt
.

In order to cluster MUs connected to each AP b into
Kb, we select randomly Kb MUs assigned to clusters, C =
{C1, C2, ..., CK}, one by one. Then, the channel correlation
between the unselected MU u′ and the selected MU u is
calculated based on (19), and the MU u′ having the highest
channel correlation is assigned to the cluster to which the MU
u belongs. Thenceforth, each representative can be selected
from each cluster. The representative of each cluster is updated
as the one with the lowest correlation with the other clusters in
order to further reduce the correlation of the channels between
the various clusters. The correlation between a MU to the other
clusters is the total normalized channel correlation between a
MU to the MUs of the other clusters. The correlation between
a MU u in the cluster Ck to the other clusters is defined as

C̄oru =

K∑
l ̸=k

∑
u′∈Cl

Coru,u′ . (20)

After that, the representative χk of the cluster Ck is updated
as

χk = arg min
u∈Ck

C̄oru. (21)

Following the update of the representative for each cluster,
the other MUs are subsequently reassigned to their respective
clusters. The iteration is terminated when the representatives of
the clusters remain unaltered. Finally, the optimal output C∗ of
the clustering vector, is transformed to the MU pairing vector
γ∗. The Correlation-based K-means Clustering is described in
Algorithm 1.

C. Multi-Agent Reinforcement Learning (MARL) Scheme

At the fixed MU association, pairing, and decoding order,
we can rewrite the beamforming vectors optimization problem
as follows:

P1.1: maximize
ω,Φ

K∑
k=1

U∑
u=1

Rk,u (22a)

subject to (15b), (15e) ∼ (15h). (22b)

However, the subproblem P1.1 has the non-convex nature.
Thus, it is challenging to solve using the existing opti-
mization techniques. Thus, we propose a proximal policy
optimization (PPO)-based multi-agent reinforcement learning
method (MARL) to solve problem P1.1. PPO is a widely
used reinforcement learning technique that is known for its
simplicity in implementation and applicability across diverse
situations [15]. Furthermore, it has demonstrated consistent
and reliable performance. The utilization of the Proximal
Policy Optimization (PPO) technique serves to streamline the
intricate computational process associated with trust region
policy optimization (TRPO). The Trust Region Policy Op-
timization (TRPO) algorithm aims to optimize a surrogate
objective function in the following manner [16].

LTRPO
n (θ) = Ên

[
πθ(An|Sn)
πθold(An|Sn)

Ân

]
= Ên

[
rn(θ)Ân

]
, (23)

where rn(θ) denotes the probability ratio, An and Sn are
an action and reward in time step n. The surrogate objective
function LTRPO of TRPO has a complicated formula expansion
and must calculate the second derivative. Therefore, maxi-
mization of the surrogate objective function LTRPO of TRPO
would result in an unnecessarily large policy update in the
absence of a constraint. Hence, in PPO, the limitations of
TRPO were addressed by incorporating an approximation of
the first derivative using the clipping technique. The following
is the objective function to which the clipping is applied:

LCLIP
n (θ) = Ên

[
min(rn(θ)Ân, clip(rn(θ), 1− ϵ, 1 + ϵ)Ân)

]
,

(24)
where ϵ is a hyperparameter and Ân is a truncated version
of generalized advantage estimation which can be defined as
follows:

Ân = δn + (γλ)δn+1 + · · ·+ (γλ)N−n+1δN−1, (25)

where δn = rn + γV (sn+1) − V (sn). The function in (24)
takes a lower value when comparing the objectives used in
the TRPO with the objectives to which clipping is applied.
With this clipping method, we only consider the change in
the probability ratio if it improves the objective. If it makes
the objective worse, we leave it out.

Subsequently, PPO incorporates an actor-critic network
architecture, wherein the policy and value functions share
the parameters inside the network design. In the context of
utilizing a neural network architecture to share parameters
between the policy function and the value function, it is
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(b) Learning results based on the number of
STAR-RIS elements.
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(c) Average throughput of MUs with
maximum transmission power changes.

Fig. 2: Simulation results of proposed scheme convergence and comparison with baselines.
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Fig. 3: Deployments of AP, STAR-RISs, MUs.

imperative to deploy a loss function that effectively integrates
the policy surrogate and an error term derived from the value
function. The objective is achieved by integrating the policy
surrogate with a value function error component as follows:

LPPO
n (θ) = Ên

[
LCLIP
n (θ)− c1L

VF
n (θ) + c2E[πθ](sn)

]
, (26)

where c1 and c2 are coefficients, E denotes an entropy
function, and LVF

n is a squared-error loss. In this objective
LPPO can further be augmented by adding an entropy bonus
E to ensure sufficient exploration.

The proposed MAPPO in this paper is each optimization
variable (ω,Φ) PPO agents. Each agent learns simultaneously
in the same environment. Moreover, each agent can determine
the optimal action for a common reward. Therefore, we
introduce the Markov Decision Process (MDP) of the agents
used for learning.

S(n) = {γ∗,ω(n− 1),Φ(n− 1), {ĥu}u∈U}, (27)

Aω(n) = {ωk(n)}k∈K, (28)

AΦ(n) = {ΦF
l ,Φ

B
l }l∈L, (29)

R(n) = minu∈U (Rk,u), (30)

where ω(n− 1) and Φ(n− 1) denote the active and passive
beamforming vector at the last step, Aω(n) and AΦ(n) denote
the active and passive beamforming agent. The reward is
determined by the lowest throughput of all users. This is to
satisfy the minimum throughput of all users for the constraint
(15b). Based on the MDP for the proposed optimization
problem, the optimal value of the decision variable can be
obtained by executing the proposed MAPPO algorithm, such
as Algorithm 2.

IV. SIMULATION RESULTS

We consider one AP in a region of 20 m2, which provides
services to the 10 MUs in our simulation setup. Then, the
considered region is divided into four rooms, each of which
is surrounded by walls. Furthermore, two STAR-RISs are
installed in the room where the AP is located. In the learning
stage, MUs are randomly placed, and in the verification stage,
MUs are placed as in Fig. 3. The AP has four antennas with
a frequency of 6 GHz and a noise density of −100 dBm/Hz.
Each STAR-RIS is composed of 10 elements, and separations
between elements are 0.2 in width and 0.1 in length. One
episode has 10 time slots for learning settings, and the learning
network model has 2 hidden layers and 256 units for each
hidden layer. In our simulation, correlation-based K-means
clustering for MU pairing is performed after MUs are assigned
at the beginning of each episode. Finally, to evaluate the
performance of the proposed algorithm, we use the following
three different algorithms as follows:

• MAPPO (proposed): The proposed MAPPO algorithm, in
which each beamforming vector variable is thought of as
an agent that learns its variable optimization.

• PPO: The general PPO algorithm learns all beamforming
vector variables in one network at a time.

• A2C: The multi-agent advanced actor-critic (MAA2C)
algorithm, in which each beamforming vector variable is
thought of as an agent that learns its variable optimiza-
tion.
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Fig. 4: Analysis of optimal values derived from the learning model.

Fig. 2a shows the results of learning convergence based
on different algorithms. Our proposed MAPPO completed the
learning with the fastest and highest rewards, followed by a
slow PPO but similar rewards. A2C showed learning results
that failed to converge and continued to vibrate. Fig. 2b shows
the results of learning convergence according to the number
of elements in STAR-RIS. It can be seen that the final reward
increases as the number of STAR-RIS elements increases, but
at the same time, it can be seen that the improvement of
the reward becomes smaller and smaller. This shows that the
efficiency of learning can vary depending on the requirements
of STAR-RIS because learning was done with an artificial
neural network of the same size. Fig. 2c compares the average
throughput of users by algorithm according to the change
in maximum transmission power. As checked in Fig. 2a, it
was confirmed that the proposed MAPPO showed the best
performance according to the results of learning convergence,
followed by PPO and A2C.

Also, we record and present optimal values in a fixed envi-
ronment for an in-depth understanding of optimization. Fig. 4a
and Fig. 4b show the amplitude of STAR-RIS by element in
the environment of Fig. 3. It is noteworthy that to optimize the
communication throughput of MUs, STAR-RIS assigns large
amplitudes where there are no APs. Adding the amplitudes of
all elements, STAR-RIS 1 was assigned more amplitudes in the
opposite direction of the AP with 5.3997595 : 4.6002405, and
likewise, STAR-RIS 2 3.19707643 : 6.802357 was assigned
more amplitudes in the opposite direction of the AP. It can
be confirmed that this is an optimal choice of STAR-RIS
for improving overall communication performance. Finally,
Fig. 4c shows how much active beamforming was allocated
to the cluster by algorithms in the environment of Fig. 3.
The proposed MAPPO allocated relatively little power to
Cluster 1 and Cluster 2 because users close to AP can be
guaranteed sufficient communication throughput over distance.
On the contrary, Cluster 3 and Cluster 4 are users who do not
have a direct connection to the AP, so they are optimized to
ensure minimum throughput by allocating high power. The

PPO algorithm showed similar allocations to the MAPPO, but
the A2C algorithm allocates similar power for all clusters,
which can be inferred from the results of Fig. 2c above that
the performance was low.

V. CONCLUSIONS

In this paper, we have studied the joint design and opti-
mization of Multi-STAR-RISs-aided NOMA in an indoor en-
vironment using MARL. Then, we formulated an optimization
problem to maximize the total throughput of MUs by opti-
mizing user pairing, active beamforming vector, and passive
beamforming vector while satisfying the resource constraints.
We have divided the original problem into two subproblems to
address this problem. Firstly, we have employed correlation-
based K-means clustering to solve the MU pairing problem.
Then, to jointly deal with beamforming vector optimizations,
we have proposed the MAPPO, which can make quick deci-
sions in the given environment owing to its low complexity.
Based on the proposed MAPPO, by configuring agents for
each beamforming vector, it was possible to have faster and
higher performance than conventional single-agent-based PPO.
In the simulation results, we have shown not only the learning
convergence results for neural networks but also the learning
convergence results based on the number of different STAR-
RIS elements and the performance of each algorithm. In
addition, while confirming how the beamforming vectors were
actually optimized in one test environment, we analyzed in
depth why the proposed MAPPO was high. In the future,
this paper can be expanded by applying optimization through
multi-cell or other metaheuristic or numerical methods that
were not covered in this paper.
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