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Abstract: In this paper a nonlinear differential equation arising from an
elementary geometry problem is discussed. This geometry problem was
inspired by one of the proofs of the first remarkable limit discussed in a
typical first semester undergraduate Calculus course. It is known that the
involved differential equation can be reduced to Abel’s differential equation
of the first kind. In this paper the problem was solved using an approximate
geometric method which constructs a piecewise linear solution approximation
for the curve. The compass tool of GeoGebra was extensively used for these
constructions. At the end of the paper, some generalizations are discussed.
A new transformation of curves, named “Interception”, is introduced and
its approximate construction using GeoGebra is described. Some possible
applications include geometry, calculus, ordinary differential equations, and
military interceptions.

1 Introduction

One of the first theorems that an undergraduate student learns from a Calculus 1 course,
sometimes called the First Remarkable Limit, is

lim
𝜃→0

sin𝜃
𝜃

= 1.

Most Calculus textbooks provide the following proof based on the inequality

sin 𝜃 < 𝜃 < tan 𝜃 for 𝜃 ∈ (0, 𝜋/2) .

Dividing all the sides of this double inequality by positive number sin𝜃 and then tending
𝜃 → 0 , we obtain, by the already covered Sandwich Theorem, the required limit. To
prove the double inequality, the following standard diagram is used.

In Figure 1, a circle of unit radius with the centre at the point 𝑂 is drawn, 𝑂𝐴 and 𝑂𝐵
are its radii, and the tangent of the circle at the point 𝐵 intersects the extension of the
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Figure 1: The proof of The First Remarkable Limit

radius 𝑂𝐴 at the point 𝐶 . It is easy to see that the area of the triangle 𝐴𝑂𝐵 is less than
the area of the sector 𝐴𝑂𝐵, which in turn is less than the area of triangle 𝐵𝑂𝐶 . By using
formulas for the area of triangles and a circular sector, this can be expressed as a double
inequality

sin 𝜃

2
<
𝜃

2
<

tan 𝜃

2
for 𝜃 ∈ (0, 𝜋/2) where 𝜃 = ∠𝐴𝑂𝐵.

The inequality
𝜃 < tan 𝜃 for 𝜃 ∈ (𝜃, 𝜋/2)

also means that the length of the arc 𝐴𝐵 is less than the length of the tangent 𝐵𝐶 , as the
line 𝑂𝐴 rotates counterclockwise around the point 𝑂 .

So, it is natural to ask, whether it is possible to replace the unit circle with another
smooth curve passing through the point 𝐵 such that now the length of the curve 𝐴𝐵 is
equal to the length of the tangent 𝐵𝐶 as the line 𝑂𝐴 rotates counterclockwise around the
point 𝑂 . This would mean that the curve starts at the point (1, 0), so that 𝑟 (𝜃 ) = 1, and,
for each 𝜃 > 0, the arclength of the curve from (1, 0) to (𝑟 (𝜃 ) cos𝜃, 𝑟 (𝜃 ) sin𝜃 ) equals the
length along the line 𝑥 = 1 , from (1, 0) to its intersection with the line through the origin
with polar angle 𝜃 . In other words, as shown in Figure 2, the length of the line segment
𝐵𝐶 would be equal to the arclength of 𝐵𝐴 of the unknown curve.

It will be shown in Section 2 that this problem is equivalent to a nonlinear differential
equation of the first order, and an overview of the literature about the equation will be
given there. In Section 3 we will use an approximate method to determine the shape
of this curve. In Section 4 we generalize the problem and in Section 5 we give some
elementary examples. In Section 6 we mention one possible application of this theory.
For diagrams and numerical experiments, we used the GeoGebra Calculator. This paper
also intends to motivate professors and students interested in undergraduate research
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projects, by showing that it is possible to jump from a familiar textbook topic directly
to an advanced research problem. The first version of this paper was presented in 2021
at the 5th International Conference on Mathematics: An Istanbul Meeting for World
Mathematicians [8].

2 The Differential Equation

We want to find a curve whose polar equation 𝑟 = 𝑟 (𝜃 ) satisfies 𝑟 (0) = 1 and the length
of its arc in the interval [0, 𝜃 ] is equal to the length of the line segment connecting the
point on the curve at 𝜃 = 0 with the intersection of the ray at angle 𝜃 and the tangent
line at 𝜃 = 0. We want to use polar coordinates because we will be dealing with changing
𝑟 values. In Figure 2, the length of the line segment 𝐵𝐶 , which is perpendicular to 𝑂𝐵,
is equal to the length of the arc

⌢

𝐵𝐴 of the required curve as 𝑂𝐶 rotates around 𝑂 for
𝜃 ∈ (−𝜋/2, 𝜋/2).

Figure 2: The length of arc
⌢

𝐵𝐴 is to be equal to the length of the line segment 𝐵𝐶 .

Using the formula for the length of a curve given in polar form 𝑟 = 𝑟 (𝜃 ), we obtain
the equation ∫ 𝜃

0

√︁
𝑟 2 + (𝑟 ′) 2𝑑𝜃 = tan 𝜃,

where ∠𝐶𝑂𝐵 and |𝑂𝐴| = 𝑟 (𝜃 ). By taking the derivative of both sides with respect to 𝜃 we
obtain the differential equation √︁

𝑟 2 + (𝑟 ′)2 = sec2 𝜃 (2.1)

with initial condition 𝑟 (𝜃 ) = 1. One of the solutions of the differential equation is its
known solution 𝑟 = sec𝜃 , which is the equation of the vertical tangent line 𝑥 = 1. This
solution corresponds to the branch 𝑟 ′ =

√
sec4 𝜃 − 𝑟 2. We are interested in the existence

of the other solution corresponding to the branch 𝑟 ′ = −
√
sec4 𝜃 − 𝑟 2. Using standard

methods of series solutions of ODEs, we can find the first terms of the Maclaurin series of
the two solutions:
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𝑟1 = 1 + 1
2
𝜃 2 + 5

24
𝜃 4 + 61

720
𝜃 6 + 277

8064
𝜃 8 +𝑂 (𝜃 10),

𝑟2 = 1 − 𝜃 2 − 2
21
𝜃 4 − 1933

24255
𝜃 6 − 6004

169785
𝜃 8 +𝑂 (𝜃 10).

Maple 2021 was used to obtain these series. See Figure 3.

Figure 3: 4th order series approximations of solutions 𝑟1, 𝑟2 for equation 2.1.

In Figure 3, we see the approximation for 𝑟1 = 1/cos𝜃 = sec𝜃 , which is the vertical
line 𝑥 = 1. But it is not so clear what 𝑟2 is. We can try to solve 2.1 explicitly. See Appendix
A for one such attempt. Trying to use all the involved substitutions in Appendix A to
obtain the solution of 2.1 as a closed formula would not be easy. Therefore, we will focus
on the approximate solutions to find the shape of the curve.

It is worthwhile to note that similar problems have also been discussed in the context
of interception of high-speed targets by beam rider missiles [5]. The cases that we consider
model the situation when the target and the missile have the same speed. A similar question
with boundary condition 𝑟 (0) = 0 was discussed in [7] and it would be interesting to
find a parametric representation of the current problem similar to the formula (5) in [7].
Similar questions were considered by [3], [2], [4].

3 Approximate geometric solution

Let us draw the rays 𝜃1 = 𝜋/𝑛, 𝜃2 = 2𝜋/𝑛, 𝜃3 = 3𝜋/𝑛, . . ., 𝜃𝑛 = 𝑛𝜋/𝑛, . . ., for the given 𝑛.
Denote the intersections of these rays with the vertical line 𝑟 = 1/cos𝜃 by 𝐶1,𝐶2,𝐶3, . . ..
Let us construct the points 𝐴1, 𝐴2, 𝐴3, . . . on the rays 𝑂𝐶1,𝑂𝐶2,𝑂𝐶3, . . ., respectively, so
that

𝐵𝐴1 = 𝐵𝐶1 , 𝐴1𝐴2 = 𝐶1𝐶2 , 𝐴2𝐴3 = 𝐶2𝐶3, . . .

We can use the compass tool of GeoGebra for this purpose. To construct the point 𝐴1 we
draw circle with radius 𝐵𝐶1 at the centre 𝐵 and denote its second intersection with the
line 𝑂𝐶1 by 𝐴1. Similarly, to find the point 𝐴2, we draw circle with radius 𝐶1𝐶2 at the

4



centre 𝐴1, and denote its intersection with the line 𝑂𝐶2 farthest from 𝐶2 by 𝐴2. The other
points 𝐴3, 𝐴4, . . . are constructed in the same way, as shown in Figure 4.

Figure 4: The construction of the piecewise linear solution.

It is now obvious that the length of the line segment 𝐵𝐶1𝐶2𝐶3 . . .𝐶𝑛 is equal to the
length of the piecewise linear solution 𝐵𝐴1𝐴2𝐴3. . .𝐴𝑛 and as 𝑛 → ∞ this piecewise linear
solution approaches the required curve. It is noteworthy that all these constructions can
be done using only an unmarked ruler and a pair of compasses. One can also observe that
as the point𝐶1 moves, the locus of each of the points 𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛 can be interpreted
as approximations of the required curve. We used one of these approximations to draw
the curve in Figure 2. Each intersection of a given circle with its outer ray is used as the
centre of the next circle. The centre of each next circle is taken at the point obtained in
the previous construction, as in Figure 5.

Figure 5: The piecewise linear solution approximates the curve.

Note that for 𝜃 = 𝜃0 ≈ 0.9235 ≈ 52.9◦ the curve 𝑟 = 𝑟 (𝜃 ) passes through the point 𝑂 .
It would be interesting to find out how the constant 𝜃0 is related to the other constants in
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mathematics such as 𝑒 or 𝜋 . For the constant 𝜃0 we can show that

1 = 𝜃0 sec2 𝜃0 − 𝜃 20 sec
2 𝜃0 tan𝜃0 −

4 tan4 𝜃0 − tan2 𝜃0 − 1
6

𝜃 30 + . . . .

where an arbitrary number of terms of the series on the right-hand side can be calculated
(see Appendix B).

4 Generalizations and “Interception"

Let us now replace the vertical line 𝐵𝐶 by an arbitrary differentiable curve 𝑟 = Φ(𝜃 )
passing through the point 𝐵(1, 0). Then the differential equation becomes√︁

𝑟 2 + (𝑟 ′)2 = 𝜙 (𝜃 ),

where 𝜙 (𝜃 ) =
√︁
Φ(𝜃 )2 + (Φ′(𝜃 ))2. One of the solutions is obviously 𝑟1 = Φ(𝜃 ). It is

interesting to find the other solution 𝑟2 = 𝑟2(𝜃 ). As the case Φ(𝜃 ) = 1/cos𝜃 suggests, it
is not always easy to do this analytically. So, it is reasonable to have an approximate
method for the solution. The approximate method described in Section 3 can be applied
here again with obvious modifications, as in Figure 6. We just need to take the points
𝐶1,𝐶2,𝐶3, . . . ,𝐶𝑛 on the curve 𝑟 = Φ(𝜃 ) and measure the distances 𝐵𝐶1, 𝐶1𝐶2, 𝐶2𝐶3, . . .

using the piecewise linear solution approximation 𝐵𝐶1𝐶2𝐶3 . . .𝐶𝑛 . . . of the curve 𝑟 = Φ(𝜃 ).
As in the previous case we use the compass to construct the points 𝐴1, 𝐴2, 𝐴3, . . . on the
rays 𝑂𝐶1,𝑂𝐶2,𝑂𝐶3, . . ., respectively, so that

𝐵𝐴1 = 𝐵𝐶1, 𝐴1𝐴2 = 𝐶1𝐶2, 𝐴2𝐴3 = 𝐶2𝐶3, . . .

Figure 6: Approximate construction of “The Interception Curve”

The piecewise linear solution 𝐵𝐴1𝐴2𝐴3 . . . 𝐴𝑛 approximates 𝑟2 = 𝑟2(𝜃 ) and as 𝑛 → ∞
this piecewise linear solution approaches the curve 𝑟2 = 𝑟2(𝜃 ). We will call the process
of obtaining the curve 𝑟2 = 𝑟2(𝜃 ) from the given curve 𝑟1 = Φ(𝜃 ) as Interception. The
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reasons for the choice of this name is the connection with mentioned applications [5], [6],
[7]. The considered approximate construction can be interpreted in the following way.
Suppose that 𝑟 = Φ(𝜃 ) in Figure 6 is the trajectory of the target which is detected first at
the point 𝐶4. The initial position of the intercepting missile is 𝐴4. Then going back in the
construction we find 𝐴3, 𝐴2, 𝐴1, and finally 𝐵, where the interception occurs.

The transformation preserves the distances on the curves. It can be generalized for
space curves. It would be interesting to find an analogue of this transformation for surfaces
in space.

5 Examples of elementary functions for interception

It would be satisfying to see some examples of elementary functions 𝑟1 = Φ(𝜃 ) for which
𝑟2 is again an elementary function. First, note that if

𝑟 21 + (𝑟1′)2 = 𝑟 22 + (𝑟2′)2

then
(𝑟2 − 𝑟1) (𝑟2 + 𝑟1) = −(𝑟2′ − 𝑟1

′) (𝑟2′ + 𝑟1′).
Let us denote 𝑟2 − 𝑟1 = 2𝑥 , 𝑟2 + 𝑟1 = 2𝑦. Then we obtain 𝑦𝑥 = −𝑦′𝑥′. The last equality
can also be rewritten as 𝑥/𝑥′ = −𝑦′/𝑦 or (ln𝑦)′ = −1/(ln𝑥)′. From a geometrical point of
view this means that the solutions 𝑟1, 𝑟2 of the differential equation 𝑟 2 + (𝑟 ′)2 = 𝜙 (𝜃 )2, can
be represented as 𝑟1 = 𝑦 − 𝑥 , 𝑟2 = 𝑦 + 𝑥 , where the functions 𝑥 = 𝑥 (𝜃 ), 𝑦 = 𝑦 (𝜃 ) have the
nice property that the tangent lines of the functions ln𝑥 (𝜃 ) and ln𝑦 (𝜃 ) are perpendicular
to each other at an arbitrary point 𝜃 . The equality (ln𝑦)′ = −1/(ln𝑥)′ can be the starting
point to find infinitely many elementary examples of such 𝑟1, 𝑟2. Using the easily verifiable
fact that

(ln sin𝜃 )′ = −1/(ln cos𝜃 )′,
we obtain (see Figure 7) the pair of circles

𝑟1 = cos𝜃 − sin𝜃, 𝑟2 = cos𝜃 + sin𝜃 .

Note that the equality of the arcs 𝐵𝐴 and 𝐵𝐶 follows easily from the elementary properties
of inscribed angles and the fact that these circles have the same radius.

Exercise 1. Show that if 𝑥 = 𝜃 , then 𝑦 = 𝑒−𝜃
2/2. Draw the graphs of 𝑟1 and 𝑟2.

Exercise 2. Show that if 𝑥 =
√
𝜃 , then 𝑦 = 𝑒−𝜃

2 . Draw the graphs of 𝑟1 and 𝑟2.
Exercise 3. Show that if 𝑥 = 1/

√
𝜃 , then 𝑦 = 𝑒𝜃

2 .
In the last exercise, the obtained curves 𝑟1 = 𝑒𝜃

2 + 1√
𝜃
,𝑟2 = 𝑒𝜃

2 − 1√
𝜃
do not intersect

(see Figure ) but they still have the property that their arcs between two arbitrary lines
𝑓 : 𝜃 = 𝜃1 and 𝑔 : 𝜃 = 𝜃2, have the same length (length of arc 𝐴𝐷 = length of arc 𝐵𝐶).
The transformation "Interception" that was described in the previous section should be
modified for such cases. In this case instead of the point 𝐵 we should take two points: 𝐵 on
𝑟1 = Φ(𝜃 ) and 𝐵′ on 𝑟2, and then construct the piecewise linear solution 𝐵′𝐴1𝐴2𝐴3 . . . 𝐴𝑛

so that
𝐵′𝐴1 = 𝐵𝐶1 , 𝐴1𝐴2 = 𝐶1𝐶2 , 𝐴2𝐴3 = 𝐶2𝐶3 , . . .

Note that although two such piecewise linear solution approximations 𝐵′𝐴1𝐴2𝐴3. . .𝐴𝑛,
are possible, in Figure 9, only one is drawn.
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Figure 7: Circles as an example of Interception when 𝑥 = sin𝜃 .

Figure 8: Non-intersecting example of Interception, when 𝑥 = 1/
√
𝜃 (Exercise 3).

6 Conclusion

The study of curves and their properties has a long history dating back to the time of
the ancient Greeks. Modern mathematics supplied the theory of curves with analytical
tools and an abstract viewpoint. Although it is not a mainstream research topic today, for
undergraduate research projects and expository papers the theory of curves can be a source
of inspiration and motivation. In the current paper one interesting curve was studied in
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Figure 9: More general Interception.

detail. Its approximate shape was drawn as a piecewise linear function. This construction
was done with the help of the compass tool of GeoGebra. After this, a generalization was
discussed and a new transformation (named as Interception) preserving the distances on
the curves was introduced. Elementary function examples for which Interception gives
again an elementary function are given in Section 5.

The discussed topics also have some connections with problems related to laser-beam
riding interception (hence the name of the curve) of high-speed missiles in technology
[5],[6]. The method discussed in the current paper can have some applications outside of
mathematics.

7 Backmatter

Appendix A

It was noted in [1], Part C (Part 3 in Russian Translation), Sect. 1.370 that a differential
equation of the form

𝑟 2 + (𝑟 ′)2 = 𝑓 2(𝑥)

can always be transformed into the form

𝑓 𝑢′ + 𝑓 ′ tan𝑢 = ±𝑓 ,

using the substitution 𝑟 = 𝑓 (𝑥) sin𝑢 (𝑥) (see [1], Sect. 1.370), which in turn can be
transformed into the equation

𝑓 𝑢′ + 𝑔𝑢3 + ℎ𝑢2 + 𝑔𝑢 + ℎ = 0,
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using the substitution 𝑢 (𝑥) = tan𝑦 (see [1], Sect. 1.202). The last equation is a type I Abel
equation (see [1], Sect. 4.10, [3], Sect. 4-1). The special case

𝑦2 + (𝑦′)2 = 𝑎2

cos4 𝑥
,

was discussed in [3] in relation to one kinematics problem which is a dilational version of
our problem (See also [1], Sect. 1.460). A solution expressed through some integrals for
the last equation was given in [4]. (See also [1], Sect. 1.460). One can follow the following
steps:

1. Use the substitution 𝑦′ = 𝑦 cot𝑢 to obtain 𝑦 cos2 𝑥 = ±𝑎 sin𝑢. Then differentiating
and excluding 𝑦 and 𝑦′ we obtain 𝑢′ + 2 tan𝑢 tan𝑥 = 1. See [1], Sect. 1.460.

2. Use substitutions 𝜂 (𝜉) = tan𝑢, 𝜉 = tan𝑥 to obtain Abel’s equation (𝜉2 + 1)𝜂′ =
(𝜂2 + 1) (1 − 2𝜉𝜂). See [1], Sect. 1.81.

3. Use substitution 𝜉4𝜂 (𝜉) = (𝜉2 + 1)𝑧 + 𝜉3 to obtain again Abel’s equation 𝜉7𝑧′ + 2(𝜉2 +
1)𝑧3 + 5𝜉3𝑧2 = 0. See [1], Sect. 1.151.

4. Use substitution 𝑣 = 1/𝑧 to obtain 𝜉7𝑣𝑣′ = 2(𝜉2 + 1) + 5𝜉3𝑣 . See [1], Sect. 1.185.

5. Use substitution 𝜉𝑤 = 𝜉3𝑣 + 1 to obtain linear equation 𝑑𝜉

𝑑𝑤
− 𝜉𝑤

2(𝑤2+1) +
1

2(𝑤2+1) = 0,
which can be solved using integrals. See [1], Sect. 1.185.

Appendix B

Let 𝑟 (𝜃0) = 0. Then by the differential equation 𝑟 ′(𝜃 ) = −
√︁
sec4 𝜃 − 𝑟 (𝜃 )2 and therefore

𝑟 ′(𝜃0) = − sec2 𝜃0. By taking the first, second and higher order derivatives of
√︁
𝑟 2 + (𝑟 ′)2 =

sec2 𝜃 and substituting 𝜃 = 𝜃0, we obtain

𝑟 ′′(𝜃0) = −2 sec2 𝜃0 tan𝜃0, 𝑟 ′′′(𝜃0) = 4 tan4 𝜃0 − tan2 𝜃0 − 1, . . . .

By Taylor’s formula

𝑟 (𝜃 ) = 𝑟 (𝜃0) + 𝑟 ′(𝜃0) (𝜃 − 𝜃0) +
𝑟 ′′(𝜃0)
2!

(𝜃 − 𝜃0)2 +
𝑟 ′′′(𝜃0)

3!
(𝜃 − 𝜃0)3 + . . . .

Substituting 𝜃 = 0, and noting 𝑟 (0) = 1 we obtain

1 = 𝜃0 sec2 𝜃0 − 𝜃 20 sec
2 𝜃0 tan𝜃0 −

4 tan4 𝜃0 − tan2 𝜃0 − 1
6

𝜃 30 + . . . .
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