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H I G H L I G H T S  

• Robust Mamdani-type fuzzy inference model for predicting cost overrun amount. 
• A small group of experts in a project can assess the cost overrun amount. 
• The model can rank critical risks and predict cost overrun together. 
• Only a factor’s occurrence probability is required as input predicting cost overrun. 
• 40 factors are listed to comprehensively understand cost overruns in large projects.  
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A B S T R A C T   

Cost overruns are a common worldwide problem in the construction industry; improved proactive risk man
agement and cost control are much needed. Several models have been proposed, but all have weaknesses, 
particularly in data demands and the severity of critical risks or uncertainties associated with expert judgment. In 
response, this study develops a new 3-part model based on the Mamdani-type fuzzy inference system (FIS) to 
predict the cost overrun of construction projects. The first part assesses the weight of each expert, evaluating the 
severity of cost overrun factors. The second part contains a list of 40 in-built cost overrun factors and their degree 
of severity, while the third part establishes the relationships of every factor’s occurrence probability and severity 
to predict the cost overrun of a specific project. The severity of each factor is assessed based on a survey of 31 
randomly selected experts in the Saudi Arabian construction industry. The model is demonstrated on two 
completed projects in Saudi Arabia. For each project, this involves a group of project-based experts rating the 
probability of occurrence of each factor on that project and applying this to the factor severity list to obtain a 
predicted cost overrun (PCO) for the whole project. The model is validated for robustness by sensitivity analysis 
comparing the predicted and actual whole project cost overrun and shown to be of practical value in assessing 
critical risks and predicting the likely amount of cost overrun. The model is equally applicable in the early project 
stages.   
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1. Introduction 

The cost overrun of large-scale infrastructure projects that cost more 
than USD 35 million to complete [1] is a worldwide issue [2,3]. Infra
structure projects, regardless of geopolitical location and functions, 
experienced an average of 60% or more final cost than their initially 
approved budgets [4–6]. Herrera et al. [7], for instance, find that con
struction projects in such developed countries as the United States, 
Australia, Holland, and South Korea experience a 16–95% cost overrun, 
with some European infrastructure projects experiencing a 200% cost 
overrun [8], while those in developing countries such as Saudi Arabia 
[9], Qatar [10], and Jordan [11] are from 70–200%. Frequent cost 
overruns diminish the project’s viability by increasing production or 
service costs, forcing taxpayers to bear higher expenses for infrastruc
ture services. It is essential to conduct a thorough risk analysis and 
assessment, develop risk management plans, and allocate contingency 
funds to manage cost overruns effectively. 

From the contractor’s perspective, avoiding cost overruns leverages 
a contractor’s competency and meets client/owner expectations, 
creating a win-win scenario. On the other hand, experiencing a cost 
overrun could jeopardize the company’s future [12]. Reducing cost 
overruns reduces the number of changes in a project, claims, disputes, 
and abandoned projects, ultimately improving project quality and the 
country’s economy. Cost overrun reduction is a critical and challenging 
issue that needs an advanced level of integrated risk and cost analysis 
during the preliminary phases of a project, when little information is 
available, to address the potential issues that may be encountered in the 
execution phases [5]. Thus, predicting cost overruns through the anal
ysis of critical risks and their associated cost impacts in similar prior 
projects is crucial during project cost estimation for having a realistic 
contingency fund included in the bidding cost to handle unexpected 
costs during the execution phases [13–15]. 

Many studies propose models for cost overrun risk assessment; 
however, only a few are concerned with predicting cost overrun. Among 
others, Williams and Gong [16] proposed a data mining technique for 
predicting cost overruns of large construction projects ̶ a technique that 
depends on quantitative data sets and has a low predictive accuracy. 
Islam et al. [17] proposed an integrated genetic algorithm and Monte 
Carlo simulation approach to predict cost overruns using expert judg
ment. They used a statistical averaging method to measure the severity 
levels of cost overrun risks, which cannot address uncertainty in sub
jective data. Leu et al. [18] applied a dynamic Bayesian network and 
Markov method to predict the cost overrun of an ongoing project based 
on real-time cost trends and the interdependency of influencing factors. 
They did not assess critical risk factors and their influences in predicting 
cost overrun at the early stage of a project for contingency cost planning. 

The main issue is that the risk assessment for cost overrun prediction 
at an early stage of projects mostly depends on a domain expert’s 
judgment, which is qualitative, subjective, uncertain, and vague [6,19, 
20]. Fuzzy theory converts this imprecise, uncertain, and incomplete 
linguistic data into clear and precise predictions [21,22]. Several Fuzzy 
Inference Systems (FISs), including the Mamdani, Takagi–Sugeno–Kang 
(TSK), Tsukamoto, and Singleton models, are utilized in diverse scien
tific and technological domains to address expert judgment-based 
problems. Each model differs in terms of how rules are aggregated and 
defuzzified. For instance, the Takagi–Sugeno–Kang model requires the 
consequence of rules to be expressed as linear mathematical relation
ships, while in the Mamdani model, they are represented in such lin
guistic terms as "high" or "medium.". 

Moreover, the Mamdani fuzzy system performs better with more 
factors and when their relationships to predict outcomes are complex 
and unclear [23,24]. Due to its capability to handle linguistic assessment 
terms and many factors (and their unclear relationships), the Mamdani 
FIS model is typically favored over other models. It is the most 
commonly used in various science and technological domains for risk 
and uncertainty modeling [23–28]. The closest to what is needed is 

Plebankiewicz’s [29] Mamdani FIS model for predicting cost overruns 
using complex fuzzy max-min relationships. This finds the cost overrun 
probabilities of the most sensible activities regarding project cost 
changes. However, it is limited by requiring very detailed activity-level 
cost and risk data, not distinguishing between the different knowledge 
and experience of the experts involved, and not including critical cost 
overrun factors as input variables nor their importance based on their 
severity. Moreover, the model needs rebuilding from the beginning each 
time as it is very much dependent on the unique characteristics of each 
project. 

In response, the present study develops a new fuzzy-Mamdani 
inference model by first analyzing 13 directly relevant academic arti
cles to identify an in-built list of the 40 most critical factors influencing 
cost overruns. Then, a questionnaire survey of 31 Saudi Arabian experts 
is used to rate the severity of each factor based on the respondents’ 
severity scores weighted by each’s knowledge and experience with large 
projects, experience in risk management, and academic qualifications. 
In applying the list to a specific project, expert judgment is used to es
timate the probability of the occurrence of each listed factor, which is 
then combined with its associated severity value to predict the likely 
overrun amount for the whole project. This is demonstrated and vali
dated in the Saudi Arabian construction industry, which represents the 
broader Middle Eastern construction industries, where cost overruns are 
the norm [9,30,31]. 

The remainder of this paper is organized as follows. Section 2 re
views the literature relating to the critical causes of cost overruns and 
potential predictive models. Section 3 describes the approach used to 
develop the in-built 40-factor severity list and data collection process for 
part 1 of the model. Section 4 describes part 2 for predicting the overrun 
of a specific project. Section 5 demonstrates the model’s application to 
predict cost overruns of two real construction projects and a sensitivity 
analysis to test its robustness. Section 6 provides a discussion of the work 
and its major contributions. Finally, Section 7 delineates the conclusion 
and identifies the prospects for further studies. 

2. Literature review 

This section comprises two parts: identifying potential factors 
contributing to the cost overruns of large-scale construction projects and 
an overview of cost overrun prediction models aimed at identifying 
research gaps for further model development. To achieve this, several 
keywords, such as ‘risk assessment’, ‘risk and uncertainty modeling, 
‘cost overrun prediction’, ‘large projects’, ‘fuzzy logic’, ‘fuzzy inference 
system’, and ‘expert judgment’, were utilized in searches conducted on 
Google Scholar, Web of Science, the ASCE Library, and the online li
braries of the authors’ universities to retrieve the most relevant studies. 
The databases were filtered to include publications from 2001 to 2022, 
focusing exclusively on peer-reviewed journal articles, indexed confer
ences limited to IEEE, Scopus, and ASCE, as well as published books. 
This approach was taken to ensure the quality of the retrieved 
publications. 

2.1. Potential cost overrun factors 

In the construction industry, all project parties need to minimize cost 
overruns. They can cause projects to default, negatively affecting con
tractors by keeping them trapped with one project for a long time and 
losing their reputation. Client/owners may need help using the facility, 
and design and consultation fees could increase. Also, it can result in 
claims and disputes between the contracted parties. 

Different studies from different countries worldwide have been car
ried out to find and analyze the reasons behind the occurrence of cost 
overruns to improve their understanding and control. As Table 1 shows, 
the main influencing factors have been identified in many countries, 
including Saudi Arabia [32], Bahrain [33], Jordan [34], Palestine [35], 
UAE [36], Vietnam [37], Egypt [38], and Malaysia [39]. Studies in 
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Table 1 
Cost overrun factors obtained from the literature.  

Factor (code) References Frequency  

Abusafiya 
and Suliman 
[33] 

Alhomidan 
[32] 

[34] 
Al-Hazim 
and 
Abusalem 
[34] 

Alghonamy 
[42] 

Creedy 
et al. 
[43] 
[40] 

El- 
Karim 
et al. 
[38] 

Allahaim 
and Liu 
[9] 

Forcael 
et al.[41] 

Mahamid 
and Dmaidi 
[35] 

Johnson 
and Babu 
[36] 

Kamaruddeen 
et al.[39] 

[31] 
Seddeeq 
et al.[31] 

Vu 
et al. 
[37]  

Poor communication 
between construction 
parties (F1) 

X X - - X - - - X - - X -  5 

Disputes between parties 
(F2) 

X - X X  - - - X - - X -  5 

Contractor’s poor site 
management and 
supervision skills (F3) 

X X - X - - X - X X X X X  9 

Inexperienced project 
manager for the owner 
(F4) 

X - - X - - - - - X X - X  5 

Poor consultant’s 
management skills (F5) 

X - - X - - - - X - X X X  6 

Poor productivity (F6) X - - X  X  X X X - X -  7 
Lack of knowledge and 

experience for laborers 
(F7) 

X - -  X X X  - - - - -  3 

Market conditions 
(availability and cost of 
materials, equipment, and 
labor) (F8) 

X - X X X  X X X - X - X  9 

Delays in material delivery 
(F9) 

X - - - X X X - - X X - -  6 

Labor insurance, work 
security, or health 
problems (F10) 

- - - X - - - - X - - X -  3 

Bid award for the lowest 
price (F11) 

- X - X - - X - - - X X -  5 

Frequent changes in design 
(F12) 

X X X X X  X - X X - X -  9 

Delays in progress payments 
(F13) 

X X X X X X X - X - - X X  10 

Delays in decision making 
(F14) 

X X X - - - X - - X X X X  8 

Undefined or change in the 
scope of the project (F15) 

X X - X X  X - - - X X   7 

Unrealistic contract 
duration and 
requirements imposed 
(F16) 

- X - X X  X - X - - X X  7 

Adoption of a fast-track 
project delivery strategy 
(F17) 

- - - - - X - - - X - X   3 

Many stakeholders (F18) - - - - - - - - - - - X   1 
Poor planning and 

scheduling (F19) 
X X X X X  X - - - - X X  9 

(continued on next page) 
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Table 1 (continued ) 

Factor (code) References Frequency  

Abusafiya 
and Suliman 
[33] 

Alhomidan 
[32] 

[34] 
Al-Hazim 
and 
Abusalem 
[34] 

Alghonamy 
[42] 

Creedy 
et al. 
[43] 
[40] 

El- 
Karim 
et al. 
[38] 

Allahaim 
and Liu 
[9] 

Forcael 
et al.[41] 

Mahamid 
and Dmaidi 
[35] 

Johnson 
and Babu 
[36] 

Kamaruddeen 
et al.[39] 

[31] 
Seddeeq 
et al.[31] 

Vu 
et al. 
[37]  

Long period between design 
and time of 
implementation (F20) 

- - - X - - - - X - - - -  2 

Inadequate experience and 
comprehension of the 
scope of work and site 
condition (F21) 

- - - - - - - - - X - X -  2 

Financial status of 
contractors or sub- 
contractors (F22) 

X X - X - - X  X X  X X  8 

Delays in subcontractor’s 
work (F23) 

X - - - - - - - - - - X -  2 

Number of projects the 
contractor is working on 
at the same time (F24) 

X - - X  X - - X - - - -  4 

Design errors (F25) X X X X  X X - - X - X -  8 
Delays in supplying and 

approving drawings (F26) 
X - - - - - X - - X X - X  5 

Inadequate or changes in 
material specifications 
and type (F27) 

- - - X - - X - - - X X -  4 

Poor quality control/ 
assurance (F28) 

X X - - - -  - - - - X -  3 

Lack of consultant/designer 
knowledge and experience 
(F29) 

- - - - X  X - - X - - X  4 

Deficiencies in cost 
predictions (F30) 

X X X - X  X - X X - X -  8 

Obstacles from the 
government (F31) 

X - X - X  X - - - - X X  6 

Project size and complexity 
(F32) 

- - - X  X X - - - - - -  3 

Inconvenient site access 
(F33) 

- X -   X X - - - - - -  3 

Limited construction area 
(F34) 

- X -    X - - - - - -  2 

Project location and terrain 
condition (F35) 

X X X     - - - - - -  3 

Social and cultural impacts 
(F36) 

X X - X   X - - - - - -  4 

Inflation and taxes (F37) X X X  X X X - - - - X -  7 
Weather condition (F38) X X X X X  X - - - - X -  7 
High and inconsistent 

interest rates charged by 
bankers on loans (F39) 

- X - X - X X - - - - - -  4 

Level and number of 
competitors (F40) 

X - - X - - - - X - - - -  3  
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Australia [40] and Chile [41] also identify the critical factors involved in 
different large construction projects. Table 1 lists the 40 most common 
of these and their frequency of mention in the papers. 

Most studies in the Middle East region share common factors in that 
the construction industries in these countries have similar economic and 
development statuses [9]. For instance, the factors “poor planning and 
scheduling” and “contractor’s poor site management and supervision 
skills” are found in nine different studies because clients do not invest 
sufficient funds in hiring qualified personnel for managerial positions 
[31]. Similarly, the factor “market conditions (availability and cost of 
materials, equipment, and labor)” is also found in nine different studies. 
This could be attributed to such reasons as having an unstable economy, 
unstable political situations, and border closures (e.g., Johnson and 
Babu, 2020). Another common factor, “frequent changes in design,” is 
found in nine studies and identified as one of the most severe in Saudi 
Arabia, as most government agencies do not make precise plans for 
future projects in terms of capacity, services, and location [9]. A 
maximum of ten studies point to “delays in progress payments,” which 
can be explained by owners not usually investing in the resources 
needed to evaluate the total cost and time-dependent cash flow suffi
ciently well before undertaking a project (e.g., Abusafiya and Suliman, 
2017). In addition, “financial status of contractor or sub-contractors” is 
critical, as discovered by eight studies, because contractors in the Middle 
East do not utilize progress payments effectively to plan for the cash flow 
situation and manage their financial resources [30]. Also noteworthy is 
that consultant-related factors of “design error” and “deficiency in cost 
predictions” are also found in eight studies and, therefore, constitute 
critical cost overrun factors. 

2.2. Overview of cost overrun prediction models 

Many studies analyze the risks associated with construction cost 
overruns, and some develop associated prediction models. These can be 
categorized into linear regression [44], probability distribution [45], 
simulation [46], artificial intelligence [47], data mining [48], and fuzzy 
logic-based models [49]. Their applications and limitations are exam
ined below to identify the research gaps and the need for further 
development. 

[44] developed a linear regression model to predict the likelihood of 
cost overruns, where they used data for ten variables collected from 321 
educational projects in Ghana. Unlike large projects, educational pro
jects are homogeneous in their project-related characteristics and con
texts except for location, which enabled them to obtain sufficient 
empirical data for model development and validation. [50] developed a 
multiple-regression model to quantify the anticipated project cost risk 
associated with change orders. They collected historical data for 140 
projects of different types and sizes in Jordan. The model’s independent 
variables comprised such project attributes as project types (buildings, 
infrastructure, heavy construction, etc.), size, job type (civil, mechani
cal, etc.), duration, and original project price. However, they did not 
conduct a comprehensive risk analysis, and the model demands 
considerable quantitative cost data from similar projects. 

Love et al. (2013) conducted an empirical study to find the best-fit 
probabilistic distribution for predicting realistic cost overruns for con
struction projects at the time of contract award. They collected numer
ical cost overrun data from 276 Australian projects, justified the fit of 
some selected probability distributions using several non-parametric 
tests, and identified a three-parameter Fréchet probability function as 
the best-fit distribution. In another study, [48] found a log-logistic 
probability function to be the best-fit distribution for predicting the 
cost overruns of highway projects. Their study was also based on 
intensive numerical data sets, where the cost overrun records of 49 
projects were examined. [51] demonstrated a probability model for 
predicting the cost overrun of a construction project against its contin
gency values. He also collected numerical cost overrun data by 
reviewing 34 project documents from the U.S. Army Corps. 

The potential of Monte Carlo Simulation (MCS) has been demon
strated by [46], for example, in predicting contingency costs to help 
manage the cost overrun risks encountered in different project phases. 
The input variables were costs shared in the percentage of different work 
items of a project. They simulated and aggregated the component costs 
of a project to find 25 possible total costs with corresponding confidence 
levels. However, no critical risks or uncertainties were considered for 
risk scenario development and cost overrun modeling. Similarly, [52] 
proposed a powerful copula-based MCS model, accommodating 
different types of distribution patterns of cost variables in a single 
framework and predicting the outcome based on the best variable dis
tribution pattern. While this overcomes the limitation of assuming cost 
variables to be randomly distributed, similar to other MCS models, it 
cannot appropriately address the uncertainties associated with humans 
[53]. 

As a form of artificial intelligence, the artificial neural net (ANN) 
model is a powerful machine learning tool that can accommodate many 
independent variables to predict a single outcome where there are 
nonlinear input-output relationships. [47] found the best ANN model for 
predicting cost overruns to be the principal component analysis-based 
ANN algorithm. They first identified critical cost overrun factors and 
measured the severity ranking of those factors using subjective judg
ment, after which 15 critical factors were used to predict cost overruns 
considering 56 project scenarios. They demonstrated the model in pre
dicting cost overruns of highway projects, finding the basic limitation of 
ANN models is its uncontrolled architectures of the neurons with the 
selection of the best number of hidden layers, which significantly in
fluences the prediction accuracy. 

[54] have demonstrated a data mining model consisting of a 
bootstrapping-ensemble in ANN for predicting cost overruns at pre
liminary budgeting for construction projects with project cost data and 
associated information records from 1600 projects. Another data mining 
tool called knowledge discovery in database (KDD) was applied by [48] 
to predict the cost overruns of construction projects. KDD is a powerful 
tool to retrieve novel knowledge by analyzing historical data from 
similar previous projects for cost overrun predictions. They collected 
documents from 90 construction projects, finding baseline costs, actual 
cost overruns, project specifications (project type, owner type, function, 
etc.), scope changes, and change orders for cost overrun prediction 
under various project scenarios. The model’s accuracy could be better; 
hence, its ability to predict the cost overrun of large projects in different 
company domains is questionable. 

The basic limitation of all these models is their dependence on nu
merical data collected from many real-life similar projects from a 
particular region/location, while construction industries in different 
parts of the world have poor data records, and access to the projects’ cost 
data sets is a challenge. Usually, the cost overrun risks and their corre
sponding cost impacts are assessed by eliciting expert judgment, which 
is subjective, uncertain, incomplete, and biased [55]. As a result, many 
studies have adopted fuzzy logic to improve risk assessment, as this can 
cope with such limitations. For instance, [56] developed a modified 
Fuzzy Group Decision Making Approach (FGDMA) to identify critical 
risks in different phases of construction projects. In a further study, [57] 
added the Bayesian belief network (BBN) theory (i.e., canonical model) 
with the FDGMA to address the causal relationships among the risks 
producing cost overruns in different execution phases of a complex 
project. Later, a risk-induced contingency cost estimation model was 
proposed, combining fuzzy set theory and BBN theory [5]. As mentioned 
earlier, Plebankiewicz (2018) proposed a fuzzy-Mamdani inference 
model for predicting cost overrun using complex fuzzy max-min re
lationships but limited by the cost overrun risks not being directly given 
as input variables, their severity importance disregarded, and not being 
generally applicable as contractors or consultants have to find a good 
record of each work item’s cost as a percentage of a project’s total 
budget. 

To summarize, while each model has its advantages and 
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disadvantages, and there is no catch-all model to deal with all risks, the 
fuzzy logic model is found to be more suitable since it uses the human 
experience and assumptions to handle the complex problems associated 
with construction projects [56]. In addition, previous studies mostly 
assess the potential and critical risks causing cost overruns. While some 
developed and demonstrated cost overrun prediction models, they 
mainly depend on quantitative data collected from extensive project 
records. Thus, there is a need for a model that can use expert judgment for 
risk assessment to predict cost overruns and can address uncertainty, bias, 
and vagueness in expert judgment-based data sets. Therefore, the present 
study aims to fulfill this need by developing a new Mamdani-type fuzzy 
inference model in recognition of its potential to predict cost overruns. 

3. Development of the model part 1: the factor severity list 

The study aims to develop and test a model on the Mamdani FIS 
technique [29] to assist decision makers in obtaining the probability of 
cost overruns for large-scale construction projects. This involves a new 
2-part model, in which the first part contains an in-built list of 40 factors 
influencing cost overruns common for all projects and their degree of 
severity, while the second part contains each factor’s probability of 
occurrence for a specific project. The 40-factor severity list is built in two 
steps. The first comprises identifying the factors from 13 highly relevant 
articles in the literature. The second then establishes the severity of each 
factor based on a survey of 31 randomly selected experts in the Saudi 
Arabian construction industry weighted using the Mamdani-fuzzy model 
by each’s degree of knowledge/experience. 

3.1. Identifying cost overrun factors 

The 13 most relevant studies were used to find the potential and 
critical factors concerning cost overruns. Table 1 lists the 40 found with 

corresponding references. These are used to develop a questionnaire to 
collect the required data for demonstrating the proposed model. 

3.2. Questionnaire survey 

A structured questionnaire was designed based on the Table 1 factors 
to measure the severity of each factor (Appendix 1) by an online survey 
of experts. This comprises two sections. Section 1 solicits the re
spondents’ demographic information, such as their years of experience 
with large and other construction projects, experience in risk manage
ment, and highest academic degree. Section 2 contains a 6-point scale 
for evaluating the severity of each cost overrun factor ranging from 
0 (none) to 5 (very high) impact on project cost overruns. 

For the questionnaire survey, the exact population size of experts in 
Saudi Arabian large-scale projects was unknown as no source confirmed 
their exact number. Consequently, three primary sources were utilized - 
the King Fahd University alumni list, the Saudi Contractor Authority 
[58], and the Saudi Council of Engineers [59] to identify domain experts 
for the survey. A total of 52 experts from the Saudi Arabian construction 
industry, including project directors, project managers, cost accoun
tants, project engineers, and designer/consultants, were randomly 
selected from the domain of large construction projects using those three 
sources and invited to participate in a structured questionnaire survey. 
Initially, the experts were contacted via email and sent a consent letter. 
Follow-up communication was carried out m over the telephone. Once 
their consent to participate in the questionnaire survey was obtained, 
they were emailed the questionnaire. Of the 52 experts invited, 31 valid 
responses were received. It is worth noting that Fuzzy Inference Systems 
(FIS) offers the advantage of making inferences with a small sample size, 
even fewer than 30. Many similar fuzzy models have been demonstrated 
to provide highly accurate outcome predictions when the sample size is 
close to 30 [24,60–62]. 

Fig. 1. Summary of respondent profiles.  
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Fig. 1 shows the respondents’ profiles, with their professional posi
tions ranging from general manager, project manager, project engineer, 
site engineer/supervisor, designer, and other engineering professions. 
Most hold a BSc Engineering degree with different years of experience in 
the Saudi construction industry. Having various respondents’ knowl
edge and experience reduces subjective bias by evaluating the risks 
associated with complex projects [56]. 

3.3. Data consistency analysis 

The consistency analysis reveals significant differences in risk eval
uation among domain experts’ responses. These variations in expert 
judgments can be attributed to such factors as knowledge gaps, differing 
judgment capabilities, biases, unclear comprehension of project uncer
tainty, and varying project contexts. In this case, the one-sample chi- 
square test was conducted, which is the most suitable test for the study 
as it deals with categorical or ordinal data. This data includes infor
mation collected from experts using linguistic variables to assess the 
risks associated with cost overruns (Islam et al., 2019; Ke et al., 2010). 

In the Chi-Square test, the null hypothesis (H0) posits that the 

experts’ judgments are not consistent when evaluating a specific risk, 
while the alternative hypothesis (Ha) suggests that they are consistent in 
their assessment of a specific risk. The significance level (α-value) is 
conventionally set at 0.05 for hypothesis testing. Therefore, if the 
α-value is less than 0.05, the null hypothesis is rejected, indicating that 
the experts’ risk assessments are consistent. In this study, a chi-square 
test was conducted to assess the experts’ consistency in evaluating the 
severity of cost overrun risks. Appendix A shows the test results, indi
cating that the null hypothesis was rejected for 37 factors, with only 
three exceptions. 

Further investigation revealed that, for factor F10, the average 
evaluation score was 2.03, with two experts rating the factor as ’very 
high’ (5). When these two responses were removed, the p-value becomes 
0.0034, less than α (0.05), leading to the rejection of the null hypothesis. 
Thus, these two responses were considered outliers. Similarly, for F33, 
the average score was 2.75, with one respondent providing a score of 
zero for the factor, which, upon removal, provided a p-value of 0.0181, 
also less than α (0.05) − leading to the rejection of the null hypothesis. 
Likewise, one respondent provided a score of zero for F36, and the p- 
value became 0.015 after removal. The revised data were used as inputs 

Fig. 2. Mamdani 3-step conceptual FIS model.  
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in the model to obtain more accurate results for assessing the severity of 
cost overrun factors. 

The following sections illustrate and validate the model. 

3.4. 3-step fuzzy model using FIS 

A Mamdani Fuzzy Inference System (FIS) is developed for deter
mining the factor-severity list using MATLAB in-built codes. This in
volves fuzzy logic, which assesses someone’s "degree of belief (very high 
to very low)” instead of “true (1) or false (0)” measured by computers 
[63]. Fuzzy logic is used in many fields, including project management 
for time and cost optimization, speech recognition, disease detection 
(machine learning) processing, and interpreting domain experts’ vague 
linguistic judgments for informed decision making in an uncertain work 
environment [64]. Following [65], this is given by 

A = {(X, μA(X) ) |X ∈ A, μA(X), ϵ[0, 1] } (1)  

where the fuzzy set is denoted by A, discourseuniverse by X, and 
membership function μA(X), for 0 ≤ X ≤ 1. 

There are four basic steps in a Mamdani FIS includes defining the 
inputs and outputs of the model, selecting the appropriate membership 
function for the fuzzification of inputs, if-then rules, the FIS, and 
defuzzification (factor ranking by converting fuzzy numbers to a crisp 
value) [28,66]. 

Fig. 2 illustrates the conceptual Mamdani 3-step FIS model adopted 
from [24] to predict cost overruns. 

3.4.1. Defining input and output variables 
First, all the model’s inputs and outputs are specified in the Mamdani 

FIS in MATLAB. The experts’ experience with large and other projects, 
risk management, and academic qualifications are considered inputs in 
the first model, which has outputs of the experts’ weightings from 0 to 1. 
The experts’ weightings and assessments of each factor’s severity are the 
inputs of the second model, where outputs are aggregated severity of 
each factor and factor ranking. The aggregated severity level of each 
factor and its probability of occurrence evaluated by the experts are the 
inputs of the third model for predicting the probability of cost overrun. 

3.4.2. Defining the membership function 
The second step in the Mamdani FIS is selecting an appropriate fuzzy 

membership function (FMF) among different types, such as triangular, 
rectangular, trapezoidal, and bell-shaped. The selected FMF converts the 
linguistic evaluation (none to very high) of an input variable to some 
mathematical values. It is important to select an appropriate fuzzy 
membership function, as varying outcomes can be desired depending on 
the project’s nature. The triangular and trapezoidal FMFs are most 
common in terms of accuracy in outcomes. However, they sometimes do 
not provide reasonable outcomes in the presence of extreme boundaries 
in data sets. A g-bell-shaped membership function (gbmf) is suitable as 
uncertainty in expert judgments can be better accommodated [67][24]. 
Hence, the gbmf is used here since it has the advantage of being smooth 
and nonzero at all points to address possibly a higher level of uncertainty 
in data sets based on expert judgments [68]. 

3.4.3. If-Then rules and the inference system 
In the Mamdani FIS model, the relationships among input variables 

are in If-Then statements and control the outcome accuracy. For 
example, if an expert’s experience is high with large, other construction 
projects and risk management, and they hold an M.Sc., then their weight is 
“high”. An example for obtaining the severity of a factor severity is “If 
the expert evaluates factor 1’s severity as high, and that respondent’s weight 
is high, then it has a high severity weight.” Finally, the defuzzified scores of 
all factors are computed by their defuzzified severity weights and ranked 
accordingly. The following sub-sections present the basic fuzzy If-Then 
Mamdani FIS rules used. 

Expert weighting: 

IfE1isa1,E2isa2, …, andEnisakthenEWisbi(i = 1, 2,…k = 5) (1) 

where the expert’s attribute is denoted by E, type of attribute by n (=
4) is the, a1, 2, …, k denotes the degree of each attribute from 1 (very low) 
to 5 (very high), and EW is the fuzzy output weight (bi) of the expert on 
the same scale. The fuzzy EW is then defuzzified to give a value from 
zero to unity. Each expert’s defuzzified EW is further linguistically 
interpreted on the same 5-point scale (e.g., Islam et al., 2018). 

Severity weight: 
If x1 is c0, x2 is c1, …, and xn is ck (k = 0, 1,., k), the corresponding 

expert’s weighting is 

EW1,2, …,kthenSWisdi(i = 0, 2, …, 5) (2) 

where the expert is denoted by x (n = 31) and c0, 1,…k denotes expert 
x’s cost overrun factor’s severity level assessed on a 6-point scale 
(Table 2) from 0 (none) to 5 (very high), EW denotes the weight of the 
expert on the same 5-point scale as before, and SW is the severity weight 
as the factor’s severity weight (di) output on a 6-point fuzzy scale as 
above. Upon defuzzification, the severity levels of the factors are defined 
such as 0 to < 0.025 (not significant enough to produce cost overruns), 
0.025 to < 0.10 (very little effect on cost overruns), 0.10 to < 0.30 (little 
significance to cost overruns), 0.30 to < 0.50 (moderate significance to 
cost overruns), 0.5 to < 0.70 (highly significant to cost overruns), and 
0.7 to 1.0 (most significant to cost overruns) (e.g., Islam et al., 2018; 
[24]). 

Inference system: 
The model’s cost overrun prediction (i.e., the final output) is 

significantly affected by the aggregation techniques chosen for different 
fuzzy outputs. There are different aggregation techniques, with the most 
widely used being the max-min formulation [24,69]. The mathematical 
expression of the rule-based max-min Mamdani FIS fuzzy output (μA) 
membership function is [24]: 

μAk
(Z) = max

[
min

[
μ1k

(x1), μ2k
(x2),……μnk

(xn)
]]
, K = 1, 2, 3, r (3) 

where the input x1’s output membership function under rule k, and 
μAk

(Z) is denoted by μ1k,meaning rule k’s output membership function, 
where inputs are x1toxn. K represents all If-Then rules. 

3.4.4. Defuzzification 
The defuzzification is the final step in the model development pro

cess. In this step, fuzzy outcomes are transferred into a single value. The 
centroid of area (COA) method is used for defuzzification, where the 
weighted average of a fuzzy set is computed, and the final cost overrun is 
estimated. The COA is the most commonly used defuzzification method, 
which produces the least error compared to other defuzzification 
methods [63,70]. The mathematical expression of the COA defuzzifi
cation method is shown in Eq. 6: 

ZCOA =

∫
μA(Z)⋅ZdZ
∫

μA(Z)dZ
(4)  

where ZCOA is the final output (i.e., the predicted cost overrun) and μA(Z)
is the sum of all the K rules’ membership functions computed by the 

Table 2 
Linguistic variables, defuzzification range, and descriptions.  

Level of risk 
severity 

Defuzzification Description  

Very high (5) 0.7 to 1.0 Most significant to cost overruns  
High (4) 0.5 to < 0.70 Highly significant to cost overruns  
Medium (3) 0.30 to < 0.50 Moderate significance to cost overruns  
Low (2) 0.10 to < 0.30 Little significance to cost overruns  
Very low (1) 0.025 to < 0.10 Very little effect on cost overruns  
None (0) 0 to < 0.025 Not significant enough to produce cost 

overruns  
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fuzzy aggregation approach using Eq. 3. 

3.5. Building the model 

The model development process, including determining the re
spondents’ knowledge/experience weights, factor severity weighting 
and ranking, and generating the predicted cost overrun (PCO), is dis
cussed in the following. 

3.5.1. Weighting experts 
The first part of the questionnaire gathers personal profiles of the 

experts, including their experience in large-scale construction projects 
(i.e., a total cost of more than $50 million), experience in other con
struction projects, experience in risk management, and their highest 
academic degree. Each answer is assigned a 5-point score as before, with 
experience levels of 0–5 years, 5–10, 10–15, 15–20, and over 20 years, 
with a significance rating of 1, 2, 3, 4, and 5, respectively. The academic 
qualification of an expert is accorded a knowledge/experience weight of 
1 when below higher secondary and 5 for a Ph.D. degree. Each expert’s 
personal information is used as inputs. The gbmf defines the fuzzy 
membership functions. Fig. 3 shows each expert’s received inputs rep
resented by the gbmf. Twenty rules are formed from four person-related 
factors, each with five possible answers [24]. All personal questions are 
assumed to be equally important, and hence, all rules are assigned a 
weighting of unity. A sample of the rules and assigned weightings are 
shown in Table 2. Following the Eq. 1 (sub-subsection 3.3.3) concept, 
the If-Then rules are formed accordingly. These establish the expert 
weighting output (importance) and inputs (expert characteristics) re
lationships. Fig. 4 provides an example of applying the fuzzy If-Then 
rules to provide expert weightings as fuzzy scale outputs. The output 
fuzzy membership function is then found by applying Mamdani FIS (Eq. 

5), with the COA model (Eq. 6) used for defuzzification to provide the 
expert weightings. The model’s estimated respondent weighting defuz
zified output ranges from zero to unity. The inference system is illus
trated in Fig. 5, along with the defuzzification process used to obtain the 
respondents’ estimated weightings based on their academic and pro
fessional profiles. All the 31 respondents’ weightings are obtained by 
carrying out this process 31 times. 

The model’s output value (predicted respondent knowledge/expe
rience weight) ranges from zero to unity. The respondents are further 
clustered based on their weightings into very low, low, medium, high, 
and very high groups for 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0, 
respectively, for input into the second step of the model (obtaining the 
severity weighting of each factor). The 31 respondents’ ranks and 
weights are shown in Table 3. A total of 3, 15, 12, and 2 respondents 
have high (over 60%), medium, low, and very low weights, respectively, 
showing that. These values show the respondents to be high to moderate 
experienced and academically diversified. It can be noticed from Table 3 
that the respondent ranked 31 has a poor profile score of 0.0939, which 
means that in the next step, their opinion in ranking the cost overrun 
factors will be less influential than respondent number 1’s score of 
0.637. 

3.5.2. Severity weight and ranking cost overrun factors 
The second step is ranking the most common cost overrun factors by 

severity weight. The severity level of each Table 1 cost overrun factor is 
assessed by the Saudi construction industry experts. All experts rated 
each factor’s severity based on six potential answers on the 6-point 
none-very high scale. The answers are used as inputs, with a similar 
gbmf shown in Fig. 2 defining the membership functions to rank the cost 
overrun factors. Hence, like Table 2, 186 (=31 ×6) If-Then rules with 
their corresponding weights are used to describe the input variables’ 

Fig. 3. “Expert Weight” membership function.  
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relationships, i.e., six possible answers of each of the 31 respondents and 
the output. Then, the fuzzy output was defuzzified by the COA model to 
predict the severity of the required cost overrun factor, similar to the 
process shown earlier in Fig. 4. Based on the defuzzified severity weight, 
all the ranked factors are obtained. The final outcome generates the 
ranking of the 40 cost overrun factors with their severity weights in  
Table 4. The resulting “factor ranking” is used for weighting rules in the 
next step. The process of identifying the severity of the first cost overrun 
factor, “Poor communication between construction parties”, is summa
rized in Fig. 6. It starts with inputting the first factor’s severity rates 
collected from the 31 experts in the developed model. Then, the rules are 
formed to describe how the experts’ (respondents) weights and the 
evaluation of the factor’s severity affect the output, “severity weight.” 
Then, the defuzzification process converts all the cumulated 31 fuzzy 
inputs into a single value output representing the first factor’s overall 
severity weight. Fig. 7. 

The predicted factor severity weight ranges from zero to unity to 1, 
which can be defined for understanding the severity level of each factor. 
The factors are classified from the scale in Section 3.3.3, based on their 
weighting, from 0 to < 0.17, 0.17 to < 0.30, 0.30 to < 0.50, 0.50 to 
< 0.70, and 0.7 to 1.0 as "very low", "low", "medium", "high", and "very 
high" severity factors. Table 4 shows the severity ranking and level of the 
factors identified, indicating 37 factors to be ‘high severe’ as they have 
severity weights ranging from 0.50 to 0.70. 

4. Development of the model part 2: generating the PCO 

The occurrence probability of each cost overrun factor listed in 
Table 4, assessed by decision makers for a specific project, is given as the 
input in part 2 of the model to predict the cost overrun of the whole 
project as a percentage of the initial budget. As with the severity level, 
the occurrence probability is assessed using a 6-point scale ranging from 
0 to 5, indicating none to very high respectively. Similarly, following the 
preceding steps presented in Figs. 2–4, the gbmf defines the input and 
output membership functions. All potential correlations between the 40 
input variables (occurrence probability of each factor) and the output 
variable (i.e., the PCO) are represented by 40 × 6 = 240 rules since each 
of the 40 factors has six possible outcomes (i.e., occurrence probability). 
The “Factor’s severity weight” obtained in part 1 of the model is used to 
weigh the 240 rules. Finally, the defuzzification process using the 
“centroid of area” model is applied to predict the project’s likely cost 
overrun. Fig. 8 summarizes the procedure involved, starting with 
inputting the factors’ occurrence probabilities assessed by the decision- 
maker/risk management team of a project. Then, the rules are developed 
to establish the relationship between the severity weight of each factor 
and its occurrence probability to predict cost overrun. Finally, the 
defuzzification process transforms the fuzzy outputs into a single value 
output that represents the PCO of a specific construction project. The 
basic fuzzy If-then rule for the PCO is as follows:  

Fig. 4. Example application of If-Then rules to obtain the fuzzy linguistic scale “Respondent weighting”.  

IfF1isO1, F2isO2, …andFnisOkandtherespectivefactorweightisSW1, …,ksuccessively, thenPCOisCi(i = 0, 2, …k = 6) (5)   
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where F is the cost overrun factor, n is the number of identified factors in 
the model, O is the level of occurrence probability in a 6-point scale 
ranging from none to very high, SW is the severity weight of a factor 
found from the first part of the model, the PCO is C in a fuzzy form of 
none to very high cost overruns. 

5. Model demonstration and testing 

The model is demonstrated by inputting the probability of cost 
overrun risks in two real-life projects. Afterward, to check the internal 
consistency of the model’s outcomes, a sensitivity analysis is conducted. 
The following sections briefly demonstrate the model predicting cost 
overruns of two projects, followed by a sensitivity analysis. 

5.1. Cost overrun prediction of two projects 

Once the individual respondent knowledge/experience weight and 
the severity weight of each factor are provided in the Mamdani-type FIS 
in MATLAB, then the model creates in-built weights of each factor in the 
system. Now, the sole input to the model is the occurrence probability of 
each cost overrun for a specific project the experts assess. Suppose the 

model is fed with the occurrence probabilities of all cost overrun factors. 
In that case, it will predict the project’s cost overrun considering the 
fuzzy If-Then rules developed in Part 2 (Section 4). Accordingly, a study 
of two actual Saudi Arabian construction projects was carried out to 
demonstrate the model’s capability of predicting cost overruns. The 
experts were interviewed to rate the occurrence probability of each cost 
overrun factor considering a recently completed construction project. 
Also, they were requested to apply traditional practices with their 
experience to predict the cost overrun in the same project. 

The first project was a large-scale slaughterhouse (factory building) 
in Riyad, the capital city of Saudi Arabia, that has a capacity for hun
dreds of thousands of cattle. The project’s initial estimate was 470 
million SAR, and the actual cost of the project was 600 million SAR. This 
means that the project has experienced a cost overrun of 27.7%. The 
project manager (contractor’s side), senior cost estimator (contractor), 
and the senior design consultant were requested to evaluate the occur
rence probability of selected 40 factors. That was a group interview, and 
they evaluated the occurrence probability of each factor based on their 
consensus. The interviewed experts thought that the project would have 
a 35% to 50% chance of experiencing cost overrun, considering the 
history of the Saudi construction industry. The information provided for 

Fig. 5. “Respondent weighting” FIS and defuzzification.  
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the occurrence probability of each factor was input into the model, 
which predicted a likely project cost overrun of 47.7%. Fig. 9 provides a 
screenshot of the defuzzification process involved. According to the 
experts, the model provides a reliable prediction of the cost overrun as 
its outcome is within the 35%− 50% expected limit set by the experts. 
Also, it is reasonable for a project that has ended up with a cost overrun 
of 27.7%. Table 5 presents the experts’ answers for the occurrence 
probability of each cost overrun factor in the studied project. 

The second was a smaller-scale project to test the model’s reliability 
with smaller construction projects. The project is called “Site Develop
ment in Faculty Housing Area” within a public university campus in 
Eastern Province, Saudi Arabia. It was a 3500 m2 (total building area) 
housing project. The predicted project cost was 14 million SR, while the 
actual cost at completion was 17 million SR, meaning that the project 
has a cost overrun of 21.4%. The project manager (contractor side), cost 
accountant, and risk manager were invited to participate in a group 
interview to evaluate the probability of 40 cost overrun factors. Ac
cording to their experience, the experts assessed a 30%− 45% chance 
that the project would experience cost overrun. Based on their inputs, 
the model predicts a cost overrun of 44.2%. A screenshot from the 
model’s defuzzification process is presented in Fig. 10. The experts 

deemed the model’s cost overrun prediction acceptable as the project 
ended up experiencing a cost overrun of more than 21%. The resulting 
probability falls below the upper predicted limit. Therefore, the model 
can predict the cost overrun of small-scale projects, too. 

5.2. Sensitivity analysis 

The model was tested in six different scenarios to evaluate its per
formance, sensitivity, and robustness. In the first scenario, where no cost 
overrun factor was expected, i.e., each factor’s severity weight was set at 
zero, the model produced a PCO of 8.1%, which is reasonable as it 
assumed no difficulties in the project. In the second scenario, where all 
factors were considered "very low" risk, the model predicted a cost 
overrun of 21.1%, which is also logical. When the occurrence proba
bility was set to "low," "medium," "high," and "very high" for different 
scenarios, the model generated PCOs of 40.3%, 59.7%, 78.9%, and 
91.9%, respectively. These outcomes indicate that the model’s cost 
overrun predictions are consistent and logical with the cost overrun 
factors’ probability of occurrence. 

For further analysis, the model was tested by changing membership 
functions and defuzzification methods. Table 6 presents the model’s 
outcome against different compositions (i.e., membership function and 
defuzzification method) of FIS. It shows a minor variation with the 
change of a membership function. However, changing the defuzzifica
tion method has a significant impact on the model’s PCOs. In particular, 
the centroid method and last of maxima (LOM) provide very similar 
results compared to other methods. The small of maxima (SOM) pro
vides a lower prediction outcome than the centroid (center of area), and 
the PCO is constant for the mean of maxima (MOM) and Bisector 
methods, with no variation in changing membership functions. Overall, 
the centroid defuzzification is the best selection with any membership 
functions in terms of PCO of the given data set. In fact, the centroid 
method is the most frequently used defuzzification method in handling 
expert judgment-based cost or risk modeling [71,72,65,73,74]. Centroid 
defuzzification has several advantages: (1) the defuzzification process 
tends to transition smoothly within the output fuzzy region, (2) the 
output calculation is relatively easy, and (3) the method is applicable to 
both fuzzy and singleton output set geometries [71,75,76]. 

6. Discussion and contributions 

This study provides an integrated model to the project’s principal 
contract officer (PCO) with an integrated list of severity-weighted fac
tors influencing cost overruns and a project-specific probability of 
occurrence for each factor assessed by the project team. 

The research adds to the body of knowledge by creating a fuzzy 
model that ranks the severity of cost overrun factors and uses expert 
judgment to forecast cost overruns in major construction projects. 
Because experts have differing degrees of knowledge and experience in 
unpredictable project environments, their opinions are inherently sub
jective, ambiguous, and uncertain. Expert opinions, therefore, offer a 
significant challenge in managing subjectivity and uncertainty. To 
control the subjectivity and uncertainty surrounding expert opinions 
when applying fuzzy models, three fundamental strategies were used. 
These are: (1) adding an expert weight in the risk evaluation; (2) using a 
variety of factors when selecting experts (experience, position, and ac
ademic credentials); and (3) fuzzifying (using the membership function 
in place of a crisp value) the risk evaluation. 

With reference to Fig. 1 in sub-Section 3.2, the experts were chosen 
based on a range of factors, such as their professional role in projects, 
their academic background, their experience in risk management, and 
their involvement in large-scale and other projects [5,24,49]. To mini
mize subjective biases in an equivalent cohort of experts, these expert 
selection criteria allow for varying degrees of input. 

To reduce subjectivity in expert judgment, a second method is to 
include the expert’s weight in the fuzzy inference system. This entails 

Table 3 
Sample “Expert Weight” fuzzy rules.  

Rule Inputs Output 

Antecedent Consequence 

1 “Very high ”experience in large (mega) 
and other construction projects and risk 
management is, with Ph.D. 

The respondent has a very high 
weighting 

2 “High” experience with large 
construction projects. 

The respondent has a high 
weighting 

3 “Medium experience with construction 
projects. 

The respondent has a medium 
weighting 

4 ”Low” experience with construction 
projects. 

The respondent has a low 
weighting 

5 “Very low” experience with 
construction projects. 

The respondent has a very low 
weighting 

…… ………………………………. ………………………………… 
…… ………………………………. ………………………………… 
16 Ph.D. degree The respondent has a very high 

weighting 
17 Master’s degree The respondent has a high 

weighting 
18 Bachelor’s degree The respondent has a medium 

weighting 
19 Higher secondary school certificate The respondent has a low 

weighting 
20 Below higher secondary The respondent has a very low 

weighting  

Table 4 
Respondent rank and weight.  

Rank Weight Rank Weight 

1  0.637 17 0.431 
2  0.63 18 0.383 
3  0.617 19 0.363 
4  0.515 20 0.363 
5  0.5 21 0.363 
6  0.5 22 0.328 
7  0.5 23 0.328 
8  0.5 24 0.328 
9  0.5 25 0.328 
10  0.5 26 0.328 
11  0.5 27 0.328 
12  0.5 28 0.328 
13  0.5 29 0.328 
14  0.437 30 0.264 
15  0.437 31 0.0939 
16  0.431 – –  
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not assigning each expert the same weight because the study’s expert 
selection criteria may impact their assessment. Academic knowledge 
and experience have a significant impact on an employee’s learning 
curve in engineering judgment [60,61]. Therefore, one limitation of 
some expert judgment-based studies is that they do not treat experts 
equally. Following earlier research [47,59,62], the suggested fuzzy 
model circumvents this restriction by including expert weights in the 
factor’s severity ranking and cost overrun prediction. 

When employing fuzzy logic, choosing the membership function is 
crucial to account for the expert’s ambiguous and subjective assessment. 
Experts assess the degree of risk severity that could result in project cost 
overruns using their best judgment and frequently disagree on the 
appropriate level. To account for the subjectivity and biases in expert 
judgments, the fuzzy membership function fuzzifies the crisp value (0, 1, 
2, 3, 4, and 5) or corresponding linguistic (none to very high) evaluation 

into a three-point (triangular MF), four-point (trapezoidal MF), or 
continuous value from 0 to 5 (g-bell shape MF) [77-80]. Subsequently, 
the model employs numerous inference rules (186 in this instance) and 
an aggregation procedure to summate all the expert responses. A 
defuzzification technique is then used to generate an output or risk 
severity level [81,80,82]. 

Furthermore, the field’s decision makers are aware that the result is a 
contextual scenario of a project rather than a precise value. A high-risk 
severity level, for example, of 0.549/F31, indicates that the risk’s most 
likely outcome is high, with medium being the most favorable scenario 
and very high being the worst. The project manager or risk management 
team can then manage project risk and use their cost contingency budget 
to control cost overruns by keeping this result in mind. 

Referring to Table 4, the ten most severe factors in large-scale Saudi 
construction projects are ‘frequent changes in design’, ‘delays in 

Fig. 6. Summary of the model’s computation of the first respondent’s weight.  
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Fig. 7. The model’s process for obtaining the factor 1 severity weight.  

Fig. 8. The flow diagram of the final model to predict the cost overrun.  
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progress payments’, ‘undefined or change in project scope’, ‘inexperi
enced project manager for owner’, ‘poor quality control’, ‘delays in 
supplying and approving drawings’, ‘contractor’s poor site manage
ment’, ‘delays in decision making’, ‘financial status of contractor’, and 
‘poor communication between the parties’. Given that these factors have 
been mentioned in several earlier Saudi Arabian studies, this result is to 
be expected. The most severe factor, "frequent changes in design," for 
example, is associated with schedule overruns and raises the project’s 
ultimate cost. It typically arises from the owner’s lack of early 
involvement or design errors [42]. Similarly, protracted approval and 
payment delays of some government agencies to associated parties ac
count for the second most serious factor, "delays in progress payments" 
[9]. The third and fifth significant factors are "undefined or change in 
the project scope" and "poor quality control/assurance," which arise 
from owners’ tendency to underinvest time and funds in choosing the 
best consultants in Saudi Arabia [31]. In contrast, inexperienced project 
managers are common due to a lack of workshops and proper training 
[32], which is a major contributor to inadequate time and cost moni
toring and management [31]. 

To evaluate the suggested model’s efficacy and applicability for 
different uses, it can be contrasted with other fuzzy models in the 
literature. Few offer cost overrun prediction models; most end with 
identifying important cost overrun factors. Of those, although the model 
developed by Islam et al. (2022) that combines a genetic algorithm with 
Monte Carlo simulation is highly focused on predicting power plant 
project cost overruns, it neglects to address the subjectivity and uncer
tainty that come with expert judgment. Similarly, the accuracy of [16] 
data mining algorithm predicting cost overrun from quantitative cost 
data sets is poor, and it does not assess risks. 

In contrast, Plebankiewicz’s (2018) model only involves three fac
tors and 27 inference rules to predict cost overruns using a fuzzy- 
Mamdani inference system without the need for quantitative data sets 
from previous projects. As an illustration, our model generates 240 rules 
for cost overrun prediction, 186 inference rules for severity weighting, 
and 20 for expert weighting. As a result, our model helps project man
agement teams make informed decisions about early risk planning and 

management, allocating contingency costs, and controlling cost over
runs by providing deeper insights into the relevant and potentially sig
nificant factors. Table 7 compares our model and related models from 
the literature. 

In addition, this study provides specific contributions to both the 
current state of knowledge and professionals in the industry, including:  

• Potential and significant contributing factors to large-scale Saudi 
Arabian construction project cost overruns have been identified. In 
order to prevent cost overruns, this makes it easier for important 
project stakeholders—owners, consultants, and contractors—to un
derstand their responsibilities and create risk management plans 
early on.  

• Expert knowledge/experience weights are used to generate the PCO 
to minimize subjective biases, factor severity weights, and proba
bility of occurrence. When determining appropriate contingency 
amounts and management reserves for a project, the PCO works with 
cost estimators and management teams.  

• A novel fuzzy-Mamdani model is created for evaluating the risk of 
cost overruns, and creating the PCO using the MATLAB fuzzy toolbox 
is a vital resource that Saudi Arabia and other Middle Eastern nations 
with comparable characteristics can utilize immediately. Further
more, the developed fuzzy approach can be tailored to other global 
construction industries by modifying the MATLAB coding to incor
porate additional risk factors and different assessments from various 
expert groups. 

The model can also provide a realistic solution to the field pro
fessionals in the following ways:  

• They can directly anticipate cost overruns and set aside enough 
money as a contingency for future projects.  

• Since the frequency of any risk usually becomes more apparent as the 
project moves forward, the model can serve as a dynamic tool for 
modifying the cost contingency. This can provide an early warning of 
the project’s cost performance. 

Fig. 9. The model’s estimation for predicting the cost overrun of the “slaughterhouse” project.  
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• If the project scenario changes, risks can be added or removed from 
the model; in this case, MATLAB’s model can be modified slightly.  

• Assume a group of experts has a unique model. If the experts’ 
characteristics and risk severity assessment are provided, the pro
posed fuzzy-Mamdani model can be used or adjusted to account for 
this. The changes will then be incorporated into the final MATLAB 
cost overrun prediction model. The MATLAB codes attached as an 
additional file greatly aid in the model’s adoption of a particular 
project-based model. 

7. Conclusion 

Predicting cost overruns is an important step in taking proactive 

actions to control cost overruns during the execution phases of a project. 
However, for large projects, this usually depends on expert judgment- 
based linguistic data sets, which are uncertain, subjective, and vague 
in nature. Accordingly, fuzzy logic-based models are the most suitable 
for addressing such issues in expert judgments. Of the many alternatives 
available, the Mamdani-FIS is used to develop an integrated risk 
assessment and cost overrun prediction model. It is the most frequently 
used method due to its simplicity and capability to aggregate linguistic 
assessments of many factors with unclear interrelationships to produce 
realistic outcomes. Considering the number of factors and nature of 
linguistic data sets for PCO, the Mamdani-FIS theory was employed to 
construct the model as it can produce the most precise and accurate 
outcomes. 

This study develops and demonstrates a three-step fuzzy-Mamdani 
model. Step 1 involves assigning weights to each expert, Step 2 com
putes and ranks the severity weight for each factor, and Step 3 predicts 
the cost overrun using inputs from Steps 1 and 2, as well as the proba
bility of each factor’s occurrence for a specific project. The model 
comprises 20 rules for expert weighting, 186 rules for severity ranking, 
and 240 rules for predicting the cost overrun of any given project, 
ensuring its comprehensiveness compared to previous cost overrun 
prediction models. 

In model building and demonstration, this study initially identified 
40 potential and critical cost overrun factors from the literature and 
developed a structured questionnaire. Fifty-two experts from the Saudi 
construction industry were invited to participate in the questionnaire 
survey, and 31 returned completed questionnaires. These experts 
assessed the severity of each factor on a six-point scale, ranging from 
’none’ (0) to ’very high’ (5). The model calculated the expert weights for 
Step 1, considering their various characteristics, such as professional 
position in the project, experience in large and other projects, risk 
management experience, and academic level. In Step 2, the severity 
weights of the 40 identified factors were measured and ranked using the 
inputs of each factor’s severity level (ranging from ’none’ to ’very high’) 
and the calculated expert weights from Step 1. In the third step, three 
inputs (i.e., expert weights, severity weights, and occurrence probabil
ities of each factor in each case study project) were used to predict cost 
overruns. 

The model was demonstrated using two case study projects from the 
Saudi Construction Industry (SCI). For each case project, a group 
interview involving the project manager (contractor’s side), senior cost 
estimator (contractor), and senior design consultant was conducted to 
rate the probability of occurrence of each cost overrun factor using a 
similar six-point scale to that used for severity evaluation. 

A sensitivity analysis was conducted in two steps. Varying frequency 
levels were input to test the consistency in the model’s PCO outcomes, 
which yielded highly consistent results. Additionally, different combi
nations of membership functions and defuzzification methods were 
developed to demonstrate the model’s performance in PCO. The results 
show that selecting a defuzzification method significantly impacts the 
PCO, while a minor effect was observed when selecting the type of 
membership function. Ultimately, the centroid method for defuzzifica
tion and the generalized bell-shaped membership function proved to be 
an ideal combination for predicting realistic cost overruns in the case 
study projects. The severity analysis in Step 2 of the model reveals 37 
high-level factors contributing to cost overruns in the SCI. The top- 
ranked critical factors include frequent changes in design, delays in 
progress payments, undefined or changing project scope, inexperienced 
(owner’s side) project managers, and poor quality control during the 
project’s execution phase. 

The model’s performance was demonstrated in two actual con
struction projects with cost overruns of 27.7% and 21.4%, where project 
teams’ PCO probabilities were 35% to 50% and 30% to 45%, respec
tively. The model’s PCOs for these projects were 47.4% and 42.2%, 
respectively, closely aligned with their PCOs. The project teams consider 
it a reliable tool as it allows them to estimate the expected range of 

Table 5 
Rank and severity weight of cost overrun factors.  

Rank Factor (code) Severity 
weight 

Severity 
level 

1 Frequent changes in design (F12)  0.652 High 
2 Delays in progress payments (F13)  0.647 High 
3 Undefined or change in the scope of the 

project (F15)  
0.64 High 

4 Inexperienced project manager for owner 
(F4)  

0.635 High 

5 Poor quality control/assurance (F28)  0.625 High 
6 Delays in supplying and approving drawings 

(F26)  
0.624 High 

7 Contractor’s poor site management and 
supervision skills (F3)  

0.585 High 

8 Delays in decision making (F14)  0.584 High 
9 The financial status of contractors or sub- 

contractors (F22)  
0.584 High 

10 Poor communication between construction 
parties (F1)  

0.583 High 

11 Deficiencies in cost predictions (F30)  0.577 High 
12 Lack of knowledge and experience for 

laborers (F7)  
0.576 High 

13 Poor planning and scheduling (F19)  0.576 High 
14 Lack of knowledge and experience for 

consultants/designers (F7)  
0.575 High 

15 Bid award for the lowest price (F11)  0.57 High 
16 Delays in subcontractor’s work (F23)  0.562 High 
17 Poor productivity (F6)  0.561 High 
18 Inadequate experience and comprehension 

of the scope of work and site condition (F21)  
0.56 High 

19 Design errors (F25)  0.559 High 
20 Disputes between parties (F2)  0.555 High 
21 Market conditions (availability and cost of 

materials, equipment, and labor) (F8)  
0.552 High 

22 Obstacles from government (F31)  0.549 High 
23 Unrealistic contract duration and 

requirements imposed (F16)  
0.544 High 

24 Long period between design and time of 
implementation (F20)  

0.543 High 

25 Poor consultant’s management skills (F5)  0.533 High 
26 Delays in material delivery (F9)  0.531 High 
27 Project size and complexity (F32)  0.531 High 
28 High and inconsistent interest rates charged 

by bankers on loans (F39)  
0.531 High 

29 Number of projects the contractor works on 
at the same time (F24)  

0.53 High 

30 Level and number of competitors (F40)  0.53 High 
31 Inflation and taxes (F37)  0.524 High 
32 Adoption of a fast-track project delivery 

strategy (F17)  
0.523 High 

33 Project location and terrain condition (F35)  0.522 High 
34 Social and cultural impacts (F36)  0.516 High 
35 Many stakeholders (F18)  0.504 High 
36 Inconvenient site access (F33)  0.502 High 
37 Inadequate or changes in material 

specifications and type (F27)  
0.501 High 

38 Limited construction area (F34)  0.486 Medium 
39 Weather condition (F38)  0.478 Medium 
40 Laborers’ insurance, work security, or 

health problems (F10)  
0.44 Medium  
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profitability in these projects. With the model’s outcomes, contractors 
can make more accurate bid estimates and allocate realistic contingency 
costs within their bid prices before submitting bids. 

The developed Mamdani-FIS model is superior to other models for 
several reasons. Firstly, it encompasses a maximum of 240 rules within 
the inference system, considers expert weights, utilizes a single input 
(specifically, the frequency of each factor) for PCO, achieves high pre
diction accuracy, and accommodates many factors. Additionally, the 
model serves two distinct purposes: risk assessment and ranking, as well 
as cost overrun prediction, which sets it apart from many previous 
studies. Within the developed model, only a single input, i.e., the 
occurrence probability of cost overrun factors in a particular project, is 
necessary to predict its cost overrun. Therefore, it provides an invaluable 
tool for contractors involved in large-scale projects during the bid esti
mation phase of project procurement. 

Furthermore, this model can function as a dynamic risk management 
tool, aiding in the monitoring and managing of cost overrun risks and 
contingency costs during the project execution phases. The risk man
agement team has the flexibility to adjust the severity level of each 
factor as the project progresses in Step 2 (Severity Ranking Model). This 
allows them to assess the evolving risk scenarios more clearly during the 
execution phases and anticipate the impacts on PCO, providing early 
warnings for effective project cost management. 

The study is limited in relying heavily on expert judgment from 
project personnel to evaluate each cost overrun factor’s probability of 
occurrence, making the model’s predictions dependent on their 

expertise. Additionally, the number of participating experts was limited 
due to the study being conducted during the COVID-19 restrictions from 
March 2021 to May 2021, which restricted access to domain experts. 
Furthermore, the model was developed and demonstrated on only two 
case projects within the Saudi construction industry. To generalize its 
applications, it is recommended to validate the model further using 
more case studies from various construction projects in Saudi Arabia. 
The model’s validation could also include data from diverse infra
structure projects within different construction industry cultures 
worldwide. Finally, the Mamdani-FIS model is used without comparing 
the outcomes with other fuzzy models. Therefore, it would be beneficial 
for future research to explore such alternative fuzzy methods as Sugeno 
and Tsukamoto to identify the most suitable prediction model for con
struction cost overruns. 

Data sharing 

The data used for this study can be obtained from the corresponding 
author for further academic purposes. 
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Fig. 10. The model’s prediction of the cost overrun in the “Site development in faculty housing area” project.  

Table 6 
The model’s performance for different FIS compositions.  

Membership function Defuzzification method  

COA MOM LOM SOM Bisector 

Gbmf  0.477  0.4  0.48  0.32  0.46 
Gaussian  0.478  0.4  0.47  0.33  0.46 
Triangle  0.479  0.4  0.46  0.34  0.46 
Trapezoidal  0.477  0.4  0.48  0.32  0.46  
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Table 7 
Comparison of the proposed model with other models in the literature.  

Comparison areas Our model Plebankiewicz[29] Islam et al.[24] Williams and 
Gong[16] 

El-Kholy[47] Leu et al.[18] Adoko et al.[83] Knight et al.[78] Bhargava et al. 
[84] 

Idrus et al. 
[75] 

Method/algorithm Mamdani-type 
FIS 

Mamdani-type FIS Genetic 
Programming and 
MCS 

Data mining 
model- Ridor, K- 
Star, Radial Basis 
neural network, 
Support Vector 
decomposition 

Random forest 
regression, 
support vector 
regression 

Dynamic 
Bayesian 
network (BN) 
and Markov 
method 

Logistic 
regression 

Fuzzy Set Theory Monte Carlo 
Simulation 

Mamdani- 
type FIS 

No. of inference rules 
developed 

240 rules Only three rules Not relevant Not relevant Not relevant No rule but 16 
risk-propagation 
networks 

Not relevant 10 scenarios were 
developed 

Not relevant 25 rules 

Handling uncertainty 
in subjective 
judgment 

Yes Yes No, risks were 
assessed using the 
averaging 
technique 

No subjective risk 
assessment data is 
used. 

No, Likert scale- 
based data were 
used and not 
fuzzified. 

No, quantitative 
data was used for 
model validation 

No Partially handle 
uncertainty, no 
membership 
function 

No Yes 

Prediction accuracy Very good 
(expert’s actual 
prediction 35- 
50%, model’s 
prediction 
44.2%) 

80% Excellent (90% 
confidence level in 
cost overrun 
prediction) 

Poor (43.72% 
prediction 
accuracy) 

Poor (75%) 86% 60% (reliability) Varies from 85% to 
91% 

88% (average) 80% 

Considered risks as 
inputs 

41 risk factors Only three factors Eight factors Many factors were 
considered but not 
specified as cost 
overrun risks 

12 factors Nine factors Only five 
complexity 
factors 

Eight risk factors Five cost 
variation 
factors 

Yes- 14 risk 
factors 

General applications 
of the developed 
model 

Yes, there is an 
option for 
updating the 
risk 
probabilities or 
adding new 
risks 

No No No- only for power 
plant projects 

No, specific to 
building and 
engineering 
services costs 

Adding extra 
risks and finding 
a huge 
probability data 
is a challenge 

Only for complex 
projects 

Yes, project 
characteristics and 
risk factors can be 
updated 

No, only for 
specific 
projects 

Yes, option 
for updating 
risk factors 

Data required for the 
model 
development 

31 experts 
participated in 
the survey, but 
a small group of 
experts’ inputs 
can predict PCO 

Very detailed 
activity-based cost 
data required 

Large data sets are 
required for 
training and testing 
the model (67 
projects’ data were 
used) 

Large data sets are 
required. 
Bootstrapping is 
needed if small 
data sets are 
available. 

95 similar 
building projects’ 
data were used to 
train and test the 
model, a data- 
intensive model 

Four experts 
were 
interviewed to 
develop a 
Bayesian 
network, a huge 
amount of 
probability data 
was required 

66 projects’ data 
were given as 
inputs, a data- 
intensive model 

Seven experts were 
interviewed, 18 
projects data were 
given as inputs 

15 projects’ 
data were used 
for model 
development 

Eight experts 
participated 

(continued on next page) 
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Table 7 (continued ) 

Comparison areas Our model Plebankiewicz[29] Islam et al.[24] Williams and 
Gong[16] 

El-Kholy[47] Leu et al.[18] Adoko et al.[83] Knight et al.[78] Bhargava et al. 
[84] 

Idrus et al. 
[75] 

Applications in 
project phases 

Throughout the 
project period- 
cost estimation 
and budgeting 
to execution 
and monitoring 

It can be updated in 
execution phases 
based on available 
cost data 

Good for 
preliminary 
budgeting 

Good for 
preliminary 
budgeting 

Good for 
preliminary 
budgeting 

Possible. Need to 
develop phase- 
based BN 

Good for 
preliminary 
budgeting or 
developing cost 
baseline 

Only applicable for 
a project proposal 
development stage 

Planning 
phase, good for 
preliminary 
budgeting 

Good for 
preliminary 
budgeting 

User preference Easy- only 
frequency of 
each risk factor 
is the input 

Moderate- activity 
cost data is input 

Moderate- 
simulation 
knowledge is 
required 

High tech- 
Machine learning 
skills and detailed 
project reports are 
required 

High tech- 
Machine learning 
skills are 
required, and 
models are also 
data intensive 

Factors’ 
probabilities and 
dependence 
relationships are 
inputs 

Only five 
complexity levels 
are the inputs, 
easy to use 

User rates each 
characteristic of a 
project and risk 
factor from 0 to 1 
with 0.2 interval, 
easy to use 

A software 
package was 
developed, 
easy to use 

Both risk 
likelihood 
and risk 
severity are 
inputs 

Limitation Two projects 
were used for 
the model 
validation 

The model requires 
lengthy and complex 
calculations for 
large-size projects. A 
limited number 
(three only) of 
inference rules limit 
its application in an 
uncertain project 
environment. 

The model cannot 
handle subjective 
judgment. Risks 
were scored and 
ranked using a 
simple Probability x 
Impact method. 
Only eight risks 
were given as 
inputs. 

Data-driven 
model. Only eight 
critical factors 
were considered 
for cost overrun 
prediction, cannot 
handle subjective 
bias 

Large data sets are 
required, and 
selected top 
factors can be 
varied with the 
project context, 
which can 
significantly 
change the 
model’s 
performance 

Six projects were 
used for model 
validation 

Not very 
comprehensive to 
address cost 
overrun factors, 
data-driven 
model 

Only design fee cost 
overruns were 
predicted, three 
project 
characteristics were 
inputs for 
validation, could 
not properly handle 
uncertainty 

Only cost data 
of a single 
project in 
different 
phases was 
used for model 
validation 

Three 
projects were 
used for the 
model 
validation  
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Data availability 

Data will be made available on request.  

Appendix 1. Structured questionnaire to collect data 

General statement: As a construction management professional, you are cordially invited to participate in this questionnaire survey assisting my 
research on “identifying potential and critical factors affecting cost overruns in large construction projects” as a part of a postgraduation thesis called 
“Predicting Cost Overruns in Large Construction Projects – A Fuzzy-Mamdani Approach”. You are allowed to accept or reject your participation in this 
survey. If you are agreed, please answer the following: 

Part A: Please provide information (√) about yourself based on the following three criteria:   

Experience in large construction projects 
(years) 

Experience in other construction projects 
(years) 

Experience in risk management 
(years) 

Academic 
qualification 

0 to 5 0 to 5 0 to 5 Ph.D. 

5 to 10 5 to 10 5 to 10 M.Sc. 

10 to 15 10 to 15 10 to 15 Bachelor 

15 to 20 15 to 20 15 to 20 Higher secondary 

over 20 over 20 over 20 Below higher secondary  

Part B: Please evaluate (√) the severity of the listed factors affecting the cost overruns in large construction projects. Please evaluate each factor 
based on the 6-point scale where 0 =none, 1 = very low, 2 = low, 3 = medium, 4 = high, and 5 = very high.   

No. Factor (code) Severity  

1 Poor communication between construction parties (F1)  0  1  2  3  4  5  

2 Disputes between parties (F2)              

3 Contractor’s poor site management and supervision skills (F3)              

4 Inexperienced project manager for the owner (F4)              

5 Poor consultant’s management skills (F5)              

6 Poor productivity (F6)              

7 Lack of knowledge and experience of laborers (F7)              

8 Market conditions (availability and cost of materials, equipment, and labor) (F8)              

9 Delays in material delivery (F9)              

10 Labors’ insurance, work security, or health problems (F10)              

11 Bid award for the lowest price (F11)              

12 Frequent changes in design (F12)              

13 Delays in progress payments (F13)              

14 Delays in decision making (F14)              

15 Undefined or change in the scope of the project (F15)              

16 Unrealistic contract duration and requirements imposed (F16)              

17 Adoption of a fast-track project delivery strategy (F17)              

18 Many stakeholders (F18)              

19 Poor planning and scheduling (F19)              

20 Long period between design and time of implementation (F20)              

21 Inadequate experience and comprehension of the scope of work and site condition (F21)              

22 The financial status of contractors or sub-contractors (F22)              

23 Delays in subcontractor’s work (F23)              

24 Number of projects the contractor works on at the same time (F24)              

25 Design errors (F25)              

26 Delays in supplying and approving drawings (F26)              

27 Inadequate or changes in material specifications and type (F27)              

28 Poor quality control/assurance (F28)             

(continued on next page) 
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(continued ) 

No. Factor (code) Severity  

29 Lack of knowledge and experience for consultants/designers (F29)              

30 Deficiencies in cost predictions (F30)              

31 Obstacles from the government (F31)              

32 Project size and complexity (F32)              

33 Inconvenient site access (F33)              

34 Limited construction area (F34)              

35 Project location and terrain condition (F35)              

36 Social and cultural impacts (F36)              

37 Inflation and taxes (F37)              

38 Weather condition (F38)              

39 High and inconsistent interest rates charged by bankers on loans (F39)              

40 Level and number of competitors (F40)              

Appendix A. Chai-square test result for the severity analysis of 40 factors  

Factor p-value Comment Factor p-value Comment 

F1  0.0013 Rejected F21  0.0017 Rejected 

F2  0.0002 Rejected F22  0.0004 Rejected 

F3  0.0009 Rejected F23  0 Rejected 

F4  0.0011 Rejected F24  0.0074 Rejected 

F5  0.0011 Rejected F25  0.0024 Rejected 

F6  0.0133 Rejected F26  0 Rejected 

F7  0.001 Rejected F27  0.2085 Rejected 

F8  0.0001 Rejected F28  0 Rejected 

F9  0.002 Rejected F29  0.0001 Rejected 

F10  0.1166 Retained F30  0.0001 Rejected 

F11  0.0004 Rejected F31  0.045 Rejected 

F12  0 Rejected F32  0 Rejected 

F13  0 Rejected F33  0.072 Retained 

F14  0 Rejected F34  0.0442 Rejected 

F15  0 Rejected F35  0.028 Rejected 

F16  0 Rejected F36  0.0515 Retained 

F17  0.0014 Rejected F37  0.02 Rejected 

F18  0.0157 Rejected F38  0.0366 Rejected 

F19  0.0003 Rejected F39  0.0292 Rejected 

F20  0.0001 Rejected F40  0.01 Rejected  
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