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Abstract:   In May 2020, administrators of residential colleges struggled 
with the decision of whether or not to open their campuses in the Fall 
semester of 2020. To help guide this decision, we formulated an ODE 
model capturing the dynamics of the spread of COVID-19 on a residential 
campus. In order to provide as much information as possible for 
administrators, the model accounts for the different behaviors, 
susceptibility, and risks in the various sub-populations that make up the 
campus community. In particular, we start with a traditional SEIR model and 
add compartments representing relevant variables, such as quarantine 
compartments and a hospitalized compartment. We then duplicated the 
model for ten interacting sub-populations, result-ing in a large system of 
differential equations. The model predicts possible outcomes based on 
hypothetical administrative policies such as masking, social distancing, 
and quarantining. As the pandemic developed, we updated the model to 
account for new policies, such as testing and vaccination and calibrated 
the model to data gathered from local sources. To complete the modeling 
process, we describe the parameter-fitting procedure, in which we used 
publicly available data from the county, as well as specific descriptions of our 
student body, faculty, and staff. The final stage of the work involved per-
forming numerical simulations and designing an interactive application that 
allows non-mathematicians to experiment with a range of scenarios. We then 
extrapolate the findings of our model to a general audience, which along with 
our plots and app makes model conclusions accessible to all, democratizing 
the policy-making process.
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1 Introduction

First appearing in 2019 in Wuhan, China COVID-19 lead to an international pandemic,

spanning the globe and years [22, 44]. There have been a number of studies tracking

the pandemic and exploring the virus on a cellular level, along with reflecting on similar

historic outbreaks [22, 44]. For the United States, much of the general public information

could be found in credible news sources and from government agencies, for instance

the Centers for Disease Control and prevention (CDC) [17, 2]. During the pandemic, a

number of mathematical models were proposed to study the disease dynamics, using a

variety of techniques, data, and analysis options. The ordinary differential equation (ODE)

model with three compartments, Susceptible-Infected-Recovered (SIR), has been used

since the early 20
𝑡ℎ
century to study epidemics [8]. These models are explored in a variety

of mathematical modeling texbooks and resources for reference [11, 31, 30, 42]. For the

COVID-19 pandemic, researchers used the SIR model as a basis to study features of the

spread of the disease, considering additional variables to accurately capture the displayed

characteristics.
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One such expanded model from the SIR was to include an Exposed class, resulting in

an SEIR model which can then include additional dynamics. A variety of studies were

done using the SEIR model format, which led to some new insights. Wang et al. used

an SEIR model for modeling cases in Wuhan, China at the start of the pandemic [41].

Ivorra et al. expanded on SEIR by adding Hospitalized and Dead compartments, and

then considered control/management options for a case study of China [21]. Roda et al.

discussed model choice and pros/cons of SIR versus SEIR, specifically using AIC for model

selection with a case study of parameters from China [38]. Later, Yang et al. performed

a review of models focusing on SIR and SEIR, along with models including additional

extensions to the SEIR [43]. Additionally, other models expanded on the SEIR to include

asymptomatic classes and consider case studies in other locations, such as South Africa,

Italy, and British Columbia [15, 19].

Later in the pandemic, vaccines were introduced for COVID-19 updating the dynamics

and management options. The CDC is a resource for data on vaccinations: from their

website, we can find the specific dates on which vaccines were implemented according

to the phases given by the CDC [16]. Dooling et al. outlined the phases and the tiers for

COVID-19 vaccinations [13]. Pritchard et al. described COVID in the UK. They used a

larger community/sample size to find amore accurate efficacy of each vaccine [37]. Milman

et al. showed that with the vaccine, there is a population-level effect, cross-protection for

those who are not vaccinated, specifically the effects of the Pfizer vaccine [29]. Pilishvili

et al. examined the likelihood of transmission of COVID-19 after a person received the

first and second dose, data was taken from the healthcare professionals/ frontline workers

for January 2021 through March 2021 [34]. There are many more ODE models examining

vaccinations for COVID-19 and the role vaccinations play in management, for instance,

Edholm et al. [15].

Our focus in this paper is on the Claremont Colleges, a consortium of five residential

undergraduate colleges in Los Angeles (LA) County. In May 2020 we started working

on the question of whether or not the colleges should be remote or in-person for the Fall

semester of 2020: our goal was to develop and implement a model that administrators

could use to help in their policy decisions. During the summer of 2020, we presented our

work to presidents of the colleges and eventually learned the colleges would be remote for

the 2020-2021 school year. During the summers of 2021 and 2022, we had undergraduate

research assistants who extended the models past Fall 2020, utilizing new data, updating

dynamics, and constructing coding interfaces. Since the start of our collaboration, a

number of other researchers have considered what will happen with COVID-19 on college

campuses [18, 6, 7, 24]. Some of the models use ODE dynamics and others use agent-

based models or other mathematical frameworks. For instance, in 2021-2022 a model

was formulated to examine dining dynamics with an agent-based model for one of the

Claremont Colleges [25]. One key model for our research examined the spread of COVID-

19 in a closed environment with distinct classes of individuals, a prison system [26, 27].

Lofgren et al. capture the dynamics of an isolated location where different individuals

with different roles interact in specific ways [26, 27]. The manuscript by Lofgren et al.

used the jail system in Allegheny County, PA, and showed how to develop such models

across the US. We implement similar dynamics by dividing the college population into

students, administrators/teachers, and staff, and considering the closed interactions that
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happen on a residential campus. We are fortunate to have access to a variety of data

through the California Open Data portal [2, 3, 4, 5].

In the rest of the paper, we will tell the story of our model development, and how

we calibrated it to local data and then used it to make predictions. Hopefully, this story

will help future mathematicians (and college administrators?) engage with public health

emergencies in an effective way. In Section 2 we outline the ODE models we formulated

first for parameter estimation with LA County data, with no vaccination, Sections 2.1

and 2.3, and then for the Claremont Colleges 2.2 and 2.4. Sections 2.1 and 2.2 outline

models without vaccination, while models in Sections 2.3 and 2.4 include new variables

and parameters related to the COVID-19 vaccines. In Section 3 we present the parameter

estimation from LA County data without vaccines in Section 3.1 and with vaccine data

in Section 3.2. Next, in Section 3.3 we extend the parameters from LA County to the

Claremont Colleges model and detail the process. Section 3.4 includes the numerical

simulationswe completed for the Claremont Collegesmodels, and then Section 3.5 provides

an overview of the accompanying app we formulated in MATLAB
®

[20]. Section 4

includes our results and conclusions in Section 4.1, then future directions to consider in

Section 4.2. Lastly, Section 4.3 contains suggestions for instructors and students on how

to use the research in this paper and our insights from the process.

2 Model Formulation

In this section, we outline the mathematical models we use to capture COVID-19 dynamics

in LA County and the Claremont Colleges. The first model in Section 2.1 is for LA County

at the start of the COVID-19 pandemic, with no vaccination, which we expanded upon in

Section 2.2 to the Claremont Colleges. Similarly, Section 2.3 focuses on LA County with

the advent of the vaccine, and Section 2.4 expands the vaccine model to the Claremont

Colleges.

2.1 LA County Model with No Vaccination

During the advent of the COVID-19 pandemic, to capture the dynamics of the outbreak,

we formulated an ordinary differential equation model describing four state variables:

Susceptible (can be infected), Exposed (infected by the virus, but not yet infectious and not

showing symptoms), Infected (show symptoms and infectious), and Recovered (no longer

infectious) individuals. Since Infected individuals both show symptoms and can transmit,

to capture infected individuals who never show symptoms we included a transition rate

from Exposed to Recovered individuals. To match available data on hospitalizations and

COVID deaths, we wanted to keep track of individuals in medical facilities and those who

passed away due to the disease. Therefore, we added two more state variables: Medical

(hospitalized) and Dead (those who have died). A flow diagram of our model is shown in

Figure 1. A table of our state variables, denoted by capital letters, can be seen in Table 1,

and the parameters, denoted by lower case Greek letters (with one exception: 𝑀max) are

listed in Table 2.
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𝑆 𝐸 𝐼

𝐷

𝑅

𝑀

Figure 1: Flow diagram for COVID-19 model for LA County with no vaccination.

The equations for our model are

𝑑𝑆

𝑑𝑡
= −𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸)

𝑑𝐸

𝑑𝑡
= 𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸) − (𝛾𝐼 + 𝛾𝑅)𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐼𝐸 − (𝛿𝐼 + 𝜇𝐼 )𝐼 − 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 𝐼 + 𝛿𝑀𝑀 + 𝛾𝑅𝐸 (2.1)

𝑑𝑀

𝑑𝑡
= 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼 − (𝛿𝑀 + 𝜇𝑀 )𝑀
𝑑𝐷

𝑑𝑡
= 𝜇𝐼 𝐼 + 𝜇𝑀𝑀

Model Variable Description

Section 2.1

𝑆 Number of Susceptible individuals

𝐸 Number of Exposed individuals

𝐼 Number of Infected individuals

𝑅 Number of Recovered individuals

𝑀 Number of Medical center individuals

𝐷 Number of Dead individuals

Section 2.2

𝐻𝑆 Number of Susceptible individuals being held

𝐻𝐸 Number of Exposed individuals being held

𝐻𝐼 Number of Infected individuals being held from contact trac-

ing - only for non-compliant students

Section 2.3

𝑉1 Number of partially vaccinated individuals

𝑉2 Number of fully vaccinated individuals

𝐸1 Number of partially vaccinated and exposed individuals

𝐸2 Number of fully vaccinated and exposed individuals

𝐼𝑣 Number of Infected vaccinated individuals

Table 1: Description of the variables for both no vaccination and vaccination models

depicted in Figures 1, 4, 5, 6.
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Model Symbol Description

Section 2.1

𝛼 fraction change in transmission during asymptomatic period

𝛽 transmission rate

𝑔 greater community interaction probability.

𝛾𝐼 transfer rate of Exposed to Infected individuals

𝛾𝑅 transfer rate of Exposed to Recovered individuals

𝛿𝐼 recovery rate for Infected individuals

𝛿𝑀 recovery rate for Medical center individuals

𝑀𝑚𝑎𝑥 hospital capacity parameter

𝜇𝐼 death rate of Infected individuals

𝜇𝑀 death rate of Medical center individuals

𝜔𝐼 transfer rate of Infected individuals to Medical center

Section 2.2

𝜅 effectiveness of contact tracing

𝜌𝑆 (length of quarantine )
−1

𝜎 average number of individuals in contact with an infected person per day.

Section 2.3

𝜉1 vaccination rate of susceptible individuals

𝜉2 vaccination rate of partially vaccinated individuals

𝑏1 scale of transmission rate of partially vaccinated individuals

𝑏2 scale of transmission rate of fully vaccinated individuals

𝑐1 scale of infection rate of exposed partially vaccinated individuals

𝑐2 scale of infection rate of exposed fully vaccinated individuals

𝑑1 scale of recovery rate of exposed partially vaccinated individuals

𝑑2 scale of recovery rate of exposed fully vaccinated individuals

𝛿𝑣 recovery rate for vaccinated Infected individuals

Table 2: Parameter descriptions for both no vaccination and vaccination models depicted

in Figures 1, 4, 5, 6.

The right-hand side of each equation shows the rate at which individuals enter or

leave each compartment. These equations match up with the flow diagram: an arrow

pointing towards a compartment will appear as a positive term in the rate equation, and

an arrow pointing away from a compartment will appear as a negative term in the rate

equation. With this in mind, the equations should make intuitive sense, after referring to

Table 2. Here are a few comments explaining some of the terms:

• The sum of the right-hand sides of the equations is zero. This says that we are

considering a “closed system", i.e. we assume the total population under consid-

eration is constant. In other words, we are ignoring new births, immigration and

emigration, and deaths that are not due to COVID. This assumption is reasonable if

we are trying to predict the effect of the disease over a relatively short period of

time in a closed community such as a residential college.

• We described the 𝐸 (Exposed) compartment as “infected but asymptomatic and not

infective". However, as the pandemic evolved, it was apparent that asymptomatic

individuals did, in fact, transmit the disease. Therefore, we consider the 𝐸 class to

6



be infective, and include the transmission term 𝛼𝐸 in the first equation.

• The parameter 𝑔, accounts for outside influence on disease transmission. For this

first model, we assume that LA county is self-contained, so we set 𝑔 = 0. This

parameter will play more of a role in the Claremont Colleges models in Sections

2.2 and 2.4, where transmission rates could increase when individuals from the

Colleges interact with people outside of the community.

• The first equation describes the rate at which susceptible individuals become in-

fected. We can interpret this equation as follows: transmission of the disease is

proportional to the number of encounters between infective and susceptible in-

dividuals. We approximate the number of possible encounters by the number of

possible susceptible-infected pairs, i.e. the product of the number of susceptibles,

𝑆 , with the number of infective individuals, 𝐼 . As mentioned above, we add to the

infectives the infected but asymptomatic individuals, 𝐸, and infectives outside the

community, 𝑔. To take into account differences in the probability of encountering

individuals in different classes, as well as differences in transmission probabilities,

we multiply the number in the exposed class by a factor, 𝛼 . At different stages in

the pandemic, 𝛼 might be smaller than 1 (asymptomatic individuals are less likely

to transmit the disease since they carry less viral load), or 𝛼 might be bigger than 1

(asymptomatic individuals might be more likely to transmit the disease, since they

are more likely to be out and about, they don’t know they are infected, and yet the

virus is easily transmissible). The parameter 𝛽 can be interpreted as the probability

that an encounter between a susceptible and an infected takes place and that this
encounter results in an infection. These parameters are discussed more fully in

Section 3.

• We include the term 𝑒−(𝑀/𝑀𝑚𝑎𝑥 )2
in the

𝑑𝑀
𝑑𝑡

and
𝑑𝐼
𝑑𝑡

equations to account for the

number of available hospital beds, which was a concern throughout the pandemic,

but particularly at the start. As the number of hospitalized individuals approaches

𝑀max, the rate at which people can enter the Medical class decreases exponentially.

Note that 𝑀𝑚𝑎𝑥 is not exactly the maximum number of hospital beds: even if

𝑀 = 𝑀𝑚𝑎𝑥 , there still is a positive probability that an infected person can enter the

hospital.

2.2 Model 1 College COVID 5C with No Vaccination

When expanding the model in System 2.1 to the Claremont Colleges, we considered the

different types of individuals present on the campuses as well as interactions between

these groups. We have three communities which consist of administrators and teaching

staff; housing, dining and groundskeeping staff; and students. These groups are depicted

in Figure 2. Each community is then divided into categories based on risk and student

interactions, see Figure 3. For administrators and teaching, housekeeping, dining staff, we

further divide the populations into high/low student interaction (HS/LS) and then further

into high/low risk categories (HR/LR), see Figure 3. We assume that groundskeepers will

have minimal student interaction, so we create only high/low risk categories for them.
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For students, we assume only low risk students will attend the college and for those

students we divide them into two categories - those who will be compliant with social

distancing and other safety measures, Section 2.2.1, and those who will not comply, Section

2.2.2. Furthermore, we assume all individuals who are not students will be compliant,

Section 2.2.1. Lastly, we are assuming the model only considers individuals on campus

at the Claremont Colleges, so the 𝑔 parameter allows us to include interactions with the

surrounding community by any individuals.

Administration

Teaching Staff

Housekeeping

Dining

Ground

C/NC

A/T

H/D/G

Compliant Students

Non-compliant Students

Figure 2: Three communities at the Claremont Colleges.

Compliant Students

Non-compliant Students

High Risk

High

Student

Contact

Low

Student

Contact

Low Risk

High

Student

Contact

Low

Student

Contact

High Risk

High

Student

Contact

Low

Student

Contact

Low Risk

High

Student

Contact

Low

Student

Contact

C/NC

A/T

H/D/G

Figure 3: Three communities at the Claremont Colleges with High and Low Risk along

with High and Low Student Contact included. Blue denotes those who are compliant with

health care protocols, and pink denotes those who are low risk individuals.
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2.2.1 Compliant

We assumed non-students and a subgroup of students would be compliant with public

health protocols, affecting their behavior in terms of quarantining. As stated previously,

this model was constructed in Summer 2020, when there were no tests or vaccinations

for COVID-19, so quarantining or holding individuals through contact tracing was the

main form of management we could implement. We use the model from System 2.1 as

the basis and then add additional Held classes for removing individuals from the general

population who were in contact with an infected individual. The Held Class, or Held State,

encompasses the uncertain nature of the disease, allowing for quarantine, which is for

the sick, and also those being isolated after being in contact with a sick person; this latter

group will return to the Susceptible class. Since compliant individuals follow healthcare

procedures, we assume that if they are infected they will quarantine on their own and do

not require an additional “held” class. Susceptible individuals who are isolated in the Held

Class will eventually return to the Susceptible Class since they do not carry the pathogen,

while exposed individuals who are in the Held Class from contact tracing will remain in

that class (i.e. remain isolated) until they recover. The updated flow diagram can be seen

in Figure 4.

𝑆

𝐻𝑆

𝐸

𝐻𝐸

𝐼

𝐷

𝑅

𝑀

𝛾𝐼𝐻𝐸

𝛾𝑅𝐸

ℎ𝑆 𝜌𝑆𝐻𝑆 ℎ𝐸

𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸)

Figure 4: Flow diagram for the Claremont Colleges Compliant individuals with no vacci-

nation.
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The updated equations for compliant individuals are as follows:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸) − ℎ𝑆 + 𝜌𝑆𝐻𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸) − (𝛾𝐼 + 𝛾𝑅)𝐸 − ℎ𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐼 (𝐸 + 𝐻𝐸) − (𝛿𝐼 + 𝜇𝐼 )𝐼 − 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 𝐼 + 𝛿𝑀𝑀 + 𝛾𝑅 (𝐸 + 𝐻𝐸) (2.2)

𝑑𝑀

𝑑𝑡
= 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼 − (𝛿𝑀 + 𝜇𝑀 )𝑀
𝑑𝐷

𝑑𝑡
= 𝜇𝐼 𝐼 + 𝜇𝑀𝑀

𝑑𝐻𝑆

𝑑𝑡
= ℎ𝑆 − 𝜌𝑆𝐻𝑆

𝑑𝐻𝐸

𝑑𝑡
= ℎ𝐸 − (𝛾𝑅 + 𝛾𝐼 )𝐻𝐸

where ℎ(𝑆, 𝐸, 𝐼 , 𝑅) =
(

𝜅𝜎
1+𝑆+𝐸+𝐼+𝑅

) (
𝐼
1+𝐼

)
. The function ℎ describes the rate at which the

students go into the Held class and is influenced by the effectiveness of contract tracing

𝜅, and the average number of individuals in contact with infected person. Note that we

added one in the denominators to avoid dividing by zero.

2.2.2 Non-Compliant

While we assume a subgroup of the students will be compliant with public health protocols,

we consider the remaining students will be non-compliant through any number of deci-

sions. There have been studies focused on the proportion of college/university students

who were non-compliant [10, 36, 32]. To reflect the difference in behavior, we included an

additional class in the model to hold Infected individuals since non-compliant individuals

might not voluntarily quarantine and require a held class, see Figure 5. Additionally,

in Section 3 we will explore different parameter values for these different subgroups of

individuals.
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The updated equations for non-compliant individuals are as follows:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸) − ℎ𝑆 + 𝜌𝑆𝐻𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆 (𝑔 + 𝐼 + 𝛼𝐸) − (𝛾𝐼 + 𝛾𝑅)𝐸 − ℎ𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐼𝐸 − (𝛿𝐼 + 𝜇𝐼 )𝐼 − ℎ𝐼 − 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 (𝐼 + 𝐻𝐼 ) + 𝛿𝑀𝑀 + 𝛾𝑅 (𝐸 + 𝐻𝐸) (2.3)

𝑑𝑀

𝑑𝑡
= 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2 (𝐼 + 𝐻𝐼 ) − (𝛿𝑀 + 𝜇𝑀 )𝑀
𝑑𝐷

𝑑𝑡
= 𝜇𝐼 (𝐼 + 𝐻𝐼 ) + 𝜇𝑀𝑀

𝑑𝐻𝑆

𝑑𝑡
= ℎ𝑆 − 𝜌𝑆𝐻𝑆

𝑑𝐻𝐸

𝑑𝑡
= ℎ𝐸 − (𝛾𝐼 + 𝛾𝑅)𝐻𝐸

𝑑𝐻𝐼

𝑑𝑡
= ℎ𝐼 + 𝛾𝐼𝐻𝐸 −

(
𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2 + 𝛿𝐼 + 𝜇𝐼

)
𝐻𝐼

where ℎ =
(

𝜅𝜎
1+𝑆+𝐸+𝐼+𝑅

) (
𝐼
1+𝐼

)
.

𝑆

𝐻𝑆

𝐸

𝐻𝐸 𝐻𝐼

𝐼

𝐷

𝑅

𝑀

Figure 5: Flow diagram for the Claremont Colleges Non-Compliant individuals with no

vaccination.

Note that the first model of LA County, with six state variables, has now been expanded

to one with 81 variables to capture all the communities depicted in Figure 2. The 81

variables for Figure 3 comes from there are ten communities for the colleges where the
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nine compliant communities will have a copy of the model in Figure 4 with eight classes,

while the non-compliant students utilize the model in Figure 5 with nine classes.

2.3 LA County Model with Vaccination

As the pandemic evolved, we needed to update our model to reflect changes to the

dynamics, specifically, we focused on the novel vaccines introduced in Spring of 2021. Our

new model has eleven population classes, which represent the number of individuals in a

state at any time, see Figure 6. The population class 𝑆 represents individuals susceptible to

COVID-19. The classes 𝑉1 and 𝑉2, respectively, are the population of partially vaccinated

and vaccinated individuals against COVID-19. When someone is exposed to COVID-19

they move into an exposed class, either 𝐸, 𝐸1, or 𝐸2 based on vaccination status. The classes

𝐼 and 𝐼𝑣 are the infected population. It was critical to separate the infected population into

two classes based on vaccination status (partially and fully vaccinated and infected are 𝐼𝑉
and unvaccinated/susceptible and infected are 𝐼 ) because medical research shows duration

of illness, severity, and death rate from COVID-19 is significantly different depending on

one’s vaccination status. As before, the population classes 𝑅,𝑀, and𝐷 represent recovered

individuals, individuals in the medical center, and deaths, respectfully. See Table 1 for

descriptions of the additional variables and the parameters are shown in Table 2.

𝑆 𝐸 𝐼

𝐷

𝑅

𝑀

𝑉1

𝑉2

𝐸1

𝐸2 𝐼𝑣

Figure 6: LA County Model with vaccination flow diagram for COVID-19.

The model with vaccines for LA County is described by the following equations, which

are similar to Equations 2.1.
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𝑑𝑆

𝑑𝑡
= −𝜆𝑆 − 𝜉1𝑆

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝛾𝐼 + 𝛾𝑅)𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐼𝐸 − (𝛿𝐼 + 𝜇𝐼 )𝐼 − 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 𝐼 + 𝛿𝑀𝑀 + 𝛾𝑅𝐸 + 𝑑1𝛾𝑅𝐸1 + 𝑑2𝛾𝑅𝐸2 + 𝛿𝑣 𝐼𝑣 (2.4)

𝑑𝑀

𝑑𝑡
= 𝜔𝐼𝑒

−(𝑀/𝑀𝑚𝑎𝑥 )2𝐼 − (𝛿𝑀 + 𝜇𝑀 )𝑀
𝑑𝐷

𝑑𝑡
= 𝜇𝐼 𝐼 + 𝜇𝑀𝑀

𝑑𝑉1

𝑑𝑡
= 𝜉1𝑆 − 𝜉2𝑉1 − 𝑏1𝜆𝑉1

𝑑𝐸1

𝑑𝑡
= 𝑏1𝜆𝑉1 − (𝑐1𝛾𝐼 + 𝑑1𝛾𝑅)𝐸1

𝑑𝑉2

𝑑𝑡
= 𝜉2𝑉1 − 𝑏2𝜆𝑉2

𝑑𝐸2

𝑑𝑡
= 𝑏2𝜆𝑉2 − (𝑐2𝛾𝐼 + 𝑑2𝛾𝑅)𝐸2

𝑑𝐼𝑣

𝑑𝑡
= 𝑐1𝛾𝐼𝐸1 + 𝑐2𝛾𝐼𝐸2 − 𝛿𝑣 𝐼𝑣

where 𝜆 = 𝛽 (𝑔 + 𝐼 + 𝛼 (𝐸 + 𝐸1 + 𝐸2)).

2.4 Model 2 College COVID 5C with Vaccination

As with the models outlined in Section 2.2, we subdivided the population at the Claremont

Colleges displayed in Figure 3. Since we are simulating during the 2021-2022 school

year, we use the model from System 2.4 for each of the classes. Additionally, we do not

include any held classes, rather assuming that testing and school policies incorporated

being held into the exposed and infectious classes. With the addition of vaccination,

we expect to observe smaller outbreaks and a safer environment in terms of disease

mortality. At the Claremont Colleges, vaccines played a key role in opening the campus

and updating healthcare protocols. In the discussion, we will include future configurations

and suggested changes for this base model, Section 4.

3 Parameters and Numerical Simulation

Due to the changing nature of COVID-19 policies, human behavioral responses, and strains

of the virus throughout the pandemic, using deterministic equations to fit long periods

of time does not work. Rather, we split time into smaller segments where behavior was

constant and then consider the parameters during that time. Thus, we computed numerous
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parameter fittings for System 2.1 and additional parameter fittings when we use System

2.4 which includes vaccinations. We estimated some parameters from the literature and

others we fit using data from LA County for System 2.1 and System 2.4. We then used

these parameters to simulate the Claremont College Models. For our simulations, we

were fortunate to have access to a variety of data through the California Open Data portal

[3, 5, 4].

3.1 LA County Model with No Vaccination Parameters
Literature and Estimation

Our first model captures dynamics at the onset of the COVID-19 pandemic, specifically

in LA County. For some parameters in the model, we established values from existing

literature and public health guidelines. Since we were initially working in response to

campus closures in Spring 2020 with an eye to opening or closing the campus in Fall 2020,

we started with time ranges early in the pandemic April 20 - May 16, 2020 and June 13 -

June 30, 2020. These ranges also capture changes in policy in terms of closures prior to

any testing or vaccine management options. We also included August 1 - September 6,

2020 and September 7 - November 1, 2020 to examine what happened just prior to and

during the semester, after our campuses had elected to stay remote for Fall 2020.

As mentioned, we use data from the California Open Data portal to estimate initial

conditions and parameters [3]. For initial conditions, to find the initial number of infected,

we take the difference between the start date we are fitting and 10 days before for the

cumulative case data, and use a scalar of this for the initial number of exposed individuals

(presymptomatic and asymptomatic). For the initial number of recovered individuals, we

scale the number of individuals from cumulative infected data to express that these have

individuals who have recovered, and due to our short fitting periods, we do not have

waning immunity. The initial conditions for the Medical facilities, Dead individuals, and

Cumulative infected (used in fitting) all come from the data, so the initial Susceptible

comes from taking the total population and subtracting the other class initial conditions.

Parameters that were unobtainable through literature or simple calculations on data

were estimated by fitting the model to Los Angeles County Public Health data on COVID-

19 cumulative cases, cumulative deaths, and hospitalizations [39]. The method we used has

been implemented on a variety of models for COVID-19 and other diseases [1, 9, 14, 15, 19,

23]. To compare the data with the model, we estimated cumulative cases by integrating the

arrivals into the infected compartment (𝐼 ). In other words, we add a differential equation

to the system representing the cumulative infected cases, 𝐶𝐼 :

𝑑𝐶𝐼

𝑑𝑡
= 𝑔𝛽 (𝐼 + 𝛼𝐸)𝑆

with𝐶𝐼 (0) set equal to the cumulative cases on the date we start fitting data. Since the com-

partment representing deaths is cumulative (there is no outflow from this compartment),

we compare the cumulative deaths in LA to 𝐷 (𝑡). Finally, the number of hospitalizations

is reported as a daily rate, so this is directly compared to the model variable,𝑀 (𝑡). To find
the parameter values, we minimize the difference between the data and model outputs, 𝐽1,
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𝐽1 =





𝐶𝐼data −𝐶𝐼model

𝐶𝐼model





 + 



𝐷data − 𝐷model

𝐷model





 + 



𝑀data −𝑀model

𝑀model





 . (3.1)

where | | · | | is the 𝐿2 norm: | |𝑥 | | =
√∑

𝑖 𝑥
2

𝑖
, and · is the average/mean: 𝑥 =

𝑥1+...+𝑥𝑁
𝑁

. We

use the built-in function fmincon in MATLAB
®
which, given a range and initial estimate

for each parameter, finds a local minimum of 𝐽1, the least squares difference between the

data and model output measures, with respect to the parameter values. Furthermore, we

implement the routine Multistart which runs fmincon for multiple iterations, using

a grid of initial estimates, to search the parameter space for multiple minima, returning

the parameter combination that minimizes the distance between the data and the model

outputs, 𝐽1. The parameter values of the resulting fits are in Table 3, and simulations using

the estimated parameters are displayed in Figure 7. For a discussion of these comparison

graphs (Figures 7, 8, 15), as well as other subsequent figures, see Section 4.

Symbol 4/20-5/16/20 6/13-6/30/20 8/1-9/06/20 9/7-11/1/20

𝛼 0.0389 2.2096 0.2231 0.6358

𝛽 4.9486 × 10
−8

2.787 × 10
−9

5.0163 × 10
−9

6.4247 × 10
−9

𝛿𝐼 0.2669 0.046 0.0887 0.0562

𝛿𝑀 0.0129 0.0129 0.038 0.038

𝛾𝐼 0.0092 0.01332 0.0048 0.0049

𝛾𝑅 0.0378 0.0013 0.0375 0.0212

𝑀𝑚𝑎𝑥 2548 5694 10, 000 10, 000

𝜇𝐼 3.4126 × 10
−4

1.0016 × 10
−8

6.2976 × 10
−4

6.7116 × 10
−5

𝜇𝑀 0.0186 0.0144 0.0128 0.0177

𝜔𝐼 0.0433 0.006 0.0031 0.0039

Table 3: Parameter values fit to LA County Data, dates listed, with no vaccination. The

values of the scaled residuals, 𝐽1, given in Equation (3.1) for each time period were

𝐽1 = 0.1518 (04/20 - 05/16/20), 𝐽1 = .0002 (06/13-06/30/20), 𝐽1 = 0.247 (08/01-09/06/20)

and 𝐽1 = 0.3453 (09/07-11/01/20).

3.2 LA County with Vaccination Parameters
Literature and Estimation

When using the model from System 2.4, we included additional state variables and param-

eters given in Tables 1 and 3, respectively. Some of these values were established from

preexisting literature or calculations from data. For the rest of the parameters, we use

the method described in Section 3.1. For this updated model with vaccination, and the

campuses resuming in-person instruction, we considered time ranges immediately before

and during the semester of Fall 2021: August 1 - September 1, 2021; September 1 - October

30, 2021; and October 31- November 30, 2021. Additionally, we considered a high travel
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Figure 7: Model fits to four data sets from Los Angeles County in 2020, with no vaccination.

(a.) April 20 - May 16, 2020; (b.) June 13 - June 30, 2020; (c.) August 1 - September 6,

2020; (d.) September 7 - November 1, 2020. The model was fit to publicly available data:

cumulative confirmed cases, cumulative deaths due to COVID and daily hospitalizations.
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period and the start of the Spring 2021 semester, using data from December 26, 2021 -

January 23, 2022, during which our campuses elected to do remote instruction for the first

two weeks of the semester.

For those parameters established from literature, we used a variety of sources, based

on news and scientific literature [13, 16, 34, 37, 39, 40]. Additionally, we considered the

parameter fits we had previously estimated for the model from System 2.1 from Table 3

and which parameters had stabilized. For instance, with this model, we have 𝛿𝐼 = 1/14, to
account for the fact that during these time periods, once you test positive or are diagnosed,

you had to quarantine for 14 days. Similarly, the other recovery rates were assumed to

be 𝑑1 = 𝑑2 = 14/10 (10 days of recovery) and 𝛿𝑉 = 1/10 (10 days of recovery). Also, at

this later stage in the pandemic we assume that hospital capacity remained constant,

with𝑀𝑚𝑎𝑥 = 10
4
. The parameter 𝑐1 was found by multiplying the percentage of people

who received each company’s vaccine (Pfizer, Moderna, Johnson and Johnson) by the

effectiveness of the first dose of the vaccine against hospitalization (weighted average).

𝑐1 = 1 − ((0.53) (0.82) + (0.4) (0.82) + (0.08) (0.72)) = 0.1798

Meanwhile, parameter 𝑐2 was found by multiplying the percentage of people who got

each company’s vaccine (Pfizer, Moderna, Johnson and Johnson) by the effectiveness of

the vaccine against hospitalization (weighted average).

𝑐2 = 1 − ((0.53) (1) + (0.4) (1) + (0.08) (0.86)) = 0.0012

We found baseline values for additional parameters, we would then fit. The baselines

for parameters 𝑏1 and 𝑏2 were estimated by multiplying the percentage of individuals

who received each company’s vaccine (Pfizer, Moderna, Johnson and Johnson) by the

effectiveness of the vaccine (weighted average):

𝑏1 = 1 − ((0.53) (0.82) + (0.4) (0.82) + (0.08) (0.72)) = 0.1798

𝑏2 = 1 − ((0.53) (0.95) + (0.4) (0.941) + (0.08) (0.72)) = 0.0625.

When we include the vaccine in our model, we update the initial conditions. The initial

infected are now scaled by the proportion vaccinated in the population which is infected,

so we can also include the initial vaccinated infected term. We scale these values to get

the exposed individuals with and without the vaccine. We then can find the vaccinated

class and susceptible classes through subtraction of established initial conditions.

For the remaining parameters, we fit System 2.4, using the method described in Section

3.1, requiring an updated equation for the difference between the data and model outputs,

𝐽2,

𝐽2 =





𝐶𝐼data −𝐶𝐼model

𝐶𝐼model





 + 



𝐷data − 𝐷model

𝐷model





 + 



𝑀data −𝑀model

𝑀model





 + 



𝑉data −𝑉model

𝑉model





 (3.2)

Note that we added in data on vaccinations, so we have an additional term for 𝐽2 from

𝐽1 in Equation 3.1 [2, 3, 4, 5]. The parameter values of the resulting fits are in Table 4, and

the fits are displayed in Figure 8.
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Symbol 8/1-9/1/21 9/1-10/30/21 10/31-11/30/21 12/26/21-1/23/22

𝛼 1.0230 × 10
−5

0.0963 0.0983 1.0001 × 10
−5

𝛽 1.0000 × 10
−8

1.0025 × 10
−9

1.0053 × 10
−9

4.9667 × 10
−6

𝛿𝑀 0.0018 3.8970 × 10
−5

3.9663 × 10
−5

0.0576

𝛾𝐼 0.0031 0.0018 0.0017 0.0231

𝛾𝑅 0.0041 0.0127 0.0403 0.0010

𝜇𝐼 1.0107 × 10
−6

1.7285 × 10
−4

8.5829 × 10
−4

1.0003 × 10
−6

𝜇𝑀 0.0111 0.0196 0.0083 0.0087

𝜔𝐼 0.0051 1.0049 × 10
−5

2.9366 × 10
−4

0.0233

𝜉1 9.9996 × 10
−4

9.9586 × 10
−4

3.8410 × 10
−4

1.0131 × 10
−7

𝜉2 0.0173 0.0155 0.0120 0.0109

𝑏1 0.0029 0.0940 0.8886 0.0091

𝑏2 0.0014 0.0416 0.3515 0.0061

Table 4: Parameter values fit to LA County Data with vaccination [2, 3, 4, 5] used in

System 2.4 based on the specific data period. Values for 𝐽2 from equation 3.2 based on

time period were 𝐽2 = 0.1500 for (8/1-9/1/21), 𝐽2 = 0.5836 for (9/1-10/30/21), 𝐽2 = 0.1765 for

(10/31-11/30/21), and 𝐽2 = 0.3973for (12/26/21-1/23/22). The fixed parameters established

from the literature were 𝛿𝐼 = 1/14, 𝑀𝑚𝑎𝑥 = 10
4
, 𝑑1 = 14/10, 𝑑2 = 14/10, 𝛿𝑉 = 1/10,

𝑐1 = 0.1798, and 𝑐2 = 0.0012.

3.3 Parameters for the Claremont Colleges Extensions

When considering the models for the Claremont Colleges, we used the parameters from

the LA County models and then modified them based on the different communities in

the Claremont Colleges. Note that the parameter selection will affect the outcomes of

the model, which we explore in Sections 3.4, and these outcomes informed the advice we

gave to administrators.

There are five of the original model parameters that we expect to differ between the

community groups. These parameters had to do with the expected differences between

high and low-risk groups, namely the death rates due to COVID (𝜇𝐼 and 𝜇𝑀 ), recovery

rates (𝛿𝐼 and 𝛿𝑀 ), and hospitalization rates (𝜔𝐼 ). Since we did not have access to medical

records of any individuals at the Colleges, we used age as a proxy for high and low risk.

Anyone over 65 was categorized as “high risk", while all the rest were considered "low risk".

Of course, this is a generalization that is not at all quantitatively accurate. Nevertheless,

given the data at hand, the available knowledge, and the need to make a decision about

whether or not to reopen the campus, this generalization (and others!) were unavoidable.

LA County posted hospitalizations, death rates, and length of hospital stays broken down

by age group ([33]), and we used these, together with age demographics of Claremont staff

and faculty, to estimate parameters for the high and low-risk communities. Thus, these

five parameters became vectors of length 13, with different values for each sub-population.

The parameter 𝑔, which describes the expected number of daily interactions with the

greater (outside of the Claremont Colleges) community, also varies between community

groups. In fact, 𝑔 factors into how we characterized “following the rules" or “misbehaving";
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Figure 8: Model fits for four data sets from LA County in 2021 with vaccination, using

parameters in Table 4. (a.) August 1 - September 1, 2021; (b.) September 1 - October 30,

2021; (c.) October 31- November 30, 2021; (d.) December 26, 2021 - January 23, 2022. The

model was fit to publicly available data: cumulative confirmed cases, cumulative deaths

due to COVID, hospitalizations, and cumulative number of fully vaccinated individuals.

we assumed that individuals who did not comply with social distancing guidelines would

have a greater number of these interactions, on average. For the model presented in this
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paper, only students were assumed to be non-compliant, with the assumption that faculty

and staff would adhere to prescribed COVID guidelines.

The transmission rate, 𝛽 , is slightly more complicated.

3.3.1 Transmission Rate 𝛽

The parameter 𝛽 represents the rate of transmission from infected to susceptible indi-

viduals. In the full model, where the population is divided into different groups whose

vulnerability and behavior is different, the values of 𝛽 depend on which groups are inter-

acting. These values are organized into a matrix, Betas, where Betas𝑖 𝑗 is the transmission

rate from infected individuals in group 𝑖 to susceptible individuals in group 𝑗 . To determine

the relative values of these transmission rates, we follow the approach taken in [26].

A base level for the transmission rate is first estimated by fitting the extended SEIR

model given in System 2.1 to LA County data; this base rate is denoted by 𝛽𝐿𝐴. In the

model equations, this rate is multiplied by the number of susceptible individuals and the

number of infected individuals, so we interpret it as a “per-susceptible" infection rate. This

base rate, 𝛽𝐿𝐴, is then multiplied by the population of LA County to get a “per-population"

infection rate: 𝛽∗ = 𝛽𝐿𝐴 · 𝑛𝐿𝐴, where 𝑛𝐿𝐴 is the population of LA County.

To build the group-dependent transmission rates, we consider the relative proclivity of
individuals in a specific group, 𝑞, to be the fraction of people in group 𝑞 who are infected,

relative to the fraction of people in the entire population who are infected:

# cases in 𝑞

# people in 𝑞
× total # people

total # cases

= relative proclivity of 𝑞 to be infected.

Note that in our case “total number of people" means the total number in LA county, since

that is the group we used for our base transmission estimate.

To estimate the transmission rate from group 𝑖 to group 𝑗 , we use the estimated 𝛽∗ as
a relative per-population infection rate, multiply by the relative proclivity of group 𝑖 , and

then multiply by the average number of times (per day) a person in group 𝑖 is in contact

with a person in group 𝑗 . We then divide by 𝑛 𝑗 , the total population in category 𝑗 , to get

the per-susceptible infection rate:

Betas𝑖 𝑗 = 𝛽∗ · (relative proclivity of 𝑖) · (# contacts between 𝑖 and 𝑗 per time unit) · 1

𝑛 𝑗

.

In full transparency, the relative proclivities and number of contacts between groups had

to be roughly estimated for our scenario. Estimating these values typically results in a

healthy discussion on data-gathering techniques. For example, we estimated that the

transmission rate between non-compliant students was more than twice the transmission

rate between compliant students, based on their relative proclivity and more frequent close

contacts. Note also that, when estimating the number of contacts between individuals,

these values should be relative to the same quantities in the total population (LA County, in

our case).
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3.4 Numerical Simulations

With the established models, we considered three main scenarios for how individuals

might behave when on campus. We labeled these: Realistic Goal, Students Misbehave, and

Everyone Misbehaves as seen in Table 5. For each scenario, we are scaling the initial condi-

tions for all variables, the amount of outside interaction (beyond the Claremont Colleges),

and specific model parameters. The initial conditions reflect the state of incoming students

and faculty, which could be managed with testing before coming to campus. The amount

of outside interaction could be varied with healthcare campaigns along with shutdown

restrictions. The other parameters we varied corresponded to student compliance, which

could be affected by administrative action and policies.

Realistic Students Everyone
Goal Misbehave Misbehaves

Initial
Conditions

𝐸𝐴𝑇 /𝐻𝑅 0 0 0.015

𝑅𝐴𝑇 /𝐻𝑅 0.01 0.01 0.05

𝐸𝐴𝑇 /𝐿𝑅 0.002 0.002 0.015

𝑅𝐴𝑇 /𝐿𝑅 0.05 0.05 0.05

𝐸𝐻𝐷𝐺/𝐻𝑅 0 0 0.015

𝑅𝐻𝐷𝐺/𝐻𝑅 0.01 0.01 0.05

𝐸𝐻𝐷𝐺/𝐿𝑅 0.002 0.002 0.015

𝑅𝐻𝐷𝐺/𝐻𝑅 0.05 0.05 0.05

𝐸𝑆/𝐶 0.015 0.015 0.015

𝑅𝑆/𝐶 0.08 0.08 0.05

𝐸𝑆/𝑁𝐶 0.015 0.015 0.015

𝑅𝑆/𝑁𝐶 0.08 0.08 0.05

Outside
Interactions

𝑔𝐴𝑇 /𝐻𝑅 0 0 0.12

𝑔𝐴𝑇 /𝐿𝑅 1/7 1/7 1

𝑔𝐻𝐷𝐺/𝐻𝑅 0 0 0.12

𝑔𝐻𝐷𝐺/𝐿𝑅 1/7 1/7 1

𝑔𝑆/𝐶 1/7 3/7 1

𝑔𝑆/𝑁𝐶 3/7 10/7 2

Model
Parameters

𝑝𝑟𝑜𝑝𝑆/𝑁𝐶 0.25 0.75 0.5

𝜅 0.8 0.8 0.5

Table 5: Here, we list starting values used to simulate three different hypothetical

scenarios. In these numerical simulations, we vary initial conditions and parameters

in the model. Note, the notation here is to reflect the different subgroups, see Figure

3. For instance, 𝐸𝐴𝑇 /𝐻𝑅 is the proportion of the population in the exposed class for the

Administration and Teaching subgroup who are also high-risk. Meanwhile, 𝑔𝑆/𝐶 changes

the outside contact rate for students who are compliant with healthcare protocols. The

term 𝑝𝑟𝑜𝑝𝑁𝐶 denotes changing the proportion of students who are non-compliant in the

population of students. Using our app, results in these three scenarios are depicted in

Figures 12, 13 and 14.

21



In Table 5, for the Realistic Goal, we provide values describing a scenario where the

population is following healthcare protocols and the number of exposed individuals on

the campus at the start of the semester is very low. Meanwhile, in Students Misbehave,

we highlight what might happen if more of the student population is non-compliant with

healthcare protocols through initial conditions, outside exposures, and the amount of the

student population who are non-compliant. Lastly, Everyone Misbehaves allows for the

scenario if the total population is less compliant, resulting in higher initial conditions

of exposed, greater outside interactions, along with students being more non-compliant.

Naturally, these scenarios do not capture all possibilities, but rather serve as a starting

point into investigation of what could happen during a semester.

3.4.1 Model 1 College COVID 5C wih No Vaccination

For the model described by System 2.1, we explore the three scenarios outlined in Table

5: Realistic Goal, Students Misbehave, Everyone Misbehaves. The parameters for our

simulation come from Table 3, specifically the dates from 4/20-5/16/20 when we first

modeled these scenarios, the results plotted in Figure 9.
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Figure 9: Simulations showing nine state variables over time under the three scenarios

described in Table 5, with no vaccination. Green represents our Realistic Goal. Blue

represents the situation where only students misbehave, and red shows the scenario

Everyone Misbehaves. These simulations are run over 100 days, which is approximately

the length of one semester, intended to illustrate what might happen under various

scenarios if the colleges were to open during the Fall semester.
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In Figure 9, by day 50, we see that the difference between the number of Cumulative

Recovered individuals in the Realistic Goal scenario and the Everyone Misbehaves is over

1000 students. Also, if we aim for the Realistic Goal scenario, over 2000 individuals will

not get COVID. Additionally, the held classes vary with the three scenarios reflecting

different management options. Specifically, more susceptible individuals are held with the

Realistic Goal scenario, while for the two misbehaving scenarios, we hold more exposed

and infected individuals. We encourage future simulations and suggestions for different

numerical experiments in Section 4.

To further investigate options such as the effectiveness of contact tracing, we started

with the Realistic Goal scenario and then scaled the parameter for contact tracing. In

Figure 10, we scaled the parameter 𝜅, the contact tracing effectiveness parameter, from 0

(no contact tracing) to 1 (maximum contact tracing) by increments of 0.1.
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Figure 10: Simulations showing nine state variables over time, where the contact tracing

parameter, 𝜅, is multiplied by a factor ranging from 0 to 1 in increments of 0.1, with no

vaccination. Dark purple represents multiplying the contact tracing parameter by a factor

of 0 (no contact tracing), and red represents multiplying the contact tracing parameter by 1

(very effective contact tracing). As expected, the populations in the Held classes increases

as 𝜅 increases, while Infected, Deaths and Recovered classes decrease. Other parameters

are as listed in the “Realistic Goal" column of Table 5. These simulations are run over 100

days, which is approximately the length of one semester, intended to illustrate what might

happen under various scenarios if the colleges were to open during the Fall semester.
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3.4.2 Model 2 College COVID 5C with Vaccination

For the model described by System 2.4, we explore the scenarios outlined in Table 5. The

parameters for our simulation come from Table 4, specifically the (8/1/2021-9/1/2021),

we chose this time range as it is right when our semester started. We encourage future

simulations and give suggestions for different numerical experiments in Section 4. We

simulate the Realistic Goal scenario and then explore the effect of vaccination, seen in

Figure 11.
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Figure 11: Simulations of Realistic Goal after vaccination where the vaccination rate

for the first dose, 𝜉1, is multiplied by a factor sweeping from 0 to 100 in increments of

10. Dark purple represents multiplying the vaccination rate by a factor of 0, and red

represents multiplying the vaccination rate by 100. Note that in the upper left panel

showing Cumulative Vaccinated, the dark purple graph is a horizontal line at zero, since

nobody is vaccinated. While the number of vaccinated individuals increases as 𝜉1 increases,

the Infected, Medical and Death classes decrease.

3.5 Model App Analysis

A key part of mathematical modeling research is communicating findings to the appro-

priate audience. For our project, the initial goal was to give insight into opening the
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Claremont Colleges for Fall 2020 to in-person instruction, meaning we wanted to commu-

nicate with the administration at our colleges. To aid with displaying possible scenarios,

we decided to build an interactive app, which would allow the user to change initial

conditions, parameters, and scenarios easily with an interactive interface. By varying

parameter values, we could display a variety of scenarios for administrators so they could

consider different management options. During the meetings, we had an open dialogue

about the assumptions and limitations of the model, along with the potential insights into

the pandemic on the college campuses. An important part of the limitations we discussed

were realistic ranges for parameter values and what outcomes were feasible.

We used MATLAB
®
to build the app, and screenshots of the interface are shown in

Figure 12. In the Settings panel on the left, the user can modify some key model parameters

and initial conditions for all subgroups to see their effects on outcomes. In particular, a

user can scale the number of infected contacts, along with adjusting for the subgroup

the percent non-compliant, tracing effectiveness, asymptomatic infectiousness, and the

transmission rate (𝛽). In this figure, we see the settings that reflect the Realistic Scenario

proposed in Section 3.4.1.

Figure 12: Screenshot of our app for the Realistic Scenario values from Table 5, with no

vaccination.

As the values are changed, there are two plots on the right that react to the changes
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showing the values of the state variables. By checking appropriate boxes, the user can

select which variables to view. The upper plot allows the user to select variables from

the SEIR compartments in each of the subgroups. We added a toggle for the susceptible

class since that group is often so much larger than the others. Meanwhile, the lower plot

displays the IMDH classes, where a user can toggle on or off a display of the held classes.

When talking to College Administrators, we were able to use the app to quickly show

the consequences of different scenarios. For example, Figure 13 compares the consequences

of the Realistic scenario to the Students Misbehave scenario (the relevant initial values

and parameter values are given in Table 5). By using the check-boxes, we can show what

happens to those in the high risk classes only. On the left, the model predicts that, in the

Realistic scenario, four people in the high risk class, on average, would die in 100 days

(approximately one semester). By contrast, in the Students Misbehave scenario, where the

proportion of non-compliant students is increased from .25 to .75, the number of predicted

deaths increases to slightly over 7 in a semester (note that the app automatically scales

the vertical axes).

Figure 13: Screenshots of our app for the Realistic (left) and Students Misbehave (right)

scenarios, with no vaccination. We focus on the High Risk individuals only and plot the

number recovered (top graph in upper panels) and those who pass away (top graph in

lower panels) in each scenario. We see that deaths double from the Realistic to Students

Misbehave scenarios.

To see the impact of contact tracing and quarantines on dormitory capacities, we can
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check the display choices to show students in the Held classes. Figure 14 compares the use

of the “Show Susceptible" and “Show Held" categories to aid in visualisation. In these plots

we show the results of the Everyone Misbehaves scenario, described in the last column of

Table 5. In contrast to Figure 13, here we have selected all the low risk classes at the top of

the panels. On the left two panels, we have checked “Show Susceptibles" in the top graph,

and “Show Held" in the bottom graph. In the lower left panel, we see that in this scenario

the model predicts that there will be nearly 70 low risk individuals in the Held class when

it reaches its maximum at around Day 30 (one month into the semester). In the lower

right panel, we have unchecked the “Show Held" box to better observe the predictions for

the number of infected individuals in the low risk class (over 20 at the semester’s peak),

and the number of predicted deaths among this class.

In our discussions with College administrators, these predictions were critical in the

decision-making process. During the summer of 2022, we worked on implementing the

app for the vaccination model from Section 2.4.

Figure 14: Screenshots of our app for the Everyone Misbehave scenario, with no vacci-

nation. The left has the boxes “Show Susceptible" and “Show Held" checked, while on

the right these categories are unchecked. For this display, we focus on the Low Risk

individuals by checking only the “LR" boxes at the top.
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4 Discussion

4.1 Results and Conclusions

Through the models presented in Sections 2.1, 2.2, 2.3, and 2.4 we examined the dynamics

of the COVID-19 pandemic, with and without vaccines and at the LA County level and

residential college level of the Claremont Colleges. The first step we took in analysis was

to parameterize the models in Sections 2.1 and 2.3 using data from LA County [3, 5, 4].

For the model in Section 2.1 our fits for four time periods resulted in Figure 7. We can see

the model fits the data trends for the time periods capturing for instance the changing

behavior in the number of hospitalizations data, also reflected in the parameter values

in Table 3. In Figure 7, we can see that in subplots (a.)-(c.) all capture the hospitalization

data clearly with the model, but subplot (d.) captures the trend with noisy data and fits

for a longer time period. We mentioned that for our model we need to fit to shorter time

periods due to the deterministic nature. If we use the ODE model format for longer times,

we lose accuracy in the model capturing data dynamics as seen in Figure 15 (a.). In Figure

7 we break the time period from August to November into two fits, but in Figure 15 we

display the fit if we try and use all the data for one model parameter estimation.

Similarly, we fit the model in Section 2.3 to four data sets with resulting Figure 8. As

with the previous fits, we can see the model is capturing the overall dynamics, especially

the changes in the hospitalizations for the different time periods, reflected in Table 4 as

well. An interesting plot in Figure 8 is hospitalizations for subplot (a.), where the data and

model capture the changing number of hospitalizations with an inflection point. Note

in subplot (d.) the end of the time frame has some changing dynamics which the model

smooths with it’s deterministic nature. When considering longer time frames with the

vaccination data, we ran into a number of issues, we can see the plot for fitting September

to November in Figure 15 (b.). We notice the model includes more cumulative cases than the

data, along with the data discrepancy for the cumulative deaths. The data for cumulative

deaths was retroactively changed during the pandemic, leading to the non-monotonic

data for a cumulative value. Figure 15 highlights the importance of a modeler examining

the data critically along with the model, to ensure the disease dynamics are captured.

When partitioning data, we considered regulation changes throughout the pandemic,

along with social changes. Overall, our parameter estimation results for models from

Sections 2.1 and 2.3 resulting in Figures 7 and 8 demonstrated our model capturing the

disease dynamics for the COVID-19 pandemic time periods and allowed us to move on to

numerical simulations in Section 3.4.

When we scaled the contact tracing parameter 𝜅 in Section 3.4.1, Figure 10 shows that

increasing contact tracing decreases the number of Cumulative Exposed by about 500

individuals and increases the number of Held individuals. That is, the college administra-

tion would need to weigh decreasing the number of infected individuals with the housing

needs of Held individuals on campus. The figure also shows that the number of cumulative

deaths does decrease with contact tracing, albeit by only one or two individuals.

When we scaled the vaccination rate 𝜉1 in Section 3.4.2, Figure 11 depicts a very

different time in the COVID epidemic. Here, the parameters that determine the spread

and severity of the disease differ from the previous time periods, before vaccines were
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Figure 15: The parameters of the COVID model are not constant in time, as discussed

above, with no vaccination. We illustrate this in the two graphs in this figure. The (a.)

panel shows fits to three months of data from early in the pandemic, August 1 - November

1, 2020, with 𝐽2 = 0.8949. The month of September 2020 shows a clear difference in

hospitalization rates. The (b.) panel shows fits to data from September 1 to November 30,

2021, 𝐽2 = 1.5239. In this case, we see a discontinuity in the data on cumulative deaths

around November 1 and changes in the rate of new cases and hospitalizations. Note that

the scaled residuals are significantly larger for these two fits than for the ones presented

in Tables 3 and 4, an indication that parameter values might be changing over time.

available. For example, compare the first column of Table 4 that contain the parameters

used in this simulation (just before the Fall 2021 semester) with the first column of Table

3, which were fit to data from late spring, 2020. The base transmission rate, 𝛽 , was five

times higher in Spring 2020, and both the mortality rate, 𝜇𝐼 , and the hospitalization rate,

𝜔𝐼 , were an order of magnitude larger. This could be due to many factors, including

increased adherence to safety measures, the development of anti-viral treatments, and a

better knowledge of how to prevent and treat the disease in general.

Our plots show that vaccination does decrease the number of COVID cases (Cumulative

Infected individuals) as well as hospitalizations (Medical) and deaths. However, the

number of individuals in each category is small, even without vaccination, i.e. when

𝜉1 = 0. Since the numbers shown are predicted averages, we can interpret the predictions

as probabilities: without vaccination we predict an average of approximately thirteen

symptomatic COVID cases (assuming the other parameters are as listed in Table 4 and in
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the “Realistic Goal" column of Table 5). However, if vaccinations are acquired quickly -

as was the case on our campuses where they were required with the first few weeks of

school, the average number of symptomatic COVID cases goes down to 6 or 7.

4.2 Future Expansions

Many extensions and modifications to our models are possible. One modification is to

implement the models at other residential colleges or other residential communities. We

outline how one can develop models with various classes and new information such as

the evolution of the model in Section 2.2 to the model in Section 2.4. When including

vaccines in the model, we did make key assumptions, similar to when we made the base

model, which allow for alterations to the model to address different questions.

For instance, in the base model in Section 2.1, we include the infection of asymptomatic

individuals through a parameter value with transmission, but this could also be accom-

plished with an asymptomatic individual variable. Furthermore, when considering the

outside community transmission in the Section 2.2 model, we used a parameter value, but

this interaction could be it’s own SEIR model as well coupled to our residential community.

These changes would explore different dynamics and allow the modeler to examine new

questions and analyses.

For the models including vaccination in Sections 2.3 and 2.4, we made key assumptions

about how to include the COVID-19 vaccines into ourmodel. For instance, when expanding

to the Claremont Colleges, we removed the variable held classes and included them

intrinsically in the model through varying parameter values. For instance, allowing 𝐸 to be

a held variable and 𝐼 to be quarantined by changing parameter values. An extension would

be to include 6 held variables coupled with the 𝑆,𝑉1,𝑉2, 𝐸1, 𝐸2 variables. Alternatively, a

modeler could include a variable for the infected individual who are vaccinated, 𝐼𝑉 , So

𝐸1 and 𝐸2 would then transition to 𝐼𝑉 rather than directly to 𝐼 . There structural changes

reflect different options for incorporating the vaccines and focus on different problems

during the pandemic analysis.

A potential numerical extension to Sections 3.4.1 and 3.4.2 would be to complete more

local sensitivity analysis, along with in depth sensitivity and uncertainty analysis. In

our presented numerical simulations in Section 3.4, we explore varying contact tracing

for Section 3.4.1 and varying vaccination rate for Section 3.4.2. There are various other

parameters of interest in these initial models, and an in depth sensitivity analysis would

allow a modeler to ascertain both potential outcomes and which parameters are key

to outcomes and need precision in their measurements. Furthermore, our numerical

simulations utilize one set of parameters from our parameter estimation in Tables 3 and 4.

A potential numerical extension would be to implement other parameter combinations

to explore different stages of the pandemic, along with potential management strategies.

Additionally, for Section 3.5 with the app development, an extension would be streamlining

the app process and implementing additional parameter toggles with different plotting

outcomes or measurements.
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4.3 For Instructors and Students

Mathematical modeling took a front line during the COVID epidemic, and this provided

fertile ground for teaching the impact of mathematical models on decision-making. Math-

ematical modeling can be useful to inform other decisions on a college campus, and we

hope that the ideas here can be adapted to the spread of other diseases and infections.

For this COVID study, we gathered data from our institutions as well as from the County.

This sharing of data is an important step in the model development and calibration process.

Here are some reflections on how we used modeling efforts to engage students. While

we focus on COVID-19, our insights can be utilized to model other pandemics and epi-

demics, along with other applications.

Parameter fitting Mathematical models are often used to make predictions. In order

to make these predictions meaningful, the relevant situation. In our case, we needed

to use available data from the county and estimates of inter-group behaviors to predict

outcomes on our campus. In general, this is a good exercise for students of modeling, who

need to consider the following questions:

1. What data is available?

2. How do we use these data to estimate model parameters?

3. How can we infer missing parameter values?

4. How can we quantify the uncertainty in our model predictions?

We typically provide students with some fitting routines and a sample data set, and

encourage them to find current and relevant data to use for their own model-fitting.

Model sensitivity and uncertainty can be quantified using a variety of analysis techniques.

Initial quantification can be done by testing the local sensitivity of varying values with

respect to specific outcomes. For more in depth analysis, there are multiple tutorials and

resources we share with students [28, 12, 23, 14, 1].

Model refinement Any model we present to our students will be a simplification of

reality. As we gain understanding from theoretical analysis and observations, we are often

led to add components to the model. For example, during the COVID pandemic, we saw

interventions introduced (masking, vaccinations, anti-viral medications) that could be

important to include in the model. Providing students with a base model that they can

refine to include emerging treatments and new insights encourages them to think about

the process of model development as well as how to critically compare several models.

Communication of results This particular modeling effort was initiated in order to

help college administrators make an informed decision about reopening our campus. A

critical part of this effort was to communicate what we learned from the simulations to

college leadership. Students can appreciate this, and can learn to use a mathematical

model to effectively tell a story by giving talks to (fictitious or real) stake-holders, or to

make interactive apps that non-mathematicians can use to explore a variety of virtual

scenarios.

For our particular purpose, we used the MATLAB
®
App Designer tool. This allowed

us to create something that an administrator who is not familiar with modeling or pro-
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gramming can use to test different scenarios by manipulating parameters. The user can

adjust parameters using sliders, and the app outputs graphs that can be interpreted by

non-mathematicians. A note of caution: designing an app is certainly an extra level of

programming, and if this is part of a project, students will need to allow time for the

implementation. There are also other tools for designing interactive simulations that

might have a shallower learning curve and that use open source software. For example,

web apps can be written in Shiny [35], which interfaces with either R or Python.

Potential for expansion to research projects Some model refinements and explo-

rations can go beyond what can be done in a course. Several research projects have evolved

from the current model, including statistical analysis of the robustness of the model under

perturbations and the introduction of vaccines, the emergence of new variants of the

virus, and waning immunity. In fact, a search using the keywords “mathematical model

COVID pandemic" yields over 250,000 results. After learning the basic COVID model,

students can explore other research questions through this extensive literature and/or by

developing their own model extensions.
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