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Abstract: Sequencing of the low-complexity ORF15 exon of RPGR, a gene correlated with retinitis
pigmentosa and cone dystrophy, is difficult to achieve with NGS and Sanger sequencing. False results
could lead to the inaccurate annotation of genetic variants in dbSNP and ClinVar databases, tools on
which HGMD and Ensembl rely, finally resulting in incorrect genetic variants interpretation. This
paper aims to propose PacBio sequencing as a feasible method to correctly detect genetic variants
in low-complexity regions, such as the ORF15 exon of RPGR, and interpret their pathogenicity by
structural studies. Biological samples from 75 patients affected by retinitis pigmentosa or cone
dystrophy were analyzed with NGS and repeated with PacBio. The results showed that NGS has a
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low coverage of the ORF15 region, while PacBio was able to sequence the region of interest and detect
eight genetic variants, of which four are likely pathogenic. Furthermore, molecular modeling and
dynamics of the RPGR Glu-Gly repeats binding to TTLL5 allowed for the structural evaluation of the
variants, providing a way to predict their pathogenicity. Therefore, we propose PacBio sequencing as a
standard procedure in diagnostic research for sequencing low-complexity regions such as RPGRORF15,
aiding in the correct annotation of genetic variants in online databases.

Keywords: long-read sequencing; RPGR; PacBio; molecular dynamics; molecular docking; TTLL5

1. Introduction

Next-generation sequencing (NGS) was a breakthrough in molecular biology, provid-
ing a cheaper and faster method for sequencing DNA compared to the previous techniques,
such as Sanger sequencing [1]. NGS techniques, among which Illumina is the most rep-
resented, rely on specific laboratory procedures, specifically DNA fragmentation, DNA
end-repair, adapter ligation, surface attachment, and in situ amplification. A huge amount
of data is produced, and thanks to bioinformatics analysis, it is possible to detect genetic
mutations like single-nucleotide polymorphisms (SNPs) and indels [1,2]. NGS is considered
a “short-reading” approach because it permits the sequencing of short fragments of DNA of
300 bp length (on average), this being its main limitation because it impedes the sequencing
of low-complexity and/or GC-rich regions [3]. NGS strongly supports molecular genetics,
allowing us to identify many genetic variants and to define the genetic onset of many
genetic diseases. However, its limitations impede the study of many genes, which present
low-complexity regions, and of specific chromosomal regions, in which massive arrays of
tandem repeats predominate [3]. These limitations require developing a new sequencing
technique: Third-generation sequencing (TGS). TGS, unlike NGS, comprises long-read
sequencing approaches and is represented mainly by Pacific Biotechnology (PacBio) or
Oxford Nanopore [2,3].

PacBio works on circular DNA fragments, while Oxford Nanopore works on linear
DNA fragments. Moreover, PacBio relies on fluorescently labeled nucleotides for nucleotide
detection, while Oxford Nanopore relies on an electronic signal disruption caused by the
passage of DNA in a nanopore. The PacBio technique can analyze sequences up to 300 Kb,
while Oxford Nanopore can analyze sequences up to 4 Mb. Finally, they can both detect
epigenetic modifications. These techniques also have some disadvantages. PacBio is
expensive, both in the instrumentation and in the sequencing cost. Moreover, the accuracy
of these techniques was originally low, and it did not permit their scalability in a diagnostic
setting. PacBio accuracy has recently increased dramatically, reaching 99.99%, while Oxford
Nanopore recently reached 99.9% [2–4].

This work aims to propose PacBio sequencing for diagnostic applications, focusing
on RPGRORF15 sequencing. RPGR is a gene related to retinitis pigmentosa (RP) and cone
dystrophy. Mutations to RPGR are responsible for over 70% of the X-linked Retinitis
pigmentosa cases and for over 73% of all cone and rode cone dystrophy cases [5,6]. RPGR
has two isoforms, namely RPGRdefault and RPGRORF15. RPGRdefault comprises 19 exons,
while RPGRORF15 shares the first 14 exons with RPGRdefault, along with a distinct ORF15
exon [7], [8]. The first ten exons code for an RCC1 (regulator of chromatic condensation
1-like) domain, which is involved in the regulation of small GTPases, while the ORF15 exon
is a 1 kb-long, highly repetitive, low complexity, purine-rich region, terminating with a
C-terminal tail region with unknown function (basic domain) [7,9]. The low complexity of
ORF15 makes NGS or Sanger sequencing ineffective for routine sequencing, thus increasing
the possibility of false negative or false positive results [8,10]. Considering that ORF15 is
a mutation hotspot of RPGR (Figure S1), a great number of variants associated with this
region are uploaded in the database of single nucleotide variants (dbSNP), commonly used
worldwide to detect variants and diagnose hereditary genetic diseases and on which online
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databases and tools such as HGMD and Ensembl rely [11,12]. Indeed, most of the genetic
variants correlated to Retinitis Pigmentosa have been found in RPGRORF15 [13]; thus, a
robust, accurate, and scalable test to sequence ORF15 is necessary for a precise genetic
diagnosis. Finally, precise genetic variants identification will permit the implementation of
personalized medicine strategies, like gene therapy, thus providing a new treatment option
to RP patients [8].

Regarding its molecular structure, the photoreceptor-specific ORF15 variant of RPGR
RPGRORF15 contains multiple Glu-Gly tandem repeats and a C-terminal basic domain
unknown in function and is localized to the connective cilium where it is thought to regulate
cargo transport. The tubulin tyrosine ligase like-5 (TTLL5) glutamylates RPGRORF15 in
its Glu-Gly–rich repetitive region, which contains motifs homologous to the α-tubulin
C-terminal tail; loss of glutamylation has pathological consequences in developing retinal
dystrophy [7]. The C-terminal basic domain of RPGRORF15 interacts with the TTLL5
noncatalytic cofactor interaction domain, which is unique among the glutamylases of
the TTLL family and targets TTLL5 to glutamate RPGR as a result. TTLL5 is the only
glutamylase in the TTLL family that interacts with RPGRORF15 when expressed transiently
in cells [7]. While the association of TTLL5 variants with loss of glutamylation due to
enzymatic deficiency has already been characterized [14–16], less is known for the loss of
glutamylation due to variants affecting the RPGRORF15. The interaction of the TTLL enzyme
family with regions rich in Glu-Gly repeats has been studied in detail for some cases as
glutamylation of tubulin by TTLL4 and TTLL6 [17], and while the general mechanism of
initiation and elongation can be extended to the whole family, specific characterization of
the TTLL5/RPGRORF15 interaction to support the effect of variants on the Glu-Gly-rich
region is lacking.

2. Results
2.1. Study Cohort Characteristics

Table 1 reports the clinical characteristics of the probands analyzed for this study.

Table 1. Clinical data of the patients. The pathology was considered familiar if other cases were
present in their clinical familiar history. All the analyzed patients were unrelated.

Characteristics Case Subjects (n = 75)

Age (years) Mean 51 ± 17
Median 52 ± 17

Females/Males 35/40 (47%/53%)

Diagnosis

Hereditary non-syndromic
retinal dystrophies 5 (7%)

Retinitis pigmentosa 56 (75%)
Cone dystrophy 8 (10%)

Macular distrophy 6 (8%)

Age of onset (years)
Mean 25 ± 16

Median 24 ± 16
Unknown n = 8

Familiarity
Familiar 26 (35%)
Sporadic 40 (53%)

Unknown 9 (12%)

2.2. NGS Sequencing Coverage

Figure S2 shows four examples of pitfalls in the NGS sequencing coverage of RPGRORF15

exon 15. Table S1 summarizes the NGS sequencing coverage of RPGR ORF15 exon in the
analyzed samples. As can be seen from Figure 1, NGS sequencing coverage is low, and
most of the samples (73 patients) had a sequencing coverage between 50.0% and 65.0%.
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Figure 1. NGS sequencing coverage of RPGR ORF15 exon in the analyzed samples.

2.3. PacBio Sequencing Results

Table 2 reports the genetic variants identified in the RPGR gene with PacBio sequencing.
On average, 98.12% of reads mapped to the entire genome. Within the region, coverage
averaged 3587.44 with a standard deviation of 436.58. PacBio sequencing was able to
detect in eight unrelated patients eight genetic variants that were not identified with NGS
sequencing, four of which were predicted to be likely pathogenic. Table 3 compares the
clinical characteristics between the probands in which RPGR variants were identified and
the other probands.

Table 2. Genetic variants identified in RPGR gene in patients with PacBio sequencing.

ID Nucleotide Variant rsID Verdict Zygosity

1 NM_001034853.2:c.2919_2940dup / Likely Pathogenic 0/1

2 NM_001034853.2:c.2203_2226del rs768423834 Uncertain Significance 0/1

3 NM_001034853.2:c.2203_2226del rs768423834 Uncertain Significance 1/1

4 NM_001034853.2:c.2820_2841dup / Likely Pathogenic 0/1

5 NM_001034853:c.1871A>C / Uncertain Significance 0/1

6 NM_001034853:c.3423G>T / Uncertain Significance 1/1

7 NM_001034853.2:c.3262_3263insA / Likely Pathogenic 0/1

8 NM_001034853.2:c.2820_2841dup / Likely Pathogenic 0/1
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Table 3. Clinical characteristics of the probands in which RPGR variants were identified and of the
other probands. The pathology was considered familiar if other cases were present in their clinical
familiar history. All the analyzed patients were unrelated.

Characteristics Patients with RPGRORF15

Mutation (n = 8)
Case Subjects (n = 67) p-Value

Age (years) Mean 35 ± 11 53 ± 15
<0.05Median 36 ± 11 53 ± 15

Females/Males 4/4 (50%/50%) 31/36 (46%/54%) -

Diagnosis

Hereditary
non-syndromic retinal

dystrophies
0 (0%) 5 (7%)

-
Retinitis pigmentosa 3 (37.5%) 53 (79%)

Cone dystrophy 2 (25%) 6 (9%)
Macular dystrophy 3 (37.5%) 3 (5%)

Age of onset (years)
Mean 13 ±11 27 ± 16

<0.05Median 10 ± 11 27 ± 16
Unknown n = 0 n = 8

Familiarity
Familiar 2 (25%) 24 (36%)

-Sporadic 3 (37.5%) 37 (55%)
Unknown 3 (37.5%) 6 (9%)

2.4. Structural Analysis of TTLL5 Core Domain Binding

The RPGRORF15 sequence diverges from the default variant, which is not glutamylated,
at its C-terminal half, consisting of a region rich in Glu-Gly repeats followed by a C-
terminal basic domain (Figure 2). The repeat region contains glutamate-rich motifs (GEEEG)
homologous to the a-tubulin C-terminal tail and is glutamylated by the TTLL5 core domain.
The basic domain, highly conserved among vertebrates, is crucial for recruiting TTLL5 [7,18].

Figure 2. Graphical representation of RPGRORF15 and TTLL5 interaction. The basic domain (BD)
of RPGRORF15 recruits TTLL5 and binds to its noncatalytic CID domain. The in-frame deletion is
indicated in red.

The variants we identified are of the stop gained type, leading to the loss of almost the en-
tire length of the ORF region and basic domain, except for the NM_001034853.2:c.2203_2226del
p.(His735_Glu742del) (Figure 2). Such a variant leads to the loss of a GEGE tandem repeat but
retains the structure of RPGRORF15 and was therefore used as a model for the interaction. The
model of the TTLL5 core domain was obtained by homology modeling to the most recent
evidence of TTLL6 structure, where an initiation analog is bound to the active site. The
analog mimics a di-Glu peptide where the donor glutamate is linked to the γ-carboxylic
acid of acceptor glutamate through a phosphinate. The di-Glu was split by removing the
phosphinate and was transformed into the donor and the acceptor glutamate. The latter
was interpreted as Glu737 in RPGRORF15, the glutamination site in the deleted peptide seg-
ment from the NM_001034853.2:c.2203_2226del p.(His735_Glu742del) variant. The Glu737
was then expanded at each terminus to reproduce the structure of the deleted peptide
and then docked into the crevice of the active site by holding Glu737 fixed, working as an
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anchor. Such experiment-based positional restraint imposes the right orientation for the
peptide to be docked and lowers its conformational space, thus improving the accuracy
of the docked structures. The final model shows the peptide GEEEHGE737GEEEE filling
the positively charged crevice centered on the active site with each glutamate sidechain
closely interacting with at least one lysine/arginine residue (Figure 3). Interestingly, the
only non-Glu/non-Gly residue, the His375, finds its sidechain deeply inserted in a sub
pocket of the crevice and involved in a π-interaction with Ser307; such interactions have
been recently proposed as relevant in protein-protein binding with stabilization energy
ranging from −20 kJ mol−1 to −40 kJ mol−1 [19].

Figure 3. Surface and cartoon view of TTLL5 active site. The peptide (in pink, shown as sticks) fits
into the crevice centered at the active site, with Glu737 directed towards ADP. Glutamates align to
form electrostatic interactions with the positively charged residues (shown as lines in the cartoon
view), stabilizing the peptide into the pocket. The structural components surrounding the peptide
chain are shown in light orange (loops α1-β1, α2-β3, β6-β7, and helix α6), with the rest of the protein
shown in green; the donor glutamate is shown in cyan; magnesium ions and ADP are shown in gray
and orange, respectively.

Molecular dynamics simulations of free and bound TTLL5 were performed to further
characterize the binding of the RPGRORF15 glutamate-rich segments. Comparing the
average structure of the bound TTLL5 simulations with the experimental structure of
TTLL6 bound to the initial analog (PDB entry 6VZW) showed that the β6-β7 loop adopts a
different conformation (Figure 4b), in accordance with the results reported in [20] on the
importance of this loop to the unique activity of TTLL5. Jointly with loops α1-β1 and α2-β3,
it forms the crevice where the glutamate-rich segment can bind (Figure 3). Furthermore,
the β6-β7 is also rearranged in the bound simulation, adapting to an open conformation to
accommodate the RPGRORF15 segments (Figure 4A), as also shown by the center of mass
(COM) distance between the respective loops forming the crevice (Figure S3).

To understand how the binding of different glutamate-rich segments would affect the
active site of TTLL5, we performed the modeling and molecular dynamics simulations of two
more peptide structures of the same length of the Glu737 centered GEEEHGE737GEEEE: (i) the
peptide resulting from the NM_001034853.2:c.2203_2226del p.(His735_Glu742del) variant,
centered on E734, EEGGEEE734GDREE; (ii) a peptide reproducing different glutamylation
site, centered on E870, EGEGEEE870GEEGE. To assess the structural stability of TTLL5
core domain bound to such different segments, the RMSD of each bound peptide was
evaluated. The results showed the two wildtype segments GEEEHGE737GEEEG and
EGEGEEE870GEEGE to be stable, while the post-deletion sequence EEGGEEE734GDREE
showed significant deviation, as shown in Figure 5.
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Figure 4. Loop configurations around the binding site. (A) Comparison of the binding cavity between
the average structure of the bound (light green) and free (light red) TTLL5. The β6-β7 loop is slightly
displaced to accommodate the peptide chain. (B) Comparison of the binding cavity between the
average structure of the TTLL5 bound to the GEEEHGE737GEEEE (light green) and TTLL6 (light
cyan). The open configuration is evident in TTLL5, with a notable displacement of the β6-β7 loop.
Loops are marked with higher opacity.

Figure 5. RMSD of each peptide chain bound to TTLL5. While the variant (shown in light green)
is characterized by large movements for the first 100 ns, the two wildtype segments (shown in
dark green and yellow) are subject to fewer fluctuations, especially the one with Glu737 as the
glutamylation site.

3. Discussion

Genetic mutations to RPGR are responsible for over 70% of X-linked Retinitis pigmen-
tosa and rode cone dystrophy cases [5,6,21]. Nevertheless, sequencing of RPGRORF15, one
of RPGR’s two main isoforms, is still challenging with NGS, and it can be associated with a
considerable amount of false results [8,10]. TGS has recently been proposed for diagnostic
purposes, considering that its accuracy has highly improved in recent years [22,23]. Thus,
this study aimed to propose PacBio for diagnostic sequencing, focusing on RPGRORF15.
Furthermore, molecular modeling and dynamics of the RPGR GLU-GLY repeats binding to
the TTLL5 core domain allowed for the structural evaluation of the variants, providing a
way to predict their pathogenicity.

As shown in Figure 1 and Figure S2, NGS is not suitable for sequencing RPGRORF15

because its coverage highly decreases in exon 15, resulting in possible false results. On the
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other hand, in our study, PacBio sequencing identified eight genetic variants of RPGRORF15

that were not detected by NGS sequencing in the analyzed patients (Table 2). Among them,
four were predicted to be likely pathogenic. In addition, the comparison of the clinical
data of the patients with RPGRORF15 mutations with the clinical data of the other analyzed
patients revealed that the age and the age of onset were significantly different (p < 0.01),
suggesting that RPGRORF15 mutations could lead to an earlier onset pathology (Table 3).
These results support the use of PacBio sequencing for genetic diagnosis of RPGRORF15

mutation, considering that NGS did not identify many genetic variants and that these
variants seem to be involved in retinal dystrophy onset. NGS of the low-complexity region
can also provide false results, which in turn could lead to the inaccurate annotation of
genetic variants in dbSNP [24] and ClinVar [25] databases, tools on which HGMD [11] and
Ensembl [12] rely, finally resulting in incorrect genetic variant interpretation and impeding
an efficient genetic diagnosis.

Considering the occurrence of pathogenic variants in the unstructured ORF15 do-
main, we modeled the interaction between the RPGRORF15 Glu-Gly rich segments and
the TTLL5 core domain to derive structural information about the interaction with the
observed variants. Indeed, the results showed that Glu-Gly rich segments of RPGRORF15

similarly bind TTLL5 to that observed in the α-tubulin tail, with loops α1-β1, α2-β3, and
β6-β7 adapting to an open conformation and stabilizing the bound segment by forming
electrostatic interactions with the negatively charged glutamates.

The main limitation of this study is the small number of patients analyzed with PacBio
sequencing. A bigger cohort of patients could support the main aim of the article, proving
that TGS is the best solution for sequencing low-complexity regions and that NGS could
result in false negative or false positive results. Moreover, further molecular modeling
studies on the uncharacterized interaction between RPGRORF15 basic domain and the cofac-
tor interaction domain of TTL5 could yield insight into the pathogenicity of the variants
found in this region. Finally, more detailed clinical data could be useful in finding possible
correlations between genetic variants in RPGRORF15 and disease severity. Nevertheless,
long-read sequencing could be a feasible approach to sequence low-complexity regions
for diagnostic purposes, considering NGS as a first option for the other regions. At the
same time, molecular dynamics can add useful knowledge of proteins involved in disease
onset, increasing our chance to identify pathogenic variants, and searching for possible
new therapeutic targets.

4. Materials and Methods
4.1. Subjects and Samples

We analyzed 75 Caucasian subjects diagnosed with retinitis pigmentosa or cone
dystrophy. All patients were recruited and underwent detailed clinical examinations
by different Italian hospitals. All patients underwent pre-test counseling, during which
clinical data—including personal and family history—were collected and evaluated. The
patients were informed about the significance of genetic testing. All of them gave their
written informed consent in compliance with the Declaration of Helsinki. Genomic DNA
was isolated from peripheral blood or saliva using a commercial kit (SaMag Blood DNA
Extraction Kit (Sacace Biotechnologies, Como, Italy)) according to the manufacturer’s
instructions.

4.2. NGS Sequencing

A large custom panel [approximately 2.4 Mb cumulative target length (GRCh38/hg38)],
encompassing several genes related to retinitis pigmentosa and cone dystrophy among
which RPGR, were used for NGS analysis. The DNA probe set was designed to cap-
ture the coding exons and flanking regions of each gene of the panels using the Twist
Custom Panel Design Technology (Twist Bioscience, South San Francisco, CA, USA
https://www.twistbioscience.com/products/ngs accessed on 20 September 2023). The
subpanel of analyzed genes were selected on the basis of literature or databases [Human

https://www.twistbioscience.com/products/ngs
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Gene Mutation Database (HGMD Professional), Online Mendelian Inheritance in Man
(OMIM), Orphanet, NCBI GeneReviews, NCBI PubMed and specific database].

Library preparation from genomic DNA samples was performed according to the
manufacturer’s protocol using the Twist Library Preparation EF Kit and Twist Universal
Adapter (UDI) System with Standard Hybridization Target Enrichment (Twist Bioscience).
Briefly for library preparation, 50 ng of each genomic DNA was enzymatically fragmented
to yield fragments of 450–550 bp, and end repaired and dA-Tailed in the same reaction.
Then, the Twist universal adaptor was ligated on fragments, SPRI purified and enriched
by 7 PCR cycles with Twist Unique Dual Index Primers. Next, 187.5 ng of each purified
Libraries was then hybridized to the Twist oligo probe capture library for 16 hr in a
twelve-plex reaction. After hybridization, washing, and elution, the eluted fraction was
PCR-amplified with 9 cycles and purified. A 150 bp paired-end reads sequencing was
performed on MiSeq personal sequencer (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. A total of 24 pool library samples were loaded on Miseq using
MiSeq V3 kit.

4.3. SMRTbell Library Preparation and TGS Sequencing

The SMRTbell library to sequence RPGRORF15 was prepared following the PacBio protocol
guidelines Procedure & Checklist—Preparing SMRTbell® Libraries using PacBio® Barcoded
Universal Primers for Multiplexing Amplicons—Part Number 101–791-800 Version 02 (April
2020) [26]. All assays were performed as already described in our publication [27].

For the first-round PCR, forward target-specific primer (5′-GACAG-TTACATGGA
AGGTGCAA-3′) and reverse target-specific primer (5′-TACCAG-TGCCTCCTATTGTCTT-
3′) tailed to F/R universal sequences were designed to amplify the ~1.7 kb DNA fragment
spanning the entire RPGRORF15 gene exon 15 sequence (NM_001034853). Primer design was
performed using the freely available program Primer3web [28] and, to avoid mispriming,
the primer couple was tested in silico using NCBI PrimerBLAST [29] and the UCSC tool
In-Silico PCR [30]. First- and second-round PCR were performed using PrimeSTAR GXL
Polymerase (TaKaRa Bio, Shiga, Japan). The polymerase was tested and confirmed in
our precedent work. Second round PCR products were purified using 0.45X AMPure PB
beads (Pacific Biosciences, Menlo Park, CA, USA) and DNA concentrations were read on
a Qubit 2.0 Fluorometer using the Qubit dsDNA Broad Range Assay Kit (Invitrogen Life
Technologies, Carlsbad, CA, USA).

For an amplicon size ranging from 1 to 3 kb, the input DNA amounts per pool should
be between 500–1000 ng. Depending on the recorded concentrations, we proceeded by
calculating the necessary microliters of each sample so as to obtain a total amount of 1000 ng.
The pooled PCR amplicons were then concentrated using AMPure PB Beads. The next
step consisted in the construction of the SMRTbell library, which involves DNA damage
repair, End-repair/A-tailing, and adapter ligation. All the steps are described in the PacBio
procedure with specific reagent and amounts [26]. The SMRTbell Templates were then
purified again with AMPure PB before sequencing.

4.4. Bioinformatics and Genetic Variants Classification

The pathogenicity of all identified variants was evaluated according to the American
College of Medical Genetics and Genomics guidelines (ACMG) [31], with the help of Var-
Some [32], dbSNP [24], ClinVar [25], and gnomAD [33] databases, thanks to an in-house
bioinformatics pipeline [34]. Fastq (forward-reverse) files were obtained after sequencing.
Bioinformatic analysis was performed as previously described [35,36]. Briefly, the sequenc-
ing reads were mapped to the reference genome (hg38/GRCh38) using Burrow-Wheeler
Aligner (version 0.7.17-r1188) software. Duplicates were removed using SAMBAMBA
(version 0.6.7) and MarkDuplicates GATK (version 4.0.0.0). The BAM alignment files gen-
erated were refined by local realignment and base quality score recalibration, using the
RealignerTargetCreator and IndelRealigner GATK tools. Minor allele frequencies (MAF)
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were retrieved from the Genome Aggregation Database [33]. Long-read sequencing data
were analyzed using an in-house bioinformatics pipeline [37].

4.5. Molecular Modeling of TTLL5-RPGRORF15 Interactions

The model of the TTLL5 core domain was obtained by homology modeling to the
TTLL6 structure reported in PDB entry 6VZW, where an initiation analog is bound to the
active site of TTLL6. The analog mimics a di-Glu peptide where the donor glutamate
is linked to γ-carboxylic acid of acceptor glutamate through a phosphinate (donor and
acceptor refer to the free glutamate to be linked and the receiving glutamate, respectively).
The main chain residues flanking the di-Glu are replaced by ethylamine at C-term and
acetate at N-term. The intermediate’s structure and binding geometry were then retained
in the modeled TTLL5 and exploited to generate the enzyme-bound form of RPGRORF15.
The di-Glu was split by removing the phosphinate and was transformed into the donor
and the acceptor glutamate. The latter was interpreted as Glu737 in RPGRORF15, and after
ethylamine and acetate capping removal, the Glu737 was expanded at each terminus to
reproduce the sequence of the deleted peptide plus the flanking amino acids to the extent
necessary to cover the active site crevice, leading to the final 12-mer GEEEHGE737GEEEE
peptide. The structure of the expanded peptide was docked to the protein structure
by holding Glu737 fixed, acting as a covalent anchor to the upstream and downstream
segments. The process was repeated for two other peptides, namely EEGGEEE734GDREE
and EGEGEEE870GEEGE.

Docking was performed using Autodock Vina 1.2 [38] and MAGI-Dock [39], a PyMol
plugin that generates the docking boxes [37] around the active site crevice. Two separate
docking runs were performed, one for each of the upstream and downstream segments
of Glu737.

Finally, the resulting conformation was energetically refined by molecular dynamics
simulations. We used CHARMM-GUI [40] to generate the solvated system and GRO-
MACS [41] to run the simulation. The segment’s flanking residues were neutralized to
prevent unwanted interaction, and the resulting docked structure was used as the simula-
tion starting structure. The protein complex was placed in a triclinic box with a minimum
1.2 nm spacing on each side, and the system was solvated using TIP3P water molecules
and neutralized with K+/Cl−. Sequential minimization and position-restrained equilibra-
tions in the NVT and NPT ensemble were performed before a 200 ns long production run.
Root Mean Squared Deviation (RMSD) and trajectory clustering were analyzed using the
GROMACS tools gmx rms and gmx cluster, respectively.
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