
Rapporto di ricerca
Research report

1/2023
December 2023

Some results and challenges
Extending Dynamic
Controllability to Agile
Controllability in Simple
Temporal Networks with
Uncertainties.

Roberto Posenato
Marco Franceschetti
Carlo Combi
Johann Eder

Questo rapporto è disponibile sul sito:
This report is available on the site:
https://iris.univr.it/



Abstract

Simple Temporal Networks with Uncertainty (STNU) are an expressive means
to represent temporal constraints, requirements, or obligations. They feature
contingent timepoints, which are set by the environment with a specified
interval. Dynamic controllability is the current most relaxed notion for
checking that the constraints are not in conflict. It requires that a timepoint
may only depend on earlier timepoints. Agile controllability extends dynamic
controllability by taking into account that a later timepoint might already be
known earlier and allowing a timepoint to depend on all timepoints whose
value is known before. In this report, we formally introduce the notion of an
STNU with oracle timepoints, formally define the notion of agile controllability,
and discuss approaches for checking agile controllability.

Keywords: simple temporal networks with uncertainty, dynamic controlla-
bility, agile controllability



1 Introduction

Time-constrained process models are subject to requirements stating con-
straints on the durations and times of execution of their activities [7]. Con-
straints on the duration may state minimum or maximum allowed activity
durations and whether an agent may control an activity duration or only
observe it to take a given time within a specified interval [13]. Constraints
on the time of execution restrict the occurrence of timepoints–start and end
times of activities, temporal parameters [6]– with respect to other timepoints.

For time-constrained process models, it is desirable to check whether
they are temporally correct, i.e., they admit executions that do not violate
any temporal requirements [1]. For processes that are entirely under the
control of an agent, the satisfiability of temporal constraints is an adequate
notion for temporal correctness [4]. However, for processes in which some
activity durations are not controllable by the agent (known as contingent
durations), more sophisticated notions for temporal correctness, such as
dynamic controllability, are required [11, 14]. They consider that a contingent
duration is only known when it completes; for instance, the duration of an
uncontrollable chemical reaction is only observed when the reaction ends.
The dynamic controllability of a process model featuring contingent durations
can be effectively checked via mapping of the process model into a Simple
Temporal Network with Uncertainty (STNU), a data structure that encodes
the timepoints and temporal requirements in terms of nodes and edges [3, 9].

Contingent durations effectively model the characteristics of several real-
world process activities. However, the assumption that contingent durations
may only be revealed at the time of completion of the corresponding activities
is too restrictive for specific scenarios. There exist situations in which an
activity duration cannot be controlled, but this duration is revealed before
the activity completion. In such cases, knowing in advance the contingent
duration allows for more flexible process scheduling since the agent does
not need to consider the worst-case scenario (e.g., the maximum possible
duration) anymore to schedule the execution of other process activities,
avoiding constraint violations. An example of such a case is the shipment
of an order: typically, the shipping times are given within an uncontrollable
range at the time of order placement, say 6 to 10 days. However, after the
order has been placed and processed, the information that the shipment will
take precisely seven days may be revealed. With this information, a buyer
may be able to schedule any further activities that depend on the shipment
with the certainty of the delivery time.

Currently, state-of-the-art procedures for checking the dynamic control-
lability of processes based on the STNU ignore the possibility of knowing

1



in advance contingent durations. Hence, they produce potentially overly
restrictive results for process models where contingent durations may be
revealed in advance. More specifically, these procedures label these models as
not dynamically controllable while they can be scheduled, avoiding constraint
violations thanks to such information.

Here, we propose a conservative extension of the STNU to overcome the
limitation of not being able to represent information on contingent durations
in advance. We introduce the concept of contingent oracle node to repre-
sent the point in time in which a contingent duration is revealed before its
completion. Then, we discuss possible algorithmic solutions to check the
dynamic controllability of an STNU with oracle nodes, along with respective
limitations.

In Section 2, we recall the formalization of the STNU. We introduce a
motivating example in Section 3. In Section 4, we introduce the extension of
the STNU with contingent oracles and propose algorithms for checking its
dynamic controllability. In Section 5, we discuss the proposed algorithms and
their respective limitations. Section 6 concludes this paper.

2 Backgrounds: Simple Temporal Networks

with Uncertainty

The Simple Temporal Network with Uncertainty (STNU) is a data structure
that models temporal problems in which the execution of some events cannot
be controlled. The STNU is composed of a set of timepoints and a set
of temporal constraints. The timepoint set is partitioned into controllable
(executable) timepoints and uncontrollable (contingent) ones; the constraint
set is partitioned into regular and contingent ones.

The following is a formal definition of the STNU adapted from [8]:

Definition 1 (STNU). An STNU is a triple (T , C,L), where:
• T is a finite, non-empty set of real-valued variables called timepoints.
T is partitioned into TX , the set of executable timepoints, and TC , the
set of contingent timepoints.

• C is a set of binary (ordinary) constraints, each of the form Y −X ≤ δ
for some X, Y ∈ T and δ ∈ R.

• L is a set of contingent links, each of the form (A, x, y, C), where
A ∈ TX , C ∈ TC and 0 < x < y < ∞. A is called the activation
timepoint; C contingent timepoint. If (A1, x1, y1, C1) and (A2, x2, y2, C2)
are distinct contingent links, then C1 ̸= C2.

2



The tuple (T , C) forms a Simple Temporal Network (STN), a data structure
proposed by Dechter et al. in [4] to study the Simple Temporal Problem, i.e.,
the satisfiability of a set of (controllable) temporal constraints. An STN is
satisfiable if it is possible to determine an assignment (schedule) to timepoints
such that all the constraints are satisfied. We say that a controller executes
an STN when it schedules its timepoints.

The STNU model extends the STN one by adding contingent timepoints
and links. The contingent link bounds cannot be modified, and the schedule
of contingent timepoints is decided by nature, who determines the duration
of each contingent link once the relative activation timepoint is scheduled.

An important property of the STNU is the dynamic controllability. To
define it, we need to define some concepts we recall from [8] formally.

Definition 2 (Situation). If (A1, x1, y1, C1), . . . (AK , xK , yK , CK) are the
K contingent links in an STNU S = (T , C,L), then the corresponding
space of situations for S is Ω = [x1, y1] × · · · [xK , yK ]. Each situation
ω = (ω1, . . . , ωK) ∈ Ω represents one possible complete set of values for
the duration of the contingent links of S (chosen by nature).

Definition 3 (Schedule). A schedule for an STNU S = (T , C,L) is a mapping
ξ : T → R. Ξ denotes the set of all schedules for an STNU. For historical
reasons, we represent ξ(X) as [X]ξ.

Definition 4 (Execution Strategy). An execution strategy for an STNU
S = (T , C,L) is a mapping S : Ω → Ξ.

Definition 5 (Viable Execution Strategy). An execution strategy for an
STNU S = (T , C,L) is viable if for each situation ω ∈ Ω the schedule S(ω) is
a solution for S, i.e., an assignment that satisfies all the constraints in the
network.

Definition 6 (Dynamic Execution Strategy). An execution strategy for an
STNU S = (T , C,L) is dynamic if, for any two situations ω′, ω′′ and any
executable timepoint X ∈ T , it holds that:

if [X]S(ω′) = k and S(ω′)≤k = S(ω′′)≤k, then [X]S(ω′′) = k,
where S(ω′)≤k is the set of contingent link durations observed up to and
including time k, called history until k. Since history also considers contingent
durations observed at instant k, we say that the dynamic execution strategy
implements the instantaneous reaction semantics.

An STNU is dynamically controllable if there exists a viable dynamic
execution strategy for it, i.e., an execution strategy that assigns the exe-
cutable timepoints with the guarantee that all constraints will be satisfied,

3



irrespectively from the values (within the specified bounds) the contingent
timepoints will be revealed to take [8].

Each STN S = (T , C) has a corresponding graph G = (T , E), where the
timepoints in T serve as the graph’s nodes and the constraints in C correspond
to labeled, directed edges in E . In particular: E = {X δ Y | (Y −X ≤ δ) ∈ C}.
For convenience, X δ Y may be notated as (X, δ, Y ).

Constraint propagation algorithms based on applying constraint propaga-
tion rules on the corresponding graph have been proposed to check whether
an STNU is dynamically controllable. A constraint propagation algorithm
applies constraint propagation rules to derive implicit constraints from the
existing ones in the STNU. The algorithm terminates when either reaching
network quiescence, i.e., no new constraints can be derived (the network is
dynamically controllable), or a negative loop is found (the network is not
dynamically controllable). The original rules proposed by Morris and Muscet-
tola in [11] to check the dynamic controllability (DC) property of an STNU
are depicted in Table 1. Such rules assume that an STNU S = (T , C,L) has
a corresponding graph G = (T , Eo ∪ Elc ∪ Euc), where (T , Eo) is the graph for
the STN (T , C), and Elc and Euc contain labeled, directed edges derived from
the contingent links in L. In particular: Elc = {Ac:x C | (A, x, y, C) ∈ L}, and
Euc = {CC:−y A | (A, x, y, C) ∈ L}. The so-called lower-case (LC) edge Ac:x C
represents the uncontrollable possibility that the duration C − A might take
on its minimum value x, while the so-called upper-case (UC) edge CC:−y A
represents the uncontrollable possibility that C − A might take on its max-
imum value y. Such edges may be respectively notated as (A, c:x,C) and
(C,C:−y, A), while constraints in C and edges in Eo may be called ordinary
constraints and edges, respectively, to distinguish them from the LC and UC
edges.

Rule Conditions
Pre-existing and
generated edges

No Case (NC): XYW
uv

u+ v

Upper Case (UC): AYX
u C:v

C:u+ v

Lower Case (LC):
v < 0. Also, v ≤ 0 is
fine but not necessary.

ACX
c:uv

u+ v

Cross Case (CC): D ̸≡ C and v < 0 ACX
c:uD:v

D:u+ v

Label Removal (LR): v ≥ −x XAC
c:x C:v

v

Table 1: Morris-Muscettola rules for DC-checking STNUs

4



These rules were designed assuming the following:

• instantaneous reaction semantics, meaning that “when the nature decides
the duration of a contingent link, the agent can react at the same time
executing one or more other timepoints”.

• early-execution strategy, meaning that timepoints are assigned with the
smallest possible value. The rules do not determine an upper bound for
executing the timepoints.

The Morris-Muscettola DC-checking algorithm applies the rules from
Table 1 in at most n2 rounds, with a cost of O(n3) each round, where n is the
number of network nodes. Afterward, it computes the AllMax STN, which
is the STN projection in which each contingent link is set to its maximum
duration. The AllMax STN is computed from the fully propagated STNU by:

1. removing all lower-case edges; and

2. removing the upper-case letters from all uppercase edges (original or
generated).

If the AllMax STN is consistent, the STNU is declared dynamically control-
lable.

3 Motivating Example

Figure 1 represents a motivating scenario, which we will briefly discuss here.
The motivating example refers to managing patients’ activities before

surgical intervention. It is becoming widely acknowledged that patients
reaching some planned intervention in an (as much as possible) good health
state have a better recovery [5].

The process in the figure starts with the usual information to patients, who
must be aware of the following activities. Then, different threads of activities
are initiated. Two threads are related to the Physical and Psychological parts,
respectively. The proposed physical exercises depend on and can be refined
with respect to the results of different questionnaires the patient has to answer.
After the end of these activities, the intervention is performed. Focusing on
the process fragment related to the physical exercise activity and the related
monitoring, these activities are connected through some temporal constraints,
representing the allowed delays between their start and endpoints, respectively.
Moreover, activities are enriched with their allowed time duration. In the
figure, only the temporal duration and the temporal constraints relevant to

5



[480,720]

E[1,2]ES[1,+∞]S

S[0,+∞]S

T2 T3

T4

O4

E[0,+∞]E

Figure 1: A BPMN representation of the process for the patient pre-
intervention period.

our discussion are reported. The notation for task durations and for inter-task
constraints is relatively standard in the literature [2]. Tasks have a duration
attribute represented as a range [x,y], with 0 < x ≤ y < ∞, where x/y is
the minimum/maximum allowed time span for an activity to go from state
“started” to “completed” [10]. Inter-task constraints limit the time distance
between the starting/ending instants of two tasks and have the form IS[u, v]IF ,
where IS is the starting (S)/ending (E) instant of the first task, while IF is
the starting/ending instant of the second one [2].

Task T4 - Physical Exercises (PE) has to be performed for a period from 20
to 30 days, i.e., from 480 to 720 hours. Task T3 - Physical Activity Monitoring
has to start (at least) 1 hour after the start of physical exercises and end
1 to 2 hours before the exercises end to avoid noisy information during the
initial and final phases of physical activities. As the T3 - Physical Activity
Monitoring (PAM) is a task, it is evident that the constraints between PAM
and PE cannot be satisfied. Indeed, as the contingent duration of PE is
not determined by the system, it can only be observed when the task ends,
and thus, PAM cannot be set to end according to the required time distance
before PE. It is worth noting that such observation holds both if we consider
PAM a contingent task, having a duration only observable by the system,
and if we consider it a ‘controllable’ task, for which the system can set the
duration. Indeed, in any case, the ending instant of PAM, even if controllable,
should be set with respect to the ending instant of PE, which has to occur
afterward. Thus, the PAM ending instant cannot be adequately set unless
there is some kind of early specification/acquisition/knowledge about the
(contingent) duration of PE.

6



Let us now explicitly specify that the duration of Physical Exercises is
set by the activity O4 - ‘Define the duration of Physical Activity’ (DDPA).
Let us also assume, for the sake of simplicity, that the system can decide
when the PAM has to end. From this perspective, how to derive when it is
required to execute DDPA to make the overall process model controllable? It
is straightforward to verify that if the system knows the overall duration of
PE at least two hours before the effective end of PE, then the end of PAM
can be set, satisfying the given constraints.

To the best of our knowledge, the early specification of contingent task
durations cannot be modeled in the current temporal business process models
and/or in the related temporal constraint networks. Representing and reason-
ing on such temporal aspects in the context of STNUs, on which temporal
business process models are mapped, will be the focus of this paper. More
specifically, we will consider the following issues:

• how to extend STNUs to represent contingent temporal constraints
having their duration acquired/decided/known possibly before their
occurrences?

• How to derive when such extended STNUs are controllable, i.e., how
early do we need to acquire/decide/know the duration of some contingent
link?

So far, all DC-checking algorithms and the respective constraint propa-
gation rules assume that the value of a contingent duration is given only at
the time of occurrence of the associated contingent timepoint. In general,
execution strategies for dynamic controllability require that a timepoint may
be assigned a value based on the knowledge of the values of all prior occurred
timepoints and prior revealed contingent durations, but not future ones.

However, in real-world applications, the duration of a contingent link
may be known before the contingent timepoint occurs because, for example,
of communication with the environment, data received, or the result of an
activity execution. In these cases, it is helpful to distinguish between the value
of a contingent duration d associated with a contingent timepoint C and the
point in time in which this duration value is revealed, i(C). This allows for
more flexible execution strategies for dynamic controllability. In particular, it
is sufficient to require that the execution of a timepoint X may depend on C
if d is known at the latest at the execution of X, i.e. if i(C) ≤ X.

So far, the STNU does not allow decoupling the value of a contingent
duration and the time of occurrence of the associated timepoint. Thus,
dynamic controllability is defined, assuming that the two coincide. To take

7



into account the possibility that the duration of a contingent link is revealed
before the contingent timepoint occurs, the STNU and the above definitions
must be extended. In the following, we introduce a conservative extension of
the STNU that admits decoupling the time in which a contingent timepoint
occurs from the time in which the duration of its contingent link is revealed.

4 STNU with Contingent Oracles

We introduce a new kind of timepoint called contingent oracle. A contingent
oracle timepoint OC is a timepoint associated bi-univocally with a contingent
link (A,C). When OC is executed, it reveals the duration of the associated
contingent link. In other words, OC can reveal the duration of the contingent
link before the occurrence of the contingent timepoint C.

Such an oracle timepoint is important because it allows the management
of networks containing timepoints that must be executed within a restricted
temporal distance from a contingent timepoint. Such a kind of network is
not DC without oracles.

For example, let us assume there is a network where a node B must
be executed exactly four units of time before the contingent node C. In a
classical STNU, such a network is not dynamically controllable because it is
impossible to know in advance when C occurs. If there exists the C oracle
OC that occurs at least four units of time before C, then it is possible to
determine when C occurs and, consequently when B must occur.

Now, let us consider the more structured case of Figure 1. Using some
transformation rules like the ones presented in [12], it is possible to represent
the process as an STNU instance. Figure 2 represents an excerpt of the
STNU, focused only on three activities of the process: “Physical activity
Questionnaire”, “Physical Activity Monitoring”, “Define duration of Physical
Activity”, and “Physical Exercise”. Each activity is represented by two
timepoints, one representing the starting instant, the other the ending one,
and one or two constraints on its duration. According to the kind of duration
(controllable or not), the duration constraints can be ordinary or contingent.
Let us consider each activity.
The activity “Physical Activity Questionnaire” is a controllable activity. The
execution agent can fix its duration. Therefore, it is represented by the two
timepoints A2 and B2 and by two ordinary constraints between A2 and B2

that impose that the duration must be in the range [1, 2]. (Without loss of
generality, we assume that the time granularity is hours and that all constraint
values are integers.)
The activity “Physical Exercise” is contingent since it is possible to fix when

8



it must start, but given a possible duration, the end of the activity can only
be observed when it occurs. Therefore, it is represented as two timepoints A4,
and C4, and by two constraints representing the upper-case and lower-case
of the contingent link associated to the activity. The duration of such an
activity must be in the range of 20 to 30 days, i.e., [480, 720] using the time
unit of hours.
The activity “Physical Activity Monitoring” is just an activity that depends
on the ”Physical Exercise” one. Therefore, its timepoints are A3 and B3,
which are constrained to be just after A4 and one day C4 at maximum,
respectively.
Last, the activity “Define the duration of Physical Activity” is represented
just by one timepoint, O4. We assume that such activity is instantaneous
since it represents just the instant in which the duration of “Physical Exercise”
is decided. In the original BPMN process, such activity is constrained to be
after the start of the monitoring activity, which must start after the “Physical
Exercise” one. We will see below how it is possible to exploit the information
associated with this activity to manage the execution of the process.

The STNU excerpt in Figure 2 is not dynamically controllable. Indeed, it
is not possible to find a schedule that assigns the right execution time to B3,
which must occur one day max before C4, without knowing in advance the
instant in which C4 is executed. On the other hand, if O4 is considered the
oracle for the activity (A4, C4), it is possible to constraint when O4 must occur
before C4 to guarantee that B3 can be scheduled correctly. In particular, in
the example, thanks to the instantaneous reaction assumption, it is sufficient
that O4 would be executed just before C4 (even on the same day, but before)
to schedule B3 correctly.

In the following, we extend the definitions of oracle dependency, execution
strategy, viable execution strategy, and dynamic execution strategy when
oracle timepoints are present.

Definition 7 (Oracle Dependency). Let SO = (T , C,L) be an STNU with
contingent oracles; let a timepoint X constrained to be before a contingent
timepoint C within a strict range; more formally, let X ∈ TX , C ∈ TC with
(A, x, y, C) ∈ L. Let X−C ≤ −a, C−X ≤ b, with 0 ≤ a < ∞ or a ≤ b < ∞,
be constraints in C such that b− a < y− x. Then, we say that X depends on
the oracle OC of C.

The oracle dependency definition expresses the requirement that if a
timepoint X is constrained to be executed with respect to a contingent
timepoint C within a time interval that is smaller than the contingent interval,
then the duration of the contingent link should be revealed in advance (i.e.,
by the oracle) in order to schedule X to satisfy the constraints.

9



Z A2 B2 A3 B3

A4 C4

Ω

O4

0

0

0 0 0

0

2

−1

720, c4:480

−480, C4:−720

0

2−10

A2, B2 represent the starting/ending event of ’Physical Activity Questionnaire’
A3, B3 represent the starting/ending event of ’Physical Activity Monitoring’
A4, C4 represent the starting/ending event of ’Physical Exercises’
O4 represents the end of ’Define the duration of Physical Activity’

Figure 2: STNU distance graph representing a possible conversion of a part
of the BPMN model in Figure 1

Definition 8 (Execution Strategy with Contingent Oracles). Let SO =
(T , C,L) be an STNU with contingent oracles. An execution strategy with
contingent oracles for SO is a mapping SO : Ω → Ξ where for each timepoint
X that depends on oracle OC for some contingent timepoint C, OC is executed
no later than X, i.e., [OC ]SO(ω) ≤ [X]SO(ω).

Definition 9 (Viable Execution Strategy with Contingent Oracles). Let
SO = (T , C,L) be an STNU with contingent oracles. An execution strategy
with contingent oracles SO for SO is viable if for each situation ω ∈ Ω the
schedule SO(ω) is a solution for SO.

Definition 10 (Dynamic Execution Strategy with Contingent Oracles). Let
SO = (T , C,L) be an STNU with contingent oracles. An execution strategy
with contingent oracles SO for SO is dynamic if, for any two situations ω′, ω′′

and any executable timepoint X ∈ T , it holds that:
if [X]SO(ω′) = k and SO(ω

′)≤k = SO(ω
′′)≤k, then [X]SO(ω′′) = k,

where SO(ω
′)≤k is the set of contingent link durations observed up to and

including time k and contingent link durations revealed up to and including
time k (i.e., with associated oracle executed up to and including time k),
called observed and revealed history until k. Since history also considers
contingent durations observed and revealed at instant k, we say that the
dynamic execution strategy implements the instantaneous reaction semantics.

Definition 11 (Agile Controllability). An STNU with contingent oracles
is agile controllable if it admits a viable dynamic execution strategy with
contingent oracles. We refer to agile controllability (AC) as the property of
being agile controllable.

10



In the following, we discuss how to check the agile controllability of an
STNU with contingent oracles.

4.1 Checking Agile Controllability

To consider the new kind of oracle timepoint, it is necessary to update the
Morris-Muscettola rules to consider the oracle role.

The affected rules are the LC and UC rules. In general, the idea is that
when a non-contingent node X has to be “strictly” scheduled with respect
to the occurrence of a contingent C, then the presence of the oracle OC is
necessary, and such an oracle node must be scheduled before C for allowing
the proper scheduling of X.

In detail, a node X has to be “strictly” scheduled with respect to a
contingent C (and not w.r.t. A) when:

• X must occur before C (there is a negative edge between C and X),

• the distance range between X and C is smaller than the contingent
allowed duration. In other words, if there is a configuration like

ACX

OC

c:x

C:− y

−u

v

0

where v − u < y − x.

In such a case, the LC and UC rules must not be applied because they
would determine a false negative loop. On the contrary, the information given
by the oracle OC must be considered to check whether X can be scheduled
correctly.

A possible rules update for implementing the above strategy is given in
Table 2.

The nLC rule replaces LC. It must be applied only when the contingent
node C does not have its oracle node OC , or the span v − u is greater than
the span y − x because, in this case, X can be scheduled w.r.t. A.

nUC and UC∗ rules replace UC. In the case of the first propagation of
upper-case labeled value (first pattern), rules nUC must be considered, and it
must be applied only when the contingent node C does not have its oracle
node OC , or the span v−u is greater than the span y−x. For all other cases,
UC∗ must be considered to propagate the wait (Y,A).

Rule ORC is new. When v − u < y − x and there is the oracle node
OC , then it is necessary to require that X must occur after OC for verifying
whether it is possible to schedule it correctly w.r.t. C. The constraints

11



Rule Conditions
Pre-existing and
generated edges

New Lower Case
(nLC):

−u ≤ 0 and (OC does
not exists or v − u ≥
y − x)

ACX c:x

C:− y

−u

v

x− u

New Upper Case
(nUC):

OC does not exist or
v − u ≥ y − x ACX −u

v

c:x

C:− y

C:v − y

UC∗ Y ̸≡ C AYX
u C:v

C:u+ v

Oracle (ORC):
X is not a contingent
node, v − u < y − x,
and OC exists.

ACX

OC

c:x

C:− y

−u

v

0

−
u

x−
u

v − x

y − u

Table 2: A possible rule update. nLC replaces LC. nUC and UC∗ replace UC.

C −u OC and Ax− u OC are after the addition of X 0 OC and the NC rule
could determine them; we propose to add such values directly to understand
the rule better. The constrains X v − x A and A y − u X are necessary to
bound timepoints X and A as explained in the next section.

4.2 Some Issues with the New Rules

The new rules nLC, nUC, and ORC contain a new aspect for AC checking that
is not present in the propagation rules for DC checking of STNUs proposed
so far. Rules nLC and nUC are alternatives to rule ORC, and the constraints
determined by nLC and nUC are not compatible with the ones determined
by ORC.

In case there is an oracle timepoint for a contingent link, nLC and nUC
can be applied if the interval span between the external timepoint X and
the contingent one C, i.e., v − u, is greater than the span of the contingent
link, i.e., y − x. The constraint values v and u can be modified during an AC
checking by the propagation of external values. The bounds of a contingent
link, x and y, cannot be modified. Therefore, the span v − u might become
smaller than y − x. If such an event occurs, only the LC rule should be
applied, and the previous constraints between A and X should not be present,
but they are already propagated.

For example, let us consider the sample STNU graph pattern in Figure 3.
Let us assume that, initially, X v C and C −u X are such that v−u ≥ y−x.
Therefore, the rules nLC and nUC are applied, and they determine the
constraints Ax− u X and XC:v − y A, respectively.

12



ACX

OC

c:x

C:−y

−u

v′ = u

0

−
u

x−
u

C:v − y

x− u

(a) Sample STNU graph showing that
values determined by nLC and ORC are
incompatible

ACX

OC

c:x

C:−y

−u′ = −v

v

0

−
v

x−
v

C:v − y

x− u

(b) Sample STNU graph showing that
values determined by nUC and ORC are
incompatible

Figure 3: Two sample cases to show that values determined by nLC/nUC
and ORC are incompatible.

There are two cases.

1. v becomes smaller
Let us assume that, during the checking, v becomes smaller, e.g., it becomes
v′ equal to u, i.e., v′ = u (see Figure 3a). Such a value is still a value for which
the network is still dynamically controllable if the oracle OC is considered.
Indeed, because v′ − u = 0 and 0 ̸≥ y − x by definition of contingent link,
ORC is applied (for now, we add only the gray values of ORC rule), and the
new constraints (with the oracle behavior) guarantee to schedule X correctly
at runtime.

On the other hand, the already present Ax− u X determines that the cycle
(A,X,C,A) becomes negative because x−u+u−y = x−y < 0 in the AllMax
projection.1 Such a negative cycle shows that if the contingent link assumes
its maximum duration, the constraint Ax− u X is too strict. Even assuming
that the oracle replaces the contingent link with two ordinary constraints
representing the exact duration, the propagation of such constraints cannot
change the value of Ax− u X when the duration is maximum. So, in any case,
Ax− u X must be removed from the network. It is also necessary to remove
all possible derived constraints from Ax− u X so far in the network.

As concerns the last added wait XC:v − y A, it is useless, and it will be
replaced by a stricter constraint every time that the oracle reveals the exact
duration of the contingent link.

In summary, to manage this case, it is necessary to remove Ax− u X
and all its derived constraints, apply the ORC rule with its red constraint

1The check of a negative cycle in AllMax projection is the final phase of the Morris’ DC
checking algorithm. The AllMax projection is an STN derived from the network where all
upper-case constraints are transformed into ordinary constraints, and lower-case constraints
are not considered. The goal of such a phase is to verify that the network is controllable
when all contingent links assume their maximum value. The constraints implied by the
assumption that all contingent links assume their minimum values are already present in
the network as ordinary constraints.

13



Ay − u X.

2. −u becomes smaller (more negative)
Let us assume that, during the checking, −u becomes smaller, e.g., −u′ = −v.
Such a value is still one for which the network is still dynamically controllable
if the oracle OC is considered (see Figure 3b).

Again, since 0 < y − x, nLC is not applied (this is a critical fact!), while
ORC is applied (for now, we add only gray values of ORC), and the new
constraints (with the oracle behavior) guarantee to schedule X correctly at
runtime.

In this case, no negative cycle (X,A,C,X) arises because in the AllMax
graph, the constraint Ac:x C is not considered, and, therefore, cannot generate
a negative cycle.2

In this case, it is the wait XC:v − y A that could become too strict. Indeed,
when v > y, the wait becomes positive and, by LR rule, an ordinary constraint
Xv − y A. Now, suppose that, at runtime, the oracle reveals that C − A =
x. The constraints between X and A should be updated as Xv − x A and
A−v + x X. The new constraint Xv − x A is weaker than the already present
Xv − y A, so it is not added. Now, Xv − y A and A−v + x X determines a
negative cycle at runtime!

Therefore, it is necessary to remove XC:v − y A and all its derived con-
straints; then, apply ORC including its red constraint Xv − x A.

Note that since XC:v − y A could have a positive value and, therefore,
becomes an ordinary constraint, it is not possible to rely on the upper-case
letter to identify it and all its derived constraints.

A first new AC-checking algorithm that manages contingent links with
oracles is the following (∆X = v − u and ∆C = y − x).

2Note: if nLC had applied with the new value for −u, then Ax− u X would have become
Ax− v X, and in the AllMax graph, there would have been a negative cycle.

14



ACXY

OC

c:x

C:−y

−u

v

−u′

v′

{C:v − y}XC

{x− u}XC

{C:v′ + v − y}XC

{x− u− u′}XC

Figure 4: Sample STNU having labeled values generated by nLC and nUC.

Algorithm 1: AC-CHECKING

Input: STNU G = (V,E). A contingent node C can have an oracle OC .
Output: YES if the STNU is agile controllable, NO otherwise.
AC := ⊤;
do

Apply Morris’ rules: NC, CC, and LR;
Apply rules: nLC and nUC;
foreach oracle OC , C−u X, Xv C do

if ∆X < ∆C and ORC has not been applied then
Remove possible previously generated wait between X and A
and all its derived edges;

Remove possible previously nLC-generated constraint X −A
and all its derived edges;

Apply rule ORC;

AC := Check consistency of corresponding AllMax graph;

while AC and some new edges have been added ;
return AC;

4.3 An Alternative Approach to Avoid Backtracking

Backtracking can slow down the actual computation of checking, and it is
not simple to manage cases where it is necessary to manage backtracking for
more contingent links.

Accepting the cost of more memory, it seems more straightforward to
properly label some derived values (like the ones derived by nLC or nUC
when the involved contingent node has an oracle) and use them only while
they are valid.

In more detail, let us denote by {v}XC
a value derived by a value deter-

mined using the nLC or nUC rule involving a node X, a contingent one C
when X must occur before C and C has an oracle OC .

Figure 4 shows an example of an STNU where values determined by nLC
and nUC are labeled.

15



ACXY

OC

c:x

C:−y

−u

v

−u′

v′

{0}
X
C

{−
v}

X
C

{x
−
v} X

C

{v ′}
X
C

Figure 5: Sample STNU having labeled values generated by ORC.

While a proper wait can only be backpropagated, the value determined
by the nLC can be forward propagated. Therefore, it is also possible to have
constraints that require combining different labeled values X{v}XC A {u}YD F .
In this case, we combine the values remembering the labels X {v + u}XCYD F .

When ORC is involved, let us denote by {v}XC
a value derived by the rule

ORC considering a node X, a contingent one C when X must occur before
C and C has an oracle OC .

Figure 5 shows an example of an STNU where values determined by ORC
are labeled.

Labeled values can be considered for propagation only when their labels
do not contain opposite components. For example, the two constraint values

X{v}XC A
{u}XC F cannot be combined by the NC rule. Indeed, X{v}XC A was

derived by an initial nUC rule on contingent link (A,C), while A
{u}XC F was

derived by an initial ORC rule on the same contingent link (A,C); the two
rule values are mutually exclusive and, therefore, cannot be combined.

Now, let us consider a case in which a negative cycle is detected. A negative
cycle is detected when there is a self-loop on a node having a negative value
v. The label ℓ associated with v can have one of the following configurations:

1. ℓ label. It occurs when the negative cycle does not depend on any
contingent. The network is not AC. AC check must stop.

2. ℓ has only one component, e.g., {v}XC
. The negative cycle depends

on the values determined by the nLC/nUC rule involving X and C.
All values having label XC must be ignored from now on. If also all
values labeled by XC must be ignored (because of a previous negative
cycle involving them), then it is not possible to have a schedule for X
satisfying all constraints. The network is not AC. AC check must stop.

3. ℓ has two or more components. e.g., {v}XCYD
. To discuss this case,

let us consider ℓ = {v}XCYD
. In this case, values having labels con-

taining XCYD cannot be more propagated. On the contrary, all values
having a label containing any other combinations of XC and YD (e.g.,
XCYD, XCYD, XCYD) can be propagated.

16



If all other combinations of components XC , YD have been blocked in
the past, then it is not possible to find a configuration for timepoints
X,C,D that is agile controllable. Hence, the network is not AC.

5 Discussion

A constraint propagation algorithm based on the new rules constitutes a
possible approach to the AC-checking of an STNU with contingent oracles.
However, as detailed in Section 4.2, the constraint propagation may lead
to a tightening of the allowed span ∆X between an external timepoint X
and a contingent timepoint C with contingent oracle such that ∆X becomes
smaller than the contingent span ∆C between the activation timepoint and
the contingent timepoint. In this case, the new rules should not be applied,
and any previously derived constraint c between A and X should be removed,
as well as any other constraints derived from c.

A first possible solution to manage such a situation is presented in Algo-
rithm 1, which is a loop with a first application of the subset of Morris and
Muscettola’s rules that are not replaced by our new rules, followed by the
application of the new rules, and finally by the removal of any derived con-
straints incompatible with ∆X < ∆C . However, this backtracking approach
can significantly slow down the AC-checking, as it requires removing some of
the derived constraints with some rules and applying other rules again. This
performance decrease of the new constraint propagation algorithm compared
to a classical algorithm using only Morris and Muscettola’s rules is even more
pronounced when several contingent oracles are involved. On the positive
side, the memory requirements of the new algorithm do not increase with
respect to the classical algorithm.

In Section 4.3, we discussed an approach alternative to the backtracking
algorithm. The approach requires labeling derived constraints based on the
rules used to derive the constraints. With this approach, when a tightening
such that ∆X < ∆C holds, it is sufficient, in the propagation, to ignore con-
straints with specific labels without having to delete any derived constraints.
This has the benefit of avoiding backtracking and the corresponding significant
slowdown in the AC-checking. However, the price to pay in this case is in
terms of memory, as more complex labels have to be managed.

We observe that the new rule set is not commutative, meaning that the
result of a complete constraint propagation (i.e., until quiescence) based on the
rule set depends on the order of application of the rules. An implication of this
fact, leading to two possible approaches to check the dynamic controllability
of an STNU with contingent oracles, is outlined here. More sophisticated

17



and efficient approaches for AC-checking based on the proposed rule set are
currently being investigated.

6 Conclusion

We have shown that there exist process models that the traditional STNU
cannot represent faithfully with respect to the temporal aspect. In particular,
this is the case of process models in which contingent durations may be known
before their completion. This representational bias results in wrong results of
the checks for dynamic controllability as such STNUs may be identified as
not dynamically controllable when they actually are.

Here, we introduced a conservative extension of the STNU with contin-
gent oracles and formalized agile controllability as an extension of dynamic
controllability for such an extended STNU. We discussed possible algorithmic
approaches to check the agile controllability of such networks. This initial
discussion forms the basis for a research agenda to define sound and complete
solutions to efficiently check the controllability of a broader set of process
models.

References

[1] Claudio Bettini, X Sean Wang, and Sushil Jajodia. Temporal reasoning
in workflow systems. Distributed and Parallel Databases, 11(3):269–306,
2002.

[2] Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posenato.
Representing business processes through a temporal data-centric work-
flow modeling language: An application to the management of clinical
pathways. IEEE Trans. Syst. Man Cybern. Syst., 44(9):1182–1203, 2014.

[3] Carlo Combi and Roberto Posenato. Controllability in temporal concep-
tual workflow schemata. In Lecture Notes in Computer Science, volume
5701, pages 64–79. 2009.

[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Artificial intelligence, 49(1-3):61–95, 1991.

[5] Kagedan DJ, Ahmed M, Devitt KS, and Wei AC. Enhanced recovery
after pancreatic surgery: a systematic review of the evidence. HPB
(Oxford), 17:11–17, 2015.

18



[6] Johann Eder, Marco Franceschetti, and Julius Köpke. Controllability of
business processes with temporal variables. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pages 40–47, 2019.

[7] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Workflow
time management revisited. In Seminal contributions to information
systems engineering, pages 207–213. Springer, 2013.

[8] Luke Hunsberger. Efficient execution of dynamically controllable simple
temporal networks with uncertainty. Acta Informatica, 53:89–147, 2016.

[9] Luke Hunsberger, Roberto Posenato, and Carlo Combi. The Dynamic
Controllability of Conditional STNs with Uncertainty. In Workshop on
Planning and Plan Execution for Real-World Systems: Principles and
Practices (PlanEx) @ ICAPS-2012, pages 21–29, June 2012.

[10] Andreas Lanz, Manfred Reichert, and Barbara Weber. Process time
patterns: A formal foundation. Inf. Syst., 57:38–68, 2016.

[11] Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability
revisited. In 20th National Conf. on Artificial Intelligence (AAAI-2005),
pages 1193–1198, 2005.

[12] Roberto Posenato, Francesca Zerbato, and Carlo Combi. Managing
Decision Tasks and Events in Time-Aware Business Process Models. In
Business Process Management. BPM 2018, volume 11080 of LNCS, pages
102–118. Springer, 2018.

[13] Thierry Vidal. Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experimental & Theoret-
ical Artificial Intelligence, 11(1):23–45, 1999.

[14] Thierry Vidal and Hélène Fargier. Handling contingency in temporal
constraint networks: from consistency to controllabilities. J. Exp. Theor.
Artif. Intell., 11(1):23–45, jan 1999.

19



University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

https://www.di.univr.it


