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Abstract
Motivation: de novo variants (DNVs) are variants that are present in offspring but not in their parents. DNVs are both important for examining
mutation rates as well as in the identification of disease-related variation. While efforts have been made to call DNVs, calling of DNVs is still chal-
lenging from parent–child sequenced trio data. We developed Hare And Tortoise (HAT) as an automated DNV detection workflow for highly accu-
rate short-read and long-read sequencing data. Reliable detection of DNVs is important for human genomics and HAT addresses this need.

Results: HAT is a computational workflow that begins with aligned read data (i.e. CRAM or BAM) from a parent–child sequenced trio and outputs
DNVs. HAT detects high-quality DNVs from Illumina short-read whole-exome sequencing, Illumina short-read whole-genome sequencing, and
highly accurate PacBio HiFi long-read whole-genome sequencing data. The quality of these DNVs is high based on a series of quality metrics in-
cluding number of DNVs per individual, percent of DNVs at CpG sites, and percent of DNVs phased to the paternal chromosome of origin.

Availability and implementation: https://github.com/TNTurnerLab/HAT

1 Introduction

de novo variants (DNVs) are variants present in offspring but
not in their parents (Kong et al. 2012). These “new” variants
are present in every individual and on average each individual
has �40–100 DNVs within their genome. Common charac-
teristics of DNVs include �20% occurring at CpG sites and
�75% originate on the paternal chromosome of origin (Ng
et al. 2022). To date, DNV calling methods have primarily fo-
cused on whole-exome sequencing (WES) and whole-genome
sequencing (WGS) from short-read sequencers (Iossifov et al.
2014, Turner et al. 2017). This is because the majority of par-
ent–child sequenced trios are from short-read sequencing. In
short-read sequencing WES and WGS, reliable detection of
DNVs can be obtained from regions of the genome with good
mappability (Turner et al. 2017). We first implemented and
optimized Hare-And-Tortoise (HAT) on Illumina short-read
WGS data (Ng et al. 2022). However, with the rapidly
expanding WES datasets (Feliciano et al. 2018), we focus our
attention on adding a feature to HAT for optimizing DNV
calling in Illumina short-read WES data. Furthermore, in
2019, highly accurate long-read sequencing data (i.e. PacBio
HiFi) became available and is enabling novel insights into
more challenging regions of the genome (Wenger et al. 2019).
We further optimize HAT to work on this data type as well.

In this article, we introduce HAT as a DNV caller optimized
for sequencing data from Illumina short-read WES, Illumina
short-read WGS, and PacBio HiFi long-read WGS in parent–
child sequenced trios. HAT is important for generating DNV
calls for use in studies of mutation rates (Ségurel et al. 2014)

and identification of disease-relevant DNVs (Iossifov et al.
2014). Unlike most DNV callers, the ability to call DNVs from
multiple sequencing types is significant. We are aware of only
one other DNV caller that can work on these three data types
and that is DeepTrio implemented in Google’s DeepVariant
(Kolesnikov et al. 2021). Our comparisons in this study show
the utility of both DeepTrio and HAT for detection of DNVs.

We rely on four main data resources in this paper. The first
dataset is a set of 100 parent–child sequenced trios with
Illumina short-read WES from the SPARK cohort (Feliciano
et al. 2018), the second dataset is a set of 4216 trios with
Illumina short-read WGS from the Simons Simplex Collection
(Ng et al. 2022), the third dataset is PacBio HiFi long-read
WGS from trios with neurodevelopmental disorders
(Mehinovic et al. 2022, Sams et al. 2022), and the fourth
dataset is Illumina short-read WGS and PacBio HiFi long-
read WGS from the gold standard Genome In A Bottle
(GIAB) trio (Krusche et al. 2019). In particular, the GIAB trio
is a benchmark dataset by many researchers worldwide for
assessing variation. By application of HAT to each of these
datasets, we show that high-quality DNVs are attainable with
all three sequencing types.

2 Materials and methods

2.1 The HAT workflow

The HAT workflow consists of three main steps: GVCF gen-
eration, family-level genotyping, and filtering of variants to
get final DNVs (Fig. 1).

Received: 2 February 2023; Revised: 5 December 2023; Editorial Decision: 16 December 2023
VC The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(1), btad775
https://doi.org/10.1093/bioinformatics/btad775

Advance Access Publication Date: 4 January 2024

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad775/7510834 by W
ashington U

niversity in St. Louis user on 16 January 2024

https://orcid.org/0000-0001-8246-6477
https://github.com/TNTurnerLab/HAT


We leveraged the freely available, GPU accelerated
NVIDIA Parabricks (Franke and Crowgey 2020) software
(v4.0.0-1) for rapid GVCF generation, specifically GATK
HaplotypeCaller (McKenna et al. 2010, Poplin et al. 2018)
and DeepVariant (Poplin et al. 2018). We also provide a
purely CPU-based option, Tortoise, which uses open-source
versions of GATK and DeepVariant. The genotyping step is
performed with GLnexus (Yun et al. 2020) and post-
genotyping filtering is done with our custom workflow. The
default filtering steps include the following: (i) a requirement
that the variant is seen in the child with a genotype of 0/1 or
1/1, (ii) a requirement that the parents have a genotype of 0/0,
(iii) the variant must be in the intersection of GATK and
DeepVariant, (iv) the depth of coverage at the site must be at
least 10�, (v) the quality of the genotype of the variant in the
child must be at least 20, (vi) the variant allele must be found
in at least 25% of the reads, (vii) the parents cannot contain
any reads with the variant, and (viii) the variants in recent
repeats, low complexity regions, and centromeres are filtered
out. When running HAT on WES data, we offer a follow-up
workflow to separate DNV calls into high and low confidence
regions. Assuming the capture region has a buffer of 50 bp on
each end, we consider DNVs found within the capture region
610 bp to be high confidence calls and the DNVs at the end
of the capture region low confidence. After defining the high
and low confidence areas of each capture region, the code will
look at Samtools mpileup output and count how many times
the alternate allele appears in the parents and the child. By de-
fault, if the alternate does not appear at all, at any quality

level, in the parents and at least once in the child the DNV
will be in the final high confidence callset.

HAT is capable of running on Docker (Merkel 2014) com-
patible machines and high-performance clusters, as well as in
the cloud. We offer the workflow as both a Snakemake
(Koster and Rahmann 2012) and a Cromwell workflow
https://cromwell.readthedocs.io/en/stable/, respectively. The
total run time for Hare with WGS data, assuming four V100
or A100 GPUs, is 4.5 h. For WES data, only one GPU V100
or A100 is needed with a total parallelized run time of seven
minutes. Lastly, Tortoise has been optimized to run on PacBio
data by switching the model type for DeepVariant to
“PACBIO” and has an overall runtime of 2.5 days because it
does not use GPU acceleration. In the tested version of
Parabricks, GATK is not supported for PacBio.

2.2 Sample collections and DNV calling

Illumina short-read WES samples (IDT xGen exome capture)
included 100 trios from the SPARK Collection. One set of the
Illumina short-read WGS samples included 4216 trios from
the Simons Simplex Collection. The alignment data for both
of these collections was accessed through SFARI Base and
downloaded to our LSF server for running HAT. The other
set of Illumina short-read WGS was the Genome In A Bottle
trio (HG002-HG003-HG004) available from https://github.
com/genome-in-a-bottle/giab_data_indexes/blob/master/Ashkena
zimTrio/alignment.index.AJtrio_Illumina300X_wgs_novoalign_
GRCh37_GRCh38_NHGRI_07282015. PacBio HiFi long-read
samples included one trio from our previous publication on 9p

Figure 1. HAT workflow schematic. This figure shows how the general workflow of how HAT works
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Minus Syndrome (Sams et al. 2022), three trios from our previ-
ous publication on autism (Mehinovic et al. 2022), and the same
Genome In A Bottle trio as mentioned above. HAT was run on
our server using the Snakemake workflow using both V100 and
A100 GPUs for acceleration. When running DeepVariant on the
HG002 PacBio trio, we used the PacBio Revio model provided
by PacBio found here: https://downloads.pacbcloud.com/public/
revio/2022Q4/dv-model/.

2.3 Downsampling of 3003 Illumina data and 9p

PacBio long-read data

After downloading the 300� Illumina WGS HG002 trio data,
we realigned the trio to reference file GCA_000001405.1
5_GRCh38_no_alt_analysis_set.fasta with SpeedSeq (Chiang
et al. 2015) and then downsampled the 300� samples using the
“samtools view –subsample” command, with a subsample seed
of 69 (Li et al. 2009) to around �30� coverage. The sub-
sampled trio data was then run through HAT as previously de-
scribed. For the 9p PacBio long-read trio data, we used the same
Samtools command and random seed, first subsampling down
to a coverage level of 10�, 20�, and 30�. We subsequently
subsampled the 9p trio 100 times each, down to a coverage level
of 20� and 30�. The subsample seeds used were 0–99 for the
100 different replications, respectively, for both 20� and 30�.

2.4 de novo variant confirmation using 3003
Illumina WGS HG002 data

We used the Samtools “mpileup” command over all of the
DNVs detected on the 300� Illumina WGS data of the
HG002 trio from Genome In A Bottle. We counted the occur-
rences of each alternate allele. If the DNV had a variant allele
frequency of >25% in the child and <1% variant allele fre-
quency in the parents, the DNV is considered confirmed
based on the high coverage data. We used a 25% variant al-
lele frequency threshold in the child because it is the default
allele frequency cutoff used in HAT. We used a 1% variant al-
lele frequency cutoff in the parents because it corresponds to
the error rate found in Illumina sequencing (Stoler and
Nekrutenko 2021).

3 Results

3.1 DNVs from short-read WES

We tested HAT on 100 trios from the SPARK collection
(Feliciano et al. 2018). After initial detection of DNVs, a spe-
cific filtering script trims provided WES capture regions to
sort DNVs into high and low confidence calls and marked as
such in the output file (Supplementary Fig. S1). We found 282
DNVs, of which 190 were found in high confidence regions
and 92 were low confidence (Supplementary Table S1). In the
high confidence callset, the DNV confirmation rate was
91.6% as compared to 70.7% in the low confidence callset
with DNV features within expectations (Table 1).

3.2 DNVs from short-read WGS

We previously tested HAT on 4216 trios, with DNA derived
from blood, from the Simons Simplex Collection (Ng et al.
2022). Overall, we identified a total of 329 589 DNVs and
observed that all the DNV values fall in line with expectations
(Table 1), illustrating that this pipeline detects high-quality
DNVs from short-read WGS. For comparison to a known
control data, we also ran HAT on the 300� HG002 trio from
Genome In A Bottle. We first downsampled the data to �30�

and then ran HAT. We discovered 1105 DNVs from this trio
(Supplementary Table S2). The data had �16.5% of the
DNVs found within a CpG region. The spike in DNVs can
likely be explained by cell line artifacts, as seen previously
(Ng et al. 2022).

3.3 DNVs from long-read WGS

We ran HAT on four different PacBio HiFi long-read se-
quenced trios (Mehinovic et al. 2022, Sams et al. 2022)
(Fig. 2A and B, Supplementary Table S3).

Long-read sequencing allows for more accurate DNV de-
tection in repeat regions (Noyes et al. 2022). HAT found �94
DNVs per trio in unique regions, �62 per trio in repeat
regions, with a total of �156 DNVs found per trio
(Supplementary Table S2). After manual inspection of the
DNVs, the confirmation rate was lower than our initial
expectations (Supplementary Table S4). When assessing fold
coverage of the genome in the families, the 9p.100 family had
the highest confirmation rate as well as being the most deeply
sequenced (Fig. 2A and B). This family had DNV metrics
within our expectations (Table 2).

From this analysis, we hypothesized our lower-than-
expected DNV confirmation rate was due to lower coverage
seen in the PB.100 family.

To test this hypothesis, we downsampled the 9p.100 family
to �10�, �20�, and �30� for each individual and reran
HAT. As the coverage increased, the confirmation rate in-
creased from 62.4% to 91.9% in 30� coverage (Fig. 2C) with
a confirmation rate of 96.3% in variants residing in unique
regions of the genome. To further our assessment of the qual-
ity of DNVs at 20� and at 30�, we performed downsampling
100 times at each of these depths. We found 105 6 11 DNVs
in the 20� downsamplings and 80 6 2 in the 30� downsam-
plings (Fig. 2C). From these analyses, we conclude that 30�
coverage genomes, in each of the members of the parent–child
sequenced trio, are required for accurate DNV calling from
highly accurate long-read WGS data.

As we did for the short-read WGS, we also ran HAT on the
HG002 trio from Genome In A Bottle, using two replicates of
PacBio HiFi data. HAT called 1108 DNVs from one replicate
of the HG002 trio and 1106 DNVs from the second replicate
(Supplementary Table S2). The percent of DNVs found at a
CpG site was �16.6% for the first replicate and �17.0% for
the second replicate.

3.4 Comparison of DNVs detected by HAT to DNVs

detected by DeepTrio

To test how HAT compares to other DNV callers, we specifi-
cally examined DNV calls made using the tool DeepTrio on
the Illumina WGS data (obtained via personal communication
with Dr Andrew Carroll) on the Genome In A Bottle Trio
HG002. We also compared these to the Genome In A Bottle
truth datasets (also obtained via personal communication

Table 1. de novo variants detected in WES and WGS datasets.a

Data
type

de novo
variants

Percent of de novo variants
in CpG regions

Ti/Tv
ratio

WES 2 6 1 34.7% 2.39
WGS 78 6 15 18% 2.11

a This table shows de novo variants metrics from HAT on a 100 trio
WES SPARK dataset and a 4216 WGS trio dataset from the Simons Simplex
Collection.
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with Dr Andrew Carroll). We considered 30� Illumina short
reads, two replicates of HG002 PacBio HiFi long reads, and
the truthset when comparing HAT DNV calls to DeepTrio.
When compared all of the data, we found 914 DNVs over-
lapped (Fig. 3) between all five DNV callsets, with 96% of
these confirmed by the 300� data.

There were 335 DNVs found by DeepTrio and the truthset
that HAT did not call. Of the 335, only 12 DNVs were found
in regions that HAT does not blacklist during the default fil-
tering process. Looking at the mpileup count data from the
full 300�WGS HG002 trio, only 2 of the 12 were confirmed
from the 300� mpileup results (variant allele frequency <1%
in the parents, >25% in the child). Based on this result, we
hypothesized that there could be many DNVs that DeepTrio
calls but HAT does not due to our position blacklist. We then
ran the same position filters on the DeepTrio callset and saw
a �94% (982 DNVs) overlap to our Illumina WGS callset. Of
these 982 DNVs, 98% of the DNVs were confirmed by the
300� data. DeepTrio found 56 unique DNVs, 73% were con-
firmed. HAT found 123 unique variants, 56% were con-
firmed by the 300� data. We also saw very high overlap of

Figure 2. Long-read sequencing families and DNVs called with HAT. (A) Pedigree of the PB.100 family, with long-read sequencing coverage shown. This

family was sequenced by PacBio HiFi sequencing in Mehinovic et al. (2022). (B) Pedigree of the 9p.100 family, with long-read sequencing coverage

shown. This family was sequenced by PacBio HiFi sequencing in Sams et al. (2022). (C) This graph illustrates the increase in the quality of DNV calls as

the coverage increases in the downsampled 9p.100 family. The percent of DNVs confirmed, shown in orange, increases with coverage. The percentage

in parenthesis is the percent of confirmed DNVs in unique regions of the genome. The total DNV count, shown in blue, is around expected as coverage

increases. The counts in parenthesis are the number of DNVs in unique regions of the genome. The violin plot shows the distribution of DNVs at 20� and

30� from 100 downsamplings of the trio WGS data

Table 2. de novo variant metrics of 9p.100.p1.a

Family de novo variants Percent of de novo variants
in CpG regions

Ti/Tv ratio

9p.100.p1 125 21.1% 2.11

a This table shows the de novo variant metrics for the long-read
sequenced family 9p.100.p1.
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�93% between the two PacBio HiFi replicates and the filtered
DeepTrio results. Overall, after filtering regions of the genome
that HAT automatically filters, we find high levels of overlap
with DeepTrio, as well as confirmed unique DNV calls from
HAT.

4 Discussion

DNV calling from multiple sequencing types is critical for
studies of mutation rates and human disease. Several tools ex-
ist for calling DNVs from Illumina short-read sequencing
data (Michaelson et al. 2012, Wei et al. 2014, Lian et al.
2021) including our recently developed tool HAT that works
on short-read WGS data (Ng et al. 2022). However, we are
only aware of one tool [DeepTrio (Kolesnikov et al. 2021)]
that can call DNVs from Illumina short-read sequencing data
and PacBio HiFi long-read sequencing data. In this study, we
advanced our tool HAT to also work on these data types.

There are multiple advantages of using HAT for DNV call-
ing including utility of workflow in the cloud, use of multiple
underlying variant callers, and speed. HAT is designed to be
implemented in several possible ways. In particular, the
Cromwell implementation makes HAT cloud-friendly and
compatible with the Terra platform (https://terra.bio/) on
which several datasets from the National Institute of Health
are hosted in the cloud (https://anvilproject.org). This should
facilitate the use of HAT by multiple research groups. Unlike
DeepTrio that works on data from one underlying variant cal-
ler, we make use of two underlying variant callers (i.e. GATK
and DeepVariant). In our framework, the use of two underly-
ing variant callers increases the specificity of the callset.
Finally, our use of GPU acceleration facilitates accelerated
DNV detection.

The well-known HG002 trio from the Genome In A Bottle
project has been studied for many years and with several dif-
ferent sequencing technologies. We generated a HAT DNV
callset for this trio from two sequencing technologies

including Illumina short-read WGS and PacBio long-read
WGS. This DNV resource will be helpful to others who are in-
terested in trying out HAT in their own labs and for the
greater research community interested in this trio for research
purposes.

Currently, the majority of sequencing data utilized for
assessing DNVs is from short-read sequencing platforms.
However, we are at a juncture in genomics whereby highly ac-
curate long-read sequencing data will become more common-
place and a method to assess DNVs in this type of data is
critical. HAT works on Illumina short-read WES, Illumina
short-read WGS, and PacBio HiFi long-read WGS. Future
steps will integrate additional sequencing technologies as they
improve accuracy (i.e. Oxford Nanopore Technology) and/or
become more widely available (e.g. PacBio Onso, Element
Biosciences, Singular Genomics).

Overall, HAT is a DNV caller that will be of interest to
individuals studying DNVs for various purposes (e.g. muta-
tion rates, human disease).
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